Artikel in Tagungsband INPROC-2025-03

Bibliograph.
Daten
Fieschi, Andrea; Hirmer, Pascal; Stach, Christoph: Discovering Suitable Anonymization Techniques: A Privacy Toolbox for Data Experts.
In: Klettke, Meike (Hrsg); Schenkel, Ralf (Hrsg); Heinrich, Andreas (Hrsg); Nicklas, Daniela (Hrsg); Schüle, Maximilian E. (Hrsg); Meyer-Wegener, Klaus (Hrsg): Datenbanksysteme für Business, Technologie und Web (BTW 2025).
Universität Stuttgart, Fakultät Informatik, Elektrotechnik und Informationstechnik.
Lecture Notes in Informatics; P361, S. 827-833, englisch.
Bonn: Gesellschaft für Informatik, März 2025.
ISSN: 2944-7682; DOI: 10.18420/BTW2025-48.
Artikel in Tagungsband (Demonstration).
CR-Klassif.K.4.1 (Computers and Society Public Policy Issues)
KeywordsAnonymization; Privacy-Enhancing Techniques; Anonymization by Design
Kurzfassung

Identifying the appropriate anonymization technique is a critical yet challenging task for developers, data scientists, and security practitioners. Our interactive toolbox addresses this challenge by providing a comprehensive overview of available anonymization techniques to assist privacy-conscious developers in selecting the right one for their specific use cases. The toolbox offers a hierarchical and classified overview of techniques, each detailed with meta-model information. It employs a modular approach, allowing techniques to be implemented and deployed independently. Additionally, it enables developers to evaluate these techniques on test datasets. Our toolbox allows for the easy addition of new categories and modules. This paper demonstrates the anonymization toolbox’s capabilities, simplifying the decision-making process in the Anonymization by Design cycle by ensuring overview, modularity, and flexibility.

CopyrightSenden Sie eine E-Mail an <andrea.fieschi@ipvs.uni-stuttgart.de>.
Abteilung(en)Universität Stuttgart, Institut für Parallele und Verteilte Systeme, Anwendersoftware
Projekt(e)SofDCar
Eingabedatum16. März 2025
   Publ. Abteilung   Publ. Institut   Publ. Informatik