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Abstract. The fitness distance correlation (FDC) as a measure for prob-
lem difficulty was first introduced by Forrest and Jones. It was applied
to many binary coded problems. This method is now applied to permu-
tation based problems. As demanded by Schiavinotto and Stützle, the
distance in a search space is calculated by regarding the steps of the
(neighborhood) operator. In this paper the five most common operators
for permutations are analyzed on symmetric and asymmetric TSP in-
stances. In addition a local quality measure, the point quality (PQ) is
proposed as a supplement to the global FDC. With this local measure
more characteristics and differences can be investigated. Some experi-
mental results are illustrating these concepts.

1 Introduction

Permutation based problems like TSP are well analyzed and successfully opti-
mized by evolutionary algorithms (EA) and other optimization heuristics. The
common way is to find well adapted operators and heuristic specific parameters
by extensive experiments. Another way is to predict good operators by ana-
lyzing positive characteristics of the operator specific search space. The fitness
distance correlation [6] was successfully applied to this task [3]. By classification
of Thierens the FDC is more an analysis tool than a predictive tool [14]. Usu-
ally it is not straightforward to calculate the correct operator specific distances
between solutions, therefore approximations are used ([8] and [10]). But Schi-
avinotto and Stützle pointed out the importance of correct distance algorithms
in [12], but didn’t applied them. One goal of our study is to apply the FDC
analysis to permutation based problems with precisely calculated distances for
five common operators. An example for such an analysis can be found in [5],
but there only symmetric TSP instances for two operators are analyzed. One
problem of the FDC is its oversimplifying nature, one scalar value is sufficient
to compare operators, but not for analyzing the search space.

After the preliminary definitions in section two, the point quality (PQ) is
defined. As a local quality measure, the PQ helps to analyze and visualize a
search space. Section three specifies the implemented distance algorithms. Data
generation and the inspected test problems are described in section four. Results
of the FDC analysis and examples of PQ diagrams are finally presented in section
five.
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2 Definitions and Operators

Important for analysis of search space (synonymously used for landscape or
search graph) is the concept of distance. This pairwise distance depends on the
used operator and defines a neighborhood for each point in the search space.

Definition 1. A (neighborhood) operator OP is defined over a set Sn (in this
paper the set of all permutations of length n) by

OP : Sn → 2Sn

The (k-th) neighborhood of a subset s ⊆ Sn we denote by

N 0
OP(s) = s, N k

OP(s) = NOP(N k−1
OP (s)) and NOP(s) =

⋃

π∈s

OP(π) = N 1
OP(s)

The operator specific size of the neighborhood is denoted as |OP (π)| or |OP | (if
it has the same size for all π ∈ Sn).

Definition 2. The distance dOP(π, ϕ) between two points (solutions) π, ϕ ∈ Sn

in search space is

dOP(π, ϕ) = min
{
k | ϕ ∈ N k

OP({π})
}

Definition 3. The operator specific diameter of the search space is

ΦOP = max {dOP(π, ϕ)|π, ϕ ∈ Sn}

2.1 Operators

For the formal definition of the operators for permutations (from now Sn is the
set of all permutations of length n) we denote permutations in common notation.
For example π = (3, 4, 1, 2) is a permutation of length n = 4 and is identical to
the permutation π = (1, 3)(2, 4) in cycle notation. The composition is calculated
from right to left, for example (4, 3, 2, 1) ◦ (4, 3, 1, 2) = (1, 2, 4, 3).

Definition 4 (Neighbor Swap (NbrSwap)). For a permutation π ∈ Sn the
NbrSwap operator is defined as

NbrSwap(π) = {(π1, π2, . . . , πk−1, πk+1, πk, πk+2, . . . , πn) | 1 ≤ k < n}

This operator swaps two adjacent elements in a permutation.

Definition 5 (Element Swap (Swap)). For a permutation π ∈ Sn the Swap
operator is defined as

Swap(π) = {(π1, π2, . . . , πi−1, πj , πi+1, . . . , πj−1, πi, πj+1, . . . , πn) | 1 ≤ i < j ≤ n}
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This is one of the most used operators, it interchanges two elements in a permu-
tation.

Definition 6 (Element Shift (Shift)). For a permutation π ∈ Sn the Shift
operator is defined as

Shift(π) = {(π1, . . . , πi−1, πi+1, . . . , πi+k, πi, πi+k+1, . . . , πn) | k > 0} ∪
{(π1, . . . , πi+k−1, πi, πi+k, . . . , πi−1, πi+1, . . . , πn) | k < 0}

This operator moves an element to another position in the permutation.

Definition 7 (Substring Reversal (SStrRev)). For a permutation π ∈ Sn

the SStrRev operator is defined as

SStrRev(π) = {(π1, . . . , πi−1, πj , πj−1, . . . , πi+1, πi, πj+1, . . . , πn) | 1 ≤ i < j ≤ n}
This operator reverses a substring of the permutation.

Definition 8 (Substring Shift (SStrShift)). For a permutation π ∈ Sn the
SStrShift operator is defined as

SStrShift(π) = {(π1, . . . , πi−1, πj+1, . . . , πj+k, πi, . . . , πj , πj+k+1, . . . , πn)
| 1 ≤ i + k < j + k ≤ n}

This operator moves a substring of the permutation to another position. For
some features of these five operators see table 1.

2.2 Fitness Distance Correlation and Point Quality

The FDC measures the correlation of fitness and distance to the nearest global
optimum opt. Originally [6] it was applied to bit string coded optimization prob-
lems and in many cases ([3], [15]) this measure successfully predicts the perfor-
mance of a genetic algorithm. The correlation coefficient for a sample M of size
m is calculated as

FDC =
CFD

sfsd
where CFD =

1
m

∑

i∈M

(fi − f̄)(d(i, opti)− d̄)

is the covariance of f and d and sf , sd, f̄ and d̄ are the standard deviations and
means of f and d.

The FDC is a global measure as it calculates only one scalar value for a search
space defined by problem instance and neighborhood operator. For analyzing and
understanding the characteristics of a search space too many informations are
lost. A possibility to remedy this shortage can be a local quality measure. Such
a measure will provide more opportunities to study characteristics of a search
space. Using the idea of FDC, with the two attributes fitness and distance, the
neighborhood of any element in the search space is divided into four subsets. This
can be illustrated with a 2-dimensional coordinate system and its four quadrants
(figure 1).
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Fig. 1. All neighbors of a solution can be pictured as elements in quadrants q1, . . . , q4

(left). In minimization problems (like TSP) neighbors in q1 and q3 are supporting
optimization (middle), but elements in q2 and q4 are deceptive. As walking through
search space of a minimization problem, heuristics are favoring elements in q3 and q4

(right).

Definition 9. For each element π ∈ Sn with known fitness value fπ and distance
d(π, ϕ) to a nearest optimal solution the point quality is defined as

PQ(π) =





∣∣{π′|(d(π′,ϕ)≤d(π,ϕ)∧fπ′≤fπ)∨(d(π′,ϕ)≥d(π,ϕ)∧fπ′≥fπ)}
∣∣

|OP(π)| if min. problem∣∣{π′|(d(π′,ϕ)≤d(π,ϕ)∧fπ′≥fπ)∨(d(π′,ϕ)≥d(π,ϕ)∧fπ′≤fπ)}
∣∣

|OP(π)| if max. problem

An element with a high PQ value will support the optimizing process. If all
elements has a perfect PQ, then the FDC is pefect, too.

3 Distance Algorithms

If a problem is binary coded, the Hamming-Distance is used for calculating
the pairwise distance. It can be calculated in Θ(n). In genetic algorithms (GA)
One-Bit-Flipping is used as (mutation) operator, therefore Hamming-Distance
represents the correct distance in search space.

In permutation based optimization algorithms many different operators are
used. The calculation of the distance needs to reflect the neighborhood of the
operator used – otherwise the results are incorrect for most combinations of
operator and approximation algorithms. This was shown in [12] by Schiavinotto
and Stützle and they also listed correct distance algorithms for five operators.
A distance algorithm for permutations (only) has to calculate the distance to
identity ı. Because for calculating the pairwise distance the property dOP(π, ϕ) =
dOP(π−1 · ϕ, ı) can be used (also shown in [12]).

Neighbor Swap (NbrSwap): The minimal number of neighbor swaps to sort a
permutation is the inversion number of the permutation. In [12] an O(n2) algo-
rithm is presented. Here a faster O(n log n) and easy to implement algorithm is
used. The idea is a balanced tree which is implemented as an array like a heap.



5

Element Swap (Swap): With a swap operation the length |ci| of a cycle ci can
be maximally reduced to a cycle c′i of length |c′i| = |ci| − 1 and a second cycle
of length |c′′i | = 1. The identity ı has n cycles of length 1. Therefore the element
swap distance is dSwap(π, ı) =

∑
ci

(|ci|−1). This can be calculated in linear time
O(n).

Element Shift (Shift): To calculate the element shift distance all elements that
stay on their place have to be detected. These elements form the longest com-
mon subsequence (LCS) or, in the case of permutations, the longest increasing
subsequence. Here the algorithm of [13] is used and optimized for permutations.
This algorithm needs O(n log n) time for calculating dShift(π, ı) = n−LCS(π, ı).
With van Emde Boas’ data structure [16] a complexity of O(n log log n) can be
achieved.

Substring Reversal (SStrRev): This problem is known as sorting by reversals
(SBR) and it is NP-hard as proved by Caprara [2]. Therefore an easy to im-
plement 2-approximation algorithm was used to calculate the distance [7] with
O(n2) time complexity. The currently best known approximation guarantee is
of 1.375 [1].

Substring Shift (SStrShift): This problem is known as sorting by transpositions
(SBT) and it is presumed to be NP-hard as well. For calculating dSStrShift an
easy to implement O(n2) greedy algorithm was implemented. This algorithm
reduces the breakpoints between increasing strips in the permutation. The cur-
rently best known approximation guarantee is of 1.375 [4].

Operator |OP| ΦOP other operator names dist.-alg.
complexity

NbrSwap n − 1 n(n−1)
2

APEX, Swap O(n log n)

Swap n(n−1)
2

n − 1 2-cycle, element change, EX O(n)

Shift (n − 1)2 n − 1 transposition, DSH O(n log n)

SStrRev n(n−1)
2

n − 1 2-opt, 2-change, reversal, INV O(n2)

SStrShift n3−n
6

⌈n+1
2

⌉ (conjecture) transposition O(n2)
Table 1. Operator overview

4 Data Generation and Test Problems

To simulate the behavior of optimization heuristics the data is generated by
(stochastic) hillclimb walks through the search space, because an important
problem of random walk or random selection of elements is the small variance
in distance to the optimum. The term hillclimb is here used in the sense of go
to a better solution in every step.
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For calculating the FDC value a random element of the search space was
selected to start a new hillclimb walk and then a random neighbor was calculated.
If this neighbor had a better fitness value this element was selected for the
next step. If no better neighbor was found after calculating n2 elements of the
neighborhood, the hillclimb walk was stopped and a new walk was started. After
each walk the FDC value was calculated from all elements of all walks. If the
difference between old and new calculated FDC value was less than 0.01 for three
times the analysis was finished (figure 2).

Fig. 2. Two examples for the convergence of FDC value by calculating it through
hillclimb walks.
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In order to calculate the data source for PQ analysis the same procedure as
for FDC is used. With the only difference, that in each step all n2 neighbors are
calculated. For these n2 neighbors fitness and distance values are calculated and
then the number of elements in quadrants q1, . . . , q4 are counted.

Fig. 3. The 2-dimensional euclidian
TSP test instances are imported from
well known TSPLIB [11]. To have
more nontrivial test instances with
known optimum, we developed the @-
type euclidian TSP. All points are ar-
ranged on an equidistant grid with
distance 1. The inner and outer side
length are calculated in dependence
of the length n. The distance to next
city is 1 and the distance between in-
ner and outer path is 2. Therefore the
identity ı is the optimum with minimal
length n.
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For asymmetric TSP instances the distances for identity was set to zero,
therefore identity ı is optimal and has length zero. All other weights in the
distance matrix were randomly chosen from {1, 2, . . . , nexp}. The parameter exp
for asymmetric benchmark generation is used to analyze the impact of the ratio
of weights and n to the FDC value.

5 Results

Extensive experiments for the five operators and applicable permutation based
codings are performed. The FDC value for symmetric TSP was calculated for
nine instances over three orders of magnitude. For asymmetric TSP ten instances
are analyzed.

For symmetric TSP the SStrRev operator produces the highest FDC values
(less tour length, less distance to optimum). The SStrRev operator performs
the minimal change of two edges. The second best operators are the Shift or
SStrShift operator (table 2). For this two operators the PQ diagrams reveals,
that the Shift operator outclasses the SStrShift operator. This operator leads to
better fitness elements with less distance to optimum. For greater n the Shift or
SStrShift operators are inducing better FDC values. At instance pr1002 their
FDC values reach the FDC value of the SStrRev operator. This effect should be
analyzed in further work.

For asymmetric TSP the SStrRev operator isn’t a good choice, this arises
from the asymmetric nature of the problem class. Here the SStrShift operator
produces best FDC values (table 3). An explanation is that moving good opti-
mized stages (substrings) of a tour to a better position leads to a search space
which is better to optimize. The exponent for randomly generated weights in
distance matrix does not influence the FDC value. The FDC values of SStrRev
and Shift operator are comparable, but as shown in figure 5, the PQ diagrams
reveals that the Shift operator leads to better fitness values (top and middle
diagram on the left side).

As a PQ diagram example the symmetric TSP (berlin52) instance is shown
in figure 4. All five operators are plotted. Three operators, Swap, Shift and
SStrRev, result in good fitness values. But only the SStrRev operator does reach
the best fitness value and small distance. The Swap and Shift operator reach
good fitness values, but these points are mostly far away from optimum.

The PQ diagrams for asymmetric TSP are shown in figure 5. The operators
SStrShift and Shift lead to fitness values near to the optimum. The elements
generated by SStrShift operator are closest to optimum but doesn’t reach the
optimum. This can be a symptom why asymmetric TSP are harder to opti-
mize than symmetric TSP. FDC value gives a good hint for the selection of a
convenient operator. But in some cases its oversimplifying nature is obscuring
differences of the operator specific search space. In table 3 FDC values for Shift
and SStrRev operator are comparable. But the PQ diagram in figure 5 (left side)
shows, that SStrRev is clearly inferior, because worse fitness values are reached
by hillclimb walks.
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Fig. 4. An example for PQ analysis for all five operators (TSP berlin52). The diagrams
are sorted from worst (top) to best (bottom) FDC value. On the left side the PQ is
plotted over fitness (x-axis starting at optimum value) and on the right side over
distance (x-axis ending at ΦOP). The optimum located in the upper left corner of each
diagram.
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Fig. 5. Example PQ diagrams for AsymTSP with n = 52 and exp = 1. For asymmetric
TSP instances the SStrShift operator produces the best FDC values. The SStrRev and
Shift operators have approximately the same FDC values. But the fitness-PQ diagrams
on the left side showing, that the Shift operator is outclassing the SStrRev operator.
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Table 2. As expected, best choice
for symmetric TSP instances is the
SStrRev operator. Data from hillclimb
walks induce highest FDC value in all
experiments. This operator performs
minimal change (two edges) on TSP
tour. The Shift and SStrShift opera-
tors are changing three edges whereas
the Shift operators specific neighbor-
hood is a subset of the SStrShifts
neighborhood.

problem size n Nbr Swap Shift SStr SStr
instance Swap Rev Shift

@ 26 0.01 0.16 0.26 0.86 0.11

@ 50 0.01 0.05 0.43 0.87 0.37

eil51 51 0.0 0.07 0.39 0.89 0.37

berlin52 52 0.05 0.06 0.47 0.88 0.24

@ 100 0.02 0.08 0.52 0.87 0.65

ch130 130 −0.01 0.06 0.52 0.88 0.64

tsp225 225 0.04 0.07 0.61 0.85 0.75

@ 250 0.12 0.11 0.60 0.84 0.8

pr1002 1002 0.0 0.06 0.74 0.75 0.76

Table 3. For all tested asym-
metric TSP instances the SStr-
Shift operator leads to highest
FDC values. The SStrRev and
Shift operators have compara-
ble FDC values, but PQ analysis
shows that the SStrRev operator
is inferior.

problem size n Nbr Swap Shift SStr SStr
instance Swap Rev Shift

ATSP exp=1 26 0.03 0.06 0.36 0.30 0.73

ATSP exp=1 52 −0.02 0.01 0.27 0.22 0.75

exp=2 52 0.0 0.0 0.25 0.30 0.74

exp=3 52 0.02 0.02 0.32 0.27 0.71

exp=5 52 0.0 −0.01 0.24 0.27 0.74

ATSP exp=1 100 0.0 0.03 0.25 0.23 0.71
exp=5 100 0.01 0.02 0.21 0.19 0.72

ATSP exp=1 200 0.0 −0.01 0.14 0.18 0.72

ATSP exp=1 500 0.0 −0.02 −0.04 0.19 0.67

ATSP exp=1 1000 −0.03 0.0 −0.05 0.20 0.60

To analyze the distribution of local optima in search space and examine
the difference between good and bad performing operators, the proportion of
neighbors with worse fitness values (elements in q1 and q2) are plotted over
distance. As can be seen in figure 6, the local optima with best performing
operator SStrRev are heaping near the global optima. Local optima for operator
Shift and SStrShift are uniformly distributed in search space. Local optima for
operator NbrSwap are heaping at ΦOP/2, but not in the direction of global
optima.

6 Conclusion

To extensively analyze fitness distance correlation, we implemented algorithms
for measuring the real (minimal) distance between permutations for five opera-
tors, as demanded by [12]. Instances for symmetric and asymmetric TSP were
analyzed. The best operator for symmetric TSP is the well known SStrRev op-
erator. For asymmetric TSP the SStrShift operator leads to highest FDC values.
We proposed PQ as an extension of FDC to measure local quality in search
space. PQ diagrams can visualize additional characteristics of search space. The
PQ diagrams can help to identify good operators even if the FDC values are
approximately the same (examples shown in figure 4 and 5).
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Fig. 6. Here the grade of local optimality is plotted (TSP berlin52). The y-axis indicates
the proportion of neighbors which appear in quadrant q1 or q2. If all neighbors are in
these quadrants a local optima is reached (the end of a hillclimb walk). It’s visible how
the local optima are distributed in search space.
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In future work we will use our framework to analyze further permutation
based optimization problems, like bin packing or quadratic assignment problem
(QAP). Additionally, more problem specific operators and their distance algo-
rithms will be implemented to understand, what makes a search space easy to
optimize and to identify characteristics of such operators. Possibly another way
to gain knowledge of search spaces is to analyze PQ diagrams of artificial and
misleading functions, like the so called ridge functions [9].
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