
DIMACS Series in Dis
rete Mathemati
sand Theoreti
al Computer S
ien
e
Ultrafast Shortest-Path Queries via Transit NodesHolger Bast, Stefan Funke, and Domagoj Matijevi
Abstra
t. We introdu
e the
on
ept of transit nodes as a means for prepro-
essing a road network su
h that point-to-point shortest-path queries
an beanswered extremely fast. We assume the road network to be given as a graph,with
oordinates for ea
h node and a travel time for ea
h edge.The transit nodes are a set of nodes, as small as possible, with the propertythat every non-lo
al shortest path passes through at least one of these nodes. Apath is
alled non-lo
al if its sour
e and target are at least a
ertain minimaleu
lidean distan
e apart. We pre
ompute the lengths of the shortest pathsbetween ea
h pair of transit nodes, and between ea
h node in the graph and itsfew,
losest transit nodes. Then every non-lo
al shortest path query be
omesa simple matter of
ombining information from a few table lookups.For the US road network, with about 24 million nodes and 29 millionundire
ted edges, we a
hieve a worst-
ase query pro
essing time of about 10mi
rose
onds (not millise
onds) for 99% of all queries, namely the non-lo
alones. This improves over the best previously reported times by two orders ofmagnitude. 1. Introdu
tionThe
lassi
al way to
ompute the shortest path between two given nodes in agraph with given edge lengths is Dijkstra's algorithm [4℄. The asymptoti
 runningtime of Dijkstra's algorithm is O(m + n logm), where n is the number of nodes,and m is the number of edges [6℄. For graphs with
onstant degree, like the roadnetworks we
onsider in this paper, this is O(n logn). While it is still an openquestion, whether Dijkstra's algorithm is optimal for single-sour
e single-targetqueries in general graphs, there is an obvious
(n + m) lower bound, be
auseevery node and every edge has to be looked at in the worst
ase. Sublinear querytime hen
e requires some form of prepro
essing of the graph. For general graphs,
onstant query time
an only be a
hieved with superlinear spa
e requirement; this isdue to a re
ent result by Thorup and Zwi
k [18℄. Like previous works, we thereforeexploit spe
ial properties of road networks, in parti
ular, that the nodes have lowdegree and that there is a
ertain hierar
hy of more and more important roads,su
h that further away from sour
e and target only the more important roads tendto be used on shortest paths.This work is partially supported by the EU 6th Framework Programme under
ontra
t 001907(DELIS).

0000 (
opyright holder)1

2 HOLGER BAST, STEFAN FUNKE, AND DOMAGOJ MATIJEVIC

Figure 1. Transit nodes (red/bold dots) for a part of a
ity (
en-ter, dark) when travelling far (outside the light-gray area).Our ben
hmark for most of this paper will be an undire
ted version of the USroad network, whi
h has about 24 million nodes and 29 million edges. On thisnetwork, a good implementation of Dijkstra's algorithm on a single state-of-the-artPC takes on the order of se
onds, on average, for a random query. Note that for arandom query, sour
e and target are likely to be far away from ea
h other, in whi
h
ase Dijkstra's algorithm will settle a large portion of all nodes in the networkbefore eventually rea
hing the target. For most of this paper, edge lengths will betravel times, so that shortest paths are a
tually paths with minimum travel time.We will
ontinue to speak of shortest, however, be
ause that is more familiar and tostress the wider appli
ability of our transit node idea. At the end of the paper wewill also present results for unit edge lengths and when the length of an edge is thedistan
e along the
orresponding road segment, and results for the road network ofWestern Europe. 2. Our resultsWe present a new algorithm, named TRANSIT, whi
h
an answer non-lo
alshortest path queries extremely fast, by
ombining information from a small numberof lookups in a table. On the US road network, we a
hieve an average querypro
essing time of around 10 mi
rose
onds (not millise
onds) for 99 % of all queries,when only the length (travel time) of the shortest path is required. The remaining1 % of the queries are lo
al in the sense that sour
e and target are geometri
allyvery
lose to ea
h other. We also provide a simple algorithm for dealing with thefew lo
al queries eÆ
iently. However, the fo
us of this work is on the non-lo
alqueries. In fa
t, we prefer to view our transit node approa
h as a �lter : the vastmajority of all queries
an be pro
essed extremely fast, leaving only a small fra
tion

ULTRAFAST SHORTEST-PATH QUERIES VIA TRANSIT NODES 3of lo
al queries, whi
h
an be pro
essed by any other method. Note that alreadyDijktra's algorithm
an pro
ess the lo
al queries by orders of magnitudes fasterthan arbitrary random queries.Our pro
essing times for the non-lo
al queries beat the best previously reported�gure of about 1 millise
ond, due to Sanders and S
hultes [15℄, by two orders ofmagnitude. When the full path, with all its edges, is to be output, we a
hieve anaverage query pro
essing time of about 5 millise
onds on the US road network. Weremark that all of the previous, more sophisti
ated algorithms use some form ofpath
ompression, whi
h does not easily allow them to output the edges along theshortest path without using extra memory.The basi
 idea of TRANSIT is as follows. For a given road network,
ompute asmall set of transit nodes with the property that every shortest path that
overs a
ertain not too small eu
lidean distan
e passes through at least one of these transitnodes. For every node in the given graph, then
ompute a set of
losest transitnodes, with the property that every shortest path starting from that node andpassing through a transit node at all (whi
h it will if it goes suÆ
iently far), willpass through one of these
losest transit nodes. These sets of
losest transit nodesturn out to be very small: about 10 on average for our
hoi
e of transit nodes onthe US road network. This allows us to pre
ompute, for ea
h node, the distan
esto ea
h of its
losest transit nodes. Also, the overall number of transit nodes turnsout to be small enough so that we
an easily pre
ompute and store the distan
esbetween all pairs of transit nodes.A non-lo
al shortest path query
an then easily be answered as follows. Fora given sour
e node sr
 and target node trg , fet
h the pre
omputed sets of
losesttransit nodes Tsr
 and Ttrg , respe
tively. For ea
h pair of transit nodes tsr
 2 Tsr
and ttrg 2 Ttrg
ompute the length of the shortest path passing through these nodes,whi
h is d(sr
; tsr
) + d(tsr
 ; ttrg) + d(ttrg ; trg). Note that all three distan
es in thissum have been pre
omputed. The minimum of these jTsr
 j � jTtrg j lengths is thelength of the shortest path.Given an algorithm for length-only shortest path queries, one
an easily
om-pute the edges along the shortest path using a few length-only shortest path queriesper edge on the shortest path. To see this, assume we have already found a portionof the shortest path from the sour
e to a node u. To �nd the next edge on the path,we simply laun
h a length-only shortest path query for ea
h of the adjan
ent nodesof u. Given the length of the portion of the shortest path we already know, its totallength, and the length of the edges adja
ent to u, it is then easy to tell whi
h ofthese edges is next on the shortest path. For details and possible improvements,see Se
tion 4.5.We want to stress that there are natural appli
ations, where length-only short-est path queries are good enough, and not all the edges along the path are required.For example, most
ar navigation systems merely have a lo
al view of the road net-work (if any). In that
ase it suÆ
es to know the next few edges on the shortestpath, and these
an be
omputed by just a few length-only shortest-path queries,as des
ribed above.We de
ribe TRANSIT in more detail in Se
tion 4.

4 HOLGER BAST, STEFAN FUNKE, AND DOMAGOJ MATIJEVIC3. Related WorkWe give a qui
k survey of work dire
tly relevant to the problem of prepro
essingroad networks for subsequent fast shortest-path querying.Gutman in [9℄ proposes a general
on
ept of edge levels (he
alled it rea
h,though). Consider an edge e that appears \in the middle" of a shortest path, {shortest with respe
t to travel time { between two nodes that are a
ertain distan
ed apart { distan
e with respe
t to some arbitrary other metri
, e.g., eu
lideandistan
e. Then the level of e is the higher, the larger d is. Gutman de�nes levelswith respe
t to eu
lidean distan
e, but he notes that any metri

an be used forthe dis
rimination of the \in the middle" property. He presents simple algorithmswhi
h
ompute upper bounds for the edge levels and instruments those to obtainmore eÆ
ient exa
t shortest path queries on moderate-size road networks. Due tothe use of the eu
lidean metri
 as
lassifying metri
, his approa
h allows for severalvariants of Dijkstra, in parti
ular a natural goal-dire
ted (unidire
tional) version aswell as eÆ
ient one-to-many shortest path queries. The {
ompared to later worklike [14℄ or [8℄ { less
ompetitive running times, both for the prepro
essing phaseas well as the queries are mainly due to the la
k of an eÆ
ient
ompression s
heme.The latter is very important for obtaining fast running times sin
e in parti
ularthe networks indu
ed by higher level edges
ontain very long
hains of degree-twonodes following whi
h is quite expensive. They
an be easily skipped by suitableshort
ut/path
ompression edges, though.Later Sanders and S
hultes have adopted a di�erent
lassifying metri
 for theirso-
alled Highway-Hierar
hies [14℄. In an ordinary Dijkstra
omputation from asour
e sr
, say that the rth node settled has Dijkstra rank r with respe
t to sr
.Sanders and S
hultes say that the level of an edge (u; v) is high if it is on a shortestpath between some sr
 and trg su
h that v has high Dijkstra rank with respe
tto sr
 and u has high Dijkstra rank with respe
t to trg. They a
hieve a drasti
improvement both in prepro
essing time as well as in query times, mainly be
auseof the use of the Dijkstra rank as
lassifying metri
 as well as a highly eÆ
ient
ompression and pruning s
heme in the higher levels of the network. The output ofthe algorithm is a path
ontaining
ompressed edges, though, and un
ompressingthose edges does require some additional time and spa
e. Their variant is alsoinherently bidire
tional, so both goal-dire
tion as well as one-to-many queries arenot easily added, though later work has tried to address these issues.Goldberg et al. in [8℄
ombine edge levels with a
ompression s
heme and theyuse lower bounds, based on pre
omputed distan
es to a few landmarks verti
es, toallow for a more goal-dire
ted sear
h. They report running times
omparable tothose of [14℄. Their spa
e
onsumption is somewhat higher though, be
ause everynode in the network has to store distan
es to all landmarks. A non-goal-dire
tedversion of their algorithm exhibits
onsiderably less storage requirements at the
ost of only slightly higher query time.More re
ently, Sanders and S
hultes [15℄ have presented the so far best
ombi-nation of prepro
essing and query time. They show how to prepro
ess the US roadnetwork in 15 minutes, for subsequent query times of, on the average, 1 millise
ond.While we
ould not yet
ome
lose to their extremely fast prepro
essing time, ourlength-only s
heme beats their query time by two orders of magnitude.M�ohring et al. [12, 10℄, based on previous work by Lauther [11℄, explored ar

ags as means to a
hieve very fast query times. Intuitively, an ar

ag is a sign that

ULTRAFAST SHORTEST-PATH QUERIES VIA TRANSIT NODES 5says whether the respe
tive edge is on a shortest path to a parti
ular region of thegraph. In an extreme
ase, an edge
ould have a sign to every node on the shortestpath to whi
h it lies. A shortest path query
ould then be answered by simplyfollowing the signs to the target without any detour. However, to pre
omputethese perfe
t signs requires an all-pairs shortest-path
omputation, whi
h takesquadrati
 time and would be infeasible already for a small portion of the whole USroad network, say the network of California. It is shown in [12, 10℄ and [11℄ how to
ut down on this prepro
essing somewhat, by putting up signs to suÆ
iently largeregions of the graph. The largest network
onsidered in these works has about onemillion nodes [12℄. In the initial stages of our work, we experimented with the ar

ag approa
h too, and were not able to a
hieve query pro
essing times
ompetitivewith those of [15℄ with a reasonable amount of prepro
essing time and extra spa
e.Most re
ently, following the �rst appearan
e of our paper, Sanders and S
hulteshave
ombined the transit node idea with highway hierar
hies [16℄. They report tohave worked independently on similar ideas, but with a �ve times larger number of
losest transit nodes (
alled a

ess nodes in their work) per node. Note that theaverage query time of any s
heme based on the transit node idea grows quadrati
allyin the average number of
losest transit nodes per node. The idea of pre
omputingall-to-all distan
es between a small subset of all nodes was already used in [15℄, toterminate lo
al sear
hes when they as
ended far enough in the hierar
hy. Promptedby our formulation of the transit node idea and the observation that an average ofabout 10
losest transit nodes per node suÆ
e for a road network like that of theUS, Sanders and S
hultes were able to develop their ideas further to a
hieve veryfast pro
essing times
omparable to those we report in this paper. They a
hievethese pro
essing times for both non-lo
al and lo
al queries. (We would get a similarresult by using the original highway hierar
hies as a fallba
k for the lo
al queries,but their implementation is more integrated as it uses highway hierar
hies both forthe lo
al queries and for the
omputation of transit nodes.) Their prepro
essingis an order of magnitude faster than what we report in this paper. The pri
e is amore
omplex algorithm and implementation, and an in
reased spa
e
onsumption.More details on the
omparison between both approa
hes, our simple geometri
 oneand the one based on highway hierar
hies, are given in a joint follow-up paper [1℄.In retrospe
t, the work of [13℄ (whi
h later be
ame [2℄)
an be taken as anotheralternative to
omputing transit nodes. In a nutshell, they use a hierar
hy ofseparators to partition a given road network (making use of its almost-planarity).Their separator nodes
ould be taken as transit nodes, in whi
h
ase lo
al querieswould be those with both endpoints in the same
omponent. However, just like forthe early attempts of Sanders and S
hultes, this approa
h gives rise to an inherentlymu
h larger number of
losest transit nodes (a

ess nodes), whi
h implies one totwo orders of magnitude larger prepro
essing time, spa
e
onsumption and querypro
essing times. 4. The TRANSIT algorithm4.1. Intuition. The basi
 intuition behind our approa
h is very simple: imag-ine you live in a big
ity and intend to travel long-distan
e by
ar. What you willobserve is that irrespe
tively of where your �nal destination is (as long it is rea-sonably far away) and where exa
tly you live in the
ity, there will be few roadsvia whi
h you will a
tually leave the urban area when travelling on a shortest path

6 HOLGER BAST, STEFAN FUNKE, AND DOMAGOJ MATIJEVIC
Figure 2. Transit neighborhood of a
ell in a 64� 64 subdivisionof the US.
Figure 3. Transit neighborhood of a
ell in a 1024� 1024 subdi-vision of the US.to your destination. In Figure 1 we have depi
ted these roads for the
enter partof a
ity. No matter where you start your journey inside the
entral region (indark) { if your �nal destination lies outside the light-grey area and you travel on ashortest path, you will pass through one of the 14 marked roads (red/bold dots).This property, that long-distan
e trips (where the length is to be seen relative tothe "starting region") pass through few transit nodes, is in fa
t to some degreeinvariable to s
ale. The example in Figure 1 shows the transit nodes for a
ell in a256� 256 subdivision of the road network of the US; there are 14 of them. Figures2 and 3 show transit nodes (or more pre
isely transit neighborhoods by whi
h we
ompute transit nodes) for
ells of a 64� 64 and 1024� 1024 subdivision of the USrespe
tively. They exhibit 17 and 8 transit nodes respe
tively.In essen
e our approa
h is then to
onstru
t a (geometri
, in our
ase) subdi-vision of the network into
ells and determine their transit nodes, su
h that thetotal number of transit nodes is small enough to allow us to pre
ompute and storeall pairwise distan
es between transit nodes in O(n) spa
e, i.e., in about the sameamount of spa
e as used for the original graph itself. Furthermore ea
h node storesdistan
es to the transit nodes of its resident
ell. At query time a simple lookupyields the exa
t distan
e between any sour
e-target pair provided they are not too
lose to ea
h other.4.2. Computing the Set of Transit Nodes. Consider the smallest en
los-ing square of the set of nodes (
oming with x and y
oordinate ea
h), and the

ULTRAFAST SHORTEST-PATH QUERIES VIA TRANSIT NODES 7
C

outer

inner

0

+1

+2

−1

−2

CA

CD

CC

CE

CB

C5

C4

C3

C2

C1

Figure 4. De�nition and
omputation of transit nodes in the grid-based
onstru
tion.natural subdivision of this square into a grid of g � g equal-sized square
ells, forsome integer g. We de�ne a set of transit nodes for ea
h
ell C as follows. LetSinner and Souter be the squares
onsisting of 5 � 5 and 9 � 9
ells, respe
tively,ea
h with C at their
enter. Let EC be the set of edges whi
h have one endpointinside C, and one outside, and de�ne the set VC of what we
all
rossing nodes bypi
king for ea
h edge from EC the node with the smaller id. De�ne Vouter and Vinnera

ordingly1. See the left side of Figure 4 for an illustration. The set of
losesttransit nodes for the
ell C is now a set of nodes TC � Vinner with the property thatfor any pair of nodes p; q | one in VC , one in Vouter | there exists a shortest pathfrom p to q whi
h passes through some node v 2 TC . Note that we also
ould havedemanded that all shortest paths from p; q pass through some node in TC , but thiswould have potentially in
reased the number of transit nodes with the only bene�tof a slightly easier routine for reporting all shortest paths between a pair of nodeslater on.The overall set of transit nodes is just the union of these sets over all
ells. It iseasy to see that if two nodes are at least four grid
ells apart in either horizontal orverti
al dire
tion, then the shortest path between the two nodes must pass throughone of these transit nodes. By \four grid
ells apart" we mean that between thegrid
ell
ontaining the one node and the grid
ell
ontaining the other node thereare at least four other grid
ells. Also note that if a node is a transit node for some
ell, it is likely to be a transit node for many other
ells, ea
h of them two
ellsaway, too.A naive way to
ompute these sets of transit nodes would be as follows. Forea
h
ell,
ompute all shortest paths between nodes in VC and Vouter, and mark allnodes in Vinner that appear on at least one of these shortest paths. Figure 4 willagain help to understand this. Su
h a naive
omputation is too time-
onsuming,though, for example for a 128�128 grid it required several days on the US network.1That is, we
onsider the set of edges that have one endpoint inside Sinner/Soutside, the otheroutside. Note that those edges might not ne
essarily have endpoints in the
ells dire
tly adja
entto the
rossing point with Sinner/Soutside.

8 HOLGER BAST, STEFAN FUNKE, AND DOMAGOJ MATIJEVICAs a �rst improvement,
onsider the following simple sweep-line algorithm,whi
h runs Dijkstra
omputations within a radius of only three grid
ells, insteadof �ve, as in the naive approa
h. Consider one verti
al line of the grid after theother, and for ea
h su
h line do the following. Let v be one of the endpoints ofan edge interse
ting the line. We run a lo
al Dijkstra
omputation for ea
h su
hv as follows: let Cleft be the set of
ells two grid units left of v and whi
h haveverti
al distan
e of at most 2 grid units to the
ell
ontaining v. De�ne Crighta

ordingly. See Figure 4, right; there we have Cleft = fCA;CB;CC;CD;CEgand Cright = fC1; C2; C3; C4; C5g. We start the lo
al Dijkstra at v until all nodeson the boundary of the
ells in Cleft and Cright respe
tively are settled; we rememberfor all settled nodes the distan
e to v. This Dijkstra run settles nodes at a distan
eof roughly 3 grid
ells. After having performed su
h a Dijkstra
omputation for allnodes v on the sweep line, we
onsider all pairs of boundary nodes (vL; vR), wherevL is on the boundary of a
ell on the left and vR is on the boundary of a
ell on theright and the verti
al distan
e between those
ells is at most 4. We iterate over allpotential transit nodes v on the sweep line and determine the set of transit nodesfor whi
h d(vL; v)+d(v; vR) is minimal. With this set of transit nodes we asso
iatethe
ells
orresponding to vL and vR, respe
tively.It is not hard to see that two su
h sweeps, one verti
al and one horizontal,will
ompute exa
tly the set of transit nodes de�ned above (the union of all setsof
losest transit nodes). The
omputation is spa
e-eÆ
ient, be
ause at any pointin the sweep, we only need to keep tra
k of distan
es within a small strip of thenetwork. The
onsideration of all pairs (vL; vR) is negligible in terms of runningtime. As a further improvement, we �rst do the above
omputation for somere�nement of the grid for whi
h we a
tually want to
ompute transit nodes { let'ssay 128 � 128 is the grid we are �nally aiming for. For some �ner grid { say256�256, we
onsider every se
ond grid line (those also belonging to the 128�128grid) and employ the
omputation des
ribed above to de
ide whether the respe
tiveboundary nodes are transit nodes in the �ner grid. This
omputation is
heaperthan in the
oarser grid sin
e the Dijkstra
omputations have to rea
h only half asfar. Then, when
omputing the transit nodes for the
oarser 128 � 128 grid, we
an restri
t ourselves to nodes from the sets of transit nodes
omputed for the �nergrid and hen
e save Dijkstra
omputations. This easily generalizes to a sequen
eof re�nements of 512 � 512, 1024� 1024, . . . grids where the �ner grid essentiallyprovides a "presele
tion" of the nodes that have to be
onsidered for being a transitnode in the
oarser grid.4.3. Computing the Distan
e Tables. For ea
h node v, the distan
es tothe
losest transit nodes of its
ell
an be easily
omputed and memorized from theDijkstra
omputations whi
h had these transit nodes as sour
e. In parti
ular, ea
htransit node thus knows the distan
e to all its (few)
losest transit nodes. From thiswe
an
onstru
t a graph with only the transit nodes as nodes, and an edge fromea
h transit node to its
losest transit nodes weighted by the respe
tive distan
e.A standard all-pairs shortest-path
omputation on this auxiliary graph gives us thedistan
es between ea
h pair of transit nodes. Sin
e the number of transit nodesis small (less than 8 000 for the US road network, using a 128 � 128 grid), thistakes negligible time. The spa
e
onsumption of these distan
e tables is dis
ussedin Se
tions 4.7 and 4.8 below.

ULTRAFAST SHORTEST-PATH QUERIES VIA TRANSIT NODES 94.4. Shortest-path queries (length only). We next des
ribe how to
om-pute the length of the shortest path between a given sour
e node sr
 and a giventarget node trg , based on the prepro
essing des
ribed in the previous two subse
-tions. We here give a des
ription for the s
enario where we have pre
omputed only asingle level of transit nodes. The extension to a hiera
hy of grids is straightforward,and will be explained in Se
tion 4.7.0. If sr
 and trg are less than four grid
ells (with respe
t to the grid used inthe pre
omputation) apart,
ompute the distan
e from sr
 to trg via analgorithm suitable for lo
al shortest-path queries; a number of possibilitiesare des
ribed in Se
tion 4.6. Otherwise, perform the following steps:1. Fet
h the lists Tsr
 and Ttrg of the
losest transit nodes for the grid
ells
ontaining sr
 and trg , respe
tively. Also fet
h the lists of pre
omputeddistan
es d(sr
; tsr
); tsr
 2 Tsr
 and d(trg ; ttrg); ttrg 2 Ttrg .2. For ea
h pair of tsr
 2 Tsr
 and ttrg 2 Ttrg
ompute the sum of the lengthsof the shortest path from sr
 to tsr
, from tsr
 to ttrg , and from ttrg totrg , whi
h is d(sr
; tsr
)+d(tsr
 ; ttrg)+d(ttrg ; trg). Note that we may havetsr
 = ttrg , in whi
h
ase d(tsr
 ; ttrg) = 0.3. Compute the length of the shortest path from sr
 to trg as the minimumof the jTsr
j � jTtrg j distan
es
omputed in step 2.The algorithm is easily seen to be
orre
t. Steps 1-3 will only be exe
uted if sour
eand target are more than four grid
ells apart. Then, by the de�nition of the transitnodes in Se
tion 4.2, the shortest path between sour
e and target must pass throughat least one transit node. But then, by the de�nition of
losest transit nodes, theshortest path from sr
 to trg will pass through one of the
losest transit nodes ofsr
 as well as through one of the
losest transit nodes of trg . The shortest path willtherefore be among those tried in step 2, and we pi
k the shortest of these.Sin
e we have pre
omputed the distan
es from ea
h node to its
losest transitnodes and the distan
es between ea
h pair of transit nodes, steps 1-3 take timeO(jTsr
 j � jTtrg j). The average number of
losest transit nodes of a node is a small
onstant | about 10 for the US road network.4.5. Shortest-path queries (with edges). In this subse
tion, we des
ribehow we
an enhan
e the pro
edure given in the previous subse
tion to also outputthe edges along the shortest path from a given sour
e node sr
 to a given targetnode trg .Assume that we have exe
uted the pro
edure from the previous subse
tion, thatis, we already know the length of the shortest path from sr
 to trg . Assume thatwe have already found the part of the shortest path from sr
 to some u (initially,u = sr
). Let d(u; trg), whi
h we
an
ompute as d(sr
; trg) � d(sr
; u), be thelength of the part of the path whi
h we have not found yet. Then the next node onthe shortest path is that node v adja
ent to u with the property that d(u; trg) =
(u; v)+d(v; trg), where
(u; v) is the length of the edge from u to v. This node
antherefore be easily identi�ed from the nodes adja
ent to u, if only we
an
omputethe distan
es d(v; trg). But these are just instan
es of the problem we solved inthe previous subse
tion: given two nodes,
ompute the length of the shortest pathbetween them.As des
ribed so far, the
omputation of d(v; trg) would resort to the spe
ialalgorithm for lo
al shortest-path queries when v and trg are less than four grid
ells

10 HOLGER BAST, STEFAN FUNKE, AND DOMAGOJ MATIJEVICapart. We
an avoid this, if we
ompute the shortest path from sr
 only until fourgrid
ells away from trg , and, symmetri
ally,
ompute the shortest path from trguntil four grid
ells away from sr
. This will give us the full path if sr
 and trg areat least eight grid
ells apart, and parts of the path if they are more than four grid
ells apart. For the remaining parts, or when sr
 and trg are no more then fourgrid
ells apart, we need to run the lo
al algorithm.This simple s
heme
an be improved in several ways. For example, we
ouldstore for ea
h node, for ea
h of its
losest transit nodes, the index of the edge tothat
losest transit node. We would then obtain the next edge along the shortestpath by a simple table lookup. The pri
e would be a fa
tor of two in the spa
e
onsumption of the pre
omputed information.Another idea would be to store for ea
h transit node, the full path to ea
h of its
losest transit nodes. Using
ompression (edge ids along a shortest path typi
allydo not di�er mu
h from one edge to the next, so some kind of gap en
oding
ouldbe used), this
ould be a
hieved with relatively little extra spa
e.In our experiments, we restri
ted ourselves to length-only shortest-path queries.4.6. Dealing with the Lo
al Queries. If sour
e and target are very
lose toea
h other (less than four grid
ells apart in both horizontal and verti
al dire
tionfor length-only shortest-path queries; less than eight grid
ells apart in that waywhen
omputing the edges along the path), we
annot
ompute the shortest pathvia the transit nodes. This makes sense intuitively: there is hardly any hierar
hyof roads in an area like, for example, downtown Manhattan, and a shortest pathbetween two lo
ations within the same su
h area will mostly
onsist of (small) roadsof the same kind. In su
h a situation, no small set of transit nodes exist.The good news is that most shortest-path algorithms are mu
h faster whensour
e and target are
lose to ea
h other. In parti
ular, Dijkstra's algorithm isabout a thousand times faster for lo
al queries, where sour
e and target are atmost four grid
ells apart, for an 128 � 128 grid laid over the US road network,than for arbitrary random queries (most of whi
h are long-distan
e). However, thenon-lo
al queries are roughly a million times faster and the fra
tion of lo
al queriesis about 1 %, so the average running time over all queries would be spoiled by thelo
al Dijkstra queries.Instead, we
an use any of the re
ent sophisti
ated algorithms to pro
ess thelo
al queries. Highway hierar
hies, for example, a
hieve running times of a fra
tionof a millise
ond for lo
al queries, whi
h would then only slightly a�e
t the averagepro
essing time over all queries. The drawba
k is that we would need the fullimplementation of another method, and that this method requires additional spa
eand pre
omputation time.For our experiments in Se
tion 5, we used a simple extension of Dijkstra'salgorithm using geometri
 edge levels and short
uts, as outlined in Se
tion 3. Thisextension uses only six additional bytes per node. An edge e = (p; q) has level l iflies on a shortest path from s to t, and both p and q are at least f(l) far away fromboth s and t in eu
lidean distan
e along that path. Here f(l) is a monotoni
allyin
reasing fun
tion. For ea
h node u, we insert at most two short
uts as follows:
onsider the unique level, if any, where u lies on a
hain of degree-2 nodes (degreewith respe
t to edges of that level) for the �rst time; on that level insert a short
utfrom u to the two endpoints of this
hain. In ea
h step of the Dijkstra
omputationfor a lo
al query, then
onsider only edges above a parti
ular level (depending on the

ULTRAFAST SHORTEST-PATH QUERIES VIA TRANSIT NODES 11
urrent eu
lidean distan
e from sour
e and target), and make use of any availableshort
uts suitable for that level. This algorithm requires an additional 5 bytes pernode.4.7. Multi-Level Grid. In our implementation as des
ribed so far, there isan obvious tradeo� between the size of the grid and the per
entage of lo
al querieswhi
h
annot be pro
essed via pre
omputed distan
es to transit nodes. For a very
oarse grid, say 64�64, the number of transit nodes, and hen
e the table storing thedistan
es between all pairs of transit nodes, would be very small, but the per
entageof lo
al queries would be as large as 10 %. For a very �ne grid, say 1024� 1024,the per
entage of lo
al queries is only 0.1 %, but now the number of transit nodesis so large, that we
an no longer store, let alone
ompute, the distan
es betweenall pairs of transit nodes. Table 1 gives the exa
t tradeo�s, also with regard toprepro
essing time, for the US road network. The average query pro
essing timefor the non-lo
al queries is around 10 mi
rose
onds, independent of the grid size.2jT j jT j � jT j/node avg. jAj non-lo
al prepro
.64� 64 2 042 0:1 11:4 91.7% 498 min128� 128 7 426 1:1 11:4 97.4% 525 min256� 256 24 899 12:8 10:6 99.2% 638 min512� 512 89 382 164:6 9:7 99.8% 859 min1 024� 1 024 351 484 2 545:5 9:1 99.9% 964 minTable 1. Number jT j of transit nodes, spa
e
onsumption of thedistan
e table, average number jAj of
losest transit nodes per
ell, per
entage of non-lo
al queries (averaged over 100 000 randomqueries), and prepro
essing time to determine the set of transitnodes for the US road network (ex
luding the
omputation of all-pair distan
es between transit nodes), TIGER version (see Se
tion5.2 for the di�eren
es to the DIMACS version).To a
hieve a small fra
tion of lo
al queries and a small number of transit nodesat the same time, we employ a hierar
hy of grids. We brie
y des
ribe the two-levelgrid, whi
h we used for our implementation. The generalization to an arbitrarynumber of levels would be straightforward.The �rst level is an 128� 128 grid, whi
h we pre
ompute as des
ribed so far.The se
ond level is an 256 � 256 grid. For this �ner grid, we
ompute the set ofall transit nodes as des
ribed, but we
ompute and store distan
es only betweenthose pairs whi
h are lo
al with respe
t to the 128� 128 grid. This is a fra
tion ofabout 1=200th of all the distan
es, and
an be
omputed and stored in negligibletime and spa
e via standard hashing. Note that in this simple approa
h, the spa
erequirement for the individual levels simply add up. A more sophisti
ated approa
hto multi-level transit node routing is des
ribed in [1℄.2A

ording to our experiments, the bulk of the pro
essing time for the non-lo
al queries isspent in step 2 (trying out all
ombinations) of the pro
edure des
ribed in Se
tion 4.4 and not instep 1 (fet
hing the relevant information for sour
e and target node), that is,
a
hing e�e
ts donot seem to play a dominant role here.

12 HOLGER BAST, STEFAN FUNKE, AND DOMAGOJ MATIJEVICQuery pro
essing with su
h a hierar
hy of grids is straightforward. In a �rststep, determine the
oarsest grid with respe
t to whi
h sour
e and target are atleast four grid
ells apart in either horizontal or verti
al dire
tion. Then
omputethe shortest path using the transit nodes and distan
es
omputed for that grid, justas des
ribed in Se
tions 4.4 and 4.5. If sour
e and target are at most four grid
ellsapart with respe
t to even the �nest grid, we have to resort to the spe
ial algorithmfor lo
al queries.4.8. Redu
ing the Spa
e Further. As des
ribed so far, for ea
h level inour grid hierar
hy, we have to store the distan
es from ea
h node in the graph toea
h of its
losest transit nodes. For the US road network, the average number of
losest transit nodes per node is about 10, independent of the grid size, and mostdistan
es
an be stored in two bytes. For a two-level grid, this gives about 40 bytesper node.To redu
e this, we implemented the following additional heuristi
. We observedthat it is not ne
essary to store the distan
es to the
losest transit nodes for everynode in the network. Consider a simpli�
ation of the road network where
hains ofdegree 2 nodes are
ontra
ted to a single edge. In the remaining graph we greedily
ompute a vertex
over, that is, we sele
t a set of nodes su
h that for every edgeat least one of its endpoints is a sele
ted node. Using this strategy we determineabout a third of all nodes in the network to store distan
es to their respe
tive
losest transit nodes. Then, for the sour
e/target node v of a given query we �rst
he
k whether the node is
ontained in the vertex
over, if so we
an pro
eed asbefore. If the node is not
ontained in the vertex
over, a simple lo
al sear
h along
hains of degree 2 nodes yields the desired distan
es to the
losest transit nodes.The average number of distan
es stored at a node redu
es from 11:4 to 3:2 for the128�128 grid of the US, without signi�
antly a�e
ting the query times3. The totalspa
e
onsumption of our grid data stru
ture then de
reases to 16 bytes per node.5. Implementation and Experiments5.1. Experimental results. We tested all our s
hemes on the US road net-work, publi
ally available via http://www.
ensus.gov/geo/www/tiger. This isan undire
ted graph with 24; 266; 702 nodes and 29; 049; 043 edges, and an averagedegree of 2.4. Edge lengths are travel times. We implemented our algorithms inC++ (
ompiled with g

 3.3.5 -O3) and ran all our experiments on a Dual OpteronMa
hine with two 2.4 GHz pro
essors, 8 GB of main memory, running Linux 2.6.14(64 bit); only one pro
essor was used. Table 2 gives a summary of our experimen-tal results. Experiments on the DIMACS ben
hmark
olle
tions and for other edgelengths than travel time are provided in Se
tion 5.2TRANSIT a
hieves an average query time of 12 mi
rose
onds for 99% of allqueries. Together with our simple algorithm for the lo
al queries, des
ribed inSe
tion 4.6, we get an average of 63 mi
rose
onds over all queries. This overallaverage time
ould be easily improved by employing a more sophisti
ated algorithm,e.g. the one from [15℄, for the lo
al queries, however at the pri
e of a larger spa
e3Observe that we do not have to perform twi
e or four times the number of lookups in thedistan
e table sin
e the number of transit nodes for either s or t typi
ally does not
hange at all(the transit nodes of nearby nodes are most of the time exa
tly the same). Following the degree-2
hains and obtaining the distan
es to the transit nodes
osts no time
ompared to the few hundredtable lookups.

ULTRAFAST SHORTEST-PATH QUERIES VIA TRANSIT NODES 13non-lo
al (99%) lo
al (1%) all prepro
. spa
e/node12 �s 5112 �s 63 �s 15 h 21 bytesTable 2. Average query time (in mi
rose
onds), prepro
essingtime (in hours), and spa
e
onsumption (in bytes per node in ad-dition to the original graph representation) for our new algorithmTRANSIT, for the US road network, TIGER version (see Se
tion5.2 for the di�eren
es to the DIMACS version).requirement and a more
omplex implementation. The spa
e
onsumption of ouralgorithm is 21 bytes per node, whi
h
omes from 16 bytes per node for the distan
etables of the two grids (Se
tion 4.7) plus 5 bytes per node for the edge levels andshort
uts for the lo
al queries (Se
tion 4.6).If we also output the edges along the shortest path, our average query pro
essingbe
omes about 5 millise
onds (whi
h happens to be the average pro
essing time forthe lo
al queries, too). This is still
ompetitive with the pro
essing times reportedin [15℄ and its
losest
ompetitors [14℄ [7℄ [8℄. All of these s
hemes do not outputedges along the shortest path, though outputting a
tual paths for these s
hemeswould in
ur mostly a slight penalty in terms of spa
e.Many previous works provided a �gure that showed the dependen
y of thepro
essing time of a query on the Dijkstra rank of that query, whi
h is the number ofnodes Dijkstra's algorithm would have to settle for that query. The Dijkstra rank isa fairly natural measure of the diÆ
ulty of a query. For TRANSIT, query pro
essingtimes are essentially
onstant for the non-lo
al queries, be
ause the number oftable lookups required varies little and is
ompletely independent from the distan
ebetween sour
e and target. Table 3 therefore gives details on whi
h per
entage ofthe queries with a given Dijkstra rank are lo
al. Note that for both the 128� 128grid and the 256� 256 grid, all queries with a Dijkstra rank of 29 = 512 or less arelo
al, while all queries with Dijkstra rank above 221 � 2; 000; 000 are non-lo
al.grid size � 29 210 211 212 213 214128� 128 100% 100% 100% 99% 99% 99%256� 256 100% 99% 99% 99% 97% 94%grid size 215 216 217 218 219 220 � 221128� 128 98% 94% 85% 64% 29% 5% 0%256� 256 84% 65% 36% 12% 1% 0% 0%Table 3. Estimated fra
tion of queries whi
h are lo
al with re-spe
t to the given grid, for various ranges of Dijkstra ranks. Theestimate for the
olumn labeled 2r is the average over 1000 randomqueries with Dijkstra rank in the interval [2r; 2r+1).

14 HOLGER BAST, STEFAN FUNKE, AND DOMAGOJ MATIJEVIC5.2. Results for the DIMACS ben
hmark data. We also
ondu
ted ex-periments with additional ben
hmark data as provided by the DIMACS shortestpath
hallenge website [5℄. We used the same kind of ma
hine as spe
i�ed at thebeginning of the previous se
tion. For the sake of
omparability with the results ofother authors, Table 4 gives the results of the DIMACS
ore ben
hmark on su
h ama
hine.Clearly, the eÆ
a
y of our grid-based approa
h does not depend on the metri
used for
omputing the shortest paths; that is, for a given road network and res-olution of the grid { say 128 � 128 the fra
tion of all queries that are
onsidered"long range" does not
hange when varying the edge weights. What does
hange,though, is the number of transit nodes ne
essary to provide
orre
t answers tothese long range queries. In parti
ular, when the
ost measure is
hanged fromtravel time along an edge to distan
e along an edge or unit distan
e, the propertyof road networks to
analize traÆ
 is weakened, hen
e the number of transit nodesne
essary for a
ertain grid size in
reases. Likewise the average number of
losesttransit nodes per node in
reases and hen
e the query times; the in
rease is morepronoun
ed for the distan
e weights than for the unit weights. In our ben
hmarksfor the additional datasets we restri
ted to one level of transit nodes and only re-port the results for the non-lo
al queries, whi
h, for all the experiments in Table 5and 6, were 97% of all queries.Table 5 shows our results for di�erent metri
s and (sub)networks of the roadnetwork of the US. The astute reader will noti
e a di�eren
e in the number oftransit nodes as well as in the prepro
essing and average query time between the�gures of Table 1 (TIGER data) and Table 5 (DIMACS data). This di�eren
e isdue to the fa
t that the
onversion from road types to speeds (and hen
e traveltimes) whi
h we used for the TIGER data is di�erent from the
onversion used forthe DIMACS data. In our
onversion the di�eren
e in speed between slow and fastroads is more pronoun
ed, and hen
e the
analizing property of the network withour travel times is stronger (fast roads are even more attra
tive). For the CTRnetwork with the distan
e metri
, the number of transit nodes for the 128 � 128grid was too large, so we provided the results for a 64� 64 grid instead.Table 6 shows our results for the road network of Western Europe (n =18; 010; 173, m = 42; 560; 279)4. A parti
ularity of this network is a number ofvery slow ferry
onne
tions. Without spe
ial treatment of the
orresponding edges(we tried a few heuristi
s but then de
ided to leave the data as is), the prepro-
essing time goes up signi�
antly. This is so, be
ause whenever one of the lo
alDijkstra
omputations in our transit node pre
omputation (Se
tion 4) has to settlea node that
an only be rea
hed via a very long (slow) path, then almost all nodesin the network will be settled in that
omputation. Like this, the ferry
onne
tionsgive rise to a signi�
ant number of very time-
onsuming global Dijkstra
omputa-tions in our pre
omputation. Note that the straightforward heuristi
 of splitting upvery long edges into many short edges does not solve this problem: there will stillbe nodes whi
h are geometri
ally
lose but with a very long shortest path betweenthem. In Table 6, note that the problem indeed does not o

ur for unit edge lengths(in whi
h
ase a ferry
onne
tion
osts just as mu
h as any other edge), and that4We have
onsidered an undire
ted variant of this network where the edge weights of reverseedges are equalized by taking the maximum of both sin
e our
urrent implementation does notallow for dire
ted edges.

ULTRAFAST SHORTEST-PATH QUERIES VIA TRANSIT NODES 15metri
graph #nodes #edges time distan
eNY 264346 733846 59.47 62.09BAY 321270 800172 66.08 72.17COL 435666 1057066 96.44 100.48FLA 1070376 2712798 238.27 257.97NW 1207945 2840208 282.40 328.19NE 1524453 3897636 407.42 457.07CAL 1890815 4657742 469.54 544.74LKS 2758119 6885658 731.10 836.44E 3598623 8778114 1042.63 1241.10W 6262104 15248146 1988.49 2401.79CTR 14081816 34292496 8934.93 9906.62Table 4. Query times (ms) for the DIMACS
ore experiment(Opteron 240, 2.4 GHz, Linux 2.6.14, g

 3.3.5, 64bit)it is worst for the travel time metri
 (relative to other edges, travel time along aferry
onne
tion is worse than distan
e).In general, the spa
e-eÆ
ien
y of our approa
h improves with growing networksize, the reason for that being that there is only little
orrelation between the num-ber of transit nodes ne
essary for a 128�128 grid and the size of the respe
tive roadnetwork. In fa
t the number of transit nodes
an be even larger for subnetworks ifthey exhibit a worse
analizing property or the respe
tive subnetwork
overs morearea of the square grid area (as observed for some subnetworks of the US). Foramortizing the
ost of storing the all-pairs distan
e table over the transit nodes,a large network size is bene�
ial. In parti
ular, if the
omplete road network ofthe whole world was available, the per-node spa
e requirement to store a transitnode data stru
ture of the same granularity would be
onsiderably lower than forthe US road network and still the same fra
tion of queries
ould be pro
essed via afew table lookups. In that
ase one
ould probably even a�ord to
reate and storetransit nodes based on a 512� 512 grid whi
h would resolve 99:8% of all queries byfast table-lookups.5.3. Graphi
al User Interfa
e. We have gone to quite some pain to im-plement a relatively
omfortable graphi
al user interfa
e (GUI) for displaying ourroad networks plus a number of additional elements. The GUI is implemented inC++ using the gtkmm library, whi
h gives instant response times for dragging andzooming also for large road networks like that of the US. The GUI runs in its ownthread, so that user and redraw events
an be interleaved with
omputation andother
ode.The GUI supports seamless dragging and zooming with the mouse (wheel), asin tools like Google Maps. This is very
onvenient for navigating in a large networkqui
kly, but that was also the part that
ost us the most work. The graph has to bedivided into relatively small
hunks, and only those
hunks must be drawn whi
hare a
tually visible from the
urrent perspe
tive and position. Also, there have tobe priorities between edges, be
ause always drawing all edges tends to
lutter upthe display and is an eÆ
ien
y problem, too. The GUI also supports the drawing

16 HOLGER BAST, STEFAN FUNKE, AND DOMAGOJ MATIJEVICgraph metri
 grid #tr.nodes
losest query time prepro
.USA time 128x128 10 084 14 17.8 �s 7 hUSA dist 128x128 31 536 36 69.4 �s 9 hUSA unit 128x128 17 699 22 30.3 �s 9 hBAY time 128x128 10 077 8 9.1 �s 20 minBAY dist 128x128 13 269 13 11.6 �s 20 minBAY unit 128x128 10 314 9 9.2 �s 20 minCAL time 128x128 15 087 9 8.9 �s 30 minCAL dist 128x128 21 230 16 16.0 �s 30 minCAL unit 128x128 15 747 11 10.6 �s 30 minE time 128x128 10 477 12 12.2 �s 1hE dist 128x128 23 842 26 46.0 �s 2hE unit 128x128 13 915 15 19.0 �s 1hFLA time 128x128 6 248 9 7.8 �s 10 minFLA dist 128x128 9 937 14 12.3 �s 10 minFLA unit 128x128 6 404 9 7.7 �s 10 minLKS time 128x128 7 447 12 12.2 �s 30 minLKS dist 128x128 20 222 30 46.1 �s 1hLKS unit 128x128 10 257 16 17.5 �s 1hNE time 128x128 11 542 11 11.1 �s 20 minNE dist 128x128 22 937 23 28.0 �s 40 minNE unit 128x128 13 675 13 13.1 �s 25 minNW time 128x128 19 429 10 10.2 �s 30 minNW dist 128x128 23 963 15 14.8 �s 35 minNW unit 128x128 19 096 11 11.3 �s 25 minNY time 128x128 19 133 12 10.1 �s 10 minNY dist 128x128 24 435 15 14.3 �s 15 minNY unit 128x128 18 598 12 10.3 �s 10 minW time 128x128 19 107 10 10.6 �s 2hW dist 128x128 36 214 19 22.8 �s 2hW unit 128x128 25 554 14 15.2 �s 1hCTR time 128x128 24 540 14 17.5 �s 6hCTR dist 64x64 24 359 39 88.2 �s 12 hCTR unit 128x128 40 282 20 32.0 �s 7.5hCOL time 128x128 10 502 9 7.0 �s 5 minCOL dist 128x128 13 199 14 11.5 �s 10 minCOL unit 128x128 10 686 10 7.9 �s 5 minTable 5. Results for (sub)networks of the US road network withthree kinds of edge lengths: travel time, distan
e along the
orre-sponding road segment, and unit length.of
ustom obje
ts, like
ross hairs (to visualize important lo
ations), arrows alongroads (to visualize something like edge signs), et
.6. Con
lusionsTransit nodes are a simple, yet powerful idea: they redu
e the shortest-path
omputation for all but a small fra
tion of lo
al queries to a few table lookups. Inthis paper we have fo
used on presenting this idea and giving a simple geometri
algorithm realizing it.

ULTRAFAST SHORTEST-PATH QUERIES VIA TRANSIT NODES 17graph metri
 grid #tr.nodes
losest query time prepro
.Europe time 128x128 10 394 14 13 �s 58hEurope dist 128x128 20 126 38 56 �s 29hEurope unit 128x128 7 708 14 12 �s 17hTable 6. Results for the road network of Western Europe (undi-re
ted, in
luding ferry
onne
tions).

Figure 5. S
reenshot of our intera
tive graphi
al user interfa
e.The algorithms in this paper work for undire
ted graphs. A generalization todire
ted graphs is not trivial but feasible. During the
onstru
tion of the transitnodes one would have to distinguish between "in
oming transit nodes", i.e., transitnodes that are visited by long paths ending in some node, and "outgoing transitnodes", i.e., transit nodes that are visited by long paths starting in some node. This
an be taken
are of by
onsidering the reverse network during the
onstru
tionstep of the transit nodes. Of
ourse, then the distan
e table is also not symmetri
anymore and nodes would have to store "in
oming" and "outgoing distan
es" totheir
losest transit nodes. The highway hierar
hies from Sanders and S
hultes, inparti
ular their
ombination with the transit node idea [16℄, also work for dire
tedgraphs.A more diÆ
ult open problem is how to design a data stru
ture that yieldssimilarly fast query times as our data stru
ture but at the same time allows dynami

hanges in the graph, like an in
rease of a few edge lengths due to a traÆ
 jam.

18 HOLGER BAST, STEFAN FUNKE, AND DOMAGOJ MATIJEVICTwo solutions have re
ently been proposed in [3℄ and [17℄; however, these do nota
hieve the ultrafast pro
essing times reported in this paper.A
knowledgementsWe are grateful to the anonymous referees, espe
ially one of them, for an ex-tremely
areful proof reading job and many
onstru
tive
omments, whi
h helpeda lot in making the paper more pre
ise and more readable.Referen
es[1℄ H. Bast, S. Funke, D. Matijevi
, P. Sanders, and D. S
hultes. In transit to
onstant timeshortest-path queries in road networks. In 9th Workshop on Algorithm Engineering andExperiments (ALENEX'07), 2007.[2℄ D. Delling, M. Holzer, K. M�uller, F. S
hulz, and D. Wagner. High-performan
e multi-levelgraphs. In DIMACS Implementation Challenge Shortest Paths, 2006. An updated version ofthe paper appears in this book.[3℄ D. Delling and D. Wagner. Landmark-based routing in dynami
 graphs. In 6th Workshop onExperimental Algorithms (WEA'07), pages 52{65, 2007.[4℄ E. Dijkstra. A note on two problems in
onnexion with graphs. Numeris
he Mathematik,1:269{271, 1959.[5℄ The 9th DIMACS Implementation Challenge: Shortest Paths;http://www.dis.uniroma1.it/�
hallenge9/.[6℄ M. L. Fredman and R. E. Tarjan. Fibona

i heaps and their uses in improved network opti-mization algorithms. Journal of the ACM, 34(3):596{615, 1987.[7℄ A. Goldberg and C. Harrelson. Computing the shortest path: A� sear
h meets graph theory.In 16th Symposium on Dis
rete Algorithms (SODA'05), pages 156{165, 2005.[8℄ A. Goldberg, H. Kaplan, and R. Werne
k. Rea
h for A�: EÆ
ient point-to-point shortest pathalgorithms. In 8th Workshop on Algorithm Engineering and Experiments (ALENEX'06),2006.[9℄ R. Gutman. Rea
h-based routing: A new approa
h to shortest path algorithms optimized forroad networks. In 6th Workshop on Algorithm Engineering and Experiments (ALENEX'04),2004.[10℄ E. K�ohler, R. H. M�ohring, and H. S
hilling. A

eleration of shortest path and
onstrainedshortest path
omputation. In 4th Workshop on Experimental and EÆ
ient Algorithm(WEA'05), pages 126{138, 2005.[11℄ U. Lauther. An extremely fast, exa
t algorithm for �nding shortest paths in stati
 networkswith geographi
al ba
kground. In M�unster GI-Tage, 2004.[12℄ R. H. M�ohring, H. S
hilling, B. S
h�utz, D. Wagner, and T. Willhalm. Partitioning graphsto speed up dijkstra's algorithm. In 4th Workshop on Experimental and EÆ
ient Algorithm(WEA'05), pages 189{202, 2005.[13℄ K. M�uller. Design and implementation of an eÆ
ient hierar
hi
al speed-up te
hnique for
omputation of exa
t shortest paths in graphs. Master's thesis, University of Karlsruhe, 2006.[14℄ P. Sanders and D. S
hultes. Highway hierar
hies hasten exa
t shortest path queries. In 13thEuropean Symposium on Algorithms (ESA'05), pages 568{579, 2005.[15℄ P. Sanders and D. S
hultes. Engineering highway hierar
hies. In 14th European Symposiumon Algorithms (ESA'06), pages 804{816, 2006.[16℄ P. Sanders and D. S
hultes. Robust, almost
onstant time shortest-path queries on roadnetworks. In DIMACS Implementation Challenge Shortest Paths, 2006. An updated versionof the paper appears in this book.[17℄ D. S
hultes and P. Sanders. Dynami
 highway-node routing. In 6th Workshop on Experimen-tal Algorithms (WEA'07), pages 66{79, 2007.[18℄ M. Thorup and U. Zwi
k. Approximate distan
e ora
les. Journal of the ACM, 51(1):1{24,2005.Max-Plan
k-Institute for Informati
s, Saarbr�u
ken, GermanyE-mail address: bast�mpi-inf.mpg.deMax-Plan
k-Institute for Informati
s, Saarbr�u
ken, GermanyE-mail address: funke�mpi-inf.mpg.deMax-Plan
k-Institute for Informati
s, Saarbr�u
ken, GermanyE-mail address: dmatijev�mpi-inf.mpg.de

