Masterarbeit MSTR-2024-121

Bibliograph.
Daten
Yi, Qianrong: Development and evaluation of a real-time error state Kalman Filter for localization of an indoor robot.
Universität Stuttgart, Fakultät Informatik, Elektrotechnik und Informationstechnik, Masterarbeit Nr. 121 (2024).
67 Seiten, englisch.
Kurzfassung

An indoor scenario for robots has the advantage of running in a controllable environment, while the blocking of Global Navigation Satellite System (GNSS) signals makes it difficult to provide accurate absolute measurements in real-time. A robotic total station (RTS) can track a prism in real-time with millimeter-level positional accuracy. This thesis implements a real-time error state Kalman filter (ESKF), which uses an RTS, Inertial Measurement Unit (IMU), and odometry on a robot. In this thesis, the following problems are addressed: initialization of the filter, design of measurement functions for each sensor, and the real-time challenges. Two versions of this filter are implemented: one in MATLAB for theoretical proof and simulation, and one in ROS for real-time performance. Finally, a real-time result is presented and evaluated in three aspects: robustness, runtime, and accuracy.

Volltext und
andere Links
Volltext
Abteilung(en)Universität Stuttgart, Institut für Visualisierung und Interaktive Systeme, Visualisierung und Interaktive Systeme
BetreuerWeiskopf, Prof. Daniel; Abolhasani, Sahar; Zhang, Dr. Li; Öney, Seyda
Eingabedatum13. Mai 2025
   Publ. Informatik