Masterarbeit MSTR-2025-05

Bibliograph.
Daten
Prölß, Till: Implement the RIDE Algorithm Into the Unfold.jl Toolbox.
Universität Stuttgart, Fakultät Informatik, Elektrotechnik und Informationstechnik, Masterarbeit Nr. 5 (2025).
41 Seiten, englisch.
Kurzfassung

Event-relatedpotentials(ERPs)arecommonlyusedinEEGresearchtostudybrain responsestospecificstimuli.TraditionalERPaveragingmethodsareaffectedbytrial-to- trial latencyvariability,whichcandistorttheextractedcomponents.ResidualIteration DecompositionEstimate(RIDE)isanestablishedmethoddesignedtocorrectforthis variabilitybyseparatingcomponentsbasedontheirlatencydistributions.Whileeffective, its originalMATLABimplementationlacksflexibilityandintegrationwithmodernEEG analysis frameworks. This workpresentsaJulia-basedimplementationofRIDEanditsintegrationintoUn- fold, aregression-baseddeconvolutiontoolboxforEEGanalysis.Twoversionswerede- veloped:ClassicRIDE,whichreplicatesMATLABRIDE’sbehavior,andUnfoldRIDE, whichreplacesiterativedecompositionwithregression-baseddeconvolution.Bothim- plementationswereevaluatedusingsimulateddatasetswithknowngroundtruthanda real-worldEEGdatasettoassesstheiraccuracyandcomparethemwithMATLABRIDE. The resultsshowthatClassicandUnfoldRIDEsuccessfullyreconstructERPcom- ponents,producingreasonableresultsinbothdatasets.However,differencesexistwhen compared toMATLABRIDE,likelyduetomissingfeaturesandvariationsinfiltering,la- tency estimation,anditerationbehavior.Despitethesediscrepancies,thefindingsconfirm that Unfold’sregression-basedapproachisaviablealternativetoiterativedecomposition, offering potentialadvantagessuchasimprovedmodelingflexibility. Futureresearchshouldfocusonimplementingmissingfeaturesandachievingequiv- alence withMATLABRIDE.Additionally,randomizedtestingwithUnfoldSimcould providesystematicvalidationandhelpoptimizethealgorithm.Thisworklaysthefoun- dation forfurtherimprovementsinEEGdeconvolutionbycombiningRIDE’slatency estimation withUnfold’sflexibleregressionframework. The implementedalgorithmsareavailableasanopensourceprojectonGitHub: https://github.com/unfoldtoolbox/UnfoldRIDE.jl

Abteilung(en)Universität Stuttgart, Institut für Künstliche Intelligent, Maschinelles Lernen in den Simulationswissenschaften
BetreuerEhinger, Jun.-Prof. Benedikt; Skukies, René
Eingabedatum13. Mai 2025
   Publ. Informatik