Mathe Vorkurs Online - Übungen Blatt 14

MV 05Blatt 06 Kapitel 4.2 Grenzwerte keine Stetigkeit Nummer: 35 0 200506011 Kl: 14G

Grad: 40 Zeit: 30 Quelle: keine

Aufgabe 14.1.1: Sei $f: \mathbb{R} \to \mathbb{R}$ definiert durch $f(x) = -x^2 + 8x + 2$, $x_0 = 4$ und sei $\varepsilon = \frac{1}{9}$ gewählt. Bestimmen Sie das maximale $\delta > 0$ mit der Eigenschaft, dass für alle x, für die $|x - x_0| < \delta$ gilt, $|f(x) - f(x_0)| < \varepsilon$ ist oder $f((x_0 - \delta, x_0 + \delta)) \subseteq (f(x_0) - \varepsilon, f(x_0) + \varepsilon).$

Parameter:

 $x_2 = x$ - Wert des Scheitels = x_0 , $x_3 = y$ - Wert des y - Achsenschnittpunktes, $\varepsilon = \frac{1}{(x_1)^2}$, $x_i > 1$, i = 1, 2, 3Es gilt also $f(x) = -x^2 + \{2 \cdot x_2\}x + x_3$. In dieser Aufgabe sind $x_1 = 3$ $x_2 = 4$

Erklärung:

Um das δ zu finden, kann folgende Formel (nach Schmid) probiert werden:

$$\delta(\varepsilon, x_0) = \pm (f^{-1}(f(x_0) \pm \varepsilon) - x_0)$$

Rechnung:

 $f(x_0) = f(4) = 18$. x_0 ist der Scheitel bzw. Hochpunkt der Parabel. Um $f^{-1}(x)$ zu berechnen, müssen wir die Gleichung $x = -y^2 + 8y + 2$ nach y auflösen:

$$y^{2} - 8y - 2 + x = 0 \iff y = \frac{8 \pm \sqrt{64 + 8 - 4x}}{2} \iff y = 4 \pm \sqrt{18 - x}$$

$$f^{-1}(f(x_0) - \varepsilon) \ = \ f^{-1}\left(\frac{162 - 1}{9}\right) \ = \ 4 \pm \sqrt{18 - \frac{161}{9}} \ = \ 4 \pm \sqrt{\frac{162 - 161}{9}} \ = \ 4 \pm \sqrt{\frac{1}{9}} \ = \ 4 \pm \frac{1}{3}.$$

Damit ist $f^{-1}(f(x_0) - \varepsilon) - x_0 = \pm \frac{1}{3}$. Mit $\delta = \frac{1}{3}$ gilt $|f(x_0) - f(x_0 - \delta)| = |f(x_0 + \delta) - f(x_0)| = \varepsilon$. Aus den diversen Monotonieeigenschaften folgt $\delta = \frac{1}{3}$. $f^{-1}(f(x_0) + \varepsilon) - x_0$ ist nicht definiert. Bitte beachten Sie, dass $f((x_0 - \delta, x_0 + \delta)) = (f(x_0 - \varepsilon), f(x_0)]$ ist und damit die Teilmengenbeziehung echt ist.

 $\delta = \frac{1}{3}$

Angebotene Lösungen:

$\delta = x_0$	$\delta = -\frac{1}{9}$	$\delta = \frac{1}{9}$	\times
$\delta = \pm \frac{1}{21}$	$\delta = -\frac{1}{2}$	$\delta = \pm \frac{1}{2}$	8

Fehlerinterpretation:

$\delta = x_0$	DF: Lösung geraten
$\delta = -\frac{1}{9}$	DF: Lösung geraten
$\delta = \frac{1}{0}$	DF: Lösung geraten

richtig

DF: Lösung geraten

DF: $\delta > 0$

DF: δ ist eindeutig DF: Lösung geraten

DF: $\delta > 0$

DF: Lösung geraten $\delta = \pm \varepsilon$ DF: Lösung geraten DF: Lösung geraten

MV 05 Blatt 06 Kapitel 4.2 Grenzwerte Nummer: 39 0 2005060009 Kl: 14G Asymptoten Funktionen

Grad: 40 Zeit: 30 Quelle: keine Aufgabe 14.1.2: Bestimmen Sie alle Asymptoten der folgenden Funktion:

$$f(x) = \ln\left(\frac{x^2 + 5x - 50}{x^3 + 13x^2}\right)$$

Parameter:

 x_i = Nullstellen und Asymptoten des Logarithmusargumentes, $x_3 > x_2 > x_1 > 1$.

Die Funktion lautet so:
$$\ln\left(\frac{x^2 + \{x_2 - x_1\}x - \{x_2 \cdot x_1\}}{x^3 + x_3x^2}\right).$$

In dieser Aufgabe sind $x_1 = 5$ $x_2 = 10$ $x_3 = 13$.

Erklärung:

Die wichtigen Werte des ln sind: $\ln(0) = -\infty$, $\ln 1 = 0$ und $\ln \infty = \infty$. $\ln x$ ist nur für x > 0 definiert.

Rechnung:

 $\ln x$ ist genau dann definiert, wenn x > 0 ist. Deshalb betrachten wir zuerst das Argument des ln:

$$h(x) = \frac{x^2 + 5x - 50}{x^3 + 13x^2} > 0.$$

Wir wenden die Methode von Knapp an. Die Grenzen sind: -13, -10, 0, 5. Mittels Punktprobe erhalten wir folgende Lösungen:

$$(-\infty, -13)$$
: Nein; $(-13, -10)$: Ja; $(-10, 0)$: Nein; $(0, 5)$: Nein; $(5, \infty)$: Ja;

Damit ist $\mathbb{ID} = (-13, -10) \cup (5, \infty) \ln h$ hat genau für h = 0 und $h = \infty$ senkrechte Asymptoten. Bei $h = -\infty$ hat $\ln h$ nicht unbedingt senkrechte Asymptoten. Damit gilt: f(x) hat senkrechte Asymptoten bei x = -13, x = -10und bei x=5. Für $x\to\infty$ geht h(x) gegen 0 und damit $\ln(h(x))\to-\infty$. f(x) hat weder waagrechte noch schiefe Asymptoten. Bei schiefen Asymptoten müsste es eine Gerade g = mx + c geben mit $|\ln(h(x)) - g(x)| \to 0$ für $x \to \infty$.

Angebotene Lösungen:

$$x = -13$$
 $x = -13, x = 0, y = 0$

$$3 \quad x = -13, x = -10, x = 0, x = 5$$
 4 f hat keine

$$[5]$$
 $x = -13, x = 0$ $[6]$ $x = -13, x = -10, x = 5, y = 0$

$$\times$$
 $x = -13, x = -10, x = 5$ 8 f hat unendlich viele

$$x = -13, x = -10, y = 0$$
 $x = -13, x = -10, x = 0, x = 5, y = 0$

Fehlerinterpretation:

$$x = -13$$
 DF: Nullstellen von h sind senkrechte Asymptoten

$$x = -13, x = 0, y = 0$$
 DF: Nullstellen von h sind senkrechte Asymptoten

$$3$$
 $x = -13, x = -10, x = 0, x = 5$ DF: $x = 0$ grenzt nicht an ID

$$x = -13, x = 0$$
 DF: Nullstellen von h sind senkrechte Asymptoten

$$x = -13, x = -10, x = 5, y = 0$$
 DF: f hat keine waagrechten Asymptoten

 \times x = -13, x = -10, x = 5richtig f hat unendlich viele DF: falsch

$$y = -13, x = -10, y = 0$$
 DF: Nullstellen von h sind senkrechte Asymptoten

$$x = -13, x = -10, x = 0, x = 5, y = 0$$
 DF: $x = 0$ grenzt nicht an ID

$$x = -13, x = -10, x = 0$$
 DF: Nullstellen von h sind senkrechte Asymptoten

x = -13, x = -10, x = 0, x = 5, y = 1DF: x = 0 grenzt nicht an ID

MV 05Blatt 06 Kapitel 4.2 Grenzwerte Asymptoten Funktionen Nummer: 75 0 200506009 Kl: 14G

Grad: 40 Zeit: 30 Quelle: keine W Aufgabe 14.1.3: Bestimmen Sie alle Asymptoten der folgenden Funktion:

$$f(x) = \arctan_0 \left(\frac{(5x+10) \cdot (x+5)}{(5x+35) \cdot (x+2)} \right)$$

Parameter:

 x_i = Nullstellen und Asymptoten des Arkustangensargumentes, $x_i \ge 2$ x_2, x_3, x_4 paarweise verschieden.

Die Funktion lautet so:
$$f(x) = \arctan_0 \left(\frac{(x_1 x + \{x_1 \cdot x_2\}) \cdot (x + x_3)}{(x_1 x + \{x_1 \cdot x_4\}) \cdot (x + x_2)} \right)$$

In dieser Aufgabe sind $x_1 = 5$ $x_2 = 2$ $x_3 = 5$ $x_4 = 7$.

Erklärung:

Die wichtigen Werte des $\arctan_0 \sin d$: $\arctan_0(0) = 0$, $\arctan_0(\pm 1) = \frac{\pm \pi}{4}$ und $\arctan_0(\pm \infty) = \frac{\pm \pi}{2}$.

Rechnung:

Senkrechte Asymptoten des Arkustangesargumentes erzeugen lediglich eine Unstetigkeitsstelle aber keine senkrechte Asymptote. Zum Beispiel gilt für die Funktion $g(x) = \arctan_0(\frac{1}{x})$:

$$\lim_{x \to 0, x < 0} \arctan_0(\frac{1}{x}) = \frac{-\pi}{2} \qquad \lim_{x \to 0, x > 0} \arctan_0(\frac{1}{x}) = \frac{\pi}{2}$$

Der Betrag beider Grenzwerte ist ungleich unendlich, damit liegen keine senkrechten Asymptoten vor.

$$\lim_{x \to -\infty} \arctan_0 \left(\frac{(5x+10) \cdot (x+5)}{(5x+35) \cdot (x+2)} \right) \quad = \quad \arctan_0(1) \quad = \quad \frac{\pi}{4} \quad = \quad \lim_{x \to +\infty} \arctan_0 \left(\frac{(5x+10) \cdot (x+5)}{(5x+35) \cdot (x+2)} \right) \; .$$

Damit ist die einzige (waagrechte) Asymptote $y = \frac{\pi}{4}$.

Angebotene Lösungen:

- y = 0, x = -2 and x = -7 y = 0 and x = 0

Fehlerinterpretation:

- DF: $\lim_{x \to \pm \infty} f(x) = \frac{\pi}{4}$ DF: $\lim_{x \to -\infty} f(x) = +\frac{\pi}{4}$ y = 0 und x = -7 $y = \pm \frac{\pi}{2}, x = -2 \text{ und } x = -7$ f hat unendlich viele
- 3 f hat unendlich viele 4 $y = \frac{\pi}{2}$ und x = -7 \times $y = \frac{\pi}{4}$ DF: falsch DF: f hat keine senkrechten Asymptoten
- richtig DF: $\lim_{x \to -\infty} f(x) = +\frac{\pi}{4}$ DF: $\lim_{x \to -\infty} f(x) = +\frac{\pi}{4}$
- DF: f hat keine senkrechten Asymptoten
- DF: falsch DF: $\lim_{x \to \pm \infty} f(x) = \frac{\pi}{4}$ DF: $\lim_{x \to \pm \infty} f(x) = \frac{\pi}{4}$ y = 0 , x = -2 und x = -7y = 0 und x = 0
- DF: $\lim_{x\to-\infty} f(x) = +\frac{\pi}{4}$ $y = \pm \frac{\pi}{4}$ Kapitel 6.4 MV 05Blatt 09 trigonometrische

Nummer: 76 0 200509007 Kl: 14G keine ElementareFktn Grad: 20 Zeit: 30 Quelle: keine

Aufgabe 14.1.4: Bestimmen Sie die Summe $3\sin(ax) + 7\cos(ax)$ als Term von der Form $C \cdot \cos(ax + \varphi)$ für alle $a \in \mathbb{R}^+$ und $x \in \mathbb{R}$.

Parameter:

 $x_1 = \text{Faktor vor dem Sinus } x_1 > 1.$ $x_2 = \text{Faktor vor dem Kosinus } x_2 > x_1.$

Die Formel lautet: $x_1 \sin(ax) + x_2 \cos(ax)$.

In dieser Aufgabe sind $x_1 = 3$ $x_2 = 7$.

Erklärung:

Wenden Sie das Additionstheorem des Kosinus auf $\cos(ax + \varphi)$ an und machen Sie dann einen Koeffizientenvergleich.

Rechnung:

 $C\cos(ax + \varphi) = C\cos(ax)\cos\varphi - C\sin(ax)\sin\varphi = 7\cos(ax) + 3\sin(ax).$

Koeffizientenvergleich ergibt (1) $7 = C \cos \varphi$ und (2) $-3 = C \sin \varphi$.

Beide Gleichungen quadriert ergeben $7^2 + 3^2 = C^2$, also $C = \pm \sqrt{7^2 + 3^2} = \pm \sqrt{58}$.

Gleichung (2) durch Gleichung (1) dividiert ergibt $\frac{C \sin \varphi}{C \cos \varphi} = \frac{-3}{7} = \tan \varphi$.

Also ist $\varphi = \arctan(\frac{-3}{7})$.

Hier kann der \arctan_0 verwendet werden, wenn das Vorzeichen von C entsprechend angepasst wird:

Wir wählen x = 0, dann gilt $3\sin(ax) + 7\cos(ax)|_{x=0} = 7$ und $\pm\sqrt{58}\cos(\arctan(\frac{-3}{7})) = 7$, wenn das positive Zeichen gewählt wurde. Wäre der Faktor vor dem Kosinus negative gewesen, dann hätten wir das negative Vorzeichen wählen müssen.

Angebotene Lösungen:

- $\pm \sqrt{40}\cos(ax + \arctan_0(\frac{-3}{7}))$ $2 \sqrt{40}\cos(ax + \arctan_0(\frac{-7}{3}))$ $\times \sqrt{58}\cos(ax + \arctan_0(\frac{-3}{7}))$
- $-\sqrt{40}\cos(ax + \arctan_0(\frac{-3}{7}))$ 5 $\pm\sqrt{40}\cos(ax + \arctan_0(\pm\frac{3}{7}))$ 6 $7\cos(ax)$
- $\sqrt{58}\cos(ax + \arctan_0(\frac{-7}{3}))$ 8 $\pm\sqrt{58}\cos(ax + \arctan_0(\frac{-3}{7}))$ 9 $-\sqrt{58}\cos(ax + \arctan_0(\frac{-7}{3}))$
- $\pm \sqrt{58}\cos(ax + \arctan_0(\pm \frac{7}{3}))$ $\pm \sqrt{58}\cos(ax + \arctan_0(\frac{-7}{3}))$ $\pm \sqrt{40}\cos(ax + \arctan_0(\frac{-7}{3}))$

Fehlerinterpretation:

- $\pm \sqrt{40}\cos(ax + \arctan_0(\frac{-3}{7}))$ DF: Ergebnis ist eindeutig
- $\sqrt{40}\cos(ax + \arctan_0(\frac{-7}{3}))$ DF: Fehler beim Quadrieren
 - $\sqrt{58}\cos(ax + \arctan_0(\frac{-3}{7}))$ richtig
- $-\sqrt{40}\cos(ax + \arctan(\frac{-3}{7}))$ DF: Falsches Vorzeichen gewählt
- $\pm \sqrt{40}\cos(ax + \arctan_0(\pm \frac{3}{7}))$ DF: Ergebnis ist eindeutig
- $\begin{array}{ll}
 6 & 7\cos(ax) & \text{DF: Lösung geraten} \\
 \sqrt{58}\cos(ax + \arctan(-7)) & \text{DF: Falsch dividient}
 \end{array}$
- $\sqrt{58}\cos(ax + \arctan_0(\frac{-7}{3}))$ DF: Falsch dividiert $\pm \sqrt{58}\cos(ax + \arctan_0(\frac{-3}{7}))$ DF: Ergebnis ist eindeutig
- $\frac{1}{9}$ $-\sqrt{58}\cos(ax + \arctan(\frac{7}{3}))$ DF: Falsches Vorzeichen gewählt
- $\pm \sqrt{58}\cos(ax + \arctan_0(\pm \frac{7}{3}))$ DF: Ergebnis ist eindeutig
- $\pm\sqrt{58}\cos(ax + \arctan_0(\frac{-7}{3}))$ DF: Ergebnis ist eindeutig
 - $-\sqrt{40}\cos(ax + \arctan_0(\frac{-7}{3}))$ DF: Falsches Vorzeichen gewählt

MV 05 Blatt 09 Kapitel 6.4 trigonometrische keine ElementareFktn Nummer: 104~0~200509008 Kl: 14G

Grad: 20 Zeit: 30 Quelle: keine W

Aufgabe 14.1.5: Bestimmen Sie die Summe $2\sin(ax) - 6\sqrt{2}\cos(ax + \frac{\pi}{4})$ als Term von der Form $C \cdot \sin(ax + \varphi)$ für alle $a \in \mathbb{R}^+$ und $x \in \mathbb{R}$.

Parameter:

 $x_1 = \text{Faktor vor dem Sinus } x_1 > 1.$ $x_2 = \text{Faktor vor dem Kosinus } x_1 > x_2 > 1.$

Die Formel lautet: $x_1 \sin(ax) - \sqrt{2}x_2 \cos(ax + \frac{\pi}{4})$.

In dieser Aufgabe sind $x_1 = 2$ $x_2 = 6$.

Erklärung:

Wenden Sie die Additionstheoreme des Kosinus und Sinus auf $\sin(ax+\varphi)$ und auf $\cos(ax+\frac{\pi}{4})$ an und machen Sie dann einen Koeffizientenvergleich.

Rechnung:

$$\begin{array}{lcl} -\sqrt{2}\cdot 6\cos(ax+\frac{\pi}{4}) & = & -\sqrt{2}\cdot 6\cos(ax)\cos(\frac{\pi}{4}) & + & \sqrt{2}\cdot 6\sin(ax)\sin(\frac{\pi}{4}) & \text{Kosinus - Additionstheorem} \\ & = & -6\sqrt{2}\cdot\cos(ax)\cdot\frac{\sqrt{2}}{2} & + & 6\sqrt{2}\sin(ax)\cdot\frac{\sqrt{2}}{2} & \cos\frac{\pi}{4} = \sin\frac{\pi}{4} = \frac{\sqrt{2}}{2} \\ & = & -6\cos(ax) + 6\sin(ax) \end{array}$$

 $C\sin(ax+\varphi) = C\sin(ax)\cos\varphi + C\cos(ax)\sin\varphi = -6\cos(ax) + 6\sin(ax) + 2\sin(ax) = -6\cos(ax) + 8\sin(ax).$

Koeffizientenvergleich ergibt (1) $-6 = C \cos \varphi$ und (2) $8 = C \sin \varphi$.

Beide Gleichungen quadriert ergeben $6^2 + 8^2 = C^2$, also $C = \pm \sqrt{6^2 + 8^2} = \pm \sqrt{100}$.

Gleichung (2) durch Gleichung (1) dividiert ergibt $\frac{C \sin \varphi}{C \cos \varphi} = \frac{-8}{6} = \tan \varphi$.

Also ist $\varphi = \arctan(\frac{-4}{3})$.

Hier kann der $arctan_0$ verwendet werden, wenn das Vorzeichen von C entsprechend angepasst wird:

Wir wählen x=0, dann gilt $8\sin(ax)-6\cos(ax)|_{x=0}=-6$ und $\pm\sqrt{100}\cos(\arctan(\frac{-4}{3}))=-6$, wenn das negative Zeichen gewählt wurde. Wäre der Faktor vor dem Kosinus positiv gewesen, dann hätten wir das positive Vorzeichen wählen müssen.

Angebotene Lösungen:

$$\boxed{1} \quad -\sqrt{100}\sin(ax + \arctan_0(\frac{-1}{3})) \qquad \boxed{2} \quad \sqrt{100}\sin(ax + \arctan_0(\frac{-4}{3})) \qquad \boxed{3} \quad \sqrt{28}\sin(ax + \arctan_0(\frac{-4}{3}))$$

4
$$\pm \sqrt{100} \sin(ax + \arctan_0(\frac{-4}{3}))$$
 5 $2\sin(ax + 6)$ 6 $\pm \sqrt{28} \sin(ax + \arctan_0(\frac{-4}{3}))$

$$\pm \sqrt{100} \sin(ax + \arctan_0(\pm \frac{1}{3}))$$
 \times $-\sqrt{100} \sin(ax + \arctan_0(\frac{-4}{3}))$ $\pm \sqrt{28} \sin(ax + \arctan_0(\frac{-1}{3}))$

Fehlerinterpretation:

$$-\sqrt{100}\sin(ax + \arctan_0(\frac{-1}{3}))$$
 DF: Fehler beim Additionstheorem

$$\begin{array}{ccc}
\hline 2 & \sqrt{100}\sin(ax + \arctan_0(\frac{-4}{3})) & \text{DF: falsche Punktprobe} \\
\hline 3 & \sqrt{28}\sin(ax + \arctan_0(\frac{-4}{3})) & \text{DF: Fehler beim Satz voi} \\
\hline 4 & \pm\sqrt{100}\sin(ax + \arctan_0(\frac{-4}{3})) & \text{DF: Ergebnis ist eindeuti}
\end{array}$$

$$\sqrt{28}\sin(ax + \arctan(\frac{-4}{2}))$$
 DF: Fehler beim Satz von Pythagoras

$$\pm \sqrt{100}\sin(ax + \arctan_0(\frac{-4}{2}))$$
 DF: Ergebnis ist eindeutig

 $2\sin(ax+6)$ DF: Lösung geraten

DF: Ergebnis ist eindeutig

7 $8\sin(ax + 6)$ 8 $\sin(ax + 6)$ 9 $-\sqrt{28}\sin(ax + \arctan_0(\frac{-4}{3}))$ 10 $\pm\sqrt{100}\sin(ax + \arctan_0(\frac{1}{3}))$ DF: Lösung geraten

DF: Fehler beim Satz von Pythagoras

DF: Fehler beim Satz von Pythagoras

 $\pm\sqrt{100}\sin(ax+\arctan_0(\pm\frac{1}{3}))$ DF: Ergebnis ist eindeutig

richtig

DF: Ergebnis ist eindeutig

MV 05 Blatt 06 Kapitel 4.2 Grenzwerte Nummer: 107 0 200506010 Kl: 14G keine Stetigkeit

Grad: 40 Zeit: 30 Quelle: keine

Aufgabe 14.1.6: Sei $f: \mathbb{R} \to \mathbb{R}$ definiert durch f(x) = -3x + 2, $x_0 = 7$ und sei ein $\varepsilon > 0$ fest gewählt. Bestimmen Sie das maximale $\delta > 0$ (abhängig von ε) mit der Eigenschaft, dass für alle x, für die $|x - x_0| < \delta$ gilt, $|f(x) - f(x_0)| < \varepsilon$ ist oder $f((x_0 - \delta, x_0 + \delta)) \subseteq (f(x_0) - \varepsilon, f(x_0) + \varepsilon)$. Damit haben Sie die Stetigkeit von f an der Stelle x_0 gezeigt.

Parameter:

 $x_1 = \text{(negative)}$ Steigung, $x_2 = y$ – Achsenabschnitt von f, x_3 entspricht x_0 , $x_2 \neq x_3$

In dieser Aufgabe sind $x_1 = 3$ $x_2 = 2$ $x_3 = 7$.

Erklärung:

Um das δ zu finden, kann folgende Formel (nach Schmid) probiert werden:

$$\delta(\varepsilon, x_0) = \pm (f^{-1}(f(x_0) \pm \varepsilon) - x_0)$$

Rechnung:

 $f^{-1}(x) = \frac{x-2}{-3}$. Nach der Formel von Schmid ist

$$\delta \ = \ \pm (f^{-1}(f(7)\pm\varepsilon)-7) \ = \ \pm (f^{-1}(-19\pm\varepsilon)-7) \ = \ \pm (\frac{(-19\pm\varepsilon)-2}{-3}-7) \ = \ \pm (\frac{-21}{-3}-7\pm\frac{\varepsilon}{-3}) \ = \ \pm \frac{\varepsilon}{-3}.$$

Wenn wir das negative Vorzeichen wählen, erhalten wir $\delta = \frac{\varepsilon}{3}$.

Es gilt $f(x_0 - \delta) = f(x_0) + \varepsilon$ und $f(x_0 + \delta) = f(x_0) - \varepsilon$.

Weil f streng monoton fallend ist, folgt die Behauptung. Bitte beachten Sie hierbei, dass $f((x_0 - \delta, x_0 + \delta)) = (f(x_0 - \varepsilon), f(x_0 + \varepsilon))$ ist. Die gilt normalerweise nicht.

Angebotene Lösungen:

$\frac{1}{7}$	2 2	$\frac{\varepsilon}{7}$	$\pm \varepsilon$
\times $\frac{\varepsilon}{3}$	$\frac{-\varepsilon+2}{3}$	$\frac{1}{2}$ $\pm \frac{\varepsilon}{2}$	8 Es gibt keine
9 $\frac{5}{3}$	$\pm \frac{\varepsilon}{3}$	11 ε	$\frac{\varepsilon-2}{3}$

Fehlerinterpretation:

1	$\frac{1}{7}$	DF: geraten
2	$\dot{2}$	DF: geraten
3	$\frac{\varepsilon}{7}$	DF: geraten
4	$\pm \varepsilon$	DF: Lösung geraten
X	$\frac{\varepsilon}{3}$	richtig
6	$\frac{-\varepsilon+2}{3}$	DF: geraten
7	$\begin{array}{l} \frac{\varepsilon}{3} \\ \frac{-\varepsilon + 2}{3} \\ \pm \frac{\varepsilon}{2} \end{array}$	DF: δ ist eindeutig
8	Es gibt keines	DF: doch, f ist stetig
	$\frac{5}{3}$	DF: geraten
9	$\pm \frac{\varepsilon}{3}$	DF: δ ist eindeutig
11	ε	DF: Lösung geraten
12	$\frac{\varepsilon-2}{3}$	DF: geraten

Allgemeine Hinweise:

Bei weiteren Fragen, wenden Sie sich bitte an W. Schmid (sltsoftware @yahoo.de).

Weitere Hinweise finden Sie auf unserer Veranstaltungswebseite unter: http://www.vorkurs.de.vu