Master Thesis MSTR-3629

BibliographyValentin, Julian: Hierarchische Optimierung mit Gradientenverfahren auf Dünngitterfunktionen.
University of Stuttgart, Faculty of Computer Science, Electrical Engineering, and Information Technology, Master Thesis No. 3629 (2014).
107 pages, german.
CR-SchemaG.1.6 (Numerical Analysis Optimization)
Abstract

Überall, wo Parameter bei Simulationen oder Experimenten ins Spiel kommen, sind Optimierungsaufgaben von Interesse. Grundlegende Annahme ist in der Regel eine gewisse Glattheit der funktionalen Abhängigkeiten. Beispiele für solche Aufgaben kommen aus den verschiedensten Bereichen, von Crash-Test- bis Strömungssimulationen. Ein zentrales Problem ist in der Regel, dass jede betrachtete Parameterkombination eine aufwendige Simulationsaufgabe erzwingt. Mit möglichst wenig Simulationen (bzw. Samples) auszukommen, ist daher wünschenswert. Ein Ansatz ist die Konstruktion von Surrogaten, beispielsweise über die Interpolation mittels globaler Polynome. Bei mehr als vier oder fünf Dimensionen scheidet dies aber aufgrund des Fluchs der Dimensionalität aus. Hier bieten dünne Gitter eine Möglichkeit, den Fluch der Dimensionalität ein großes Stück weit zu lindern. Optimierungsaufgaben auf Dünngittersurrogaten durchzuführen, scheiterte bislang an den verwendeten Ansatzfunktionen. Stückweise lineare oder polynomielle Funktionen sind hierzu aus naheliegenden Gründen nicht geeignet. In dieser Masterarbeit werden B-Splines als Basisfunktionen verwendet und die Optimierung auf Dünngittersurrogaten mit gradientenbasierten Optimierungsmethoden untersucht.

Full text and
other links
PDF (10540808 Bytes)
DOI
Department(s)University of Stuttgart, Institute of Parallel and Distributed Systems, Simulation of Large Systems
Superviser(s)Pflüger, Dirk
Entry dateNovember 27, 2014
   Publ. Computer Science