Bibliograph. Daten | Bock, Pascal: Development of a benchmarking framework for Inverse Reinforcement Learning algorithms based on Tetris. Universität Stuttgart, Fakultät Informatik, Elektrotechnik und Informationstechnik, Studienarbeit Nr. 2464 (2015). 38 Seiten, englisch.
|
CR-Klassif. | D.2.8 (Software Engineering Metrics) H.5.2 (Information Interfaces and Presentation User Interfaces) I.2.1 (Applications and Expert Systems) I.2.6 (Artificial Intelligence Learning)
|
Kurzfassung | Tetris is one of the oldest, most popular and most well-known video games. The simple rules and scoring options make it a viable choice for benchmarking artificial intelligence, especially in the machine learning department. This work describes a customizable benchmarking frame- work using a simplified variant of the original Tetris game focused on Inverse Reinforcement Learning algorithms.
|
Volltext und andere Links | PDF (243333 Bytes)
|
Abteilung(en) | Universität Stuttgart, Institut für Parallele und Verteilte Systeme, Maschinelles Lernen und Robotik
|
Betreuer | Toussaint, Marc |
Eingabedatum | 20. April 2015 |
---|