Masterarbeit MSTR-2025-29

Bibliograph.
Daten
Nguyen, Duc Anh: Quantum circuit optimization for circuit cutting.
Universität Stuttgart, Fakultät Informatik, Elektrotechnik und Informationstechnik, Masterarbeit Nr. 29 (2025).
63 Seiten, englisch.
Kurzfassung

In this work, we present an optimization framework aimed at reducing the sampling overhead associated with circuit cutting in quantum computing. We design a complete pipeline that integrates circuit rewriting, overhead evaluation via qiskit-addon-cutting, and heuristic search using simulated annealing and genetic algorithms. To enable more efficient circuit representations, we propose six rewriting techniques, including methods that exploit gate commutativity and ZX-Calculusbased transformations. The latter allows flexible rewrites through diagrammatic rules such as simplification, local complementation, and pivoting. Our experimental evaluation on benchmark circuits demonstrates that ZX-based strategies significantly reduce sampling overhead, while pure commutativity-based approaches show limited gains. To improve scalability, we introduce a windowed rewriting approach that targets random circuit sections, offering further performance benefits. Comparative results reveal that simulated annealing consistently finds lower-overhead solutions, whereas the genetic algorithm provides superior runtime performance through parallel evaluation. Our findings highlight the value of structured rewriting and search-based optimization in preparing circuits for circuit cutting.

Volltext und
andere Links
Volltext
Abteilung(en)Universität Stuttgart, Institut für Architektur von Anwendungssystemen, Architektur von Anwendungssystemen
BetreuerLeymann, Prof. Frank; Bechtold, Marvin; Mandl, Alexander
Eingabedatum14. August 2025
   Publ. Informatik