Masterarbeit MSTR-2025-27

Bibliograph.
Daten
Nadgouda, Chinmay Surendra: Open-Set 3D Scene Graph Generation with Fine-Grained Scene Understanding.
Universität Stuttgart, Fakultät Informatik, Elektrotechnik und Informationstechnik, Masterarbeit Nr. 27 (2025).
67 Seiten, englisch.
Kurzfassung

The abilityofarobottointeractwithitssurroundingsgreatlybenefitsfromasemanticallyrichscene graph.However,thisrequiresthescenegraphtohavesemanticinformationabouttheobjectsas wellastheirfunctionalinteractiveelements,alsoknownasparts.ConceptGraphs,astate-of-the-art piece ofresearch,fulfillsthefirstrequirementbutlacksthefine-grainedsegmentationofobject partsneededtofulfillthesecondrequirement.Inthisthesis,weintroduceanovelextensiontothe implementation ofConceptGraphs.WeproposetointegrateMask3DwithConceptGraphs.Wetrain the Mask3DmodelonadatasetresultingfromthemergerofARKitLabelMakerandSceneFun3D datasets. Thismodel,capableofpart-objectsegmentation,willenhanceConceptGraph’sabilityto capture fine-grainedinformationaboutobjectparts.Wealsotesthowwelloursystemworksby doing thetasksoffunctionalitysegmentationandtask-drivenaffordancegroundingthataredefined in SceneFun3D.Wepushforwardthestate-of-the-artperformanceontheSceneFun3Ddataset with ourimplementedsystem,demonstratingtheefficacyofourdevelopedsystem.Theresults obtained showanincreaseof6-9%inAveragePrecision(AP)atmeanIntersectionoverUnion (mIoU) thresholdsof25%and50%andover12%increaseinAP,theaverageoverdifferentIoU thresholds from0.5to0.95withastepof0.05.

Abteilung(en)Universität Stuttgart, Institut für Künstliche Intelligent, Autonome Systeme
BetreuerArras, Prof. Kai; Roitberg, Jun.-Prof. Alina; Rotondi, Dennis
Eingabedatum13. August 2025
   Publ. Informatik