Masterarbeit MSTR-2025-38

Bibliograph.
Daten
Murali, Aswin: Intelligent Scene Understanding from Object Detection in Industrial Environments.
Universität Stuttgart, Fakultät Informatik, Elektrotechnik und Informationstechnik, Masterarbeit Nr. 38 (2025).
69 Seiten, englisch.
Kurzfassung

Understanding3Dscenesisacornerstoneofautonomousmobilerobotnavigationandinteraction, especiallywithincomplexindustrialenvironments.Traditionaloccupancy-basedSLAMmethods typicallyemphasizespatialgeometry,yetoftenlacksemanticcontext—anessentialcomponentfor informeddecision-making,object-levelreasoning,andprecisetaskexecution.Toovercomethis, varioussceneunderstandingapproacheshavebeenproposed;however,theyareoftenconstrainedby their relianceonlargeannotateddatasets,challengesindetectingcustomornovelobjects,di!culties in sensorfusionduetonon-overlappingfieldofviews,andconstraintswithreal-timeperformance. These shortcomingssignificantlylimittheadaptabilityandscalabilityofsceneunderstandingin real-worldapplications.Thisthesispresentsanovelsystemthatequipsmobilerobotswiththe ability togeneratesemanticallyrich2Doccupancymapsenhancedby3Dobjectreconstructions through amulti-viewfusionframework.Crucially,itenablesthedetectionofnovelobjectswith minimal supervision,eliminatingtheneedforlargeannotateddatasets,humanannotationsand reducing deploymentoverhead.Byaggregatingobjectdetectionsfrommultipleperspectives,the systemdeliversmoreaccurateandresilient3Dreconstructions.Enhancing2Doccupancymaps with 3Dobjectreconstructionsintroducessemanticstructureandobject-levelawarenessintothe spatial map,enablingricherunderstandingofthescene.Theproposedsystemrepresentsastep towardsreal-time,andscalable3Dsceneunderstanding—pavingthewayformoreintelligent, autonomous, andadaptablemobilerobotsindynamicindustrialsettings.

Abteilung(en)Universität Stuttgart, Institut für Künstliche Intelligent, Autonome Systeme
BetreuerArras, Prof. Kai; Roitberg, Jun.-Prof. Alina; Scaparro, Fabio; Kumar, Abhilash Nand
Eingabedatum2. Oktober 2025
   Publ. Informatik