Diploma Thesis DIP-3169

BibliographyPanos, Michael: Machine-Learning-basiertes Framework für eine Geschäftsprozesssimulation.
University of Stuttgart, Faculty of Computer Science, Electrical Engineering, and Information Technology, Diploma Thesis No. 3169 (2011).
109 pages, german.
CR-SchemaH.2.4 (Database Management Systems)
H.3.3 (Information Search and Retrieval)
H.4.1 (Office Automation)
Abstract

Kurzfassung: Geschäftsprozesse erfreuen sich immer größerer Beliebtheit in Unternehmen. Durch den Einsatz von Informationstechnologien kann ein Unternehmen seine Kosten senken und Erträge steigern. Dabei spielt die Geschäftsprozessoptimierung eine wichtige Rolle. Veränderungen der Prozesse können aber ein Risiko darstellen. Um das Risiko von Fehlern zu minimieren kann eine Simulation des Geschäftsprozess ausgeführt werden. Auf Basis der deep Business Optimization Platform (dBOP) wurde ein Simulationsmodell konzipiert, das eine sehr realitätsnahe Simulation ausführt. Dabei verschafft man sich durch das integrierte Data Warehouse aus Prozessdaten und operativen Daten einen erheblichen Vorteil gegenüber herkömmlichen Simulationsmöglichkeiten. In dieser Diplomarbeit wurde ein Framework entwickelt, das eine Geschäftsprozesssimulation ausüben soll, die mit Hilfe von Data Mining Algorithmen aufgebaut wird. Es wurde ein Konzept entwickelt, das aus dem vordefinierten dBOP-Modell ein Simulationsmodell aufbaut. Dieses Konzept wird mit seinen Phasen erläutert. Außerdem wurde eine prototypische Implementierung entwickelt. Anschließend findet sich eine Evaluation der gewählten Geschäftsprozesssimulation auf Basis eines Beispiels. Es wird anhand dieses Testprozesses aufgezeigt, wie das Simulationsmodell entsteht und welche Besonderheiten man beachten muss. Anschließend wurden die Ergebnisse der Simulation analysiert und mit realen Daten und Simulationsdaten, ohne erweiterte Datenbasis, verglichen.

Abstract: Business processes are becoming more and more popular in the corporate environment. With the service of information technology enterprises can lower their cost and increase their income. Therefore business process optimization plays an important part. But changes in processes are involved with a certain risk. To reduce the risk of making mistakes there can be an execution of a simulation of a business process. On top of the deep Business Optimization Platform (dBOP) we designed a simulation model that could execute a simulation very close to reality. Thereby the integrated Data Warehouse consisting of process and operational data give us a huge edge over conventional simulation models. In this diploma thesis we designed a framework that would execute this business process simulation with the help of data mining algorithms. Therefore a concept is developed that builds a simulation model from the predefined dBOP model. This concept is described with all its phases. Additionally a prototype has been implemented. After that an evaluation of the simulation model was made based on an example process. It is described by this example how the simulation model originates and how we have to treat the specifics. Following this, the results of the simulation are analyzed with real data and simulation data of a conventional simulation model.

Full text and
other links
PDF (3082807 Bytes)
Department(s)University of Stuttgart, Institute of Parallel and Distributed Systems, Applications of Parallel and Distributed Systems
Superviser(s)Niedermann, Florian
Entry dateNovember 3, 2011
   Publ. Computer Science