Bibliograph. Daten | Leibe, B.; Hetzel, G.; Levi, P.: Local Feature Histograms for Object Recognition from Range Images. Universität Stuttgart, Fakultät Informatik, Fakultätsbericht Nr. 2001/06. 8 Seiten, englisch.
|
CR-Klassif. | I.2.10 (Vision and Scene Understanding)
|
Keywords | 3D object recognition; range images; histograms |
Kurzfassung | In this paper, we explore the use of local feature histograms for view-based recognition of free-form objects from range images. Our approach uses a set of local features that are easy to calculate and robust to partial occlusions. By combining them in a multidimensional histogram, we can obtain highly discriminative classifiers without having to solve a segmentation problem.
The system achieves above 91% recognition accuracy on a database of almost 2000 full-sphere views of 30 free-form objects, with only minimal space requirements. In addition, since it only requires the calculation of very simple features, it is extremely fast and can achieve real-time recognition performance.
|
Volltext und andere Links | PDF (626236 Bytes) PostScript (5524033 Bytes)
|
Kontakt | hetzel@informatik.uni-stuttgart.de |
Abteilung(en) | Universität Stuttgart, Institut für Parallele und Verteilte Höchstleistungsrechner, Bildverstehen
|
Eingabedatum | 23. August 2001 |
---|