Mathe Vorkurs Online - Übungen Blatt 14

Aufgabe 14.1.1: Bestimmen Sie die Summe $3\sin(ax) + 6\cos(ax)$ als Term von der Form $C \cdot \cos(ax + \varphi)$ für alle $a \in \mathbb{R}^+$ und $x \in \mathbb{R}$.

- $1 \pm \sqrt{27}\cos(ax + \arctan_0(\pm 2))$ $2 \sqrt{45}\cos(ax + \arctan_0(-2))$ $3 \sqrt{45}\cos(ax + \arctan_0(\frac{-1}{2}))$
- $\sqrt{45}\cos(ax + \arctan_0(-2))$ $\sqrt{5}$ $\pm\sqrt{45}\cos(ax + \arctan_0(\frac{-1}{2}))$ $\sqrt{6}$ $\pm\sqrt{45}\cos(ax + \arctan_0(\pm 2))$
- $\sqrt{27}\cos(ax + \arctan_0(\frac{-1}{2}))$ 8 $-\sqrt{45}\cos(ax + \arctan_0(\frac{-1}{2}))$ 9 $-\sqrt{27}\cos(ax + \arctan_0(-2))$
- $\pm\sqrt{27}\cos(ax + \arctan_0(\frac{-1}{2}))$ $\pm\sqrt{27}\cos(ax + \arctan_0(-2))$ $\pm\sqrt{27}\cos(ax + \arctan_0(\pm\frac{1}{2}))$

Aufgabe 14.1.2: Bestimmen Sie die Summe $4\sin(ax) - 6\sqrt{2}\cos(ax + \frac{\pi}{4})$ als Term von der Form $C \cdot \sin(ax + \varphi)$ für alle $a \in \mathbb{R}^+$ und $x \in \mathbb{R}$.

- $-\sqrt{64}\sin(ax + \arctan_0(\frac{-5}{3}))$ 2 $-\sqrt{136}\sin(ax + \arctan_0(\frac{-5}{3}))$ 3 $\sqrt{64}\sin(ax + \arctan_0(\frac{-5}{3}))$
- $4 \pm \sqrt{64}\sin(ax + \arctan_0(\frac{-5}{3}))$ 5 $\sqrt{136}\sin(ax + \arctan_0(\frac{-5}{3}))$ 6 $-\sqrt{136}\sin(ax + \arctan_0(\frac{-2}{3}))$
- $\sqrt{136}\sin(ax + \arctan_0(\frac{-2}{3}))$ s $\pm \sqrt{136}\sin(ax + \arctan_0(\frac{-5}{3}))$ s $4\sin(ax)$
- $-\sqrt{64}\sin(ax + \arctan_0(\frac{-2}{3}))$ $\pm\sqrt{136}\sin(ax + \arctan_0(\pm\frac{2}{3}))$ $10 \sin(ax+6)$

Aufgabe 14.1.3: Bestimmen Sie alle Asymptoten der folgenden Funktion:

$$f(x) = \arctan_0 \left(\frac{(4x+8) \cdot (x+5)}{(4x+28) \cdot (x+2)} \right)$$

- $\boxed{}$ f hat une ndlich viele $\boxed{}$ $y=\pm\frac{\pi}{2}$, x=-2 und x=-7 $\boxed{}$ y=0
- 4 x = -2 und x = -7 5 $y = \frac{\pi}{4}$, x = -2 und x = -7 6 $y = \frac{\pi}{2}$, x = -2 und x = -7 7 $y = \frac{\pi}{4}$ 8 $y = \pm \frac{\pi}{4}$ 9 y = 0 und x = 0
- x = -7 $y = \frac{\pi}{2} \text{ und } x = -7$ y = 0 und x = -7

Aufgabe 14.1.4: Sei $f: \mathbb{R} \to \mathbb{R}$ definiert durch f(x) = -2x + 6, $x_0 = 5$ und sei ein $\varepsilon > 0$ fest gewählt. Bestimmen Sie das maximale $\delta > 0$ (abhängig von ε) mit der Eigenschaft, dass für alle x, für die $|x - x_0| < \delta$ gilt, $|f(x) - f(x_0)| < \varepsilon$ ist oder $f((x_0 - \delta, x_0 + \delta)) \subseteq (f(x_0) - \varepsilon, f(x_0) + \varepsilon)$. Damit haben Sie die Stetigkeit von f an der Stelle x_0 gezeigt.

- $\begin{array}{ccc}
 3 & \frac{-\varepsilon+5}{6} \\
 7 & \frac{-\varepsilon+6}{2} \\
 11 & \pm \frac{\varepsilon}{5}
 \end{array}$ Es gibt keines $\frac{\varepsilon}{5}$
- $\frac{\varepsilon}{6}$

Aufgabe 14.1.5: Sei $f: \mathbb{R} \to \mathbb{R}$ definiert durch $f(x) = -x^2 + 4x + 3$, $x_0 = 2$ und sei $\varepsilon = \frac{1}{16}$ gewählt. Bestimmen Sie das maximale $\delta > 0$ mit der Eigenschaft, dass für alle x, für die $|x - x_0| < \delta$ gilt, $|f(x) - f(x_0)| < \varepsilon$ ist oder $f((x_0 - \delta, x_0 + \delta)) \subseteq (f(x_0) - \varepsilon, f(x_0) + \varepsilon).$

- $\begin{array}{cc} \boxed{\mathbf{3}} & \delta = 0 \\ \boxed{\mathbf{7}} & \delta = \pm \varepsilon \end{array}$ $\delta = -\frac{1}{16}$ $\delta = \frac{1}{4}$ $\delta = -\frac{1}{4}$ $\delta = \frac{1}{256}$ $\delta = -\frac{1}{256}$
- $\delta = \pm \frac{1}{256}$

Aufgabe 14.1.6: Bestimmen Sie alle Asymptoten der folgenden Funktion:

$$f(x) = \ln\left(\frac{x^2 + 2x - 35}{x^3 + 9x^2}\right)$$

- x = -9, x = -7, x = 0x = -9, x = -7, x = 0, x = 5
- x = -9, x = 0x = -9, x = -7, x = 5
- $[5] \quad x = -9, x = -7, x = 0, x = 5, y = 1$ $[6] \quad x = -9, x = -7, x = 0, x = 5, y = 0$
- 7 f hat unendlich viele x = -9, x = 0, y = 0
- 9 f hat keine x = -9, x = -7, x = 5, y = 0
- x = -9, x = -7, y = 0x = -9

Allgemeine Hinweise:

Bei weiteren Fragen, wenden Sie sich bitte an W. Schmid (sltsoftware @yahoo.de). Weitere Hinweise finden Sie auf unserer Veranstaltungswebseite unter: http://www.vorkurs.de.vu