Mathe Vorkurs Online - Übungen Blatt 2

MV 04 Blatt 02 Kapitel 2.4 Ungleichungen größer Grundlagen Nummer: 2 0 2004020003 Kl: 14G

Grad: 20 Zeit: 20 Quelle: keine W

Aufgabe 2.1.1: Bestimmen Sie die Lösungsmenge der folgenden Ungleichung:

$$(x^2 - 1) \cdot (x - 5)^2 > 0.$$

Parameter:

 $x_1 = \text{erste Grenze} \ (> 0)$ $x_2 = \text{zweite Grenze} \ (0 < x_1 < x_2)$

Die Ungleichung lautet also: $(x^2 - \{x_1 \cdot x_1\}) \cdot (x - x_2)^2 > 0$

In dieser Aufgabe sind $x_1 = 1$ $x_2 = 5$.

Erklärung:

Wenden Sie die Methode von Knapp an. Gegeben sei eine Ungleichung.

- 1. Untersuche die Ungleichung auf Definitionslücken und Unstetigkeitsstellen.
- 2. Schreibe '=' statt '>' und löse die Gleichung.
- 3. Betrachtung am Zahlenstrahl mit Punktprobe. Jeder Bereich des Zahlenstrahls, der die Ungleichung erfüllt, ist Lösung der Ungleichung.

Rechnung:

Wir bestimmen die Lösung der zugehörigen Gleichung: $(x^2-1)\cdot(x-5)^2>0 \Leftrightarrow x=5$ oder $x=\pm 1$. Mittels Punktprobe erhalten wir x<-1 oder 1< x<5 oder 5< x. Diese Lösungsmenge ist äquivalent zu x<-1 oder (x>1) und $x\ne 5$.

Angebotene Lösungen:

1	-5 < x < -1 oder 1 < x	2	x > 1 oder $x > 5$ oder $x > -5$
3	x < 1 oder $x < 5$ oder $x < -1$	4	-1 < x < 5 oder 5 < x < 1
5	\emptyset	6	-5 < x < 1 oder 5 < x
7	x < -1 oder 1 < x < 5	8	-1 < x < 1 oder $1 < x < 5$
\times	x < -1 oder 1 < x < 5 oder 5 < x	10	x < -5 oder -5 < x < -1 oder 1 < x
11	-1 < x < 5 oder 1 < x	12	-5 < x < 1 oder $1 < x < 5$

Fehlerinterpretation:

1 -5 <	< x < -1 oder 1 < x		DF: VZ falsch und Punktprobe nicht bis zum Ende durchgeführt
x > 1 oder $x > 5$ oder $x > -5$			DF: < Rechnen nicht verstanden
\overline{x}	1 oder x < 5 oder x < -1		DF: < Rechnen nicht verstanden
₄ −1 <	< x < 5 oder 5 < x < 1		DF: Bereiche falsch
5 Ø			DF: es gibt Lösungen
	< x < 1 oder 5 < x		DF: Bereiche falsch
\overline{r} $x <$	-1 oder 1 < x < 5		DF: Punktprobe nicht bis zum Ende durchgeführt
			DF: Bereiche falsch
$\overline{\times}$ $x <$	-1 oder $1 < x < 5$ oder 5	< x	richtig
x < 0	-5 oder -5 < x < -1 oder	er 1 < x	DF: VZ falsch
<u>-1</u> -1 <	< x < 5 oder 1 < x		DF: Bereiche falsch
₁₂ -5 <	< x < 1 oder 1 < x < 5		DF: Bereiche falsch und 1 und 5 vertauscht
MV 04	Blatt 02	Kapitel 2.5	Logarithmen
1 .	C 11	3.7	0.000400000

MV 04 Blatt 02 Kapitel 2.5 Logarithmen keine Grundlagen Nummer: 32 0 2004020007 Kl: 14G

Grad: 30 Zeit: 30 Quelle: keine W

Aufgabe 2.1.2: Bestimmen Sie alle Lösungen der folgenden Logarithmengleichung (log heißt hier Logarithmus zur Basis 2):

$$\log x^2 + \log(x - 7) = \log(121(x - 7)).$$

Parameter:

 $x_1 =$ zwei Nullstellen $x_2 =$ dritte Nullstelle $0 < x_2 < x_1$

Die Gleichung lautet also: $\log x^2 + \log(x - x_2) = \log(\{x_1 \cdot x_1\}(x - x_2))$

In dieser Aufgabe sind $x_1 = 11$ $x_2 = 7$.

Erklärung:

Fassen Sie zuerst die Logarithmusterme zusammen. Machen Sie in jedem Falle die Probe.

Rechnung:

Wir fassen zunächst die Logarithmustherme zusammen:

$$\log x^2 + \log(x - 7) = \log(121(x - 7)) \Leftrightarrow \log(x^2 \cdot (x - 7)) = \log(121(x - 7)).$$

Durch potenzieren erhalten wir

$$(x^2 \cdot (x-7)) = (121(x-7)) \Leftrightarrow (x^2-121) \cdot (x-7) = 0$$
, also $x = \pm 11$ oder $x = 7$.

Die Probe ergibt folgendes:

$$\begin{array}{llll} x=7\colon & \log 7^2 + \log (7-7) & = & \log (121(7-7)) & \text{keine L\"osung, da} \log 0 \text{ nicht definiert ist.} \\ x=11\colon & \log 11^2 + \log (11-7) & = & \log (121(11-7)) \\ & \Leftrightarrow & \log 121 \cdot 4 & = & \log 484 & \text{richtig.} \\ x=-11\colon & \log (-11)^2 + \log (-11-7) & = & \log (121(-11-7)) & \text{keine L\"osung, da} \text{ der L\"ogarithmus} \\ & & & & \text{negativer Zahlen nicht definiert ist.} \end{array}$$

Damit ist die Lösung x=11. Durch Anwendung eines anderen Logarithmusgesetzes wäre die Lösung x=7 herausgefallen.

Angebotene Lösungen:

${\bf Fehler interpretation:}$

```
x = \log 121
                                      DF: am Ende logarithmiert und Wurzel nicht gezogen
   x = \pm 11
                                      DF: Probe vergessen
   x = 11
                                      richtig
x = 121 \text{ oder } x = 7
                                      DF: Probe vergessen und Wurzel nicht gezogen
   x = \log 11
                                      DF: am Ende logarithmiert
   x = \log 121 \text{ oder } x = \log 7
                                      DF: am Ende logarithmiert und Wurzel nicht gezogen
   x = \log 11 \text{ oder } x = \log 7
                                      DF: am Ende logarithmiert
                                      DF: Wurzel nicht gezogen
   x = 121
   x = -11
                                      DF: Probe vergessen
   x = 2^{11}
                                      DF: am Ende potenziert
   x = \pm 11 \text{ oder } x = 7
                                      DF: Probe vergessen
x = 2^7
                                      DF: am Ende potenziert
MV 04
                    Blatt 02
                                   Kapitel 2.5
                                                                 Betrag
                                   Nummer: 38\ 0\ 2004020005
                                                                Kl: 14G
keine
                    Grundlagen
Grad: 30 Zeit: 30
                   Quelle: keine
```

Aufgabe 2.1.3: Bestimmen Sie alle Lösungen der folgenden Betragsgleichung:

$$|x+6| = x+2+|x+2|.$$

Parameter:

 $x_1 =$ Knick der ersten Funktion

 $x_2 = \text{Knick der zweiten Funktion } 0 < x_2 < x_1$

Die Gleichung lautet also: $|x + x_1| = x + x_2 + |x + x_2|$

In dieser Aufgabe sind $x_1 = 6$ $x_2 = 2$.

Erklärung:

- 1. Schritt: Schreibe \pm (Ausdruck) statt | Ausdruck |.
- 2. Schritt: Berechne die Lösung eines jeden Falles.
- 3. Schritt: Mache in jedem Falle die Probe!!

Rechnung:

Wir lösen zunächst die Betragsstriche auf: |x+6| = x+2 + |x+2| wird zu $\pm (x+6) = x+2 \pm (x+2)$. Wir müssen also 4 Fälle untersuchen:

$$+(.)$$
 = $+(.)$ $(x \ge -2)$
 $+(.)$ = $-(.)$ $(-6 \le x \le -2)$
 $-(.)$ = $-(.)$ $(x \le -6)$

 $+(.) = -(.) \quad (-6 \le x \le -2)$ $-(.) = -(.) \quad (x \le -6)$ $-(.) = +(.) \quad (x \le -6) \text{ und } (x \ge -2)$ (dies ist nie der Fall - fällt also bei der Probe heraus).

1. Fall:
$$+(x+6) = x+2+(x+2)$$

 $\Leftrightarrow x = 2$
2. Fall: $+(x+6) = x+2-(x+2)$
 $\Leftrightarrow x = -6$
3. Fall: $-(x+6) = x+2-(x+2)$
 $\Leftrightarrow x = -6$
4. Fall: $-(x+6) = x+2+(x+2)$
 $\Leftrightarrow 3x = 2$
 $\Leftrightarrow x = \frac{2}{3}$

Die Probe ergibt folgendes:

2. + 3. Fall:
$$x = -6$$
: $|-6+6| = -6+2+|-6+2|$
 $\Leftrightarrow 0 = 0$ (richtig)

4. Fall:
$$x = \frac{2}{3}$$
: $|\frac{2}{3} + 6|$ = $\frac{2}{3} + 2 + |\frac{2}{3} + 2|$
 \Leftrightarrow $\frac{8}{3}$ = $\frac{8}{3} + \frac{8}{3}$ (falsch)

Damit ist die Lösung: x = 2 oder x = -6.

Angebotene Lösungen:

3

1	$-6 \le x \le 2$		DF: Ungleichung geree	chnet
2	$x = 2 \text{ oder } x = \pm 6 \text{ oder } x = \pm 6$	$der x = \frac{2}{3}$	DF: Probe vergessen	
3	x = 2 oder x = -6 od		DF: Probe vergessen	
4	$x = -6 \text{ oder } x = \frac{2}{3}$, and the second	DF: Probe vergessen	
5	x = -2 oder x = -6		RF: Vorzeichenfehler	
6	x = -2 oder x = 6		RF: Vorzeichenfehler	
7	x = 2 oder x = 6		RF: Vorzeichenfehler	
8	$x = \pm 2$ oder $x = \pm 6$		RF: Vorzeichenfehler	
9	x = 2		DF: eine Lösung verge	essen
10	x = -6		DF: eine Lösung verge	essen
×	x = 2 oder x = -6		richtig	
12	$x = 2 \text{ oder } x = \pm 6$		RF: Vorzeichenfehler	
м	7.04 Blatt	02 Ka	nitel 2.5	Logarithn

Logarithmen MV 04 Blatt 02 Kapitel 2.5 Nummer: 41 0 2005020008 Kl: 14G Grundlagen keine

Grad: 30 Zeit: 30 Quelle: keine W

Aufgabe 2.1.4: Bestimmen Sie alle Lösungen der folgenden Gleichung

$$16^x - \frac{3}{64} 4^{x+3} = 10.$$

Parameter:

 $x_1 = \text{Basis der Potenz } 1 < x_1 \neq x_2$ x_2, x_3 Nullstellen $1 < x_3 < x_2$ x_4 Summand im Exponent $1 < x_4$

Die Gleichung lautet also: $\{x_1^2\}^x - \{\frac{x_2 - x_3}{x_1^{x_4}}\} x_1^{x_1 + x_4} = \{x_2 \cdot x_3\}$

In dieser Aufgabe sind $x_1 = 4$ $x_2 = 5$ $x_3 = 2$ $x_4 = 3$.

Erklärung:

Substituieren Sie $4^x = u$. Beachten Sie dabei, dass $4^{x+1} = u \cdot 4$ und $16^x = 4^x \cdot 4^x = x^2$ ist.

Rechnung:

Wir substituieren $4^x = u$. Damit erhalten wir:

Jetzt folgt die Rücksubstitution $u=4^x$ oder $x=\log_4(u)$. Weil 4^x nicht negativ sein kann fällt die Lösung u = -2 weg und die Lösung ist $x = \log_4(5)$.

Angebotene Lösungen:

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	J1()	DF: falsch logarithmiert DF: Am Ende potenziert DF: Lösung geraten DF: Lösung geraten DF: Am Ende potenziert richtig DF: Lösung geraten DF: Lösung geraten DF: Lösung geraten DF: falsch logarithmiert DF: Am Ende potenziert DF: falsch logarithmiert	
$\frac{11}{12} \frac{3}{16}$	1082(1)	DF: Lösung geraten	
MV 04 größer Grad: 20 Zeit: 20	Blatt 02 Grundlagen Quelle: keine	Kapitel 2.4 Nummer: 66 0 2004020001 W	Ungleichungen Kl: 14G

Aufgabe 2.1.5: Bestimmen Sie die Lösungsmenge der folgenden Ungleichung:

$$x - 5 > \frac{-4}{x}$$

Parameter:

 $x_1 =$ erste Grenze $x_2 =$ zweite Grenze $(0 < x_1 < x_2)$

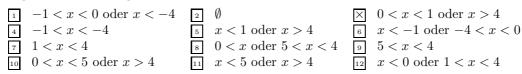
Die Ungleichung lautet also: $x - \{x_1 + x_2\} > \frac{-\{x_1 \cdot x_2\}}{x}$

In dieser Aufgabe sind $x_1 = 1$ $x_2 = 4$.

Erklärung:

Wenden Sie die Methode von Knapp an. Gegeben sei eine Ungleichung.

- 1. Untersuche die Ungleichung auf Definitionslücken und Unstetigkeitsstellen.
- 2. Schreibe '=' statt '>' und löse die Gleichung.
- 3. Betrachtung am Zahlenstrahl mit Punktprobe. Jeder Bereich des Zahlenstrahls, der die Ungleichung erfüllt, ist Lösung der Ungleichung.


Rechnung:

Die Definitionslücke ist bei $x_1 = 0$. Wir bestimmen die Lösung der zugehörigen Gleichung:

$$\begin{array}{rcl} x-5 & = & \frac{-4}{x} & \cdot x \\ \Leftrightarrow & x^2-5x+4 & = & 0 & \text{Mitternachtsformel} \\ \Leftrightarrow & x_2=1 & x_3=4 \end{array}$$

Damit sind die Grenzen 0, 1, 4. Mittels Punktprobe erhalten wir 0 < x < 1 oder x > 4.

Angebotene Lösungen:

RF: – bei Mitternachtsformel vergessen -1 < x < 0 oder x < -42 Ø DF: es gibt Lösungen \times 0 < x < 1 oder x > 4richtig -1 < x < -4RF: – bei Mitternachtsformel vergessen und 0 als Grenze weggelassen 4 x < 1 oder x > 4RF: 0 als Grenze weggelassen und < gerechnet x < -1 oder -4 < x < 0RF: – bei Mitternachtsformel vergessen und < gerechnet 1 < x < 4RF: 0 als Grenze weggelassen 7 0 < x oder 5 < x < 4DF: Ag nur abgeschrieben 5 < x < 4DF: Ag nur abgeschrieben DF: Ag nur abgeschrieben 0 < x < 5 oder x > 4x < 5 oder x > 4DF: Ag nur abgeschrieben x < 0 oder 1 < x < 4RF: < gerechnet MV 04 Blatt 02 Kapitel 2.5 Betrag keine Grundlagen Nummer: $97\ 0\ 2004020004$ Kl: 14G

Grad: 20 Zeit: 30 Quelle: keine W

Aufgabe 2.1.6: Bestimmen Sie alle Lösungen der folgenden Betragsgleichung:

$$2 \cdot |x + 13| = |x + 34|.$$

Parameter:

 $x_1 = \text{erste L\"osung}$ x_2 = zweite Lösung $x_n > 0$

Die Gleichung lautet also: $2 \cdot |x + x_1| = |x + x_2|$

In dieser Aufgabe sind $x_1 = 13$ $x_2 = 34$.

Erklärung:

1. Schritt: Schreibe \pm (Ausdruck) statt | Ausdruck |.

2. Schritt: Berechne die Lösung eines jeden Falles.

3. Schritt: Mache in jedem Falle die Probe!!

Rechnung:

Wir lösen zunächst die Betragsstriche auf: $2 \cdot |x+13| = |x+34|$ wird zu $\pm 2 \cdot (x+13) = \pm (x+34)$. Wir müssen also 4 Fälle untersuchen: +(.) = +(.), +(.) = -(.), -(.) = +(.) und -(.) = -(.), wobei die letzten Fälle äquivalent zu den ersten Fällen sind.

1. Fall (= 4. Fall): $+2 \cdot (x+13) = +(x+34)$ 2x + 26= x + 34

2. Fall (= 3. Fall): $+2 \cdot (x+13) = -(x+34)$ = -x - 34 $= \frac{-60}{3} = -20$ \Leftrightarrow 2x + 26 \Leftrightarrow

Die Probe ergibt folgendes: $2 \cdot |8 + 13| = |8 + 34|$ (richtig) und $2 \cdot |-20 + 13| = |-20 + 34|$ (auch richtig).

Angebotene Lösungen:

8 oder -8-8-20 oder 20 $\pm (8) \text{ oder } \pm (20)$ -8 oder 2020 8 oder -2013 oder 348 $\pm 13 \text{ oder } \pm 34$ -20

1	-8	DF: f	DF: falsches Vorzeichen und Fall 2,3 vergessen		
2	-20 oder 20	DF: =	DF: ± vor die zweite Lösung geschrieben		
3	$\pm (8)$ oder $\pm (20)$	O) DF: =	± vor beide Lösungen geschriel	ben	
4	8 oder −8	DF: =	± vor die erste Lösung geschrie	eben	
5	-8 oder 20	DF: f	alsches Vorzeichen		
6	20	DF: f	DF: falsches Vorzeichen und Fall 1,4 vergessen		
×	8 oder -20	der -20 richtig			
8	13 oder 34 DF: Zahlen aus dem Aufgabentext abgeschrieben			abgeschrieben	
9	DF: Fall 2,3 vergessen				
10	± 13 oder ± 34	DF: 2	Zahlen aus dem Aufgabentext a	abgeschrieben und \pm davor geschrieben	
11	-20	DF: I	Fall 1,4 vergessen		
12	Ø	DF: ϵ	es gibt Lösungen		
MV	7 04	Blatt 02	Kapitel 2.4	Ungleichungen	
grö	ßergleich	Grundlagen	Nummer: 100 0 2004020002	Kl: 14G	
Grad: 20 Zeit: 20 Quelle:		Quelle: keine	W		

Aufgabe 2.1.7: Bestimmen Sie die Lösungsmenge der folgenden Ungleichung:

$$x \ge \frac{-3}{x - 4}.$$

Parameter:

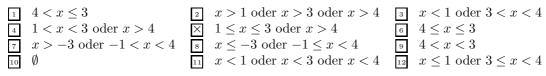
 $x_1 =$ erste Grenze $x_2 =$ zweite Grenze $(0 < x_1 < x_2)$

Die Ungleichung lautet also: $x \ge \frac{-\{x_1 \cdot x_2\}}{x - \{x_1 + x_2\}}$

In dieser Aufgabe sind $x_1 = 1$ $x_2 = 3$.

Erklärung:

Wenden Sie die Methode von Knapp an. Gegeben sei eine Ungleichung.


- 1. Untersuche die Ungleichung auf Definitionslücken und Unstetigkeitsstellen.
- 2. Schreibe '=' statt '>' und löse die Gleichung.
- 3. Betrachtung am Zahlenstrahl mit Punktprobe. Jeder Bereich des Zahlenstrahls, der die Ungleichung erfüllt, ist Lösung der Ungleichung.

Rechnung:

Die Definitionslücke ist bei $x_1=4$ Wir bestimmen die Lösung der zugehörigen Gleichung:

Damit sind die Grenzen 1,3,4. Mittels Punktprobe erhalten wir $1 \le x \le 3$ oder x > 4. Beachten Sie, dass 4 nicht im Definitionsbereich ist.

Angebotene Lösungen:

1 $4 < x \le 3$ 2 $x > 1$ oder $x > 3$ oder $x > 4$ 3 $x < 1$ oder $3 < x < 4$ 4 $1 < x < 3$ oder $x > 4$ \times $1 \le x \le 3$ oder $x > 4$ 6 $4 \le x \le 3$ 7 $x > -3$ oder $-1 < x < 4$ 8 $x \le -3$ oder $-1 \le x < 4$ 9 $4 < x < 3$		RF: Mitternachtsformel falsch gerechnet DF: < Rechnen nicht verstanden RF: < gerechnet RF: > gerechnet richtig RF: Mitternachtsformel falsch gerechnet RF: - bei Mitternachtsformel vergessen und ≤ gerechnet RF: - bei Mitternachtsformel vergessen und ≤ gerechnet RF: Mitternachtsformel falsch gerechnet	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		DF: es gibt Lösungen DF: < Rechnen nicht verstanden RF: ≤ gerechnet	
MV 04 keine Grad: 60 Zeit: 30	Blatt 02 Grundlagen Quelle: keine	Kapitel 2.5 Nummer: 106 0 2004020006 W	Betrag Kl: 14G

Grad: 60 Zeit: 30 Quelle: keine

Aufgabe 2.1.8: Bestimmen Sie alle Lösungen der folgenden Betragsgleichung:

$$\frac{x-7}{2} + \left| \frac{x+3}{2} \right| = -|x-2|.$$

Parameter:

 $x_1 =$ Knick im negativen Bereich $x_2 =$ Knick im positiven Bereich $0 < x_2 < x_1$

Die Gleichung lautet also: $\frac{x - \{x_1 + 2 \cdot x_2\}}{2} + |\frac{x + x_1}{2}| = -|x - x_2|$

In dieser Aufgabe sind $x_1 = 3$ $x_2 = 2$.

Erklärung:

1. Schritt: Schreibe \pm (Ausdruck) statt | Ausdruck |.

2. Schritt: Berechne die Lösung eines jeden Falles.

3. Schritt: Mache in jedem Falle die Probe!!

In diesem Sonderfall ergibt sich ein ganzes Intervall als Lösung.

Rechnung:

Wir lösen zunächst die Betragsstriche auf: $\frac{x-7}{2}+|\frac{x+3}{2}|=-|x-2|$ wird zu $\frac{x-7}{2}\pm(\frac{x+3}{2})=\mp(x-2)$. Wir müssen also 4 Fälle untersuchen: +(.)=-(.) $(x\geq 2)$ +(.)=+(.) $(3\leq x\leq 2)$ -(.)=+(.) $(x\leq 3)$ -(.)=-(.) $(x \le 3)$ und $(x \ge 2)$ (dies ist nie der Fall - fällt also bei der Probe heraus).

1. Fall:
$$\frac{x-7}{2} + (\frac{x+3}{2}) = -(x-2)$$

 $\Leftrightarrow x-2 = -x+2$
 $\Leftrightarrow 2x = 4$
 $\Leftrightarrow x = 2$

2. Fall:
$$\begin{array}{rcl} \frac{x-7}{2} + (\frac{x+3}{2}) & = & +(x-2) \\ \Leftrightarrow & x-2 & = & x-2 \\ \Leftrightarrow & 0 & = & 0 \end{array}$$

3. Fall:
$$\frac{x-7}{2} - \left(\frac{x+3}{2}\right) = +(x-2)$$

 $\Leftrightarrow -5 = x-2$
 $\Leftrightarrow x = -3$

4. Fall:
$$\frac{x-7}{2} - \left(\frac{x+3}{2}\right) = -(x-2)$$

 $\Leftrightarrow -5 = -x+2$
 $\Leftrightarrow x = 7$

Die Probe ergibt folgendes:

1. Fall:
$$x = 2$$
: $\frac{2-7}{2} + |\frac{2+3}{2}| = -|2-2|$
 $\Leftrightarrow \frac{-5}{2} + \frac{2+3}{2} = 0$ (richtig)

2. Fall:
$$0 = 0$$
: (ist immer richtig)

Damit ist die Lösung der Definitionsbereich

3. Fall:
$$x = -3$$
: $\frac{-3-7}{2} + |\frac{-3+3}{2}| = -|-3-2|$ $\Leftrightarrow -5$ (richtig)

4. Fall:
$$x = 7$$
: $\frac{7-7}{2} + \left|\frac{7+3}{2}\right| = -|7-2|$
 $\Leftrightarrow 5$ = -5 (falsch)

Damit ist die Lösung: $-3 \le x \le 2$ = Definitionsbereich vom 2. Fall.

Angebotene Lösungen:

Fehlerinterpretation:

x=2	DF: $3 + 2$. Fall vergessen
$x \geq 2$	DF: $3 + 2$. Fall vergessen + Relationsfehler
$3 x \le -3 \text{ oder } x \ge 2$	DF: Relationsfehler
$\boxed{4}$ $x \leq -3$	DF: $1 + 2$. Fall vergessen + Relationsfehler
x = 0	DF: sicher nicht falsch, aber vieles fehlt
x = -3	DF: $1 + 2$. Fall vergessen
$\overline{7}$ $x = 2$ oder $x = 7$	DF: $2+4$. Fall falsch interpretiert 1. Fall vergessen
$\overline{\times}$ $-3 \le x \le 2$	richtig
9 Ø	DF: es gibt Lösungen
x = -3 oder x = 2	DF: 2. Fall falsch interpretiert
x = -3 oder x = 2 oder x = 7	DF: $2 + 4$. Fall falsch interpretiert
x = -3 oder x = 7	DF: $2 + 4$. Fall falsch interpretiert 3. Fall vergessen

Allgemeine Hinweise:

Bei weiteren Fragen, wenden Sie sich bitte an W. Schmid (sltsoftware @yahoo.de).

Weitere Hinweise finden Sie auf unserer Veranstaltungswebseite unter: http://www.vorkurs.de.vu