Mathe Vorkurs Online - Übungen Blatt 3

MV 04 Blatt 03 Kapitel 3.2 Grenzwerte eFktnFolgen Nummer: 8 0 2004030007 Kl: 14G

Quelle: Grad: 40 Zeit: 30

Aufgabe 3.1.1: Bestimmen Sie den Wert, gegen den die Folge für $n \to \infty$ strebt:

$$\left| \left(\frac{8 - 2 \cdot n}{n - 2} \right)^{6 \cdot n - 2} \right|$$

Parameter:

 $x_n = n$ te Zahl im Term $(n \in 1..4)$ $x_n > 1, x_3 > 2$

Der Term lautet also: $\left| \left(\frac{x_1 - 2 \cdot n}{n - x_2} \right)^{x_3 \cdot n - x_4} \right|$

In dieser Aufgabe sind $x_1 = 8$ $x_2 = 2$ $x_3 = 6$ $x_4 = 2$.

Erklärung:

Finden Sie zuerst den Grenzwert g des Klammerausdruckes. Gegen welchen Wert strebt g^n ?

Rechnung:

$$\left| \left(\frac{8-2 \cdot n}{n-2} \right)^{6 \cdot n-2} \right| = \left| \left(-2 + \frac{4}{n-2} \right)^{6 \cdot n-2} \right| \quad \text{dies verhält sich wie } |(-2)^{6 \cdot n}| \to \infty$$

 ∞ wird nicht als Grenzwert angesehen. Deshalb gibt es keinen Grenzwert.

Angebotene Lösungen:

 e^{60}

 $\frac{3}{4}$ 5 \times ∞

10 60

7 ln 6

 $\ln 2$

Fehlerinterpretation:

 e^{60} 1 RF: Potenzgesetz falsch angewendet

1 DF: Regel nicht verstanden

 e^2 DF: Regel nicht verstanden

DF: Regel nicht verstanden $-\infty$

 $\begin{array}{c} \frac{3}{4} \\ 4 \end{array}$ DF: Regel nicht verstanden

DF: Regel nicht verstanden

 $\ln 6$ DF: Regel nicht verstanden

ln 2DF: Regel nicht verstanden

richtig ∞

60 DF: Regel nicht verstanden

 e^8 DF: Regel nicht verstanden

RF: Potenzgesetz falsch angewendet

MV 04 Blatt 03 Kapitel 3.2 Grenzwerte Brueche Folgen Nummer: 20 0 2004030002 Kl: 14G

Quelle: keine Grad: 40 Zeit: 30 W

Aufgabe 3.1.2: Bestimmen Sie den Wert, gegen den die Folge für $n \to \infty$ strebt:

$$\frac{6 \cdot 2^n + 24 \cdot 4^n + 4}{2 - 3 \cdot 2^n + 8 \cdot 4^n}$$

Parameter:

$$x_n = n$$
 te Zahl im Bruch $(n \in 1..6)$ $x_n > 0$

Der Bruch lautet also:
$$\frac{x_1 \cdot 2^n + x_2 \cdot 4^n + x_3}{x_4 - x_5 \cdot 2^n + x_6 \cdot 4^n}$$

In dieser Aufgabe sind
$$x_1 = 6$$
 $x_2 = 24$ $x_3 = 4$ $x_4 = 2$ $x_5 = 3$ $x_6 = 8$.

Erklärung:

Wenden Sie die Regel zum Erweitern von Brüchen an. Sei

$$a_n = \frac{\sum_{i=0}^{n} b_i x^i}{\sum_{i=0}^{m} c_i x^i}$$

mit $b_n \neq 0 \neq c_m$, dann gilt

$$a_n = \frac{\sum_{i=0}^n b_i x^i}{\sum_{i=0}^m c_i x^i} \to \begin{cases} \pm \infty & \text{falls } n > m \\ \frac{b_n}{c_n} & \text{falls } n = m \\ 0 & \text{falls } n < m \end{cases}$$

Rechnung:

Sei $w = 2^n$, dann geht mit n auch w gegen ∞ , und es gilt:

$$\frac{6 \cdot 2^{n} + 24 \cdot 4^{n} + 4}{2 - 3 \cdot 2^{n} + 8 \cdot 4^{n}} = \frac{6 \cdot 2^{n} + 24 \cdot (2^{n})^{2} + 4}{2 - 3 \cdot 2^{n} + 8 \cdot (2^{n})^{2}}$$

$$= \frac{6 \cdot w + 24 \cdot w^{2} + 4}{2 - 3 \cdot w + 8 \cdot w^{2}}$$

$$= \frac{\frac{6}{w} + 24 + \frac{4}{w^{2}}}{\frac{2}{w^{2}} - \frac{3}{w} \cdot w + 8}$$

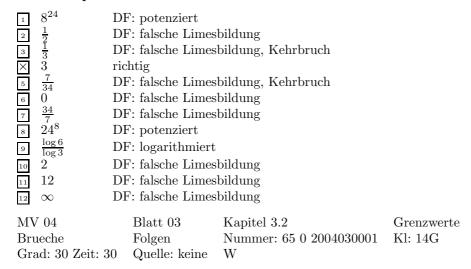
$$\rightarrow \frac{0 + 24 + 0}{0 - 0 + 8} = 3$$

Eine Rücksubstitution ist nicht erforderlich.

Angebotene Lösungen:

1	8^{24}	$\frac{1}{2}$	$\frac{1}{3}$	\times	3
5	$\frac{7}{34}$	6 0	$\frac{34}{7}$	8	24^{8}
9	$\frac{\log 6}{\log 3}$	10 2	11 12	12	∞

Fehlerinterpretation:



Aufgabe 3.1.3: Bestimmen Sie den Wert, gegen den die Folge für $n \to \infty$ strebt:

$$\frac{20\cdot n^2+3\cdot n+5}{6-11\cdot n+5\cdot n^2}$$

Parameter:

 $x_n = n$ te Zahl im Bruch $(n \in 1..6)$ $x_n > 0$

Der Bruch lautet also: $\frac{x_1 \cdot n^2 + x_2 \cdot n + x_3}{x_4 - x_5 \cdot n + x_6 \cdot n^2}$

In dieser Aufgabe sind $x_1 = 20$ $x_2 = 3$ $x_3 = 5$ $x_4 = 6$ $x_5 = 11$ $x_6 = 5$.

Erklärung:

Wenden Sie die Regel zum Erweitern von Brüchen an. Sei

$$a_n = \frac{\sum_{i=0}^{n} b_i x^i}{\sum_{i=0}^{m} c_i x^i}$$

mit $b_n \neq 0 \neq c_m$, dann gilt

$$a_n = \frac{\sum_{i=0}^n b_i x^i}{\sum_{i=0}^m c_i x^i} \to \begin{cases} \pm \infty & \text{falls } n > m \\ \frac{b_n}{c_n} & \text{falls } n = m \\ 0 & \text{falls } n < m \end{cases}$$

Rechnung:

$$\frac{20 \cdot n^{2} + 3 \cdot n + 5}{6 - 11 \cdot n + 5 \cdot n^{2}} = \frac{\frac{20 \cdot n^{2}}{n^{2}} + \frac{3 \cdot n}{n^{2}} + \frac{5}{n^{2}}}{\frac{6}{n^{2}} - \frac{11 \cdot n}{n^{2}} + \frac{5 \cdot n^{2}}{n^{2}}}$$

$$= \frac{20 + \frac{3}{n} + \frac{5}{n^{2}}}{\frac{6}{n^{2}} - \frac{11}{n} + 5}$$

$$\rightarrow \frac{20 + 0 + 0}{0 \cdot 0 \cdot 15} = 4$$

Angebotene Lösungen:

$\frac{28}{0}$	$\frac{5}{6}$	$\frac{1}{4}$	\times 4
5 <u>3</u> 11	6 1	<u>7</u> ∞	$\frac{6}{5}$
$-\frac{28}{9}$	10 0	$\frac{10}{2}$	$\frac{12}{2}$

Fehlerinterpretation:

$\frac{28}{0}$	DF: falsche Limes	bildung		
$\frac{5}{6}$	DF: falsche Limesbildung			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DF: falsche Limesbildung Kehrbruch			
\times 4	richtig			
<u>3</u> <u>11</u>	DF: falsche Limes	bildung		
6 1				
7 ∞	DF: falsche Limesbildung			
8 6 5	DF: falsche Limesbildung Kehrbruch			
$\frac{1}{9} - \frac{28}{0}$	DF: falsche Limesbildung			
10 0	DF: falsche Limesbildung			
$\frac{10}{3}$	$\frac{10}{2}$ DF: falsche Limesbildung			
$\frac{10}{3}$ DF: falsche Limesbildung DF: falsche Limesbildung Kehrbruch				
MV 04	Blatt 03	Kapitel 3.2	Grenzwerte	
eFktn	Folgen	Nummer: 75 0 2004030005	Kl: 14G	
Grad: 40 Zeit: 3	0	W		

Aufgabe 3.1.4: Bestimmen Sie den Wert, gegen den die Folge für $n \to \infty$ strebt:

$$\left(1 + \frac{1}{n-6}\right)^{3n+12}$$

Parameter:

 $x_n = n - \text{ te Zahl } (n \in 1..3) \ x_n > 1$

Der Term lautet also: $\left(1 + \frac{1}{n-x_1}\right)^{x_2 n + x_3}$

In dieser Aufgabe sind $x_1 = 6$ $x_2 = 3$ $x_3 = 12$.

Erklärung:

Sie können durch Umformung die Formel $\lim_{n\to\infty} (1+\frac{x}{n})^n = e^x$ anwenden.

Rechnung:

 $\left(1 + \frac{1}{n-6}\right)^{3n+12} = \left(1 + \frac{1}{m}\right)^{3(m+6)+12}$ $= \left(\left(1 + \frac{1}{m}\right)^{m+6+4}\right)^{3}$ $= \left(\left(1 + \frac{1}{m}\right)^{m}\right)^{3} \cdot \left(\left(1 + \frac{1}{m}\right)^{10}\right)^{3}$ $\rightarrow e^{3} \cdot \left(1^{10}\right)^{3} = e^{3}$ Substitution m = n - 6Potenzgesetze Potenzgesetze e - Limes und mit n geht auch m gegen ∞

Angebotene Lösungen:

 $\frac{3}{7}$ $_2$ $\ln 3$ 5 ln 6 ∞ 7 1 e^3 e^6 X $\ln \ln 12$

Fehlerinterpretation:

 $\begin{array}{c|cccc} \hline 1 & \frac{3}{7} \\ \hline 2 & \ln 3 \\ \hline 3 & 2 \\ \hline 4 & -\infty \\ \hline 5 & \ln 6 \\ \hline 6 & \infty \\ \hline 7 & 1 \\ \hline 8 & e^{12} \\ \hline 9 & e^{6} \\ \hline \times & e^{3} \\ \hline 11 & \ln 12 \\ \end{array}$ DF: Regel nicht verstanden richtig

MV 04 Blatt 03 Kapitel 3.2 Grenzwerte Nummer: 76 0 2004030004 Wurzel Folgen Kl: 14G

DF: Regel nicht verstanden DF: Regel nicht verstanden

Grad: 40 Zeit: 30 Quelle: keine

Aufgabe 3.1.5: Bestimmen Sie den Wert, gegen den die Folge für $n \to \infty$ strebt:

$$\sqrt{16 \cdot n^2 + 16 \cdot n + 10} - 4n + 7$$

Parameter:

 $\frac{1}{2}$

 $x_n = n - \text{ te Zahl im Term } (n \in 1..5) \ x_1 = (x_4)^2 \ x_n > 0$

Der Term lautet also: $\sqrt{x_1 \cdot n^2 + x_2 \cdot n + x_3} - x_4 n + x_5$

In dieser Aufgabe sind $x_1 = 16$ $x_2 = 16$ $x_3 = 10$ $x_4 = 4$ $x_5 = 7$.

Erklärung:

Sei $a_n = \sqrt{b_n} - \sqrt{c_n}$, und b_n, c_n sind asymptotisch gleich und $\sqrt{b_n} + \sqrt{c_n} > 0$ und $\sqrt{b_n} + \sqrt{c_n}$ geht nicht gegen 0, dann gilt

$$a_n = \sqrt{b_n} - \sqrt{c_n} = \frac{(\sqrt{b_n} - \sqrt{c_n}) \cdot (\sqrt{b_n} + \sqrt{c_n})}{\sqrt{b_n} + \sqrt{c_n}} = \frac{b_n - c_n}{\sqrt{b_n} + \sqrt{c_n}}$$

Eine Folge der Form (an + b) $a, b \ge 0$ kann auch als $\sqrt{(an + b)^2}$ geschrieben werden.

Rechnung:

$$\sqrt{16 \cdot n^2 + 16 \cdot n + 10} - 4n + 7$$

$$= \frac{\left(\sqrt{16 \cdot n^2 + 16 \cdot n + 10} - \sqrt{(4n - 7)^2}\right) \cdot \left(\sqrt{16 \cdot n^2 + 16 \cdot n + 10} + \sqrt{(4n - 7)^2}\right)}{\sqrt{16 \cdot n^2 + 16 \cdot n + 10} + \sqrt{(4n - 7)^2}} \qquad \text{Regel: Differenzen von Wurzeln } (f\vec{u}r \ n > \frac{7}{4}\))$$

$$= \frac{16 \cdot n^2 + 16 \cdot n + 10 - (4n - 7)^2}{\sqrt{n^2 (16 + \frac{16}{n} + \frac{10}{n^2})} + \sqrt{n^2 (16 - \frac{56}{n} + \frac{49}{n^2})}}} \qquad 3. \text{ binomische Formel}$$

$$= \frac{(16 + 56) \cdot n + 10 - 49}{n \cdot (\sqrt{16 + \frac{16}{n} + \frac{10}{n^2}} + \sqrt{16 - \frac{56}{n} + \frac{49}{n^2}})} \qquad \text{teilweise Wurzel gezogen}$$

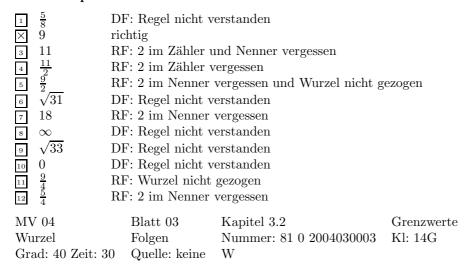
$$= \frac{72 + \frac{39}{n}}{\sqrt{16 + \frac{16}{n} + \frac{10}{n^2}} + \sqrt{16 - \frac{56}{n} + \frac{49}{n^2}}} \qquad n \text{ gek\vec{u}rzt}$$

$$\rightarrow \frac{72 + 0}{\sqrt{16 + 0 + 0} + \sqrt{16 - 0 + 0}} = \frac{72}{8}$$

Angebotene Lösungen:

$\frac{5}{8}$	\times 9	3 11	$\frac{11}{2}$
$\frac{9}{2}$	$\sqrt{31}$	7 18	8 ∞
$9 \sqrt{33}$	10 0	$\frac{9}{4}$	$\frac{5}{4}$

Fehlerinterpretation:



Aufgabe 3.1.6: Bestimmen Sie den Wert, gegen den die Folge für $n \to \infty$ strebt:

$$\sqrt{4 \cdot n^2 + 15 \cdot n + 8} - \sqrt{4 \cdot n^2 + 9 \cdot n + 2}$$

Parameter:

 $x_n = n$ te Zahl in der Wurzel $(n \in 1..6)$ $x_1 = x_4$ $x_n > 0$

Der Term lautet also: $\sqrt{x_1 \cdot n^2 + x_2 \cdot n + x_3} - \sqrt{x_4 \cdot n^2 + x_5 \cdot n + x_6}$

In dieser Aufgabe sind $x_1 = 4$ $x_2 = 15$ $x_3 = 8$ $x_4 = 4$ $x_5 = 9$ $x_6 = 2$.

Erklärung:

Sei $a_n = \sqrt{b_n} - \sqrt{c_n}$, und b_n, c_n sind asymptotisch gleich und $\sqrt{b_n} + \sqrt{c_n} > 0$ und $\sqrt{b_n} + \sqrt{c_n}$ geht nicht gegen 0, dann gilt

$$a_n = \sqrt{b_n} - \sqrt{c_n} = \frac{(\sqrt{b_n} - \sqrt{c_n}) \cdot (\sqrt{b_n} + \sqrt{c_n})}{\sqrt{b_n} + \sqrt{c_n}} = \frac{b_n - c_n}{\sqrt{b_n} + \sqrt{c_n}}$$

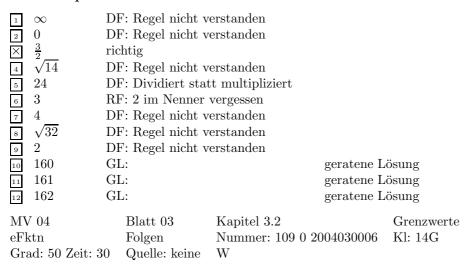
Rechnung:

$$\begin{array}{ll} \sqrt{4 \cdot n^2 + 15 \cdot n + 8} - \sqrt{4 \cdot n^2 + 9 \cdot n + 2} \\ &= \frac{(\sqrt{4 \cdot n^2 + 15 \cdot n + 8} - \sqrt{4 \cdot n^2 + 9 \cdot n + 2}) \cdot (\sqrt{4 \cdot n^2 + 15 \cdot n + 8} + \sqrt{4 \cdot n^2 + 9 \cdot n + 2})}{\sqrt{4 \cdot n^2 + 15 \cdot n + 8} + \sqrt{4 \cdot n^2 + 9 \cdot n + 2}} & \text{Regel: Differenzen von Wurzeln} \\ &= \frac{4 \cdot n^2 + 15 \cdot n + 8 - (4 \cdot n^2 + 9 \cdot n + 2)}{\sqrt{n^2 (4 + \frac{15}{n} + \frac{8}{n^2})} + \sqrt{n^2 (4 + \frac{9}{n} + \frac{2}{n^2})}} & 3. \text{ binomische Formel} \\ &= \frac{6 \cdot n + 6}{n \cdot \sqrt{4 + \frac{15}{n} + \frac{8}{n^2}} + \sqrt{4 + \frac{9}{n} + \frac{2}{n^2}}} & \text{teilweise Wurzel gezogen} \\ &= \frac{6 + \frac{6}{n}}{\sqrt{4 + \frac{15}{n} + \frac{8}{n^2}} + \sqrt{4 + \frac{9}{n} + \frac{2}{n^2}}} & n \text{ gekürzt} \\ &\rightarrow \frac{6 + 0}{\sqrt{4 + 0 + 0} + \sqrt{4 + 0 + 0}} &= \frac{6}{2\sqrt{4}} = \frac{3}{2} \end{array}$$

Angebotene Lösungen:

1	∞	2 0	\times $\frac{3}{2}$	$\sqrt{14}$
5	24	6 3	7 4	$ \sqrt{32} $
9	2	10 160	11 161	162

Fehlerinterpretation:



Aufgabe 3.1.7: Bestimmen Sie den Wert, gegen den die Folge für $n \to \infty$ strebt:

$$\left(\frac{n+8}{n-3}\right)^{\frac{n}{7}+4}$$

Parameter:

$$x_n = n - \text{ te Zahl } (n \in 1..4) \ x_n > 1, x_3 > 2$$

Der Term lautet also:
$$\left(\frac{n+x_1}{n-x_2}\right)^{\frac{n}{x_3}+x_4}$$

In dieser Aufgabe sind
$$x_1 = 8$$
 $x_2 = 3$ $x_3 = 7$ $x_4 = 4$.

Erklärung:

Sie können durch Umformung die Formel $\lim_{n\to\infty}(1+\frac{x}{n})^n=e^x$ anwenden.

Rechnung:

Angebotene Lösungen:

Fehlerinterpretation:

Allgemeine Hinweise:

Bei weiteren Fragen, wenden Sie sich bitte an W. Schmid (sltsoftware @yahoo.de). Weitere Hinweise finden Sie auf unserer Veranstaltungswebseite unter: http://www.vorkurs.de.vu