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Ultrafast Shortest-Path Queries via Transit NodesHolger Bast, Stefan Funke, and Domagoj MatijeviAbstrat. We introdue the onept of transit nodes as a means for prepro-essing a road network suh that point-to-point shortest-path queries an beanswered extremely fast. We assume the road network to be given as a graph,with oordinates for eah node and a travel time for eah edge.The transit nodes are a set of nodes, as small as possible, with the propertythat every non-loal shortest path passes through at least one of these nodes. Apath is alled non-loal if its soure and target are at least a ertain minimaleulidean distane apart. We preompute the lengths of the shortest pathsbetween eah pair of transit nodes, and between eah node in the graph and itsfew, losest transit nodes. Then every non-loal shortest path query beomesa simple matter of ombining information from a few table lookups.For the US road network, with about 24 million nodes and 29 millionundireted edges, we ahieve a worst-ase query proessing time of about 10miroseonds (not milliseonds) for 99% of all queries, namely the non-loalones. This improves over the best previously reported times by two orders ofmagnitude. 1. IntrodutionThe lassial way to ompute the shortest path between two given nodes in agraph with given edge lengths is Dijkstra's algorithm [4℄. The asymptoti runningtime of Dijkstra's algorithm is O(m + n logm), where n is the number of nodes,and m is the number of edges [6℄. For graphs with onstant degree, like the roadnetworks we onsider in this paper, this is O(n logn). While it is still an openquestion, whether Dijkstra's algorithm is optimal for single-soure single-targetqueries in general graphs, there is an obvious 
(n + m) lower bound, beauseevery node and every edge has to be looked at in the worst ase. Sublinear querytime hene requires some form of preproessing of the graph. For general graphs,onstant query time an only be ahieved with superlinear spae requirement; this isdue to a reent result by Thorup and Zwik [18℄. Like previous works, we thereforeexploit speial properties of road networks, in partiular, that the nodes have lowdegree and that there is a ertain hierarhy of more and more important roads,suh that further away from soure and target only the more important roads tendto be used on shortest paths.This work is partially supported by the EU 6th Framework Programme under ontrat 001907(DELIS). 0000 (opyright holder)1
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Figure 1. Transit nodes (red/bold dots) for a part of a ity (en-ter, dark) when travelling far (outside the light-gray area).Our benhmark for most of this paper will be an undireted version of the USroad network, whih has about 24 million nodes and 29 million edges. On thisnetwork, a good implementation of Dijkstra's algorithm on a single state-of-the-artPC takes on the order of seonds, on average, for a random query. Note that for arandom query, soure and target are likely to be far away from eah other, in whihase Dijkstra's algorithm will settle a large portion of all nodes in the networkbefore eventually reahing the target. For most of this paper, edge lengths will betravel times, so that shortest paths are atually paths with minimum travel time.We will ontinue to speak of shortest, however, beause that is more familiar and tostress the wider appliability of our transit node idea. At the end of the paper wewill also present results for unit edge lengths and when the length of an edge is thedistane along the orresponding road segment, and results for the road network ofWestern Europe. 2. Our resultsWe present a new algorithm, named TRANSIT, whih an answer non-loalshortest path queries extremely fast, by ombining information from a small numberof lookups in a table. On the US road network, we ahieve an average queryproessing time of around 10 miroseonds (not milliseonds) for 99 % of all queries,when only the length (travel time) of the shortest path is required. The remaining1 % of the queries are loal in the sense that soure and target are geometriallyvery lose to eah other. We also provide a simple algorithm for dealing with thefew loal queries eÆiently. However, the fous of this work is on the non-loalqueries. In fat, we prefer to view our transit node approah as a �lter : the vastmajority of all queries an be proessed extremely fast, leaving only a small fration



ULTRAFAST SHORTEST-PATH QUERIES VIA TRANSIT NODES 3of loal queries, whih an be proessed by any other method. Note that alreadyDijktra's algorithm an proess the loal queries by orders of magnitudes fasterthan arbitrary random queries.Our proessing times for the non-loal queries beat the best previously reported�gure of about 1 milliseond, due to Sanders and Shultes [15℄, by two orders ofmagnitude. When the full path, with all its edges, is to be output, we ahieve anaverage query proessing time of about 5 milliseonds on the US road network. Weremark that all of the previous, more sophistiated algorithms use some form ofpath ompression, whih does not easily allow them to output the edges along theshortest path without using extra memory.The basi idea of TRANSIT is as follows. For a given road network, ompute asmall set of transit nodes with the property that every shortest path that overs aertain not too small eulidean distane passes through at least one of these transitnodes. For every node in the given graph, then ompute a set of losest transitnodes, with the property that every shortest path starting from that node andpassing through a transit node at all (whih it will if it goes suÆiently far), willpass through one of these losest transit nodes. These sets of losest transit nodesturn out to be very small: about 10 on average for our hoie of transit nodes onthe US road network. This allows us to preompute, for eah node, the distanesto eah of its losest transit nodes. Also, the overall number of transit nodes turnsout to be small enough so that we an easily preompute and store the distanesbetween all pairs of transit nodes.A non-loal shortest path query an then easily be answered as follows. Fora given soure node sr and target node trg , feth the preomputed sets of losesttransit nodes Tsr and Ttrg , respetively. For eah pair of transit nodes tsr 2 Tsrand ttrg 2 Ttrg ompute the length of the shortest path passing through these nodes,whih is d(sr; tsr) + d(tsr ; ttrg) + d(ttrg ; trg). Note that all three distanes in thissum have been preomputed. The minimum of these jTsr j � jTtrg j lengths is thelength of the shortest path.Given an algorithm for length-only shortest path queries, one an easily om-pute the edges along the shortest path using a few length-only shortest path queriesper edge on the shortest path. To see this, assume we have already found a portionof the shortest path from the soure to a node u. To �nd the next edge on the path,we simply launh a length-only shortest path query for eah of the adjanent nodesof u. Given the length of the portion of the shortest path we already know, its totallength, and the length of the edges adjaent to u, it is then easy to tell whih ofthese edges is next on the shortest path. For details and possible improvements,see Setion 4.5.We want to stress that there are natural appliations, where length-only short-est path queries are good enough, and not all the edges along the path are required.For example, most ar navigation systems merely have a loal view of the road net-work (if any). In that ase it suÆes to know the next few edges on the shortestpath, and these an be omputed by just a few length-only shortest-path queries,as desribed above.We deribe TRANSIT in more detail in Setion 4.



4 HOLGER BAST, STEFAN FUNKE, AND DOMAGOJ MATIJEVIC3. Related WorkWe give a quik survey of work diretly relevant to the problem of preproessingroad networks for subsequent fast shortest-path querying.Gutman in [9℄ proposes a general onept of edge levels (he alled it reah,though). Consider an edge e that appears \in the middle" of a shortest path, {shortest with respet to travel time { between two nodes that are a ertain distaned apart { distane with respet to some arbitrary other metri, e.g., eulideandistane. Then the level of e is the higher, the larger d is. Gutman de�nes levelswith respet to eulidean distane, but he notes that any metri an be used forthe disrimination of the \in the middle" property. He presents simple algorithmswhih ompute upper bounds for the edge levels and instruments those to obtainmore eÆient exat shortest path queries on moderate-size road networks. Due tothe use of the eulidean metri as lassifying metri, his approah allows for severalvariants of Dijkstra, in partiular a natural goal-direted (unidiretional) version aswell as eÆient one-to-many shortest path queries. The { ompared to later worklike [14℄ or [8℄ { less ompetitive running times, both for the preproessing phaseas well as the queries are mainly due to the lak of an eÆient ompression sheme.The latter is very important for obtaining fast running times sine in partiularthe networks indued by higher level edges ontain very long hains of degree-twonodes following whih is quite expensive. They an be easily skipped by suitableshortut/path ompression edges, though.Later Sanders and Shultes have adopted a di�erent lassifying metri for theirso-alled Highway-Hierarhies [14℄. In an ordinary Dijkstra omputation from asoure sr, say that the rth node settled has Dijkstra rank r with respet to sr.Sanders and Shultes say that the level of an edge (u; v) is high if it is on a shortestpath between some sr and trg suh that v has high Dijkstra rank with respetto sr and u has high Dijkstra rank with respet to trg. They ahieve a drastiimprovement both in preproessing time as well as in query times, mainly beauseof the use of the Dijkstra rank as lassifying metri as well as a highly eÆientompression and pruning sheme in the higher levels of the network. The output ofthe algorithm is a path ontaining ompressed edges, though, and unompressingthose edges does require some additional time and spae. Their variant is alsoinherently bidiretional, so both goal-diretion as well as one-to-many queries arenot easily added, though later work has tried to address these issues.Goldberg et al. in [8℄ ombine edge levels with a ompression sheme and theyuse lower bounds, based on preomputed distanes to a few landmarks verties, toallow for a more goal-direted searh. They report running times omparable tothose of [14℄. Their spae onsumption is somewhat higher though, beause everynode in the network has to store distanes to all landmarks. A non-goal-diretedversion of their algorithm exhibits onsiderably less storage requirements at theost of only slightly higher query time.More reently, Sanders and Shultes [15℄ have presented the so far best ombi-nation of preproessing and query time. They show how to preproess the US roadnetwork in 15 minutes, for subsequent query times of, on the average, 1 milliseond.While we ould not yet ome lose to their extremely fast preproessing time, ourlength-only sheme beats their query time by two orders of magnitude.M�ohring et al. [12, 10℄, based on previous work by Lauther [11℄, explored arags as means to ahieve very fast query times. Intuitively, an ar ag is a sign that



ULTRAFAST SHORTEST-PATH QUERIES VIA TRANSIT NODES 5says whether the respetive edge is on a shortest path to a partiular region of thegraph. In an extreme ase, an edge ould have a sign to every node on the shortestpath to whih it lies. A shortest path query ould then be answered by simplyfollowing the signs to the target without any detour. However, to preomputethese perfet signs requires an all-pairs shortest-path omputation, whih takesquadrati time and would be infeasible already for a small portion of the whole USroad network, say the network of California. It is shown in [12, 10℄ and [11℄ how tout down on this preproessing somewhat, by putting up signs to suÆiently largeregions of the graph. The largest network onsidered in these works has about onemillion nodes [12℄. In the initial stages of our work, we experimented with the arag approah too, and were not able to ahieve query proessing times ompetitivewith those of [15℄ with a reasonable amount of preproessing time and extra spae.Most reently, following the �rst appearane of our paper, Sanders and Shulteshave ombined the transit node idea with highway hierarhies [16℄. They report tohave worked independently on similar ideas, but with a �ve times larger number oflosest transit nodes (alled aess nodes in their work) per node. Note that theaverage query time of any sheme based on the transit node idea grows quadratiallyin the average number of losest transit nodes per node. The idea of preomputingall-to-all distanes between a small subset of all nodes was already used in [15℄, toterminate loal searhes when they asended far enough in the hierarhy. Promptedby our formulation of the transit node idea and the observation that an average ofabout 10 losest transit nodes per node suÆe for a road network like that of theUS, Sanders and Shultes were able to develop their ideas further to ahieve veryfast proessing times omparable to those we report in this paper. They ahievethese proessing times for both non-loal and loal queries. (We would get a similarresult by using the original highway hierarhies as a fallbak for the loal queries,but their implementation is more integrated as it uses highway hierarhies both forthe loal queries and for the omputation of transit nodes.) Their preproessingis an order of magnitude faster than what we report in this paper. The prie is amore omplex algorithm and implementation, and an inreased spae onsumption.More details on the omparison between both approahes, our simple geometri oneand the one based on highway hierarhies, are given in a joint follow-up paper [1℄.In retrospet, the work of [13℄ (whih later beame [2℄) an be taken as anotheralternative to omputing transit nodes. In a nutshell, they use a hierarhy ofseparators to partition a given road network (making use of its almost-planarity).Their separator nodes ould be taken as transit nodes, in whih ase loal querieswould be those with both endpoints in the same omponent. However, just like forthe early attempts of Sanders and Shultes, this approah gives rise to an inherentlymuh larger number of losest transit nodes (aess nodes), whih implies one totwo orders of magnitude larger preproessing time, spae onsumption and queryproessing times. 4. The TRANSIT algorithm4.1. Intuition. The basi intuition behind our approah is very simple: imag-ine you live in a big ity and intend to travel long-distane by ar. What you willobserve is that irrespetively of where your �nal destination is (as long it is rea-sonably far away) and where exatly you live in the ity, there will be few roadsvia whih you will atually leave the urban area when travelling on a shortest path
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Figure 2. Transit neighborhood of a ell in a 64� 64 subdivisionof the US.
Figure 3. Transit neighborhood of a ell in a 1024� 1024 subdi-vision of the US.to your destination. In Figure 1 we have depited these roads for the enter partof a ity. No matter where you start your journey inside the entral region (indark) { if your �nal destination lies outside the light-grey area and you travel on ashortest path, you will pass through one of the 14 marked roads (red/bold dots).This property, that long-distane trips (where the length is to be seen relative tothe "starting region") pass through few transit nodes, is in fat to some degreeinvariable to sale. The example in Figure 1 shows the transit nodes for a ell in a256� 256 subdivision of the road network of the US; there are 14 of them. Figures2 and 3 show transit nodes (or more preisely transit neighborhoods by whih weompute transit nodes) for ells of a 64� 64 and 1024� 1024 subdivision of the USrespetively. They exhibit 17 and 8 transit nodes respetively.In essene our approah is then to onstrut a (geometri, in our ase) subdi-vision of the network into ells and determine their transit nodes, suh that thetotal number of transit nodes is small enough to allow us to preompute and storeall pairwise distanes between transit nodes in O(n) spae, i.e., in about the sameamount of spae as used for the original graph itself. Furthermore eah node storesdistanes to the transit nodes of its resident ell. At query time a simple lookupyields the exat distane between any soure-target pair provided they are not toolose to eah other.4.2. Computing the Set of Transit Nodes. Consider the smallest enlos-ing square of the set of nodes (oming with x and y oordinate eah), and the
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Figure 4. De�nition and omputation of transit nodes in the grid-based onstrution.natural subdivision of this square into a grid of g � g equal-sized square ells, forsome integer g. We de�ne a set of transit nodes for eah ell C as follows. LetSinner and Souter be the squares onsisting of 5 � 5 and 9 � 9 ells, respetively,eah with C at their enter. Let EC be the set of edges whih have one endpointinside C, and one outside, and de�ne the set VC of what we all rossing nodes bypiking for eah edge from EC the node with the smaller id. De�ne Vouter and Vinneraordingly1. See the left side of Figure 4 for an illustration. The set of losesttransit nodes for the ell C is now a set of nodes TC � Vinner with the property thatfor any pair of nodes p; q | one in VC , one in Vouter | there exists a shortest pathfrom p to q whih passes through some node v 2 TC . Note that we also ould havedemanded that all shortest paths from p; q pass through some node in TC , but thiswould have potentially inreased the number of transit nodes with the only bene�tof a slightly easier routine for reporting all shortest paths between a pair of nodeslater on.The overall set of transit nodes is just the union of these sets over all ells. It iseasy to see that if two nodes are at least four grid ells apart in either horizontal orvertial diretion, then the shortest path between the two nodes must pass throughone of these transit nodes. By \four grid ells apart" we mean that between thegrid ell ontaining the one node and the grid ell ontaining the other node thereare at least four other grid ells. Also note that if a node is a transit node for someell, it is likely to be a transit node for many other ells, eah of them two ellsaway, too.A naive way to ompute these sets of transit nodes would be as follows. Foreah ell, ompute all shortest paths between nodes in VC and Vouter, and mark allnodes in Vinner that appear on at least one of these shortest paths. Figure 4 willagain help to understand this. Suh a naive omputation is too time-onsuming,though, for example for a 128�128 grid it required several days on the US network.1That is, we onsider the set of edges that have one endpoint inside Sinner/Soutside, the otheroutside. Note that those edges might not neessarily have endpoints in the ells diretly adjaentto the rossing point with Sinner/Soutside.



8 HOLGER BAST, STEFAN FUNKE, AND DOMAGOJ MATIJEVICAs a �rst improvement, onsider the following simple sweep-line algorithm,whih runs Dijkstra omputations within a radius of only three grid ells, insteadof �ve, as in the naive approah. Consider one vertial line of the grid after theother, and for eah suh line do the following. Let v be one of the endpoints ofan edge interseting the line. We run a loal Dijkstra omputation for eah suhv as follows: let Cleft be the set of ells two grid units left of v and whih havevertial distane of at most 2 grid units to the ell ontaining v. De�ne Crightaordingly. See Figure 4, right; there we have Cleft = fCA;CB;CC;CD;CEgand Cright = fC1; C2; C3; C4; C5g. We start the loal Dijkstra at v until all nodeson the boundary of the ells in Cleft and Cright respetively are settled; we rememberfor all settled nodes the distane to v. This Dijkstra run settles nodes at a distaneof roughly 3 grid ells. After having performed suh a Dijkstra omputation for allnodes v on the sweep line, we onsider all pairs of boundary nodes (vL; vR), wherevL is on the boundary of a ell on the left and vR is on the boundary of a ell on theright and the vertial distane between those ells is at most 4. We iterate over allpotential transit nodes v on the sweep line and determine the set of transit nodesfor whih d(vL; v)+d(v; vR) is minimal. With this set of transit nodes we assoiatethe ells orresponding to vL and vR, respetively.It is not hard to see that two suh sweeps, one vertial and one horizontal,will ompute exatly the set of transit nodes de�ned above (the union of all setsof losest transit nodes). The omputation is spae-eÆient, beause at any pointin the sweep, we only need to keep trak of distanes within a small strip of thenetwork. The onsideration of all pairs (vL; vR) is negligible in terms of runningtime. As a further improvement, we �rst do the above omputation for somere�nement of the grid for whih we atually want to ompute transit nodes { let'ssay 128 � 128 is the grid we are �nally aiming for. For some �ner grid { say256�256, we onsider every seond grid line (those also belonging to the 128�128grid) and employ the omputation desribed above to deide whether the respetiveboundary nodes are transit nodes in the �ner grid. This omputation is heaperthan in the oarser grid sine the Dijkstra omputations have to reah only half asfar. Then, when omputing the transit nodes for the oarser 128 � 128 grid, wean restrit ourselves to nodes from the sets of transit nodes omputed for the �nergrid and hene save Dijkstra omputations. This easily generalizes to a sequeneof re�nements of 512 � 512, 1024� 1024, . . . grids where the �ner grid essentiallyprovides a "preseletion" of the nodes that have to be onsidered for being a transitnode in the oarser grid.4.3. Computing the Distane Tables. For eah node v, the distanes tothe losest transit nodes of its ell an be easily omputed and memorized from theDijkstra omputations whih had these transit nodes as soure. In partiular, eahtransit node thus knows the distane to all its (few) losest transit nodes. From thiswe an onstrut a graph with only the transit nodes as nodes, and an edge fromeah transit node to its losest transit nodes weighted by the respetive distane.A standard all-pairs shortest-path omputation on this auxiliary graph gives us thedistanes between eah pair of transit nodes. Sine the number of transit nodesis small (less than 8 000 for the US road network, using a 128 � 128 grid), thistakes negligible time. The spae onsumption of these distane tables is disussedin Setions 4.7 and 4.8 below.



ULTRAFAST SHORTEST-PATH QUERIES VIA TRANSIT NODES 94.4. Shortest-path queries (length only). We next desribe how to om-pute the length of the shortest path between a given soure node sr and a giventarget node trg , based on the preproessing desribed in the previous two subse-tions. We here give a desription for the senario where we have preomputed only asingle level of transit nodes. The extension to a hierahy of grids is straightforward,and will be explained in Setion 4.7.0. If sr and trg are less than four grid ells (with respet to the grid used inthe preomputation) apart, ompute the distane from sr to trg via analgorithm suitable for loal shortest-path queries; a number of possibilitiesare desribed in Setion 4.6. Otherwise, perform the following steps:1. Feth the lists Tsr and Ttrg of the losest transit nodes for the grid ellsontaining sr and trg , respetively. Also feth the lists of preomputeddistanes d(sr; tsr); tsr 2 Tsr and d(trg ; ttrg); ttrg 2 Ttrg .2. For eah pair of tsr 2 Tsr and ttrg 2 Ttrg ompute the sum of the lengthsof the shortest path from sr to tsr, from tsr to ttrg , and from ttrg totrg , whih is d(sr; tsr)+d(tsr ; ttrg)+d(ttrg ; trg). Note that we may havetsr = ttrg , in whih ase d(tsr ; ttrg) = 0.3. Compute the length of the shortest path from sr to trg as the minimumof the jTsrj � jTtrg j distanes omputed in step 2.The algorithm is easily seen to be orret. Steps 1-3 will only be exeuted if soureand target are more than four grid ells apart. Then, by the de�nition of the transitnodes in Setion 4.2, the shortest path between soure and target must pass throughat least one transit node. But then, by the de�nition of losest transit nodes, theshortest path from sr to trg will pass through one of the losest transit nodes ofsr as well as through one of the losest transit nodes of trg . The shortest path willtherefore be among those tried in step 2, and we pik the shortest of these.Sine we have preomputed the distanes from eah node to its losest transitnodes and the distanes between eah pair of transit nodes, steps 1-3 take timeO(jTsr j � jTtrg j). The average number of losest transit nodes of a node is a smallonstant | about 10 for the US road network.4.5. Shortest-path queries (with edges). In this subsetion, we desribehow we an enhane the proedure given in the previous subsetion to also outputthe edges along the shortest path from a given soure node sr to a given targetnode trg .Assume that we have exeuted the proedure from the previous subsetion, thatis, we already know the length of the shortest path from sr to trg . Assume thatwe have already found the part of the shortest path from sr to some u (initially,u = sr). Let d(u; trg), whih we an ompute as d(sr; trg) � d(sr; u), be thelength of the part of the path whih we have not found yet. Then the next node onthe shortest path is that node v adjaent to u with the property that d(u; trg) =(u; v)+d(v; trg), where (u; v) is the length of the edge from u to v. This node antherefore be easily identi�ed from the nodes adjaent to u, if only we an omputethe distanes d(v; trg). But these are just instanes of the problem we solved inthe previous subsetion: given two nodes, ompute the length of the shortest pathbetween them.As desribed so far, the omputation of d(v; trg) would resort to the speialalgorithm for loal shortest-path queries when v and trg are less than four grid ells



10 HOLGER BAST, STEFAN FUNKE, AND DOMAGOJ MATIJEVICapart. We an avoid this, if we ompute the shortest path from sr only until fourgrid ells away from trg , and, symmetrially, ompute the shortest path from trguntil four grid ells away from sr. This will give us the full path if sr and trg areat least eight grid ells apart, and parts of the path if they are more than four gridells apart. For the remaining parts, or when sr and trg are no more then fourgrid ells apart, we need to run the loal algorithm.This simple sheme an be improved in several ways. For example, we ouldstore for eah node, for eah of its losest transit nodes, the index of the edge tothat losest transit node. We would then obtain the next edge along the shortestpath by a simple table lookup. The prie would be a fator of two in the spaeonsumption of the preomputed information.Another idea would be to store for eah transit node, the full path to eah of itslosest transit nodes. Using ompression (edge ids along a shortest path typiallydo not di�er muh from one edge to the next, so some kind of gap enoding ouldbe used), this ould be ahieved with relatively little extra spae.In our experiments, we restrited ourselves to length-only shortest-path queries.4.6. Dealing with the Loal Queries. If soure and target are very lose toeah other (less than four grid ells apart in both horizontal and vertial diretionfor length-only shortest-path queries; less than eight grid ells apart in that waywhen omputing the edges along the path), we annot ompute the shortest pathvia the transit nodes. This makes sense intuitively: there is hardly any hierarhyof roads in an area like, for example, downtown Manhattan, and a shortest pathbetween two loations within the same suh area will mostly onsist of (small) roadsof the same kind. In suh a situation, no small set of transit nodes exist.The good news is that most shortest-path algorithms are muh faster whensoure and target are lose to eah other. In partiular, Dijkstra's algorithm isabout a thousand times faster for loal queries, where soure and target are atmost four grid ells apart, for an 128 � 128 grid laid over the US road network,than for arbitrary random queries (most of whih are long-distane). However, thenon-loal queries are roughly a million times faster and the fration of loal queriesis about 1 %, so the average running time over all queries would be spoiled by theloal Dijkstra queries.Instead, we an use any of the reent sophistiated algorithms to proess theloal queries. Highway hierarhies, for example, ahieve running times of a frationof a milliseond for loal queries, whih would then only slightly a�et the averageproessing time over all queries. The drawbak is that we would need the fullimplementation of another method, and that this method requires additional spaeand preomputation time.For our experiments in Setion 5, we used a simple extension of Dijkstra'salgorithm using geometri edge levels and shortuts, as outlined in Setion 3. Thisextension uses only six additional bytes per node. An edge e = (p; q) has level l iflies on a shortest path from s to t, and both p and q are at least f(l) far away fromboth s and t in eulidean distane along that path. Here f(l) is a monotoniallyinreasing funtion. For eah node u, we insert at most two shortuts as follows:onsider the unique level, if any, where u lies on a hain of degree-2 nodes (degreewith respet to edges of that level) for the �rst time; on that level insert a shortutfrom u to the two endpoints of this hain. In eah step of the Dijkstra omputationfor a loal query, then onsider only edges above a partiular level (depending on the



ULTRAFAST SHORTEST-PATH QUERIES VIA TRANSIT NODES 11urrent eulidean distane from soure and target), and make use of any availableshortuts suitable for that level. This algorithm requires an additional 5 bytes pernode.4.7. Multi-Level Grid. In our implementation as desribed so far, there isan obvious tradeo� between the size of the grid and the perentage of loal querieswhih annot be proessed via preomputed distanes to transit nodes. For a veryoarse grid, say 64�64, the number of transit nodes, and hene the table storing thedistanes between all pairs of transit nodes, would be very small, but the perentageof loal queries would be as large as 10 %. For a very �ne grid, say 1024� 1024,the perentage of loal queries is only 0.1 %, but now the number of transit nodesis so large, that we an no longer store, let alone ompute, the distanes betweenall pairs of transit nodes. Table 1 gives the exat tradeo�s, also with regard topreproessing time, for the US road network. The average query proessing timefor the non-loal queries is around 10 miroseonds, independent of the grid size.2jT j jT j � jT j/node avg. jAj non-loal prepro.64� 64 2 042 0:1 11:4 91.7% 498 min128� 128 7 426 1:1 11:4 97.4% 525 min256� 256 24 899 12:8 10:6 99.2% 638 min512� 512 89 382 164:6 9:7 99.8% 859 min1 024� 1 024 351 484 2 545:5 9:1 99.9% 964 minTable 1. Number jT j of transit nodes, spae onsumption of thedistane table, average number jAj of losest transit nodes perell, perentage of non-loal queries (averaged over 100 000 randomqueries), and preproessing time to determine the set of transitnodes for the US road network (exluding the omputation of all-pair distanes between transit nodes), TIGER version (see Setion5.2 for the di�erenes to the DIMACS version).To ahieve a small fration of loal queries and a small number of transit nodesat the same time, we employ a hierarhy of grids. We briey desribe the two-levelgrid, whih we used for our implementation. The generalization to an arbitrarynumber of levels would be straightforward.The �rst level is an 128� 128 grid, whih we preompute as desribed so far.The seond level is an 256 � 256 grid. For this �ner grid, we ompute the set ofall transit nodes as desribed, but we ompute and store distanes only betweenthose pairs whih are loal with respet to the 128� 128 grid. This is a fration ofabout 1=200th of all the distanes, and an be omputed and stored in negligibletime and spae via standard hashing. Note that in this simple approah, the spaerequirement for the individual levels simply add up. A more sophistiated approahto multi-level transit node routing is desribed in [1℄.2Aording to our experiments, the bulk of the proessing time for the non-loal queries isspent in step 2 (trying out all ombinations) of the proedure desribed in Setion 4.4 and not instep 1 (fething the relevant information for soure and target node), that is, ahing e�ets donot seem to play a dominant role here.



12 HOLGER BAST, STEFAN FUNKE, AND DOMAGOJ MATIJEVICQuery proessing with suh a hierarhy of grids is straightforward. In a �rststep, determine the oarsest grid with respet to whih soure and target are atleast four grid ells apart in either horizontal or vertial diretion. Then omputethe shortest path using the transit nodes and distanes omputed for that grid, justas desribed in Setions 4.4 and 4.5. If soure and target are at most four grid ellsapart with respet to even the �nest grid, we have to resort to the speial algorithmfor loal queries.4.8. Reduing the Spae Further. As desribed so far, for eah level inour grid hierarhy, we have to store the distanes from eah node in the graph toeah of its losest transit nodes. For the US road network, the average number oflosest transit nodes per node is about 10, independent of the grid size, and mostdistanes an be stored in two bytes. For a two-level grid, this gives about 40 bytesper node.To redue this, we implemented the following additional heuristi. We observedthat it is not neessary to store the distanes to the losest transit nodes for everynode in the network. Consider a simpli�ation of the road network where hains ofdegree 2 nodes are ontrated to a single edge. In the remaining graph we greedilyompute a vertex over, that is, we selet a set of nodes suh that for every edgeat least one of its endpoints is a seleted node. Using this strategy we determineabout a third of all nodes in the network to store distanes to their respetivelosest transit nodes. Then, for the soure/target node v of a given query we �rsthek whether the node is ontained in the vertex over, if so we an proeed asbefore. If the node is not ontained in the vertex over, a simple loal searh alonghains of degree 2 nodes yields the desired distanes to the losest transit nodes.The average number of distanes stored at a node redues from 11:4 to 3:2 for the128�128 grid of the US, without signi�antly a�eting the query times3. The totalspae onsumption of our grid data struture then dereases to 16 bytes per node.5. Implementation and Experiments5.1. Experimental results. We tested all our shemes on the US road net-work, publially available via http://www.ensus.gov/geo/www/tiger. This isan undireted graph with 24; 266; 702 nodes and 29; 049; 043 edges, and an averagedegree of 2.4. Edge lengths are travel times. We implemented our algorithms inC++ (ompiled with g 3.3.5 -O3) and ran all our experiments on a Dual OpteronMahine with two 2.4 GHz proessors, 8 GB of main memory, running Linux 2.6.14(64 bit); only one proessor was used. Table 2 gives a summary of our experimen-tal results. Experiments on the DIMACS benhmark olletions and for other edgelengths than travel time are provided in Setion 5.2TRANSIT ahieves an average query time of 12 miroseonds for 99% of allqueries. Together with our simple algorithm for the loal queries, desribed inSetion 4.6, we get an average of 63 miroseonds over all queries. This overallaverage time ould be easily improved by employing a more sophistiated algorithm,e.g. the one from [15℄, for the loal queries, however at the prie of a larger spae3Observe that we do not have to perform twie or four times the number of lookups in thedistane table sine the number of transit nodes for either s or t typially does not hange at all(the transit nodes of nearby nodes are most of the time exatly the same). Following the degree-2hains and obtaining the distanes to the transit nodes osts no time ompared to the few hundredtable lookups.



ULTRAFAST SHORTEST-PATH QUERIES VIA TRANSIT NODES 13non-loal (99%) loal (1%) all prepro. spae/node12 �s 5112 �s 63 �s 15 h 21 bytesTable 2. Average query time (in miroseonds), preproessingtime (in hours), and spae onsumption (in bytes per node in ad-dition to the original graph representation) for our new algorithmTRANSIT, for the US road network, TIGER version (see Setion5.2 for the di�erenes to the DIMACS version).requirement and a more omplex implementation. The spae onsumption of ouralgorithm is 21 bytes per node, whih omes from 16 bytes per node for the distanetables of the two grids (Setion 4.7) plus 5 bytes per node for the edge levels andshortuts for the loal queries (Setion 4.6).If we also output the edges along the shortest path, our average query proessingbeomes about 5 milliseonds (whih happens to be the average proessing time forthe loal queries, too). This is still ompetitive with the proessing times reportedin [15℄ and its losest ompetitors [14℄ [7℄ [8℄. All of these shemes do not outputedges along the shortest path, though outputting atual paths for these shemeswould inur mostly a slight penalty in terms of spae.Many previous works provided a �gure that showed the dependeny of theproessing time of a query on the Dijkstra rank of that query, whih is the number ofnodes Dijkstra's algorithm would have to settle for that query. The Dijkstra rank isa fairly natural measure of the diÆulty of a query. For TRANSIT, query proessingtimes are essentially onstant for the non-loal queries, beause the number oftable lookups required varies little and is ompletely independent from the distanebetween soure and target. Table 3 therefore gives details on whih perentage ofthe queries with a given Dijkstra rank are loal. Note that for both the 128� 128grid and the 256� 256 grid, all queries with a Dijkstra rank of 29 = 512 or less areloal, while all queries with Dijkstra rank above 221 � 2; 000; 000 are non-loal.grid size � 29 210 211 212 213 214128� 128 100% 100% 100% 99% 99% 99%256� 256 100% 99% 99% 99% 97% 94%grid size 215 216 217 218 219 220 � 221128� 128 98% 94% 85% 64% 29% 5% 0%256� 256 84% 65% 36% 12% 1% 0% 0%Table 3. Estimated fration of queries whih are loal with re-spet to the given grid, for various ranges of Dijkstra ranks. Theestimate for the olumn labeled 2r is the average over 1000 randomqueries with Dijkstra rank in the interval [2r; 2r+1).



14 HOLGER BAST, STEFAN FUNKE, AND DOMAGOJ MATIJEVIC5.2. Results for the DIMACS benhmark data. We also onduted ex-periments with additional benhmark data as provided by the DIMACS shortestpath hallenge website [5℄. We used the same kind of mahine as spei�ed at thebeginning of the previous setion. For the sake of omparability with the results ofother authors, Table 4 gives the results of the DIMACS ore benhmark on suh amahine.Clearly, the eÆay of our grid-based approah does not depend on the metriused for omputing the shortest paths; that is, for a given road network and res-olution of the grid { say 128 � 128 the fration of all queries that are onsidered"long range" does not hange when varying the edge weights. What does hange,though, is the number of transit nodes neessary to provide orret answers tothese long range queries. In partiular, when the ost measure is hanged fromtravel time along an edge to distane along an edge or unit distane, the propertyof road networks to analize traÆ is weakened, hene the number of transit nodesneessary for a ertain grid size inreases. Likewise the average number of losesttransit nodes per node inreases and hene the query times; the inrease is morepronouned for the distane weights than for the unit weights. In our benhmarksfor the additional datasets we restrited to one level of transit nodes and only re-port the results for the non-loal queries, whih, for all the experiments in Table 5and 6, were 97% of all queries.Table 5 shows our results for di�erent metris and (sub)networks of the roadnetwork of the US. The astute reader will notie a di�erene in the number oftransit nodes as well as in the preproessing and average query time between the�gures of Table 1 (TIGER data) and Table 5 (DIMACS data). This di�erene isdue to the fat that the onversion from road types to speeds (and hene traveltimes) whih we used for the TIGER data is di�erent from the onversion used forthe DIMACS data. In our onversion the di�erene in speed between slow and fastroads is more pronouned, and hene the analizing property of the network withour travel times is stronger (fast roads are even more attrative). For the CTRnetwork with the distane metri, the number of transit nodes for the 128 � 128grid was too large, so we provided the results for a 64� 64 grid instead.Table 6 shows our results for the road network of Western Europe (n =18; 010; 173, m = 42; 560; 279)4. A partiularity of this network is a number ofvery slow ferry onnetions. Without speial treatment of the orresponding edges(we tried a few heuristis but then deided to leave the data as is), the prepro-essing time goes up signi�antly. This is so, beause whenever one of the loalDijkstra omputations in our transit node preomputation (Setion 4) has to settlea node that an only be reahed via a very long (slow) path, then almost all nodesin the network will be settled in that omputation. Like this, the ferry onnetionsgive rise to a signi�ant number of very time-onsuming global Dijkstra omputa-tions in our preomputation. Note that the straightforward heuristi of splitting upvery long edges into many short edges does not solve this problem: there will stillbe nodes whih are geometrially lose but with a very long shortest path betweenthem. In Table 6, note that the problem indeed does not our for unit edge lengths(in whih ase a ferry onnetion osts just as muh as any other edge), and that4We have onsidered an undireted variant of this network where the edge weights of reverseedges are equalized by taking the maximum of both sine our urrent implementation does notallow for direted edges.



ULTRAFAST SHORTEST-PATH QUERIES VIA TRANSIT NODES 15metrigraph #nodes #edges time distaneNY 264346 733846 59.47 62.09BAY 321270 800172 66.08 72.17COL 435666 1057066 96.44 100.48FLA 1070376 2712798 238.27 257.97NW 1207945 2840208 282.40 328.19NE 1524453 3897636 407.42 457.07CAL 1890815 4657742 469.54 544.74LKS 2758119 6885658 731.10 836.44E 3598623 8778114 1042.63 1241.10W 6262104 15248146 1988.49 2401.79CTR 14081816 34292496 8934.93 9906.62Table 4. Query times (ms) for the DIMACS ore experiment(Opteron 240, 2.4 GHz, Linux 2.6.14, g 3.3.5, 64bit)it is worst for the travel time metri (relative to other edges, travel time along aferry onnetion is worse than distane).In general, the spae-eÆieny of our approah improves with growing networksize, the reason for that being that there is only little orrelation between the num-ber of transit nodes neessary for a 128�128 grid and the size of the respetive roadnetwork. In fat the number of transit nodes an be even larger for subnetworks ifthey exhibit a worse analizing property or the respetive subnetwork overs morearea of the square grid area (as observed for some subnetworks of the US). Foramortizing the ost of storing the all-pairs distane table over the transit nodes,a large network size is bene�ial. In partiular, if the omplete road network ofthe whole world was available, the per-node spae requirement to store a transitnode data struture of the same granularity would be onsiderably lower than forthe US road network and still the same fration of queries ould be proessed via afew table lookups. In that ase one ould probably even a�ord to reate and storetransit nodes based on a 512� 512 grid whih would resolve 99:8% of all queries byfast table-lookups.5.3. Graphial User Interfae. We have gone to quite some pain to im-plement a relatively omfortable graphial user interfae (GUI) for displaying ourroad networks plus a number of additional elements. The GUI is implemented inC++ using the gtkmm library, whih gives instant response times for dragging andzooming also for large road networks like that of the US. The GUI runs in its ownthread, so that user and redraw events an be interleaved with omputation andother ode.The GUI supports seamless dragging and zooming with the mouse (wheel), asin tools like Google Maps. This is very onvenient for navigating in a large networkquikly, but that was also the part that ost us the most work. The graph has to bedivided into relatively small hunks, and only those hunks must be drawn whihare atually visible from the urrent perspetive and position. Also, there have tobe priorities between edges, beause always drawing all edges tends to lutter upthe display and is an eÆieny problem, too. The GUI also supports the drawing



16 HOLGER BAST, STEFAN FUNKE, AND DOMAGOJ MATIJEVICgraph metri grid #tr.nodes losest query time prepro.USA time 128x128 10 084 14 17.8 �s 7 hUSA dist 128x128 31 536 36 69.4 �s 9 hUSA unit 128x128 17 699 22 30.3 �s 9 hBAY time 128x128 10 077 8 9.1 �s 20 minBAY dist 128x128 13 269 13 11.6 �s 20 minBAY unit 128x128 10 314 9 9.2 �s 20 minCAL time 128x128 15 087 9 8.9 �s 30 minCAL dist 128x128 21 230 16 16.0 �s 30 minCAL unit 128x128 15 747 11 10.6 �s 30 minE time 128x128 10 477 12 12.2 �s 1hE dist 128x128 23 842 26 46.0 �s 2hE unit 128x128 13 915 15 19.0 �s 1hFLA time 128x128 6 248 9 7.8 �s 10 minFLA dist 128x128 9 937 14 12.3 �s 10 minFLA unit 128x128 6 404 9 7.7 �s 10 minLKS time 128x128 7 447 12 12.2 �s 30 minLKS dist 128x128 20 222 30 46.1 �s 1hLKS unit 128x128 10 257 16 17.5 �s 1hNE time 128x128 11 542 11 11.1 �s 20 minNE dist 128x128 22 937 23 28.0 �s 40 minNE unit 128x128 13 675 13 13.1 �s 25 minNW time 128x128 19 429 10 10.2 �s 30 minNW dist 128x128 23 963 15 14.8 �s 35 minNW unit 128x128 19 096 11 11.3 �s 25 minNY time 128x128 19 133 12 10.1 �s 10 minNY dist 128x128 24 435 15 14.3 �s 15 minNY unit 128x128 18 598 12 10.3 �s 10 minW time 128x128 19 107 10 10.6 �s 2hW dist 128x128 36 214 19 22.8 �s 2hW unit 128x128 25 554 14 15.2 �s 1hCTR time 128x128 24 540 14 17.5 �s 6hCTR dist 64x64 24 359 39 88.2 �s 12 hCTR unit 128x128 40 282 20 32.0 �s 7.5hCOL time 128x128 10 502 9 7.0 �s 5 minCOL dist 128x128 13 199 14 11.5 �s 10 minCOL unit 128x128 10 686 10 7.9 �s 5 minTable 5. Results for (sub)networks of the US road network withthree kinds of edge lengths: travel time, distane along the orre-sponding road segment, and unit length.of ustom objets, like ross hairs (to visualize important loations), arrows alongroads (to visualize something like edge signs), et.6. ConlusionsTransit nodes are a simple, yet powerful idea: they redue the shortest-pathomputation for all but a small fration of loal queries to a few table lookups. Inthis paper we have foused on presenting this idea and giving a simple geometrialgorithm realizing it.



ULTRAFAST SHORTEST-PATH QUERIES VIA TRANSIT NODES 17graph metri grid #tr.nodes losest query time prepro.Europe time 128x128 10 394 14 13 �s 58hEurope dist 128x128 20 126 38 56 �s 29hEurope unit 128x128 7 708 14 12 �s 17hTable 6. Results for the road network of Western Europe (undi-reted, inluding ferry onnetions).

Figure 5. Sreenshot of our interative graphial user interfae.The algorithms in this paper work for undireted graphs. A generalization todireted graphs is not trivial but feasible. During the onstrution of the transitnodes one would have to distinguish between "inoming transit nodes", i.e., transitnodes that are visited by long paths ending in some node, and "outgoing transitnodes", i.e., transit nodes that are visited by long paths starting in some node. Thisan be taken are of by onsidering the reverse network during the onstrutionstep of the transit nodes. Of ourse, then the distane table is also not symmetrianymore and nodes would have to store "inoming" and "outgoing distanes" totheir losest transit nodes. The highway hierarhies from Sanders and Shultes, inpartiular their ombination with the transit node idea [16℄, also work for diretedgraphs.A more diÆult open problem is how to design a data struture that yieldssimilarly fast query times as our data struture but at the same time allows dynamihanges in the graph, like an inrease of a few edge lengths due to a traÆ jam.
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