Mathe Vorkurs Online - Übungen Blatt 6

Blatt 06 MV 04 Kapitel 4.2 Grenzwerte Hospital Funktionen Nummer: 6 0 200406003 Kl: 14G

Grad: 40 Zeit: 30 Quelle: keine

Aufgabe 6.1.1: Bestimmen Sie den Grenzwert:

$$\lim_{x \to 0} 5 \cdot (9x)^{14x}$$

Parameter:

 $x_n = n$ te Zahl in N $(n \in 1..3)$ $x_n > 1$.

Der Grenzwert lautet: $\lim_{x\to 0} x_1 \cdot (x_2 x)^{x_3 x}$

In dieser Aufgabe sind $x_1 = 5$ $x_2 = 9$ $x_3 = 14$.

Erklärung:

Formen Sie die Potenz mit Basis x in eine Potenz mit Basis e um, schreiben Sie den Exponenten als Bruch und wenden Sie dann die Regel von de l'Hospital an.

Rechnung:

 $\lim_{x\to 0} 5 \cdot (9x)^{14x} = \lim_{x\to 0} 5 \cdot e^{14x \cdot \ln(9x)}$

Potenzgesetz

 $= \lim_{x \to 0} 5 \cdot e^{\frac{\ln(9x)}{\frac{1}{14x}}}$

Exponent als Bruch geschrieben

Wir betrachten nur den Exponenten:

 $\lim_{x \to 0} \frac{\ln(9x)}{\frac{1}{14x}} = H \lim_{x \to 0} \frac{\frac{1}{x}}{\frac{-1}{14x^2}}$

die 9 fällt beim Ableiten weg!

 $\lim_{x\to 0} \frac{-14x^2}{x}$

Doppelbruch aufgelöst

Mit der Stetigkeit der e- Funktion erhalten wir : $\lim_{x\to 0} \dots \cdot e^{\frac{\ln(9x)}{\frac{1}{14x}}} = \dots \cdot \dots \cdot e^{\lim_{x\to 0} \frac{\ln(9x)}{\frac{1}{14x}}} = \dots \cdot \dots = \dots = \dots$

Angebotene Lösungen:

1 70

5 \times

= 0

 $5e^9$ 9 0

 ∞

 $5e^{\frac{14}{5}}$

 $5e^{\frac{9}{14}}$

Fehlerinterpretation:

DF: de l'Hospital nicht richtig angewendet 70 5

richtig

 $e^{\frac{70}{9}}$ DF: de l'Hospital nicht richtig angewendet

DF: de l'Hospital nicht richtig angewendet $5e^9$ DF: de l'Hospital nicht richtig angewendet

 ∞ DF: de l'Hospital nicht richtig angewendet $5e^{\frac{14}{5}}$ DF: de l'Hospital nicht richtig angewendet

 $5e^{\frac{9}{14}}$ DF: de l'Hospital nicht richtig angewendet

0 DF: de l'Hospital nicht richtig angewendet

3 4 5 6 7 8 9 10 1 DF: de l'Hospital nicht richtig angewendet DF: de l'Hospital nicht richtig angewendet

DF: de l'Hospital nicht richtig angewendet

MV 04 Blatt 06 Kapitel 4.2 Grenzwerte Kl: 14G Hospital Funktionen Nummer: 19 0 200406005

Grad: 40 Zeit: 30 Quelle: keine W

Aufgabe 6.1.2: Bestimmen Sie den Grenzwert:

$$\lim_{x \to 12} \frac{4x^2 - 40x + 100}{7x^3 - 49x^2 + 70x}$$

Parameter:

 $x_n = n$ te Nullstelle $(n \in 1..3)$

 x_4, x_5 Vorfaktoren $x_n > 1$

 x_6 Wert, der eingesetzt werden soll $x_6 \neq x_n \ (n \in 1..3)$

In dieser Aufgabe sind $x_1 = 5$ $x_2 = 5$ $x_3 = 2$ $x_4 = 4$ $x_5 = 7$ $x_6 = 12$.

Erklärung:

Setzen Sie den Wert zuerst ein, bevor Sie die Regel von de l'Hospital anwenden.

Rechnung:

$$\lim_{x \to 12} \frac{4x^2 - 40x + 100}{7x^3 - 49x^2 + 70x} = \frac{4 \cdot 12^2 - 40 \cdot 12 + 100}{7 \cdot 12^3 - 49 \cdot 12^2 + 70 \cdot 12} = \frac{576 - 480 + 100}{12096 - 7056 + 840} = \frac{196}{5880} = \frac{1}{30}$$

Angebotene Lösungen:

 $\frac{0}{0}$

 $\frac{17}{294}$

5 5 $-\infty$

7 4

 $\frac{2}{5}$

Fehlerinterpretation:

 $\frac{0}{0}$ DF: nicht definiert und geraten

DF: geraten

0 DF: Asymptote gerechnet

RF: falsch gerechnet

DF: de l'Hospital nicht richtig angewendet

1 2 3 4 5 6 7 8 9 10 × $\begin{array}{r}
 \frac{17}{294} \\
 5 \\
 \frac{1}{7} \\
 4 \\
 \frac{4}{7} \\
 -\infty \\
 \frac{-83}{315} \\
 \frac{1}{30} \\
 \frac{2}{5}
 \end{array}$ DF: geraten DF: geraten DF: geraten DF: geraten

RF: falsch gerechnet

richtig

RF: falsch gerechnet

MV 04 Blatt 06 Kapitel 4.2 Grenzwerte Funktionen Nummer: 22 0 200406001 Kl: 14G Hospital

Grad: 40 Zeit: 30 Quelle: keine

Aufgabe 6.1.3: Bestimmen Sie den Grenzwert:

$$\lim_{x \to \infty} \frac{4\ln(x^9 + 11)}{\ln x^{14}}$$

Parameter:

 $x_n = n$ te Zahl in N $(n \in 1..4)$ $x_n > 1$.

Erklärung:

Wenden Sie die Regel von de l'Hospital an: Seien f,g differenzierbare Funktionen mit $g(x) \to \infty$ für $x \to \infty$, dann gilt:

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}.$$

Rechnung:

$$\begin{split} \lim_{x \to \infty} \frac{4 \ln(x^9 + 11)}{\ln x^{14}} &= ^H \quad \lim_{x \to \infty} \frac{4 \cdot \frac{9x^9 - 1}{x^9 + 11}}{\frac{14x^{14} - 1}{x^{14}}} \qquad \text{Ableitung mit Kettenregel} \\ &= \quad \lim_{x \to \infty} \frac{4 \cdot \frac{9}{x^9 + 11}}{\frac{14}{x^8}} \qquad \text{im Z\"{a}hler und Nenner mit Potenz von } x \text{ gek\"{u}rzt} \\ &= \quad \lim_{x \to \infty} \frac{4 \cdot 9 \cdot x}{(x + \frac{11}{x^8}) \cdot 14} \qquad \text{Doppelbruch aufgel\"{o}st} \\ &= \quad \lim_{x \to \infty} \frac{36}{(1 + \frac{11}{x^9}) \cdot 14} \qquad = \frac{36}{14} \quad x \text{ gek\"{u}rzt} \end{split}$$

$$\text{Damit gilt} \quad \lim_{x \to \infty} \frac{4 \ln(x^9 + 11)}{\ln x^{14}} \quad = \quad \frac{18}{7}$$

Angebotene Lösungen:

1	∞	2	<u>ln 47</u> ln 14	\times	$\frac{18}{7}$	4	1
5	$\frac{47}{14}$	6	0	7	$ \ln \frac{47}{14} $	8	$\ln \frac{18}{7}$
9	$\frac{7}{18}$	10	$ \ln \frac{7}{18} $	11	$\frac{14}{47}$	12	$\frac{\ln 36}{\ln 14}$

Fehlerinterpretation:

1 ∞	DF: de l'Hospital nicht rie	chtig angewendet	
$\frac{\ln 47}{\ln 14}$	DF: substituiert + de l'He	ospital falsch angewendet	
$ \begin{array}{c c} \hline 2 & \frac{\ln 47}{\ln 14} \\ \hline \times & \frac{18}{7} \end{array} $	richtig		
4 1	DF: de l'Hospital nicht rie	chtig angewendet	
$\frac{47}{14}$	DF: de l'Hospital falsch a	ngewendet	
6 0	DF: de l'Hospital nicht rie	chtig angewendet	
$\frac{1}{7}$ $\ln \frac{47}{14}$	DF: substituiert + de l'He	ospital falsch angewendet	
$ \frac{7}{8} \ln \frac{47}{14} \\ 8 \ln \frac{18}{7} $	DF: substituiert		
${9} \frac{7}{18}$	RF: Zähler und Nenner von	ertauscht	
$ \frac{1}{10} \ln \frac{7}{18} $	DF: substituiert + Zähler	und Nenner vertauscht	
$\frac{1}{11}$ $\frac{14}{47}$ 18	DF: de l'Hospital falsch a	ngewendet + Zähler und Nenner	vertauscht
$\frac{12}{\ln 36}$	DF: substituiert		
MV 04	Blatt 06 Kapitel	4.2 Grenzwerte	
Hospital	Funktionen Numme	er: 25 0 200406004 Kl: 14G	
Grad: 40 Zeit: 3	30 Quelle: keine W		

Aufgabe 6.1.4: Bestimmen Sie den Grenzwert:

$$\lim_{x \to 2} \frac{2x^3 - 22x^2 + 64x - 56}{6x^3 - 60x^2 + 168x - 144}$$

Parameter:

 $x_n=n$ te Nullstelle $(n\in 1..3)$ $x_n>1$ $x_2\neq x_1\neq x_3\neq x_2.$ x_4,x_5 Vorfaktoren $x_n>1$ In dieser Aufgabe sind $x_1=2$ $x_2=7$ $x_3=6$ $x_4=2$ $x_5=6.$

Erklärung:

Wenden Sie die Regel von de l'Hospital zwei Mal an: Seien f,g differenzierbare Funktionen mit

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} g(x) = 0, \quad \text{dann gilt:} \quad \lim_{x \to 2} \frac{f(x)}{g(x)} = \lim_{x \to 2} \frac{f'(x)}{g'(x)}.$$

Rechnung:

$$\lim_{x \to 2} \frac{2x^3 - 22x^2 + 64x - 56}{6x^3 - 60x^2 + 168x - 144} = \frac{0}{0} = H \lim_{x \to 2} \frac{6x^2 - 44x + 64}{18x^2 - 120x + 168} = \frac{0}{0}$$

$$= \lim_{x \to 2} \frac{12x - 44}{36x - 120}$$

$$= \frac{12 \cdot 2 - 44}{36 \cdot 2 - 120} = \frac{-20}{-48}$$

Damit gilt
$$\lim_{x\to 2} \frac{2x^3 - 22x^2 + 64x - 56}{6x^3 - 60x^2 + 168x - 144} = \frac{5}{12}$$

Angebotene Lösungen:

1 $-\infty$	$\frac{17}{48}$	$\frac{1}{27}$	$\frac{14}{37}$
$\frac{1}{6}$	$\frac{7}{18}$	$\frac{11}{30}$	$\times \frac{5}{12}$
9 2	$\frac{1}{3}$	$\frac{0}{0}$	12 0

Fehlerinterpretation:

-			
$ \begin{array}{c cccc} 1 & -\infty \\ \hline 2 & \frac{17}{48} \\ \hline 3 & \frac{1}{27} \\ \hline 4 & \frac{14}{37} \end{array} $	DF: de l'Hospital DF: de l'Hospital	nicht richtig angewendet nicht richtig angewendet nicht richtig angewendet	
	RF: verrechnet		
$\frac{1}{6}$	DF: de l'Hospital	nicht richtig angewendet	
$ \begin{array}{c cccc} \hline 5 & \frac{1}{6} \\ \hline 6 & \frac{7}{18} \\ \hline 7 & \frac{11}{30} \\ \hline × & \frac{5}{12} \end{array} $	DF: de l'Hospital	nicht richtig angewendet	
$\frac{11}{30}$	DF: de l'Hospital	nicht richtig angewendet	
$\times \frac{5}{12}$	richtig		
9 2	DF: de l'Hospital	nicht richtig angewendet	
$ \begin{array}{ccc} 10 & \frac{1}{3} \\ 11 & \frac{0}{0} \end{array} $	DF: de l'Hospital	nicht richtig angewendet	
$\begin{array}{ccc} 10 & \frac{1}{3} \\ 11 & \frac{0}{0} \end{array}$	DF: nicht definie	rt - hier muss de l'Hospital a	ngewendet werden!!
12 Ŏ	DF: de l'Hospital	nicht richtig angewendet	
MV 04	Blatt 06	Kapitel 4.2	Grenzwerte
Asymptoten	Funktionen	Nummer: 60 0 200406007	Kl: 14G

Aufgabe 6.1.5: Bestimmen Sie alle waagrechten Asymptoten der folgenden Funktion:

$$f(x) = \frac{7 \cdot \arctan_{\pi}(2x+7)}{5}$$

Parameter:

 x_1 Vorfaktor, x_4 Nenner x_2, x_3 Zahlen im arctan $x_n > 1$

Grad: 40 Zeit: 30 Quelle: keine W

In dieser Aufgabe sind $x_1 = 7$ $x_2 = 2$ $x_3 = 7$ $x_4 = 5$.

Erklärung:

Sie können (vermutlich) nicht de l'Hospital anwenden. Welche Asymptoten hat \arctan_0 ? Verschieben Sie diese Funktion um π zu \arctan_{π} . Substituieren Sie (2x+7)=x'.

Rechnung:

Wir substituieren x' := (2x+7). arctan₀ x' hat die waagrechten Asymptoten $y = \pm \frac{\pi}{2}$. Damit hat arctan_{π} x' die waagrechten Asymptoten

$$y = \pm \frac{\pi}{2} + \pi$$
 \Leftrightarrow $y = \frac{\pi}{2}$ oder $y = \frac{3\pi}{2}$.

Mit $x' \to \pm \infty$ geht auch x gegen $\pm \infty$, damit gilt:

$$\frac{7 \cdot \arctan_{\pi}(2x+7)}{5} \text{ hat die Asymptoten } y = \frac{7}{5} \cdot \frac{\pi}{2} \text{ oder } y = \frac{7}{5} \cdot \frac{3\pi}{2}.$$

Angebotene Lösungen:

- \boxtimes $y = \frac{7}{10}\pi$ oder $y = \frac{21}{10}\pi$
- $y = \frac{1}{5} \text{ oder } y = \frac{9}{5}$ $y = \frac{1}{2}\pi \text{ oder } y = \frac{3}{2}\pi$ $y = \frac{(2k+1)\pi}{2} \cdot \frac{7}{5}$ $y = \frac{7}{10}\pi$ $y = \pm \frac{\pi}{2}$ $y = k \cdot \pi$ $y = \pm \frac{7}{10}\pi$

Fehlerinterpretation:

- $y = \frac{7}{5} \text{ oder } y = \frac{9}{5}$ es gibt keine
- DF: normal als Limes gerechnet
- DF: falsch DF: geraten

- richtig
- DF: nicht substituiert
- DF: mit senkrechten Asymptoten des Tangens verwechselt

DF: eine Asymptote fehlt

DF: normal als Limes gerechnet

DF: geraten

DF: mit senkrechten Asymptoten des Cotangens verwechselt

- DF: arctan₀ gerechnet DF: eine Asymptote fehlt
- MV 04Blatt 06
- Kapitel 4.2 Grenzwerte
- Asymptoten Funktionen
- Nummer: 71 0 200406006 Kl: 14G
- Grad: 40 Zeit: 30 Quelle: keine

Aufgabe 6.1.6: Bestimmen Sie die waagrechten Asymptoten der folgenden Funktion:

$$f(x) = \frac{9x^2 - 54x + 72}{16 - 16x + 4x^2}$$

Parameter:

 $x_n = n$ te Nullstelle $(n \in 2..3)$ $x_2 \neq x_3$ $x_1 \neq x_4$ Vorfaktoren $x_n > 1$

In dieser Aufgabe sind $x_1 = 9$ $x_2 = 2$ $x_3 = 4$ $x_4 = 4$.

Erklärung:

Wenden Sie die Grenzwertsätze für Brüche aus dem Kapitel Folgen und Reihen an, das heißt, erweitern Sie mit $\frac{1}{x^n}$ mit n = maximale Hochzahl. Sie können auch de l'Hospital anwenden.

Rechnung:

$$\frac{9x^2 - 54x + 72}{16 - 16x + 4x^2} = \frac{\frac{9x^2}{x^2} - \frac{54x}{x^2} + \frac{72}{x^2}}{\frac{16}{x^2} - \frac{16x}{x^2} + \frac{4x^2}{x^2}} \quad \text{mit } \frac{1}{x^2} \text{ erweitert}$$
$$= \frac{9 - \frac{54}{x} + \frac{72}{x^2}}{\frac{16}{x^2} - \frac{16}{x} + 4} \quad \rightarrow \frac{9 - 0 + 0}{0 - 0 + 4} = \frac{9}{4},$$

also ist die waagrechte Asymptote $y = \frac{9}{4}$.

Berechnung über de l'Hospital:

$$\lim_{x \to \infty} \frac{9x^2 - 54x + 72}{16 - 16x + 4x^2} = H \frac{18x - 54}{-16 + 8x} = H \frac{18}{8} = \frac{9}{4}$$

Angebotene Lösungen:

 $x = \frac{9}{4}$

y = 0

 $\begin{array}{ccc}
\hline
& & \\
\hline
& & \\
\hline
& & \\
& & \\
\hline
& & \\
\end{array}$ $\begin{array}{ccc}
& & \\
& \\
& \\
\end{array}$ $\begin{array}{cccc}
& & \\
& \\
& \\
\end{array}$ $\begin{array}{ccccc}
& & \\
& \\
\end{array}$

Fehlerinterpretation:

 $x = \frac{9}{4}$

DF: waagrechte Asymptote gesucht

DF: senkrechte Asymptote gerechnet

DF: geraten

DF: geraten DF: nicht definiert

DF: geraten

DF: waagrechte Asymptote gesucht

DF: nicht definiert

richtig

DF: waagrechte Asymptote gesucht

x = -2

DF: senkrechte Asymptote gerechnet DF: senkrechte Asymptote gerechnet

MV 04

Blatt 06

Kapitel 4.2

Grenzwerte

Hospital

Funktionen

Nummer: 81 0 200406002

Kl: 14G

Grad: 40 Zeit: 30 Quelle: keine

Aufgabe 6.1.7: Bestimmen Sie den Grenzwert:

$$\lim_{x \to -3} \frac{5x + 15}{\sin(10x + 30)}$$

Parameter:

 $x_n = n$ te Zahl in N $(n \in 1..3)$ $x_n > 1$.

Der Grenzwert lautet: $\lim_{x\to -x_1} \frac{x_2x+(x_1\cdot x_2)}{\sin(x_3x+x_1\cdot x_3)}$

In dieser Aufgabe sind $x_1 = 3$ $x_2 = 5$ $x_3 = 10$.

Erklärung:

Wenden Sie die Regel von de l'Hospital an: Seien f, g differenzierbare Funktionen mit

$$\lim_{x \to -3} f(x) = \lim_{x \to -3} g(x) = 0, \quad \text{dann gilt:} \quad \lim_{x \to -3} \frac{f(x)}{g(x)} = \lim_{x \to -3} \frac{f'(x)}{g'(x)}.$$

Rechnung:

$$\lim_{x \to -3} \frac{5x+15}{\sin(10x+30)} =^H \lim_{x \to -3} \frac{5}{10\cos(10x+30)}$$

$$= \frac{5}{10\cos(10\cdot(-3)+30)} = \frac{5}{10\cos0} = \frac{5}{10}$$
Damit gilt
$$\lim_{x \to -3} \frac{5x+15}{\sin(10x+30)} = \frac{1}{2}$$

Angebotene Lösungen:

 $\frac{5}{\sin 10}$

 $\frac{15}{\sin 30}$

 $\times \frac{1}{2}$ $\frac{1}{10}$

 $\frac{3}{\sin 10}$ ∞

5 12

Fehlerinterpretation:

 $\frac{\frac{5}{\sin 10}}{\cos 10}$ -3 $\frac{15}{\sin 30}$ $\frac{1}{2}$ 1

DF: de l'Hospital nicht richtig angewendet DF: de l'Hospital nicht richtig angewendet

DF: de l'Hospital nicht richtig angewendet DF: de l'Hospital nicht richtig angewendet

richtig

DF: de l'Hospital nicht richtig angewendet DF: de l'Hospital nicht richtig angewendet

 $\frac{3}{\sin 10}$ DF: de l'Hospital nicht richtig angewendet DF: de l'Hospital nicht richtig angewendet

2 3 4 × 6 7 8 9 10 11 DF: de l'Hospital nicht richtig angewendet DF: de l'Hospital nicht richtig angewendet ∞ DF: de l'Hospital nicht richtig angewendet 0

MV 04 Blatt 06 Kapitel 4.2 Grenzwerte Kl: 14G Hospital Funktionen Nummer: 93 0 200406008

Grad: 40 Zeit: 30 Quelle: keine

Aufgabe 6.1.8:

Sei $f: \mathbb{R}\setminus\{3\} \to \mathbb{R}: \quad f(x) = (7x - 21) \cdot \cos(\frac{5}{4x - 12})$. Bestimmen Sie den Grenzwert: $\lim_{x \to 3} f(x)$

Parameter:

 $x_n = n \text{ Zahl } (n \in 1..4)$

 x_2 Wert, gegen den das x läuft $x_n > 1$

In dieser Aufgabe sind $x_1 = 7$ $x_2 = 3$ $x_3 = 5$ $x_4 = 4$.

Erklärung:

Weil kein Bruch $\frac{0}{0}$ oder $\frac{\infty}{\infty}$ erkennbar ist, ist von der Anwendung der Regel von de l'Hospital abzuraten. Stattdessen verwenden wir eine Regel aus dem Bereich 'Folgen'.

Rechnung:

Es gilt: a_n beschränkt und $b_n \to 0 \Rightarrow a_n \cdot b_n \to 0$.

Sei $x_n \subseteq \mathbb{R} \setminus \{3\}$ mit $x_n \to 3$, dann gilt $(7x_n - 21) \to 0$ und $\cos(\frac{5}{4x_n - 12}) \in [-1, 1]$. Damit gilt $f(x_n) \to 0$.

Angebotene Lösungen:

1

 $\frac{35}{4}$ $-\infty$

6 ±1 \times 0

7 es gibt keinen 11 4

[-1,1]

Fehlerinterpretation:

1	$\frac{5}{4}$ 3	DF: geraten
2	3	DF: geraten
3	1	DF: geraten
4	$\frac{0}{0}$	DF: nicht definiert und geraten
5	$\frac{0}{0}$ $\frac{35}{4}$	DF: geraten
6	±1	DF: Grenzwert ist immer eindeutig
7	es gibt keinen	DF: es gibt einen
8	[-1, 1]	DF: Grenzwert ist nie ein Intervall
9	$-\infty$	DF: geraten
×	0	richtig
11	4	DF: geraten
12	$\frac{4}{\frac{32}{7}}$	DF: geraten

Allgemeine Hinweise:

Bei weiteren Fragen, wenden Sie sich bitte an W. Schmid (sltsoftware @yahoo.de).

Weitere Hinweise finden Sie auf unserer Veranstaltungswebseite unter: http://www.vorkurs.de.vu