DIMACS Series in Discrete Mathematics
and Theoretical Computer Science

Ultrafast Shortest-Path Queries via Transit Nodes
Holger Bast, Stefan Funke, and Domagoj Matijevic

ABSTRACT. We introduce the concept of transit nodes as a means for prepro-
cessing a road network such that point-to-point shortest-path queries can be
answered extremely fast. We assume the road network to be given as a graph,
with coordinates for each node and a travel time for each edge.

The transit nodes are a set of nodes, as small as possible, with the property
that every non-local shortest path passes through at least one of these nodes. A
path is called non-local if its source and target are at least a certain minimal
euclidean distance apart. We precompute the lengths of the shortest paths
between each pair of transit nodes, and between each node in the graph and its
few, closest transit nodes. Then every non-local shortest path query becomes
a simple matter of combining information from a few table lookups.

For the US road network, with about 24 million nodes and 29 million
undirected edges, we achieve a worst-case query processing time of about 10
microseconds (not milliseconds) for 99% of all queries, namely the non-local
ones. This improves over the best previously reported times by two orders of
magnitude.

1. Introduction

The classical way to compute the shortest path between two given nodes in a
graph with given edge lengths is Dijkstra’s algorithm [4]. The asymptotic running
time of Dijkstra’s algorithm is O(m + nlogm), where n is the number of nodes,
and m is the number of edges [6]. For graphs with constant degree, like the road
networks we consider in this paper, this is O(nlogn). While it is still an open
question, whether Dijkstra’s algorithm is optimal for single-source single-target
queries in general graphs, there is an obvious Q(n + m) lower bound, because
every node and every edge has to be looked at in the worst case. Sublinear query
time hence requires some form of preprocessing of the graph. For general graphs,
constant query time can only be achieved with superlinear space requirement; this is
due to a recent result by Thorup and Zwick [18]. Like previous works, we therefore
exploit special properties of road networks, in particular, that the nodes have low
degree and that there is a certain hierarchy of more and more important roads,
such that further away from source and target only the more important roads tend
to be used on shortest paths.

This work is partially supported by the EU 6th Framework Programme under contract 001907
(DELIS).

©0000 (copyright holder)

2 HOLGER BAST, STEFAN FUNKE, AND DOMAGOJ MATIJEVIC

b PR el el

§ iy

§«>m—<- Eecr e TR HT B, Wt S TR bt il

F1GURE 1. Transit nodes (red/bold dots) for a part of a city (cen-
ter, dark) when travelling far (outside the light-gray area).

Our benchmark for most of this paper will be an undirected version of the US
road network, which has about 24 million nodes and 29 million edges. On this
network, a good implementation of Dijkstra’s algorithm on a single state-of-the-art
PC takes on the order of seconds, on average, for a random query. Note that for a
random query, source and target are likely to be far away from each other, in which
case Dijkstra’s algorithm will settle a large portion of all nodes in the network
before eventually reaching the target. For most of this paper, edge lengths will be
travel times, so that shortest paths are actually paths with minimum travel time.
We will continue to speak of shortest, however, because that is more familiar and to
stress the wider applicability of our transit node idea. At the end of the paper we
will also present results for unit edge lengths and when the length of an edge is the
distance along the corresponding road segment, and results for the road network of
Western Europe.

2. Our results

We present a new algorithm, named TRANSIT, which can answer non-local
shortest path queries extremely fast, by combining information from a small number
of lookups in a table. On the US road network, we achieve an average query
processing time of around 10 microseconds (not milliseconds) for 99 % of all queries,
when only the length (travel time) of the shortest path is required. The remaining
1 % of the queries are local in the sense that source and target are geometrically
very close to each other. We also provide a simple algorithm for dealing with the
few local queries efficiently. However, the focus of this work is on the non-local
queries. In fact, we prefer to view our transit node approach as a filter: the vast
majority of all queries can be processed extremely fast, leaving only a small fraction

ULTRAFAST SHORTEST-PATH QUERIES VIA TRANSIT NODES 3

of local queries, which can be processed by any other method. Note that already
Dijktra’s algorithm can process the local queries by orders of magnitudes faster
than arbitrary random queries.

Our processing times for the non-local queries beat the best previously reported
figure of about 1 millisecond, due to Sanders and Schultes [15], by two orders of
magnitude. When the full path, with all its edges, is to be output, we achieve an
average query processing time of about 5 milliseconds on the US road network. We
remark that all of the previous, more sophisticated algorithms use some form of
path compression, which does not easily allow them to output the edges along the
shortest path without using extra memory.

The basic idea of TRANSIT is as follows. For a given road network, compute a
small set of transit nodes with the property that every shortest path that covers a
certain not too small euclidean distance passes through at least one of these transit
nodes. For every node in the given graph, then compute a set of closest transit
nodes, with the property that every shortest path starting from that node and
passing through a transit node at all (which it will if it goes sufficiently far), will
pass through one of these closest transit nodes. These sets of closest transit nodes
turn out to be very small: about 10 on average for our choice of transit nodes on
the US road network. This allows us to precompute, for each node, the distances
to each of its closest transit nodes. Also, the overall number of transit nodes turns
out to be small enough so that we can easily precompute and store the distances
between all pairs of transit nodes.

A non-local shortest path query can then easily be answered as follows. For
a given source node src¢ and target node trg, fetch the precomputed sets of closest
transit nodes T, and T}, respectively. For each pair of transit nodes ts.c € Ty
and t4q € Ty compute the length of the shortest path passing through these nodes,
which is d(src, tsre) + d(tsre, tirg) + d(tirg, trg). Note that all three distances in this
sum have been precomputed. The minimum of these |Tgrc| - |Tirg| lengths is the
length of the shortest path.

Given an algorithm for length-only shortest path queries, one can easily com-
pute the edges along the shortest path using a few length-only shortest path queries
per edge on the shortest path. To see this, assume we have already found a portion
of the shortest path from the source to a node w. To find the next edge on the path,
we simply launch a length-only shortest path query for each of the adjancent nodes
of u. Given the length of the portion of the shortest path we already know, its total
length, and the length of the edges adjacent to u, it is then easy to tell which of
these edges is next on the shortest path. For details and possible improvements,
see Section 4.5.

We want to stress that there are natural applications, where length-only short-
est path queries are good enough, and not all the edges along the path are required.
For example, most car navigation systems merely have a local view of the road net-
work (if any). In that case it suffices to know the next few edges on the shortest
path, and these can be computed by just a few length-only shortest-path queries,
as described above.

We decribe TRANSIT in more detail in Section 4.

4 HOLGER BAST, STEFAN FUNKE, AND DOMAGOJ MATIJEVIC

3. Related Work

We give a quick survey of work directly relevant to the problem of preprocessing
road networks for subsequent fast shortest-path querying.

Gutman in [9] proposes a general concept of edge levels (he called it reach,
though). Consider an edge e that appears “in the middle” of a shortest path,
shortest with respect to travel time between two nodes that are a certain distance
d apart distance with respect to some arbitrary other metric, e.g., euclidean
distance. Then the level of e is the higher, the larger d is. Gutman defines levels
with respect to euclidean distance, but he notes that any metric can be used for
the discrimination of the “in the middle” property. He presents simple algorithms
which compute upper bounds for the edge levels and instruments those to obtain
more efficient exact shortest path queries on moderate-size road networks. Due to
the use of the euclidean metric as classifying metric, his approach allows for several
variants of Dijkstra, in particular a natural goal-directed (unidirectional) version as
well as efficient one-to-many shortest path queries. The — compared to later work
like [14] or [8] less competitive running times, both for the preprocessing phase
as well as the queries are mainly due to the lack of an efficient compression scheme.
The latter is very important for obtaining fast running times since in particular
the networks induced by higher level edges contain very long chains of degree-two
nodes following which is quite expensive. They can be easily skipped by suitable
shortcut/path compression edges, though.

Later Sanders and Schultes have adopted a different classifying metric for their
so-called Highway-Hierarchies [14]. In an ordinary Dijkstra computation from a
source src, say that the rth node settled has Dijkstra rank r with respect to sre.
Sanders and Schultes say that the level of an edge (u, v) is high if it is on a shortest
path between some src and trg such that v has high Dijkstra rank with respect
to src and w has high Dijkstra rank with respect to trg. They achieve a drastic
improvement both in preprocessing time as well as in query times, mainly because
of the use of the Dijkstra rank as classifying metric as well as a highly efficient
compression and pruning scheme in the higher levels of the network. The output of
the algorithm is a path containing compressed edges, though, and uncompressing
those edges does require some additional time and space. Their variant is also
inherently bidirectional, so both goal-direction as well as one-to-many queries are
not easily added, though later work has tried to address these issues.

Goldberg et al. in [8] combine edge levels with a compression scheme and they
use lower bounds, based on precomputed distances to a few landmarks vertices, to
allow for a more goal-directed search. They report running times comparable to
those of [14]. Their space consumption is somewhat higher though, because every
node in the network has to store distances to all landmarks. A non-goal-directed
version of their algorithm exhibits considerably less storage requirements at the
cost of only slightly higher query time.

More recently, Sanders and Schultes [15] have presented the so far best combi-
nation of preprocessing and query time. They show how to preprocess the US road
network in 15 minutes, for subsequent query times of, on the average, 1 millisecond.
While we could not yet come close to their extremely fast preprocessing time, our
length-only scheme beats their query time by two orders of magnitude.

Mohring et al. [12, 10], based on previous work by Lauther [11], explored arc
flags as means to achieve very fast query times. Intuitively, an arc flag is a sign that

ULTRAFAST SHORTEST-PATH QUERIES VIA TRANSIT NODES 5

says whether the respective edge is on a shortest path to a particular region of the
graph. In an extreme case, an edge could have a sign to every node on the shortest
path to which it lies. A shortest path query could then be answered by simply
following the signs to the target without any detour. However, to precompute
these perfect signs requires an all-pairs shortest-path computation, which takes
quadratic time and would be infeasible already for a small portion of the whole US
road network, say the network of California. It is shown in [12, 10] and [11] how to
cut down on this preprocessing somewhat, by putting up signs to sufficiently large
regions of the graph. The largest network considered in these works has about one
million nodes [12]. In the initial stages of our work, we experimented with the arc
flag approach too, and were not able to achieve query processing times competitive
with those of [15] with a reasonable amount of preprocessing time and extra space.

Most recently, following the first appearance of our paper, Sanders and Schultes
have combined the transit node idea with highway hierarchies [16]. They report to
have worked independently on similar ideas, but with a five times larger number of
closest transit nodes (called access nodes in their work) per node. Note that the
average query time of any scheme based on the transit node idea grows quadratically
in the average number of closest transit nodes per node. The idea of precomputing
all-to-all distances between a small subset of all nodes was already used in [15], to
terminate local searches when they ascended far enough in the hierarchy. Prompted
by our formulation of the transit node idea and the observation that an average of
about 10 closest transit nodes per node suffice for a road network like that of the
US, Sanders and Schultes were able to develop their ideas further to achieve very
fast processing times comparable to those we report in this paper. They achieve
these processing times for both non-local and local queries. (We would get a similar
result by using the original highway hierarchies as a fallback for the local queries,
but their implementation is more integrated as it uses highway hierarchies both for
the local queries and for the computation of transit nodes.) Their preprocessing
is an order of magnitude faster than what we report in this paper. The price is a
more complex algorithm and implementation, and an increased space consumption.
More details on the comparison between both approaches, our simple geometric one
and the one based on highway hierarchies, are given in a joint follow-up paper [1].

In retrospect, the work of [13] (which later became [2]) can be taken as another
alternative to computing transit nodes. In a nutshell, they use a hierarchy of
separators to partition a given road network (making use of its almost-planarity).
Their separator nodes could be taken as transit nodes, in which case local queries
would be those with both endpoints in the same component. However, just like for
the early attempts of Sanders and Schultes, this approach gives rise to an inherently
much larger number of closest transit nodes (access nodes), which implies one to
two orders of magnitude larger preprocessing time, space consumption and query
processing times.

4. The TRANSIT algorithm

4.1. Intuition. The basic intuition behind our approach is very simple: imag-
ine you live in a big city and intend to travel long-distance by car. What you will
observe is that irrespectively of where your final destination is (as long it is rea-
sonably far away) and where exactly you live in the city, there will be few roads
via which you will actually leave the urban area when travelling on a shortest path

6 HOLGER BAST, STEFAN FUNKE, AND DOMAGOJ MATIJEVIC

P2 IR z oo

~ T S

i 0 g =3 | i;J |

= N g B
—

b

Fi1GURE 2. Transit neighborhood of a cell in a 64 x 64 subdivision
of the US.

FiGure 3. Transit neighborhood of a cell in a 1024 x 1024 subdi-
vision of the US.

to your destination. In Figure 1 we have depicted these roads for the center part
of a city. No matter where you start your journey inside the central region (in
dark) if your final destination lies outside the light-grey area and you travel on a
shortest path, you will pass through one of the 14 marked roads (red/bold dots).
This property, that long-distance trips (where the length is to be seen relative to
the ”starting region”) pass through few transit nodes, is in fact to some degree
invariable to scale. The example in Figure 1 shows the transit nodes for a cell in a
256 x 256 subdivision of the road network of the US; there are 14 of them. Figures
2 and 3 show transit nodes (or more precisely transit neighborhoods by which we
compute transit nodes) for cells of a 64 x 64 and 1024 x 1024 subdivision of the US
respectively. They exhibit 17 and 8 transit nodes respectively.

In essence our approach is then to construct a (geometric, in our case) subdi-
vision of the network into cells and determine their transit nodes, such that the
total number of transit nodes is small enough to allow us to precompute and store
all pairwise distances between transit nodes in O(n) space, i.e., in about the same
amount of space as used for the original graph itself. Furthermore each node stores
distances to the transit nodes of its resident cell. At query time a simple lookup
yields the exact distance between any source-target pair provided they are not too
close to each other.

4.2. Computing the Set of Transit Nodes. Consider the smallest enclos-
ing square of the set of nodes (coming with x and y coordinate each), and the

ULTRAFAST SHORTEST-PATH QUERIES VIA TRANSIT NODES 7

b L
‘ [- [i
A *catl Clg +2
) . oCB Tcce +
L o *
L 'S » o L [}
P oCCq ® ::_C?’_o 0
¢ P C : pgeint #Ciq | -1
b ® . oCE ! gcs -2
P ®
b inner -
»
L
w . eee ee e oo

FIGURE 4. Definition and computation of transit nodes in the grid-
based construction.

natural subdivision of this square into a grid of g x g equal-sized square cells, for
some integer g. We define a set of transit nodes for each cell C' as follows. Let
Sinner and Sguter be the squares consisting of 5 x 5 and 9 x 9 cells, respectively,
each with C at their center. Let Ec be the set of edges which have one endpoint
inside C, and one outside, and define the set Vo of what we call crossing nodes by
picking for each edge from E¢ the node with the smaller id. Define Vyyger and Vinner
accordingly!. See the left side of Figure 4 for an illustration. The set of closest
transit nodes for the cell C is now a set of nodes Ty C Vipner with the property that
for any pair of nodes p,¢q one in Vi, one in Vuter there exists a shortest path
from p to ¢ which passes through some node v € T=. Note that we also could have
demanded that all shortest paths from p, ¢ pass through some node in T, but this
would have potentially increased the number of transit nodes with the only benefit
of a slightly easier routine for reporting all shortest paths between a pair of nodes
later on.

The overall set of transit nodes is just the union of these sets over all cells. It is
easy to see that if two nodes are at least four grid cells apart in either horizontal or
vertical direction, then the shortest path between the two nodes must pass through
one of these transit nodes. By “four grid cells apart” we mean that between the
grid cell containing the one node and the grid cell containing the other node there
are at least four other grid cells. Also note that if a node is a transit node for some
cell, it is likely to be a transit node for many other cells, each of them two cells
away, too.

A naive way to compute these sets of transit nodes would be as follows. For
each cell, compute all shortest paths between nodes in Vi and Viyger, and mark all
nodes in Vipner that appear on at least one of these shortest paths. Figure 4 will
again help to understand this. Such a naive computation is too time-consuming,
though, for example for a 128 x 128 grid it required several days on the US network.

IThat is, we consider the set of edges that have one endpoint inside Sinner/Soutsides the other
outside. Note that those edges might not necessarily have endpoints in the cells directly adjacent
to the crossing point with Sinner/Soutside-

8 HOLGER BAST, STEFAN FUNKE, AND DOMAGOJ MATIJEVIC

As a first improvement, consider the following simple sweep-line algorithm,
which runs Dijkstra computations within a radius of only three grid cells, instead
of five, as in the naive approach. Consider one vertical line of the grid after the
other, and for each such line do the following. Let v be one of the endpoints of
an edge intersecting the line. We run a local Dijkstra computation for each such
v as follows: let Cierr be the set of cells two grid units left of v and which have
vertical distance of at most 2 grid units to the cell containing v. Define Ciignt
accordingly. See Figure 4, right; there we have Cie = {CA,CB,CC,CD,CE}
and Ciigne = {C1,C2,C3,C4,C5}. We start the local Dijkstra at v until all nodes
on the boundary of the cells in Ciere and Chighe respectively are settled; we remember
for all settled nodes the distance to ». This Dijkstra run settles nodes at a distance
of roughly 3 grid cells. After having performed such a Dijkstra computation for all
nodes v on the sweep line, we consider all pairs of boundary nodes (v, vg), where
vy, is on the boundary of a cell on the left and vy is on the boundary of a cell on the
right and the vertical distance between those cells is at most 4. We iterate over all
potential transit nodes v on the sweep line and determine the set of transit nodes
for which d(vg,v) +d(v,vg) is minimal. With this set of transit nodes we associate
the cells corresponding to vz and vg, respectively.

It is not hard to see that two such sweeps, one vertical and one horizontal,
will compute exactly the set of transit nodes defined above (the union of all sets
of closest transit nodes). The computation is space-efficient, because at any point
in the sweep, we only need to keep track of distances within a small strip of the
network. The consideration of all pairs (vy,vg) is negligible in terms of running
time. As a further improvement, we first do the above computation for some
refinement of the grid for which we actually want to compute transit nodes — let’s
say 128 x 128 is the grid we are finally aiming for. For some finer grid — say
256 x 256, we consider every second grid line (those also belonging to the 128 x 128
grid) and employ the computation described above to decide whether the respective
boundary nodes are transit nodes in the finer grid. This computation is cheaper
than in the coarser grid since the Dijkstra computations have to reach only half as
far. Then, when computing the transit nodes for the coarser 128 x 128 grid, we
can restrict ourselves to nodes from the sets of transit nodes computed for the finer
grid and hence save Dijkstra computations. This easily generalizes to a sequence
of refinements of 512 x 512, 1024 x 1024, ...grids where the finer grid essentially
provides a ”preselection” of the nodes that have to be considered for being a transit
node in the coarser grid.

4.3. Computing the Distance Tables. For each node v, the distances to
the closest transit nodes of its cell can be easily computed and memorized from the
Dijkstra computations which had these transit nodes as source. In particular, each
transit node thus knows the distance to all its (few) closest transit nodes. From this
we can construct a graph with only the transit nodes as nodes, and an edge from
each transit node to its closest transit nodes weighted by the respective distance.
A standard all-pairs shortest-path computation on this auxiliary graph gives us the
distances between each pair of transit nodes. Since the number of transit nodes
is small (less than 8000 for the US road network, using a 128 x 128 grid), this
takes negligible time. The space consumption of these distance tables is discussed
in Sections 4.7 and 4.8 below.

ULTRAFAST SHORTEST-PATH QUERIES VIA TRANSIT NODES 9

4.4. Shortest-path queries (length only). We next describe how to com-
pute the length of the shortest path between a given source node src and a given
target node trg, based on the preprocessing described in the previous two subsec-
tions. We here give a description for the scenario where we have precomputed only a
single level of transit nodes. The extension to a hierachy of grids is straightforward,
and will be explained in Section 4.7.

0. If src and trg are less than four grid cells (with respect to the grid used in
the precomputation) apart, compute the distance from src to trg via an
algorithm suitable for local shortest-path queries; a number of possibilities
are described in Section 4.6. Otherwise, perform the following steps:

1. Fetch the lists T, and Ty, of the closest transit nodes for the grid cells
containing src and trg, respectively. Also fetch the lists of precomputed
distances d(src, tsre), tsre € Tspe and d(trg, tirg), tirg € Ttrg-

2. For each pair of t4,. € Ty and t4yy € Ty compute the sum of the lengths
of the shortest path from src to tg., from tg. to tiyy, and from t4y to
trg, which is d(src, tere) + d(tsrc, tirg) + d(tirg, trg). Note that we may have
tsre = tirg, in which case d(tsre, tirg) = 0.

3. Compute the length of the shortest path from src to trg as the minimum
of the |Tp¢| - |Ttrg| distances computed in step 2.

The algorithm is easily seen to be correct. Steps 1-3 will only be executed if source
and target are more than four grid cells apart. Then, by the definition of the transit
nodes in Section 4.2, the shortest path between source and target must pass through
at least one transit node. But then, by the definition of closest transit nodes, the
shortest path from src to trg will pass through one of the closest transit nodes of
src as well as through one of the closest transit nodes of trg. The shortest path will
therefore be among those tried in step 2, and we pick the shortest of these.

Since we have precomputed the distances from each node to its closest transit
nodes and the distances between each pair of transit nodes, steps 1-3 take time
O(|Tsre| - |Ttrg])- The average number of closest transit nodes of a node is a small
constant — about 10 for the US road network.

4.5. Shortest-path queries (with edges). In this subsection, we describe
how we can enhance the procedure given in the previous subsection to also output
the edges along the shortest path from a given source node src to a given target
node trg.

Assume that we have executed the procedure from the previous subsection, that
is, we already know the length of the shortest path from src to trg. Assume that
we have already found the part of the shortest path from src to some u (initially,
u = src). Let d(u,trg), which we can compute as d(src, trg) — d(src,u), be the
length of the part of the path which we have not found yet. Then the next node on
the shortest path is that node v adjacent to u with the property that d(u, trg) =
¢(u,v) +d(v, trg), where ¢(u,v) is the length of the edge from u to v. This node can
therefore be easily identified from the nodes adjacent to u, if only we can compute
the distances d(v, trg). But these are just instances of the problem we solved in
the previous subsection: given two nodes, compute the length of the shortest path
between them.

As described so far, the computation of d(v, trg) would resort to the special
algorithm for local shortest-path queries when v and trg are less than four grid cells

10 HOLGER BAST, STEFAN FUNKE, AND DOMAGOJ MATIJEVIC

apart. We can avoid this, if we compute the shortest path from src only until four
grid cells away from trg, and, symmetrically, compute the shortest path from trg
until four grid cells away from sre. This will give us the full path if src and trg are
at least eight grid cells apart, and parts of the path if they are more than four grid
cells apart. For the remaining parts, or when src¢ and ¢rg are no more then four
grid cells apart, we need to run the local algorithm.

This simple scheme can be improved in several ways. For example, we could
store for each node, for each of its closest transit nodes, the index of the edge to
that closest transit node. We would then obtain the next edge along the shortest
path by a simple table lookup. The price would be a factor of two in the space
consumption of the precomputed information.

Another idea would be to store for each transit node, the full path to each of its
closest transit nodes. Using compression (edge ids along a shortest path typically
do not differ much from one edge to the next, so some kind of gap encoding could
be used), this could be achieved with relatively little extra space.

In our experiments, we restricted ourselves to length-only shortest-path queries.

4.6. Dealing with the Local Queries. If source and target are very close to
each other (less than four grid cells apart in both horizontal and vertical direction
for length-only shortest-path queries; less than eight grid cells apart in that way
when computing the edges along the path), we cannot compute the shortest path
via the transit nodes. This makes sense intuitively: there is hardly any hierarchy
of roads in an area like, for example, downtown Manhattan, and a shortest path
between two locations within the same such area will mostly consist of (small) roads
of the same kind. In such a situation, no small set of transit nodes exist.

The good news is that most shortest-path algorithms are much faster when
source and target are close to each other. In particular, Dijkstra’s algorithm is
about a thousand times faster for local queries, where source and target are at
most four grid cells apart, for an 128 x 128 grid laid over the US road network,
than for arbitrary random queries (most of which are long-distance). However, the
non-local queries are roughly a million times faster and the fraction of local queries
is about 1 %, so the average running time over all queries would be spoiled by the
local Dijkstra queries.

Instead, we can use any of the recent sophisticated algorithms to process the
local queries. Highway hierarchies, for example, achieve running times of a fraction
of a millisecond for local queries, which would then only slightly affect the average
processing time over all queries. The drawback is that we would need the full
implementation of another method, and that this method requires additional space
and precomputation time.

For our experiments in Section 5, we used a simple extension of Dijkstra’s
algorithm using geometric edge levels and shortcuts, as outlined in Section 3. This
extension uses only six additional bytes per node. An edge e = (p, ¢) has level [if
lies on a shortest path from s to ¢, and both p and ¢ are at least f(I) far away from
both s and ¢ in euclidean distance along that path. Here f(l) is a monotonically
increasing function. For each node u, we insert at most two shortcuts as follows:
consider the unique level, if any, where « lies on a chain of degree-2 nodes (degree
with respect to edges of that level) for the first time; on that level insert a shortcut
from w to the two endpoints of this chain. In each step of the Dijkstra computation
for a local query, then consider only edges above a particular level (depending on the

ULTRAFAST SHORTEST-PATH QUERIES VIA TRANSIT NODES 11

current euclidean distance from source and target), and make use of any available
shortcuts suitable for that level. This algorithm requires an additional 5 bytes per
node.

4.7. Multi-Level Grid. In our implementation as described so far, there is
an obvious tradeoff between the size of the grid and the percentage of local queries
which cannot be processed via precomputed distances to transit nodes. For a very
coarse grid, say 64 x 64, the number of transit nodes, and hence the table storing the
distances between all pairs of transit nodes, would be very small, but the percentage
of local queries would be as large as 10 %. For a very fine grid, say 1024 x 1024,
the percentage of local queries is only 0.1 %, but now the number of transit nodes
is so large, that we can no longer store, let alone compute, the distances between
all pairs of transit nodes. Table 1 gives the exact tradeoffs, also with regard to
preprocessing time, for the US road network. The average query processing time
for the non-local queries is around 10 microseconds, independent of the grid size.?

H |T| ‘ |T| % |T|/node ‘ avg. |A ‘ non-local | preproc.

64 x 64 2042 0.1 114 | 91.7% | 498 min
128 x 128 7426 1.1 114 | 97.4% | 525 min
256 x 256 24899 12.8 10.6 | 99.2% | 638 min
912 x 512 89382 164.6 9.7 99.8% | 859 min
1024 x 1024 || 351484 2545.5 9.1| 99.9% | 964 min

TaBLE 1. Number |T| of transit nodes, space consumption of the
distance table, average number |A| of closest transit nodes per
cell, percentage of non-local queries (averaged over 100 000 random
queries), and preprocessing time to determine the set of transit
nodes for the US road network (excluding the computation of all-
pair distances between transit nodes), TIGER version (see Section
5.2 for the differences to the DIMACS version).

To achieve a small fraction of local queries and a small number of transit nodes
at the same time, we employ a hierarchy of grids. We briefly describe the two-level
grid, which we used for our implementation. The generalization to an arbitrary
number of levels would be straightforward.

The first level is an 128 x 128 grid, which we precompute as described so far.
The second level is an 256 x 256 grid. For this finer grid, we compute the set of
all transit nodes as described, but we compute and store distances only between
those pairs which are local with respect to the 128 x 128 grid. This is a fraction of
about 1/200th of all the distances, and can be computed and stored in negligible
time and space via standard hashing. Note that in this simple approach, the space
requirement for the individual levels simply add up. A more sophisticated approach
to multi-level transit node routing is described in [1].

2According to our experiments, the bulk of the processing time for the non-local queries is
spent in step 2 (trying out all combinations) of the procedure described in Section 4.4 and not in
step 1 (fetching the relevant information for source and target node), that is, caching effects do
not seem to play a dominant role here.

12 HOLGER BAST, STEFAN FUNKE, AND DOMAGOJ MATIJEVIC

Query processing with such a hierarchy of grids is straightforward. In a first
step, determine the coarsest grid with respect to which source and target are at
least four grid cells apart in either horizontal or vertical direction. Then compute
the shortest path using the transit nodes and distances computed for that grid, just
as described in Sections 4.4 and 4.5. If source and target are at most four grid cells
apart with respect to even the finest grid, we have to resort to the special algorithm
for local queries.

4.8. Reducing the Space Further. As described so far, for each level in
our grid hierarchy, we have to store the distances from each node in the graph to
each of its closest transit nodes. For the US road network, the average number of
closest transit nodes per node is about 10, independent of the grid size, and most
distances can be stored in two bytes. For a two-level grid, this gives about 40 bytes
per node.

To reduce this, we implemented the following additional heuristic. We observed
that it is not necessary to store the distances to the closest transit nodes for every
node in the network. Consider a simplification of the road network where chains of
degree 2 nodes are contracted to a single edge. In the remaining graph we greedily
compute a vertex cover, that is, we select a set of nodes such that for every edge
at least one of its endpoints is a selected node. Using this strategy we determine
about a third of all nodes in the network to store distances to their respective
closest transit nodes. Then, for the source/target node v of a given query we first
check whether the node is contained in the vertex cover, if so we can proceed as
before. If the node is not contained in the vertex cover, a simple local search along
chains of degree 2 nodes yields the desired distances to the closest transit nodes.
The average number of distances stored at a node reduces from 11.4 to 3.2 for the
128 x 128 grid of the US, without significantly affecting the query times®. The total
space consumption of our grid data structure then decreases to 16 bytes per node.

5. Implementation and Experiments

5.1. Experimental results. We tested all our schemes on the US road net-
work, publically available via http://www.census.gov/geo/www/tiger. This is
an undirected graph with 24, 266, 702 nodes and 29, 049, 043 edges, and an average
degree of 2.4. Edge lengths are travel times. We implemented our algorithms in
C++ (compiled with gce 3.3.5 -03) and ran all our experiments on a Dual Opteron
Machine with two 2.4 GHz processors, 8 GB of main memory, running Linux 2.6.14
(64 bit); only one processor was used. Table 2 gives a summary of our experimen-
tal results. Experiments on the DIMACS benchmark collections and for other edge
lengths than travel time are provided in Section 5.2

TRANSIT achieves an average query time of 12 microseconds for 99% of all
queries. Together with our simple algorithm for the local queries, described in
Section 4.6, we get an average of 63 microseconds over all queries. This overall
average time could be easily improved by employing a more sophisticated algorithm,
e.g. the one from [15], for the local queries, however at the price of a larger space

30Observe that we do not have to perform twice or four times the number of lookups in the
distance table since the number of transit nodes for either s or ¢ typically does not change at all
(the transit nodes of nearby nodes are most of the time exactly the same). Following the degree-2
chains and obtaining the distances to the transit nodes costs no time compared to the few hundred
table lookups.

ULTRAFAST SHORTEST-PATH QUERIES VIA TRANSIT NODES 13

non-local (99%) local (1%) all preproc. space/node

12 us 0112 pus 63 us 15 h 21 bytes

TABLE 2. Average query time (in microseconds), preprocessing
time (in hours), and space consumption (in bytes per node in ad-
dition to the original graph representation) for our new algorithm
TRANSIT, for the US road network, TIGER version (see Section
5.2 for the differences to the DIMACS version).

requirement and a more complex implementation. The space consumption of our
algorithm is 21 bytes per node, which comes from 16 bytes per node for the distance
tables of the two grids (Section 4.7) plus 5 bytes per node for the edge levels and
shortcuts for the local queries (Section 4.6).

If we also output the edges along the shortest path, our average query processing
becomes about 5 milliseconds (which happens to be the average processing time for
the local queries, too). This is still competitive with the processing times reported
in [15] and its closest competitors [14] [7] [8]. All of these schemes do not output
edges along the shortest path, though outputting actual paths for these schemes
would incur mostly a slight penalty in terms of space.

Many previous works provided a figure that showed the dependency of the
processing time of a query on the Dijkstra rank of that query, which is the number of
nodes Dijkstra’s algorithm would have to settle for that query. The Dijkstra rank is
a fairly natural measure of the difficulty of a query. For TRANSIT, query processing
times are essentially constant for the non-local queries, because the number of
table lookups required varies little and is completely independent from the distance
between source and target. Table 3 therefore gives details on which percentage of
the queries with a given Dijkstra rank are local. Note that for both the 128 x 128
grid and the 256 x 256 grid, all queries with a Dijkstra rank of 2° = 512 or less are
local, while all queries with Dijkstra rank above 22! ~ 2,000, 000 are non-local.

Lgridsize || <20 [20 | ou | 92 | g [gn |
128 x 128 100% 100% | 100% 99% 99% 99%
256 x 256 100% 99% 99% 99% 97% 94%
‘ grid size H 915 ‘ 916 ‘ 17 ‘ 918 ‘ 919 ‘ 920 ‘ > 921 ‘
128 x 128 98% 94% 85% 64% 29% 5% 0%
256 x 256 84% 65% 36% 12% 1% 0% 0%

TABLE 3. Estimated fraction of queries which are local with re-
spect to the given grid, for various ranges of Dijkstra ranks. The
estimate for the column labeled 27 is the average over 1000 random
queries with Dijkstra rank in the interval [27,271).

14 HOLGER BAST, STEFAN FUNKE, AND DOMAGOJ MATIJEVIC

5.2. Results for the DIMACS benchmark data. We also conducted ex-
periments with additional benchmark data as provided by the DIMACS shortest
path challenge website [5]. We used the same kind of machine as specified at the
beginning of the previous section. For the sake of comparability with the results of
other authors, Table 4 gives the results of the DIMACS core benchmark on such a
machine.

Clearly, the efficacy of our grid-based approach does not depend on the metric
used for computing the shortest paths; that is, for a given road network and res-
olution of the grid — say 128 x 128 the fraction of all queries that are considered
”long range” does not change when varying the edge weights. What does change,
though, is the number of transit nodes necessary to provide correct answers to
these long range queries. In particular, when the cost measure is changed from
travel time along an edge to distance along an edge or unit distance, the property
of road networks to canalize traffic is weakened, hence the number of transit nodes
necessary for a certain grid size increases. Likewise the average number of closest
transit nodes per node increases and hence the query times; the increase is more
pronounced for the distance weights than for the unit weights. In our benchmarks
for the additional datasets we restricted to one level of transit nodes and only re-
port the results for the non-local queries, which, for all the experiments in Table 5
and 6, were 97% of all queries.

Table 5 shows our results for different metrics and (sub)networks of the road
network of the US. The astute reader will notice a difference in the number of
transit nodes as well as in the preprocessing and average query time between the
figures of Table 1 (TIGER data) and Table 5 (DIMACS data). This difference is
due to the fact that the conversion from road types to speeds (and hence travel
times) which we used for the TIGER data is different from the conversion used for
the DIMACS data. In our conversion the difference in speed between slow and fast
roads is more pronounced, and hence the canalizing property of the network with
our travel times is stronger (fast roads are even more attractive). For the CTR
network with the distance metric, the number of transit nodes for the 128 x 128
grid was too large, so we provided the results for a 64 x 64 grid instead.

Table 6 shows our results for the road network of Western Europe (n =
18,010,173, m = 42,560,279)%. A particularity of this network is a number of
very slow ferry connections. Without special treatment of the corresponding edges
(we tried a few heuristics but then decided to leave the data as is), the prepro-
cessing time goes up significantly. This is so, because whenever one of the local
Dijkstra computations in our transit node precomputation (Section 4) has to settle
a node that can only be reached via a very long (slow) path, then almost all nodes
in the network will be settled in that computation. Like this, the ferry connections
give rise to a significant number of very time-consuming global Dijkstra computa-
tions in our precomputation. Note that the straightforward heuristic of splitting up
very long edges into many short edges does not solve this problem: there will still
be nodes which are geometrically close but with a very long shortest path between
them. In Table 6, note that the problem indeed does not occur for unit edge lengths
(in which case a ferry connection costs just as much as any other edge), and that

4We have considered an undirected variant of this network where the edge weights of reverse
edges are equalized by taking the maximum of both since our current implementation does not
allow for directed edges.

ULTRAFAST SHORTEST-PATH QUERIES VIA TRANSIT NODES 15

metric
graph | #nodes #edges time distance
NY 264346 733846 59.47 62.09
BAY 321270 800172 66.08 72.17
COL 435666 | 1057066 96.44 100.48
FLA 1070376 | 2712798 | 238.27 257.97
NW 1207945 | 2840208 | 282.40 328.19
NE 1524453 | 3897636 | 407.42 457.07
CAL | 1890815 | 4657742 | 469.54 544.74
LKS 2758119 | 6885658 | 731.10 836.44
E 3598623 | 8778114 | 1042.63 | 1241.10
W 6262104 | 15248146 | 1988.49 | 2401.79
CTR | 14081816 | 34292496 | 8934.93 | 9906.62

TaBLE 4. Query times (ms) for the DIMACS core experiment
(Opteron 240, 2.4 GHz, Linux 2.6.14, gee 3.3.5, 64bit)

it is worst for the travel time metric (relative to other edges, travel time along a
ferry connection is worse than distance).

In general, the space-efficiency of our approach improves with growing network
size, the reason for that being that there is only little correlation between the num-
ber of transit nodes necessary for a 128 x 128 grid and the size of the respective road
network. In fact the number of transit nodes can be even larger for subnetworks if
they exhibit a worse canalizing property or the respective subnetwork covers more
area of the square grid area (as observed for some subnetworks of the US). For
amortizing the cost of storing the all-pairs distance table over the transit nodes,
a large network size is beneficial. In particular, if the complete road network of
the whole world was available, the per-node space requirement to store a transit
node data structure of the same granularity would be considerably lower than for
the US road network and still the same fraction of queries could be processed via a
few table lookups. In that case one could probably even afford to create and store
transit nodes based on a 512 x 512 grid which would resolve 99.8% of all queries by
fast table-lookups.

5.3. Graphical User Interface. We have gone to quite some pain to im-
plement a relatively comfortable graphical user interface (GUI) for displaying our
road networks plus a number of additional elements. The GUI is implemented in
C++ using the gtkmm library, which gives instant response times for dragging and
zooming also for large road networks like that of the US. The GUI runs in its own
thread, so that user and redraw events can be interleaved with computation and
other code.

The GUI supports seamless dragging and zooming with the mouse (wheel), as
in tools like Google Maps. This is very convenient for navigating in a large network
quickly, but that was also the part that cost us the most work. The graph has to be
divided into relatively small chunks, and only those chunks must be drawn which
are actually visible from the current perspective and position. Also, there have to
be priorities between edges, because always drawing all edges tends to clutter up
the display and is an efficiency problem, too. The GUI also supports the drawing

16 HOLGER BAST, STEFAN FUNKE, AND DOMAGOJ MATIJEVIC

graph | metric grid | #tr.nodes | closest | query time | preproc.
USA time | 128x128 10 084 14 17.8 us 7h
USA dist 128x128 31 536 36 69.4 us 9h
USA unit | 128x128 17 699 22 30.3 ps 9h
BAY time | 128x128 10 077 8 9.1 us | 20 min
BAY dist 128x128 13 269 13 11.6 ps 20 min
BAY unit | 128x128 10 314 9 9.2 us | 20 min
CAL time | 128x128 15 087 9 8.9 pus | 30 min
CAL dist 128x128 21 230 16 16.0 ps | 30 min
CAL unit 128x128 15 747 11 10.6 ps 30 min
E time | 128x128 10 477 12 12.2 us 1h
E dist 128x128 23 842 26 46.0 ps 2h
E unit 128x128 13 915 15 19.0 ps 1h
FLA time 128x128 6 248 9 7.8 us 10 min
FLA dist 128x128 9 937 14 12.3 ps 10 min
FLA unit | 128x128 6 404 9 7.7 ps 10 min
LKS time | 128x128 7 447 12 12.2 ps 30 min
LKS dist 128x128 20 222 30 46.1 ps 1h
LKS unit 128x128 10 257 16 17.5 ps 1h
NE time | 128x128 11 542 11 11.1 ps | 20 min
NE dist 128x128 22 937 23 28.0 ps 40 min
NE unit 128x128 13 675 13 13.1 ps 25 min
NW time 128x128 19 429 10 10.2 ps 30 min
NW dist 128x128 23 963 15 14.8 ps | 35 min
NwW unit | 128x128 19 096 11 11.3 ps | 25 min
NY time 128x128 19 133 12 10.1 ps 10 min
NY dist 128x128 24 435 15 14.3 ps 15 min
NY unit 128x128 18 598 12 10.3 ps 10 min
w time | 128x128 19 107 10 10.6 us 2h
w dist 128x128 36 214 19 22.8 us 2h
w unit 128x128 25 554 14 15.2 ps 1h
CTR time 128x128 24 540 14 17.5 ps 6h
CTR dist 64x64 24 359 39 88.2 us 12 h
CTR unit | 128x128 40 282 20 32.0 us 7.5h
COL time | 128x128 10 502 9 7.0 ps 5 min
COL dist 128x128 13 199 14 11.5 ps 10 min
COL unit | 128x128 10 686 10 7.9 us 5 min

TABLE 5. Results for (sub)networks of the US road network with
three kinds of edge lengths: travel time, distance along the corre-
sponding road segment, and unit length.

of custom objects, like cross hairs (to visualize important locations), arrows along
roads (to visualize something like edge signs), etc.

6. Conclusions

Transit nodes are a simple, yet powerful idea: they reduce the shortest-path
computation for all but a small fraction of local queries to a few table lookups. In
this paper we have focused on presenting this idea and giving a simple geometric
algorithm realizing it.

ULTRAFAST SHORTEST-PATH QUERIES VIA TRANSIT NODES 17

graph metric grid | F#tr.nodes | closest | query time | preproc.
Europe | time | 128x128 10 394 14 13 us 58h
Europe | dist | 128x128 20 126 38 56 ps 29h
Europe | unit | 128x128 7 708 14 12 ps 17h

TABLE 6. Results for the road network of Western Europe (undi-
rected, including ferry connections).

X superfast2
Global View Zoomed View
Detail

09858

[Crosshairs [] EdgeSet 8 J
Graph [EdgeSet 9

(] Edgeset1 [] EdgeSet 10

EdgeSet 2
mE [] EdgeSet11

[Edgeset3

[EdgeSet 12
[EdgesSet4

EdgeSet 13
[EdgesSet 5

EdgeSet 14
[EdgesSet&

7 Edgeset 7 EdgeSet 15

Leve|

FIGURE 5. Screenshot of our interactive graphical user interface.

The algorithms in this paper work for undirected graphs. A generalization to
directed graphs is not trivial but feasible. During the construction of the transit
nodes one would have to distinguish between ”incoming transit nodes”, i.e., transit
nodes that are visited by long paths ending in some node, and ”outgoing transit
nodes”, i.e., transit nodes that are visited by long paths starting in some node. This
can be taken care of by considering the reverse network during the construction
step of the transit nodes. Of course, then the distance table is also not symmetric
anymore and nodes would have to store ”incoming” and ”outgoing distances” to
their closest transit nodes. The highway hierarchies from Sanders and Schultes, in
particular their combination with the transit node idea [16], also work for directed
graphs.

A more difficult open problem is how to design a data structure that yields
similarly fast query times as our data structure but at the same time allows dynamic
changes in the graph, like an increase of a few edge lengths due to a traffic jam.

18

HOLGER BAST, STEFAN FUNKE, AND DOMAGOJ MATIJEVIC

Two solutions have recently been proposed in [3] and [17]; however, these do not
achieve the ultrafast processing times reported in this paper.

Acknowledgements

We are grateful to the anonymous referees, especially one of them, for an ex-

tremely careful proof reading job and many constructive comments, which helped
a lot in making the paper more precise and more readable.

(1]

(2]

(3]
(4]
(5]
(6]
[7]
(8]

[9]

[10]

(11]

(12]

(13]
14]
(15]

[16]

(17]

(18]

References

H. Bast, S. Funke, D. Matijevic, P. Sanders, and D. Schultes. In transit to constant time
shortest-path queries in road networks. In 9th Workshop on Algorithm FEngineering and
Ezxperiments (ALENEX’07), 2007.

D. Delling, M. Holzer, K. Miiller, F. Schulz, and D. Wagner. High-performance multi-level
graphs. In DIMACS Implementation Challenge Shortest Paths, 2006. An updated version of
the paper appears in this book.

D. Delling and D. Wagner. Landmark-based routing in dynamic graphs. In 6th Workshop on
Ezperimental Algorithms (WEA’07), pages 52—65, 2007.

E. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269-271, 1959.

The 9th DIMACS Implementation Challenge: Shortest Paths;
http://www.dis.uniromal.it/~challenge9/.

M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network opti-
mization algorithms. Journal of the ACM, 34(3):596-615, 1987.

A. Goldberg and C. Harrelson. Computing the shortest path: A* search meets graph theory.
In 16th Symposium on Discrete Algorithms (SODA’05), pages 156 165, 2005.

A. Goldberg, H. Kaplan, and R. Werneck. Reach for A*: Efficient point-to-point shortest path
algorithms. In 8th Workshop on Algorithm Engineering and Experiments (ALENEX’06),
2006.

R. Gutman. Reach-based routing: A new approach to shortest path algorithms optimized for
road networks. In 6th Workshop on Algorithm Engineering and Ezperiments (ALENEX’04),
2004.

E. Kdhler, R. H. Mdhring, and H. Schilling. Acceleration of shortest path and constrained
shortest path computation. In 4th Workshop on Ezperimental and Efficient Algorithm
(WEA’05), pages 126-138, 2005.

U. Lauther. An extremely fast, exact algorithm for finding shortest paths in static networks
with geographical background. In Minster GI-Tage, 2004.

R. H. Mdohring, H. Schilling, B. Schiitz, D. Wagner, and T. Willhalm. Partitioning graphs
to speed up dijkstra’s algorithm. In 4th Workshop on Ezperimental and Efficient Algorithm
(WEA’05), pages 189 202, 2005.

K. Miiller. Design and implementation of an efficient hierarchical speed-up technique for
computation of exact shortest paths in graphs. Master’s thesis, University of Karlsruhe, 2006.
P. Sanders and D. Schultes. Highway hierarchies hasten exact shortest path queries. In 13th
European Symposium on Algorithms (ESA’05), pages 568-579, 2005.

P. Sanders and D. Schultes. Engineering highway hierarchies. In 14th European Symposium
on Algorithms (ESA’06), pages 804-816, 2006.

P. Sanders and D. Schultes. Robust, almost constant time shortest-path queries on road
networks. In DIMACS Implementation Challenge Shortest Paths, 2006. An updated version
of the paper appears in this book.

D. Schultes and P. Sanders. Dynamic highway-node routing. In 6th Workshop on Ezperimen-
tal Algorithms (WEA’07), pages 66-79, 2007.

M. Thorup and U. Zwick. Approximate distance oracles. Journal of the ACM, 51(1):1 24,
2005.

MAX-PLANCK-INSTITUTE FOR INFORMATICS, SAARBRUCKEN, GERMANY
E-mail address: bast@mpi-inf.mpg.de

MAX-PLANCK-INSTITUTE FOR INFORMATICS, SAARBRUCKEN, GERMANY
E-mail address: funke@mpi-inf.mpg.de

MAX-PLANCK-INSTITUTE FOR INFORMATICS, SAARBRUCKEN, GERMANY
E-mail address: dmatijev@mpi-inf.mpg.de

