Master Thesis MSTR-2017-92

BibliographyTkachev, Gleb: Investigation and prediction of distributed volume rendering performance.
University of Stuttgart, Faculty of Computer Science, Electrical Engineering, and Information Technology, Master Thesis No. 92 (2017).
65 pages, english.
Abstract

In this work, I describe the process of developing a cluster scalability model that is capable of predicting performance of a parallel rendering application running on a cluster while only having data that can be obtained from one of its nodes. I begin by studying scaling behavior of a single cluster, employing linear regression and neural networks to construct a cluster-specific scalability model, which im-plicitly captures its hardware characteristics. I use this model as a foundation for further work, developing a hardware-agnostic cluster scalability model. Instead of using explicit hardware characteristics as input, the hardware-agnostic model takes in a distribution of node computation time, which encapsulates local computational load of a rendering application, enabling the model to focus on pre-dicting communication overhead of a cluster. This allows simulation of different hardware by varying the node computation time, gathering enough data to train a neural network that predicts the overall performance of the rendering application on a cluster with arbitrary node hardware.

Full text and
other links
Volltext
Department(s)University of Stuttgart, Institute of Visualisation and Interactive Systems, Visualisation and Interactive Systems
Superviser(s)Ertl, Prof. Thomas; Frey, Dr. Steffen; Müller, Christoph; Bruder, Valentin
Entry dateJune 18, 2019
   Publ. Computer Science