Bibliography | Burger, Florian: Balltracking im RoboCup mit der Log-Polar-Transformation. University of Stuttgart, Faculty of Computer Science, Electrical Engineering, and Information Technology, Diploma Thesis No. 3128 (2011). 63 pages, german.
|
CR-Schema | I.2.9 (Robotics) I.2.10 (Vision and Scene Understanding) I.4.8 (Image Processing and Computer Vision Scene Analysis)
|
Abstract | Diese Diplomarbeit beschäftigt sich mit der Verfolgung der Trajektorie von Objekten, dem sogenannten Tracking, am Beispiel der Verfolgung von Bällen im RoboCup. An Informationen stehen dazu die Bilder einer am Roboter angebrachten 360°-Kamera zur Verfügung. Unter der Voraussetzung, dass die initiale Position des zu verfolgenden Balls bekannt ist, wird dessen weitere Bewegung in den folgenden Kamerabildern bestimmt. Die dabei zur Verfügung stehende Rechenzeit ist stark begrenzt. Um ein günstigeres Abtastverhalten zu erreichen, werden die Bilder im logarithmischen Polarkoordinatensystem (Log-polar) betrachtet. Dadurch werden, relativ zur betrachteten Bildposition, nahe Bereiche feiner abgetastet als weiter entfernte. Mit Hilfe dieser Betrachtungsweise werden die Kanten des Balls bestimmt. Dazu werden Pixel als Ballpixel oder Nicht-Ballpixel klassifiziert. Diese Klassifizierung basiert auf einem parameterlosen System, dass die speziellen Bedingungen des RoboCup berücksichtigt. Aus den bestimmten Kanten werden dann Größe und Position des Balls im aktuellen Kamerabild ermittelt. Für diesen Vorgang werden zwei mögliche Varianten in dieser Arbeit beschrieben und verglichen. Der eine Ansatz basiert darauf, dass der Rand eines Balls im Log-Polar-Bild genau dann eine Gerade darstellt, wenn der Pol dieses Bildes auf dem Mittelpunkt des Balls liegt. Das liegt daran, dass der Ball alle Winkel bis zu einem gewissen Abstand ausfüllt. Aus der Abweichung des aktuellen Bilds zu diesem Idealbild soll versucht werden, auf die Position des Ballmittelpunkts zu schließen. Der zweite Ansatz basiert auf der Methode der Summe der kleinsten Fehlerquadrate. Dabei werden aus jeweils drei Ballkantenpunkten Kreise bestimmt. Für jeden dieser Kreise wird anschließend die Summe der quadrierten Abstände der anderen Ballkantenpunkte von eben diesem Kreis bestimmt. Der Kreis mit der niedrigsten Summe bestimmt dann die Parameter des Balls.
|
Full text and other links | PDF (35231465 Bytes)
|
Department(s) | University of Stuttgart, Institute of Parallel and Distributed Systems, IPVS Infrastructure
|
Superviser(s) | Andreas Koch |
Entry date | August 30, 2011 |
---|