Mathe Vorkurs Online - Übungen Blatt 9

Blatt 09 Kapitel 6.3 Partialbruchzerlegung

ElementareFktn Kl: 14G Koeffizientenvergleich Nummer: 5 0 200409002

Grad: 20 Zeit: 30 Quelle: keine

Aufgabe 9.1.1: Zerlegen Sie den Bruch $\frac{6x+24}{(x-1)^2}$ in Partialbrüche.

Parameter:

 $x_n = \text{Faktoren und Summanden im Bruch}, x_n > 1 \ (x_3 \ge 1) \ n = 1..3$

Die Formel lautet: $\frac{x_1x+x_2}{(x-x_3)^2}$.

In dieser Aufgabe sind $x_1 = 6$ $x_2 = 24$ $x_3 = 1$.

Erklärung:

Der Nenner liegt bereits in linearfaktorzerlegter Form vor. Er besitzt nur eine Nullstelle x_0 , diese hat aber Vielfachheit 2. Stellen Sie f(x) als $\frac{A}{x-x_0} + \frac{B}{(x-x_0)^2}$ dar. Weil der Zählergrad < Nennergrad ist, kann auf eine Polynomdivision mit Rest verzichtet werden.

Rechnung:

$$f(x) = \frac{6x + 24}{(x-1)^2} = \frac{A}{(x-1)} + \frac{B}{(x-1)^2} \Rightarrow 6x + 24 = A \cdot (x-1) + B \quad (*)$$

Mit der Grenzwertmethode kann hier nur ein Koeffizient bestimmt werden. Den zweiten Koeffitzienten bestimmen wir durch das Einsetzen des bestimmten Wertes x = 0 in (*):

$$x = 1$$
 : $6 \cdot 1 + 24 = A \cdot (1 - 1) + B$ $\Rightarrow B = 30$
 $x = 0$: $6 \cdot 0 + 24 = A \cdot (0 - 1) + 30$ $\Rightarrow A = 6$

Damit ist die Partialbruchzerlegung:
$$f(x) = \frac{6}{x-1} + \frac{30}{(x-1)^2}$$
.

Angebotene Lösungen:

Fehlerinterpretation:

8
$$\left(\frac{6(x+4)}{(x-1)}\right)^2$$
 DF: Partialbruchzerlegung gar nicht verstanden DF: Partialbruchzerlegung falsch durchgeführt

$$\frac{6x}{x-1} + \frac{24}{(x-1)^2}$$
 DF: Partialbruchzerlegung nicht verstanden

MV 04 Blatt 09 Kapitel 6.4 trigonometrische

Nummer: 31 0 200409006 Kl: 14G keine ElementareFktn

Grad: 20 Zeit: 30 Quelle: keine **Aufgabe 9.1.2:** Berechnen Sie die Umkehrfunktion von $f: \mathbb{R}_0^- \to \mathbb{R}$ $f(x) = \cosh(4x)$ elementar.

Parameter:

 $x_1 = \text{Faktor } x_1 > 1.$

Die Formel lautet: $\cosh(x_1 x)$.

In dieser Aufgabe ist $x_1 = 4$.

Erklärung:

Wenden Sie die Definition von $y = \cosh x$ an und lösen Sie die Gleichung mittels Substitution und Mitternachtsformel nach y auf.

Rechnung:

$$\cosh(4x) = \frac{e^{4x} + e^{-4x}}{2} = y \quad \Leftrightarrow \quad e^{4x} - 2y + e^{-4x} = 0 \qquad \text{Multiplikation mit 2}$$

$$\Leftrightarrow \quad e^{2\cdot 4x} - 2y \cdot e^{4x} + 1 = 0 \qquad \text{Multiplikation mit } e^{4x}$$

$$\Leftrightarrow \quad u^2 - 2y \cdot u + 1 = 0 \qquad \text{Substitution } e^{4x} = u$$

$$\Leftrightarrow \quad u_{1,2} = \frac{2y \pm \sqrt{4y^2 - 4}}{2} \qquad \text{Mitternachtsformel}$$

$$\Leftrightarrow \quad x_{1,2} = \frac{\ln(y \pm \sqrt{y^2 - 1})}{4} \qquad \text{R\"ucksubstitution}$$

Damit ist die Umkehrfunktion $y = \frac{\ln(x - \sqrt{x^2 - 1})}{4}$ mit $\mathbb{ID} = [1, \infty)$ (was dem Wertebereich von $\cosh(4x)$ entspricht).

Angebotene Lösungen:

Fehlerinterpretation:

- $\ln(4x \sqrt{(4x)^2 1})$ $\ln(4x + \sqrt{(4x)^2 1})$ RF: falsch substituiert
- RF: falsch substituiert $\sin(4x)$ DF: Lösung geraten
- $4\cos x$ DF: Lösung geraten
- $\ln(x + \sqrt{x^2 + 1})$ RF: $\sinh 4x$ invertient $\ln(4x^4 - \sqrt{(4x)^2 + 1})$ RF: falsch substituiert
- $\ln(4x + \sqrt{(4x)^2 + 1})$ RF: falsch substituiert
- $4 \sinh x$ DF: Lösung geraten $4\sin x$ DF: Lösung geraten
- $\frac{\ln(x-\sqrt{x^2-1})}{\ln(x-\sqrt{x^2-1})}$ richtig
- $4\cosh x$ DF: Lösung geraten $\sinh(4x)$ DF: Lösung geraten

MV 04 Blatt 09 Kapitel 6.3 Partialbruchzerlegung

Reihen ElementareFktn Nummer: 44 0 200409003 Kl: 14G

W Grad: 20 Zeit: 30 Quelle: keine

Aufgabe 9.1.3:

Gegen welchen Wert (gerundet auf zwei Stellen) strebt die Reihe
$$\sum_{k=0}^{\infty} \frac{12}{(k+3)\cdot(k+6)}$$

Parameter:

 $x_n = \text{Koeffizienten im Bruch}, x_n > 0 \ n = 1...3, (x_2 > x_1)$

Die Summe lautet: $\sum_{k=0}^{\infty} \frac{\{(x_2 - x_1) \cdot x_3\}}{(k + x_1) \cdot (k + x_2)}$

In dieser Aufgabe sind $x_1 = 3$ $x_2 = 6$ $x_3 = 4$.

Erklärung:

Die Reihe wird zuerst als Limes einer (endlichen) Summe interpretiert. Durch Partialbruchzerlegung kann die Summe aufgespalten und als Teleskopsumme interpretiert werden. Stellen Sie die Summenglieder als $\frac{A}{x-x_1} + \frac{B}{x-x_2}$ dar.

Rechnung:

$$\frac{12}{(k+3)\cdot(k+6)} := \frac{A}{k+3} + \frac{B}{k+6} \implies 12 = A\cdot(k+6) + B\cdot(k+3)$$

Für die Reihe gilt

$$\sum_{k=0}^{\infty} \frac{12}{(k+3)\cdot(k+6)} = \lim_{n\to\infty} \sum_{k=0}^{n} \frac{12}{(k+3)\cdot(k+6)} = \lim_{n\to\infty} \sum_{k=3}^{5} \frac{4}{k} - \sum_{k=n+4}^{n+6} \frac{4}{k} = \sum_{k=3}^{5} \frac{4}{k} - 0$$

$$\sum_{k=3}^{5} \frac{4}{k} = \frac{4}{3} + \frac{4}{4} + \frac{4}{5} \approx 3.13$$

Angebotene Lösungen:

1 2.33	2 6	3 1.8	4 8.67
5 0	6 ∞	₇ 5.13	\times 3.13
9 0.43	10 3.8	11 7.33	12 1

Fehlerinterpretation:

1	2.33	RF: Letztes Summenglied vergessen
2	6	DF: Falsche Summe gerechnet
3	1.8	RF: Erstes Summenglied vergessen
4	8.67	DF: Falsche Summe gerechnet
5	0	DF: Limes der Folge
6	∞	DF: Lösung geraten
7	5.13	RF: Ein Summenglied zuviel addiert
\times	3.13	richtig
9	0.43	DF: Erster Summand angegeben
10	3.8	RF: Ein Summenglied zuviel addiert
11	7.33	DF: Falsche Summe gerechnet
12	1	DF: Lösung geraten

MV 04 Blatt 09 Kapitel 6.3 Partialbruchzerlegung

Grenzwert methodeElementareFktn Nummer: 51 0 200409001 Kl: 14G

Grad: 20 Zeit: 30 Quelle: keine

Aufgabe 9.1.4: Zerlegen Sie den Bruch $\frac{3}{6x^2-66x+108}$ in Partialbrüche.

Parameter:

 $x_n = \text{Faktoren und Summanden im Bruch}, x_n > 1 \ (x_3 \ge 1), \ x_1 \text{ ist Teiler von } x_2, \ x_3 < x_4 \quad n = 1..4$

Die Formel lautet: $\frac{x_1}{x_2x^2 - \{x_2 \cdot (x_3 + x_4)\}x + \{x_2 \cdot x_3 \cdot x_4\}}$

In dieser Aufgabe sind $x_1 = 3$ $x_2 = 6$ $x_3 = 2$ $x_4 = 9$.

Suchen Sie zuerst die Nennernullstellen x_1 und x_2 von f(x). Weil der Zählergrad < Nennergrad ist, kann auf eine Polynomdivision mit Rest verzichtet werden. Stellen Sie f(x) als $\frac{A}{x-x_1} + \frac{B}{x-x_2}$ dar.

Rechnung:

$$f(x) = \frac{3}{6x^2 - 66x + 108} = \frac{3}{6} \cdot \frac{1}{x^2 - 11x + 18} = \frac{1}{2} \cdot \frac{1}{(x - 2) \cdot (x - 9)} = \frac{1}{2} \cdot \left(\frac{A}{x - 2} + \frac{B}{x - 9}\right)$$
Damit gilt:
$$\frac{1}{x^2 - 11x + 18} = \frac{A}{x - 2} + \frac{B}{x - 9} \implies 1 = A \cdot (x - 9) + B \cdot (x - 2) \quad (*)$$

Wir wenden die Grenzwertmethode an.

Dazu setzen wir in die Gleichung (*) die (Grenz -) Werte x = 2 und x = 9 ein:

$$x = 2$$
 : $1 = A \cdot (2 - 9) + B \cdot (2 - 2) \Rightarrow A = \frac{-1}{7}$
 $x = 9$: $1 = A \cdot (9 - 9) + B \cdot (9 - 2) \Rightarrow B = \frac{1}{7}$

Damit ist
$$f(x) = \frac{1}{2} \left(-\frac{\frac{1}{7}}{x-2} + \frac{\frac{1}{7}}{x-9} \right) = \frac{\frac{1}{14}}{x-9} - \frac{\frac{1}{14}}{x-2}$$

Angebotene Lösungen:

Fehlerinterpretation:

$$2$$
 $\frac{14}{x+9} - \frac{14}{x+2}$ RF: falsches Vorzeichen im Nenner $\frac{1}{3}$ $\frac{1}{x-9} - \frac{1}{x-2}$ DF: Lösung geraten

$$7 \frac{\frac{1}{2}}{x_{7}^{2}} + \frac{\frac{1}{2}}{11x_{7}} + \frac{\frac{1}{2}}{18}$$
 DF: Partialbruchzerlegung gar nicht verstanden

$$\frac{2}{x+9} - \frac{2}{x+2}$$
 RF: falsches Vorzeichen im Nenner $\frac{3}{6x^2} - \frac{3}{66x} + \frac{3}{108}$ DF: Partialbruchzerlegung gar nicht verstanden

$$\frac{1}{10}$$
 $\frac{q^2}{x^2} - \frac{q^{0x}}{11x} + \frac{1}{18}$ DF: Partialbruchzerlegung gar nicht verstanden

$$\frac{1}{11} = \frac{\frac{1}{2}}{\frac{2}{x^2 - 11x + 18}}$$
 DF: Partialbruchzerlegung nicht verstanden

richtig

Aufgabe 9.1.5: Zerlegen Sie den Bruch $\frac{6}{(x-2)\cdot(x^2+2)}$ in (reelle) Partialbrüche.

Parameter:

 $x_n = \text{Faktoren und Summanden im Bruch}, x_n > 1, n = 1...2$

Die Formel lautet: $\frac{\{x_1^2+x_2\}}{(x-x_1)\cdot(x^2+x_2)}$

In dieser Aufgabe sind $x_1 = 2$ $x_2 = 2$.

Erklärung:

Der Nenner hat die komplexen Nullstellen $\pm i\sqrt{2}$. Die reelle Partialbruchzerlegung ist von der Form $\frac{A}{x-2} + \frac{Bx+C}{x^2+2}$.

Rechnung:

$$f(x) = \frac{6}{(x-2)\cdot(x^2+2)} = \frac{A}{x-2} + \frac{Bx+C}{x^2+2} \Rightarrow 6 = A\cdot(x^2+2) + (Bx+C)\cdot(x-2) \quad (*)$$

Wir wenden zuerst die Grenzwertmethode zur Berechnung von A an.

Dazu setzen wir in die Gleichung (*) den (Grenz -) Wert x=2 ein:

$$x = 2$$
 : $6 = A \cdot (2^2 + 2) + (Bx + C) \cdot (2 - 2) = 6 \cdot A \Rightarrow A = 1$

Jetzt setzen wir in die Gleichung (*) den speziellen Wert x=0 (und A=1) ein:

$$x = 0$$
: $6 = 1 \cdot (0^2 + 2) + (B \cdot 0 + C) \cdot (0 - 2) = 2 - 2 \cdot C \implies C = -2$

Um C zu bestimmen, verwenden wir einen Koeffizientenvergleich. Dazu formen wir (*) um:

$$0 \cdot x^2 + 0 \cdot x + 6 = (A+B) \cdot x^2 + (C-2B) \cdot x + (2A-2C) = (1+B) \cdot x^2 + (-2-2B) \cdot x + 2 + 4$$

Koeffizientenvergleich ergibt das Gleichungssystem

$$0 = 1 + B$$
 $0 = -2 - 2B$ $6 = 2 + 4$ $\Rightarrow B = -1$.

Damit ist

$$f(x) = \frac{1}{x-2} + \frac{-x-2}{x^2+2}.$$

Angebotene Lösungen:

Fehlerinterpretation:

- RF: Falsches Vorzeichen
- DF: Lösung geraten
- DF: Lösung geraten
- DF: Lösung geraten
- DF: Doch DF: Lösung geraten

- richtig DF: Lösung geraten
- DF: Lösung geraten
- DF: Lösung geraten
- DF: Lösung geraten DF: Lösung geraten

MV 04

Blatt 09

Kapitel 6.4

trigonometrische

keine

ElementareFktn

Grad: 20 Zeit: 30 Quelle: keine

Nummer: 82 0 200409005 Kl: 14G

Aufgabe 9.1.6: Bestimmen Sie cos(arcsin (7x)) für $x \in [0, \frac{1}{7}]$ (- der Wertebereich von arcsin x sei $[0, \frac{\pi}{2}]$).

Parameter:

 $x_1 = \text{Faktor } x_1 > 1.$

Die Formel lautet: $\cos(\arcsin(x_1 x))$.

In dieser Aufgabe ist $x_1 = 7$.

Erklärung:

Substituieren Sie $y = \arcsin(7x)$ und wenden Sie die Formel $\sin^2 y + \cos^2 y = 1$ an. Durch die Einschränkung des Bild und Definitionsbereiches fällt das \pm beim Auflösen der Gleichung weg.

Rechnung:

Sei $y = \arcsin(7x)$, dann gilt:

$$\cos y = \sqrt{1 - \sin^2 y} \qquad y \in [0, \frac{\pi}{2}] \Rightarrow \cos y \ge 0$$

$$= \sqrt{1 - (\sin(\arcsin(7x)))^2} \qquad y = \arcsin(7x)$$

$$= \sqrt{1 - (7x)^2} \qquad \sin(\arcsin 7x) = 7x$$

Damit ist $\cos(\arcsin(7x)) = \sqrt{1 - (7x)^2}$.

Angebotene Lösungen:

\times $\sqrt{1-}$	$(7x)^2$
----------------------	----------

2 7x

 $\frac{7}{\sqrt{7-x^2}}$

 $\frac{1}{\sqrt{1-(7x)^2}}$

$$\begin{array}{ccc}
5 & \sqrt{7 - x^2} \\
9 & \frac{1}{\sqrt{49 - x^2}}
\end{array}$$

 $\begin{array}{ccc}
6 & 7\cos x \\
\hline
10 & \cos(7x)
\end{array}$

 $\begin{array}{c|c}
7 & 7 \sin x \\
\hline
 & \sqrt{49 - x^2}
\end{array}$

 $\frac{1}{\sqrt{1-x}}$

Fehlerinterpretation:

$$\times$$
 $\sqrt{1-(7x)^2}$

richtig

DF: Lösung geraten

 $\frac{3}{4}$ $\frac{7}{\sqrt{7-x^2}}$

DF: Lösung geraten DF: Lösung geraten

 $\sqrt{1-(7x)^2}$ $\sqrt{7-x^2}$

DF: falsch substituiert

 $\frac{3}{6}$ $7\cos x$

DF: Lösung geraten DF: Lösung geraten

 $\begin{array}{ccc}
7 & 7 \sin x \\
8 & \sin(7x)
\end{array}$

DF: Lösung geraten

 $\begin{array}{ccc}
9 & \sqrt{49-x^2} \\
10 & \cos(7x)
\end{array}$

DF: Lösung geraten
DF: Lösung geraten

 $\sqrt{49-x^2}$

DF: Losung geraten
DF: falsch substituiert

 $\sqrt{1-7x^2}$

RF: falsch substituiert

Allgemeine Hinweise:

Bei weiteren Fragen, wenden Sie sich bitte an W. Schmid (sltsoftware @yahoo.de).

Weitere Hinweise finden Sie auf unserer Veranstaltungswebseite unter: http://www.vorkurs.de.vu