Mathe Vorkurs Online - Übungen Blatt 13

MV 05 Blatt 04 Kapitel 3.3 Reihenwerte Reihen Folgen Nummer: 12 0 200504010 Kl: 14G

Grad: 50 Zeit: 30 Quelle: keine

Aufgabe 13.1.1: Gegen welchen reellen Wert konvergiert die folgende Reihe?

$$\sum_{n=1}^{\infty} \frac{(-3)^n}{n}$$

Parameter:

 $x_1 =$ erstes Glied der Reihe $x_1 = 1, 2$

 $x_2 = \text{Zähler der Reihe } x_2 > 2$

Die Reihe lautet also: $\sum_{n=x_1}^{\infty} \frac{x_2^n}{n}$.

In dieser Aufgabe sind $x_1 = 1$ $x_2 = 3$.

Erklärung:

$$\sum_{n=1}^{\infty} \frac{x^n}{n} = -\ln(1-x) \quad \text{für } x \in [-1,1)$$

Rechnung:

 $\sum_{n=1}^{\infty} \frac{(-3)^n}{n}$ divergiert, weil die Summanden nicht gegen 0 gehen. Die Reihe $\sum_{n=1}^{\infty} \frac{x^n}{n}$ konvergiert nur für $x \in [-1,1)$.

Angebotene Lösungen:

 \square Die Reihe divergiert $2 - \ln(-2)$ $\ln(-2) - 1.5$

 $-\ln(4)$ $\frac{1}{1-3} - 1.5$ $e^3 - 1.5$

 $e^3 + 3$

Fehlerinterpretation:

 □ Die Reihe divergiert richtig $-\ln(-2)$ DF: Konvergenzbereich nicht beachtet

DF: Konvergenzbereich nicht beachtet

DF: Konvergenzbereich nicht beachtet

DF: Falsche Reihe verwendet

DF: Konvergenzbereich nicht beachtet

DF: Konvergenzbereich nicht beachtet DF: Konvergenzbereich nicht beachtet

 $\begin{array}{c|cccc}
\hline
2 & -\ln(-2) \\
\hline
3 & -\ln(4) - 1.5 \\
\hline
4 & \ln(-2) - 1.5 \\
\hline
5 & \frac{1}{1-3} - 1.5 \\
\hline
6 & -\ln(4) + 3 \\
\hline
7 & \ln(4) \\
\hline
8 & -\ln(4) \\
\hline
9 & e^3 + 3 \\
\hline
10 & \frac{1}{1-3} \\
\hline
10 & \frac{1}{1-3} \\
\hline
10 & \frac{1}{1-3} \\
\hline
11 & \frac{1}{1-3} \\
\hline
12 & \frac{1}{1-3} \\
\hline
13 & \frac{1}{1-3} \\
\hline
14 & \frac{1}{1-3} \\
\hline
15 & \frac{1}{1-3} \\
\hline
16 & \frac{1}{1-3} \\
\hline
17 & \frac{1}{1-3} \\
\hline
19 & \frac{1}{1-3} \\
\hline
10 & \frac{1}{1-3} \\
\hline
11 & \frac{1}{1-3} \\
\hline
12 & \frac{1}{1-3} \\
\hline
13 & \frac{1}{1-3} \\
\hline
14 & \frac{1}{1-3} \\
\hline
15 & \frac{1}{1-3} \\
\hline
16 & \frac{1}{1-3} \\
\hline
17 & \frac{1}{1-3} \\
\hline
18 & \frac{1}{1-3} \\
\hline
19 & \frac{1}{1-3} \\
\hline
10 & \frac{1}{1-3} \\
\hline
11 & \frac{1}{1-3} \\
\hline
12 & \frac{1}{1-3} \\
\hline
13 & \frac{1}{1-3} \\
\hline
14 & \frac{1}{1-3} \\
\hline
15 & \frac{1}{1-3} \\
\hline
16 & \frac{1}{1-3} \\
\hline
17 & \frac{1}{1-3} \\
\hline
18 & \frac{1}{1-3} \\
\hline
19 & \frac{1}{1-3} \\
\hline
10 & \frac{1}{1-3} \\
\hline
10 & \frac{1}{1-3} \\
\hline
10 & \frac{1}{1-3} \\
\hline
11 & \frac{1}{1-3} \\
\hline
12 & \frac{1}{1-3} \\
\hline
13 & \frac{1}{1-3} \\
\hline
14 & \frac{1}{1-3} \\
\hline
15 & \frac{1}{1-3} \\
\hline
16 & \frac{1}{1-3} \\
\hline
17 & \frac{1}{1-3} \\
\hline
18 & \frac{1}{1-3} \\
\hline
19 & \frac{1}{1-3} \\
\hline
10 & \frac{1}{1-3} \\
10 & \frac{$ DF: Falsche Reihe verwendet DF: Falsche Reihe verwendet

DF: Konvergenzbereich nicht beachtet

DF: Falsche Reihe verwendet

MV 05Blatt 01 Kapitel 2.2 Summen Nummer: 13 0 2005010008 geometrische Grundlagen Kl: 14G

Grad: 50 Zeit: 20 Quelle: keine

Aufgabe 13.1.2: Berechnen Sie $\sum_{k=0}^{n} \frac{4^{k+3}}{3^{k-3}}$ für $n \in \mathbb{N}$.

Parameter:

 $x_1 = \text{Basis des Z\"{a}hlers } x_1 > 1$

 $x_2 = \text{Basis des Nenners } x_1 > x_2 > 1$

 $x_3 = \text{Summand im Z\"{a}hler } x_3 > 0$

 $x_4 =$ Subtrahend im Nenner $x_4 > 0$

Die Summe lautet also: $\sum_{k=0}^{n} \frac{(x_1)^{k+x_3}}{(x_2)^{k-x_4}}$

In dieser Aufgabe sind $x_1 = 4$, $x_2 = 3$,

Erklärung:

$$\sum_{i=0}^{n} \frac{p^{k}}{q^{k}} = \frac{1 - (\frac{p}{q})^{k+1}}{1 - \frac{p}{q}} .$$

Rechnung:

$$\sum_{k=0}^{n} \frac{4^{k+3}}{3^{k-3}} \quad = \quad \frac{4^3}{3^{-3}} \cdot \sum_{k=0}^{n} \frac{4^k}{3^k} \quad = \quad 4^3 \cdot 3^3 \cdot \sum_{k=0}^{n} \left(\frac{4}{3}\right)^k \quad = \quad 1728 \cdot \frac{1 - \left(\frac{4}{3}\right)^{n+1}}{1 - \frac{4}{3}}$$

Angebotene Lösungen:

9 $1728 \cdot \frac{\frac{4}{3}^2 + \frac{4}{3}}{2}$

 $\times 1728 \cdot \frac{1 - (\frac{4}{3})^{n+1}}{1 - \frac{4}{2}}$

Fehlerinterpretation:

DF: Summand angegeben

DF: Lösung geraten DF: Falsch ausgeklammert

DF: Lösung geraten

DF: Dies ist nicht die Binomische Formel

DF: Lösung geraten

DF: Ausklammern vergessen

DF: Dies ist nicht Summe der natürlichen Zahlen

DF: Dies ist nicht Summe der natürlichen Zahlen

DF: Dies ist nicht Summe der natürlichen Zahlen DF: Dies ist nicht die Binomische Formel

richtig

MV 05

Blatt 04

Kapitel 3.3

Reihenwerte

Reihen

Folgen

Nummer: 58 0 200504011

Kl: 14G

Grad: 50 Zeit: 30 Quelle: keine

Aufgabe 13.1.3: Gegen welchen reellen Wert konvergiert die folgende Reihe?

W

$$\sum_{n=0}^{\infty} \frac{5 \cdot (-1)^n \cdot 2^{2n}}{(2n+1)!}$$

Parameter:

 $x_1 = \text{Basis im Z\"{a}hler der Reihe } x_1 > 1$

 $x_2 = \text{Faktor im Z\"{a}hler der Reihe } x_2 > x_1$

Die Reihe lautet also: $\sum_{n=0}^{\infty} \frac{x_2 \cdot (-1)^n \cdot (x_1)^{2n}}{(2n+1)!}$

In dieser Aufgabe sind $x_1 = 2$ $x_2 = 5$.

Erklärung:

$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} = \sin x \quad \text{für alle } x \in \mathbb{R}$$

Rechnung:

$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} = \sin x = x \cdot \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n+1)!},$$

wenn man x (unabhängig von n) ausklammert. Also ist

$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n+1)!} = \frac{\sin x}{x} \text{ und } \sum_{n=0}^{\infty} \frac{5 \cdot (-1)^n \cdot 2^{2n}}{(2n+1)!} = \frac{5}{2} \sin 2.$$

Angebotene Lösungen:

- $\times \frac{5}{2}\sin 2$
- $\sin 10$
- $3 (2n+2) \cdot 5 \cdot \cos 2$
- $(2n+2) \cdot \sin 10$

- 5 cos 10
- $6 \quad 10\cos 2$
- $(2n+2) \cdot \cos 10$ $10 \sin 2$
- $(2n+2) \cdot 5 \cdot \sin 2$

- 9 Die Reihe divergiert
- $5\cos 2$

Fehlerinterpretation:

 $\frac{5}{2}\sin 2$

- richtig
- $\sin 10$ DF: 5 nicht ausgeklammert
- 3 $(2n+2) \cdot 5 \cdot \cos 4$ $(2n+2) \cdot \sin 10$ 5 $\cos 10$ 6 $10 \cos 2$ 7 $(2n+2) \cdot \cos 10$ $(2n+2)\cdot 5\cdot \cos 2$ DF: n ist Summationsindex
- DF: n ist Summationsindex DF: falsche Reihe
- DF: x nicht ausgeklammert
- $(2n+2)\cdot\cos 10$ DF: n ist Summationsindex DF: n ist Summationsindex
- 8 $(2n+2) \cdot 5 \cdot \sin 2$ 9 Die Reihe divergiert DF: Lösung geraten $5\cos 2$ DF: falsche Reihe
- $10 \sin 2$ DF: x nicht ausgeklammert DF: n ist Summationsindex

MV 05 Blatt 04 Kapitel 3.3 Reihenwerte Reihen Folgen Nummer: 60 0 200504009 Kl: 14G

Grad: 50 Zeit: 30 Quelle: keine W

Aufgabe 13.1.4: Gegen welchen reellen Wert konvergiert die folgende Reihe?

$$\sum_{n=0}^{\infty} \frac{(-49)^n}{(2n)!}$$

Parameter:

 $x_1=$ Zähler der Reihe- $x_1>1$ - $x_2:=x_1^2$

Die Reihe lautet also: $\sum_{i=0}^{\infty} \frac{(-x_1 \cdot x_1)^n}{(2n)!}$.

In dieser Aufgabe sind $x_1 = 7$, $x_2 = 49$.

Erklärung:

$$\sum_{i=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} = \sum_{i=0}^{\infty} \frac{(-x^2)^n}{(2n)!} = \cos x$$

Rechnung:

$$\sum_{i=0}^{\infty} \frac{(-x^2)^n}{(2n)!} = \cos x \text{ damit ist } \sum_{i=0}^{\infty} \frac{(-49)^n}{(2n)!} = \sum_{i=0}^{\infty} \frac{(-1)^n 7^{2n}}{(2n)!} = \cos 7.$$

Angebotene Lösungen:

- $\ln 49$

- $-\sin 49$

- $-\ln 49$
- $-\cos 49$

- 9 $-e^{49}$
- $\cos 7$
- $-\ln 7$
- $\sin 49$

Fehlerinterpretation:

 $\ln 49$

DF: falsche Reihe verwendet DF: Quadrat nicht beachtet

 $\begin{array}{c|cccc} & \ln 49 \\ \hline 2 & e^{-49} \\ \hline 3 & -e^{7} \\ \hline 4 & -\sin 4 \\ \hline 5 & -\ln 49 \\ \hline 6 & \text{Die R} \\ \hline 7 & e^{49} \\ \hline 8 & -\cos 6 \\ \hline 9 & -e^{49} \\ \hline \times & \cos 7 \\ \hline 11 & -\ln 7 \\ \hline 12 & \sin 49 \\ \hline \end{array}$

DF: falsche Reihe verwendet DF: Quadrat nicht beachtet

 $-\sin 49$ $-\ln 49$

- DF: Quadrat nicht beachtet
- Die Reihe divergiert
- DF: Lösung geraten

DF: falsche Reihe verwendet

 $-\cos 49$

DF: Quadrat nicht beachtet

DF: Quadrat nicht beachtet

richtig DF: falsche Reihe verwendet

 $\sin 49$

DF: Quadrat nicht beachtet

- MV 05Reihen
- Blatt 04 Folgen
- Kapitel 3.3
- Reihenwerte

- Nummer: 61 0 200504007 Kl: 14G
- Grad: 50 Zeit: 30 Quelle: keine W

Aufgabe 13.1.5: Gegen welchen reellen Wert konvergiert die folgende Reihe?

$$\sum_{n=1}^{\infty} \frac{4^n}{n!}$$

Parameter:

- $x_1 = \text{Zähler der Reihe } x_1 > 2$
- $x_2 =$ erstes Glied der Reihe $x_2 = 1, 2, 3$

Die Reihe lautet also: $\sum_{i=x_2}^{\infty} \frac{x_1^n}{n!}$.

In dieser Aufgabe sind $x_1 = 4$ $x_2 = 1$.

Erklärung:

$$\sum_{i=0}^{\infty} \frac{x^n}{n!} = e^x$$

Rechnung:

 $\sum_{i=0}^{\infty}\frac{x^n}{n!}=e^x$ damit ist $\sum_{i=0}^{\infty}\frac{4^n}{n!}=e^4.$ Die Reihe beginnt bei i=1. Damit muss vom Ergebnis noch 1 abgezogen werden. Damit ist

$$\sum_{i=1}^{\infty} \frac{4^n}{n!} = e^4 - 1$$

Angebotene Lösungen:

 e^4

 4^{2} 2

 \times e^4-1

 $e^4 - 13$ $\frac{1}{1-4}$

 $\cos(4) + 1$

 $\frac{1}{7}$ $\ln(4)$ $\ln \ln(4) - 5$ $\cos(4) - 13$ $\sin(4) - 1$

Fehlerinterpretation:

 e^4

DF: Reihenbeginn nicht beachtet

DF: Lösung geraten

DF: falsche Reihe verwendet richtig

Die Reihe divergiert

DF: Reihenbeginn falsch beachtet

DF: falsche Reihe verwendet DF: falsche Reihe verwendet

DF: falsche Reihe verwendet DF: falsche Reihe verwendet

1 e^4 2 4^2 3 $\frac{1}{1-4} + 5$ $\times e^4 - 1$ 5 $e^4 - 13$ 6 $\cos(4) + 1$ 7 $\ln(4)$ 8 $\cos(4) - 13$ 9 $\frac{1}{1-4}$ 10 Die Reihe divergiert
11 $\ln(4) - 5$ 12 $\sin(4) - 1$

DF: Lösung geraten

 $\sin(4) - 1$

DF: falsche Reihe verwendet DF: falsche Reihe verwendet

MV~05Reihen

Blatt 04

Kapitel 3.3

Reihenwerte Kl: 14G

Folgen

Nummer: 71 0 200504008

Grad: 50 Zeit: 30 Quelle: keine

Aufgabe 13.1.6: Gegen welchen reellen Wert konvergiert die folgende Reihe?

$$\sum_{n=1}^{\infty} \frac{(-1)^n 4^{2n}}{4 \cdot (2n)!}$$

Parameter:

 $x_1 = \text{Zähler der Reihe } x_1 > 2$

 $x_2 =$ erstes Glied der Reihe $x_2 = 1, 2$

 $x_5 = \text{Faktor im Nenner } x_5 > 1$

Die Reihe lautet also: $\sum_{i=x_2}^{\infty} \frac{(-1)^n x_1^{2n}}{x_5 \cdot (2n)!}$

In dieser Aufgabe sind $x_1 = 4$ $x_2 = 1$, $x_5 = 4$.

Erklärung:

$$\sum_{i=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} = \cos x$$

Rechnung:

 $\sum_{i=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} = \cos x \text{ damit ist } \sum_{i=0}^{\infty} \frac{(-1)^n 4^{2n}}{(2n)!} = \cos 4. \text{ Der Faktor 4 im Nenner ist unabhängig von } n, \text{ kann also ausgeklammert werden: } \sum_{i=0}^{\infty} \frac{(-1)^n 4^{2n}}{4 \cdot (2n)!} = \frac{1}{4} \cdot \sum_{i=0}^{\infty} \frac{(-1)^n 4^{2n}}{(2n)!} = \frac{1}{4} \cos 4. \text{ Die Reihe beginnt bei } i = 1. \text{ Damit half is the problem of the prob$ muss von dem Wert noch 1 abgezogen werden.

$$\frac{1}{4} \cdot \sum_{i=1}^{\infty} \frac{(-1)^n 4^{2n}}{(2n)!} = \frac{1}{4} \left((\cos 4) - (1) \right).$$

Angebotene Lösungen:

 $\cos(1) - (1)$

 $\sin(1) - (-7)$

3 Die Reihe divergiert $\frac{1}{4} ((\sin 4) - (-7))$

 $\cos(1) - (-7)$

 $\begin{array}{cc} \frac{1}{4} \left((\sin 4) - (1) \right) \\ \frac{1}{10} & \frac{1}{4} \cos 4 \end{array}$

 $\sin(1) - (1)$

 $\frac{1}{4}\sin 4$

9 cos 1

 $\frac{1}{4}\cos 4$

 $\sin 1$

 \times $\frac{1}{4}((\cos 4) - (1))$

Fehlerinterpretation:

1	$\cos(1) - (1)$	DF: $\frac{1}{4}$ nicht ausgeklammert
2	$\sin(1) - (-7)$	DF: $\frac{1}{4}$ nicht ausgeklammert
3	Die Reihe divergiert	DF: Lösung geraten
4	$\frac{1}{4}\left((\sin 4) - (-7)\right)$	DF: Reihenbeginn falsch beachtet
5	$\cos(1) - (-7)$	DF: $\frac{1}{4}$ nicht ausgeklammert
6	$\frac{1}{4}((\sin 4) - (1))$	DF: falsche Reihe verwendet
7	$\sin(1) - (1)$	DF: $\frac{1}{4}$ nicht ausgeklammert
8	$\frac{1}{4} \sin 4$	DF: Reihenbeginn nicht beachtet
9	$\cos 1$	DF: $\frac{1}{4}$ nicht ausgeklammert
10	$\frac{1}{4}\cos 4$	DF: Reihenbeginn nicht beachtet
11	$\sin 1$	DF: $\frac{1}{4}$ nicht ausgeklammert
X	$\frac{1}{4}((\cos 4) - (1))$	richtig

MV 05Blatt 03 Kapitel 3.1 Grenzwerte Kl: 14G Keine Folgen Nummer: 88 0 2005030008

Grad: 50 Zeit: 20 Quelle: keine

Aufgabe 13.1.7: Gegeben sei die Folge $a_n = \frac{35+5n}{n+2}, n \in \mathbb{N}$. Finden Sie den Grenzwert a von a_n und finden Sie für alle $0 < \varepsilon < 1$ das minimale m (abhängig von ε), für das $|a_m - a| \le \varepsilon$ gilt. Bitte beachten Sie, dass $\lceil x \rceil$ die Zahl $z \in \mathbb{Z}$ ist, für die gilt $z \geq x$ und z minimal.

Parameter:

 $x_1, x_2, x_3 =$ Elemente des Bruches, $x_3 =$ Grenzwert $x_1 \ge 2 \cdot x_2$

Die Folge lautet also: $a_n = \frac{\{x_3 \cdot x_1\} + x_3 n}{n + x_2}$

In dieser Aufgabe sind $x_1 = 7$, $x_2 = 2$,

Erklärung:

$$\frac{a(n+b)}{n+c}$$
 \rightarrow a der Rest ist Rechnen mit Beträgen

Rechnung:

$$\frac{5n+35}{n+2} = 5 + \frac{5}{n+2}$$

also ist 5 der Grenzwert und es muss gelten $|a_n-a|=|5+\frac{5}{n+2}-5|=\frac{5}{n+2}\leq \varepsilon$.

$$\frac{5}{n+2} \le \varepsilon \quad \Leftrightarrow \quad 5 \le \varepsilon (n+2) \quad \Leftrightarrow \quad \frac{5}{\varepsilon} - 2 \le n$$

Damit ist $\frac{5}{\varepsilon} - 2$ das maximale m, für das die Bedingung $|a_m - a| \le \varepsilon$ gilt.

Angebotene Lösungen:

\times $m = \lceil \frac{5}{\varepsilon} - 2 \rceil$	² Folge divergiert	$m = \lceil \frac{9}{\varepsilon} - 7 \rceil$	$m = \lceil \frac{7}{\varepsilon} \rceil$
$m = \lceil \frac{1}{\varepsilon} \rceil$	$ 6 m = \lceil \frac{1}{\varepsilon} - 7 \rceil $	$7 m = \lceil \frac{\varepsilon}{7} \rceil$	$m = \lceil \varepsilon \rceil$
9 $m = \lceil \frac{5}{\varepsilon} \rceil$	$m = \lceil \frac{5}{\varepsilon} - 7 \rceil$	$m = \lceil \frac{9}{\varepsilon} - 2 \rceil$	$m = \lceil \frac{\varepsilon}{2} \rceil$

Fehlerinterpretation:

MV 05 Blatt 03 Kapitel 3.1 Grenzwerte Keine Folgen Nummer: 92 0 2005030009 Kl: 14G

Grad: 50 Zeit: 20 Quelle: keine W

Aufgabe 13.1.8: Gegeben sei die Folge $a_n = \frac{14(n^2 + (-1)^n)}{2n^2 + 2}$, $n \in \mathbb{N}$. Finden Sie den Grenzwert a von a_n und finden Sie für alle $0 < \varepsilon < 1$ das minimale m (abhängig von ε), für das $|a_m - a| \le \varepsilon$ gilt. Bitte beachten Sie, dass $\lceil x \rceil$ die Zahl $z \in \mathbb{Z}$ ist, für die gilt $z \ge x$ und z minimal.

Parameter:

 $x_1,x_2=$ Elemente des Bruches, $\frac{14}{2}=$ Grenzwert $x_1\neq x_2$

Die Folge lautet also: $a_n = \frac{x_1(n^2 + (-1)^n)}{x_2n^2 + x_2}$

In dieser Aufgabe sind $x_1 = 14$, $x_2 = 2$

Erklärung:

$$\frac{a(n^2 + (-1)^n)}{n^2} \quad \to \quad a \quad .$$

Rechnung:

$$\frac{14(n^2+(-1)^n)}{2n^2+2} = \frac{14}{2} \cdot \frac{n^2+(-1)^n}{n^2+1} = 7 \cdot \left(1 + \frac{(-1)^n-1}{n^2+1}\right)$$
damit ist $a = 7$ und $|a_n-a| = \left|\frac{14}{2} \cdot \frac{(-1)^n-1}{n^2+1}\right| = \begin{cases} 7\frac{2}{n^2+1} & \text{für n gerade} \\ 0 & \text{für n ungerade} \end{cases}$

$$7\frac{2}{n^2+1} \le \varepsilon \iff 14 \le \varepsilon(n^2+1) \iff \frac{14}{\varepsilon}-1 \le n^2 \iff \sqrt{\frac{14}{\varepsilon}-1} \le n$$

Sei $k = \lceil \sqrt{\frac{14}{\varepsilon} - 1} \rceil$. Wenn k gerade ist, dann gilt: k - 1 ist ungerade, dass heißt $|a_{k-1} - a| = 0 < \varepsilon$. Wie findet man also im geraden Fall die nächst kleinere ungerade Zahl, während man im ungeraden Fall konstant bleibt? $2\lceil \frac{x}{2} \rceil - 1$ leistet genau das Gewünschte. Damit ist $m = 2\lceil \frac{\sqrt{\frac{14}{\varepsilon} - 1}}{2} \rceil - 1$.

Angebotene Lösungen:

Fehlerinterpretation:

	$m = \lceil \sqrt{\frac{14}{\varepsilon} - 1} \rceil$	DF: 'fast richtig', nur gerade und ungerade nicht beachtet
	$m = 2 \lceil \frac{\pm \sqrt{\frac{14}{\varepsilon} - 1}}{2} \rceil - 1$ $m = 2 \lceil (\frac{14}{\varepsilon} - 1)^2 \rceil - 1$	DF: \pm ist bei positiven m falsch DF: Quadratur ist falsch
4	$m = 2\lceil \left(\frac{\pm \frac{14}{\varepsilon} - 1}{\varepsilon}\right)^2 \rceil - 1$ $m = \lceil \sqrt{\varepsilon} - 1 \rceil$	DF: Quadratur ist falsch DF: Lösung geraten
6	$m = 2\lceil (\frac{\frac{14}{\varepsilon} - 1}{2})^2 \rceil - 1$ $m = \lceil \varepsilon^2 + 1 \rceil$	DF: Quadratur ist falsch DF: Lösung geraten
8	$m = \lceil \pm \sqrt{\frac{14}{\varepsilon}} \rceil$	DF: Lösung geraten
	$m = \lceil \frac{\varepsilon^2 + 1}{2} \rceil$	DF: Lösung geraten
11	$m = 2\lceil \frac{\sqrt{\frac{14}{\varepsilon} - 1}}{2} \rceil - 1$ Folge divergiert	richtig DF: das $(-1)^n$ verschwindet
12	$m = \lceil \sqrt{\frac{14}{\varepsilon}} \rceil$	DF: Lösung geraten

Allgemeine Hinweise:

Bei weiteren Fragen, wenden Sie sich bitte an W. Schmid (sltsoftware @yahoo.de). Weitere Hinweise finden Sie auf unserer Veranstaltungswebseite unter: http://www.vorkurs.de.vu