
Analysis of evolutionary algorithms for the phylogeny problem

Botond Draskoczy
University of Stuttgart

Germany
boti@jime.de

Nicole Weicker
University of Stuttgart

Germany
weicker@informatik.uni-stutttgart.de

Karsten Weicker
HTWK Leipzig

Germany
weicker@imn.htwk-leipzig.de

Abstract- In view of the strong increasing number of
phylogeny problems and instances, the assessment of the
respective optimization algorithms has become harder
too. This paper contributes to this ongoing discussion
by a first examination how the search dynamics are af-
fected by the chosen algorithm and certain characteris-
tics of the phylogeny problem. For this purpose a tun-
able problem generator is proposed and analyzed.

1 Introduction

The existing methods for analyzing the sequences of DNA,
RNA, and amino acids produce lots of data to be used in
classifying the degree of relationship of organisms. This
classification problem is known as phylogeny problem,
which is important in bioinformatics not only to reconstruct
the descent-lines of living plants or animals but for exam-
ple also to discover the relation between viruses in order to
find effective vaccines quickly. In fact the phylogeny prob-
lem, i.e. the search for an phylogenetic tree that reflects the
evolution of the given sequences in the leaves of the tree, is
NP-complete in general (Day et al., 1986; Bodlaender et al.,
1992; Foulds and Graham, 1982a,b).

Many heuristics for the phylogeny problem can be found
in the scientific literature (e.g. Dress and Krüger, 1987; Plat-
nick, 1987). Andreatta and Ribeiro (2002) list a bound
of construction algorithms, neighborhoods (mutation oper-
ators), local search strategies, and meta-heuristics for this
problem and compare them concerning time-to-target and
quality. Additionally there exist several population based
approaches to solve the phylogeny problem (e.g. Ribeiro
and Vianna, 2003; Cotta and Moscato, 2002).

Most of the operators found in literature are problem
specifically defined but usually used with standard param-
eter settings. A systematic analysis of phylogeny problem
instances is missing which could give more insight into use-
ful parameter calibration. The phylogeny problem proper-
ties that have to be considered are: size of the underlying
alphabet, similarity of the sequences, number of sequences
etc. Without knowledge concerning these factors and an ad-
equate construction of artificial test problems the compar-
ison of operators and heuristics can be misleading. In the
extreme case (size of the alphabet= 2 and some additional
properties) the phylogeny problems are solvable in polyno-
mial time (Gusfield, 1991; Waterman, 1995).

As a first step towards a qualitative analysis of the phy-
logeny problem and the evolutionary operators on this prob-
lem the paper at hand makes the following three contribu-
tions.

First, we present our approach to analyze the difficulty of
diverse problem instances using a tunable phylogeny prob-
lem generator.

Second, it is analyzed how two different operators that
include a different amount of problem knowledge contribute
to the optimization process in different phases of the search
process.

Third, the influence of the number of parents and the
number of offspring on the performance is examined.

2 Phylogeny problems

For the formal description of the phylogeny problem we ab-
stract from the concrete types of sequences. Rather we view
a sequence as a strings ∈ Σk of lengthk over an arbitrary
finite alphabetΣ. Now a phylogenetic tree is introduced
which is crucial for the solution of phylogeny problems.
Definition 1 (Phylogenetic tree) For a given set of se-
quencesM ⊂ Σk a phylogenetic tree is defined as graph
G = (V,E, γ) with |V | = 2|M | − 2 and the degree

∀ v ∈ V : deg(v) = 3 ∨ deg(v) = 1.

The vertices are labeled byγ : V → Σk where the|M |
leaves are mapped to the sequences inM , i.e.

∀ v ∈ V : deg(v) = 1 ⇒ γ(v) ∈M

∀ v, w ∈ V ∧ v 6= w : (deg(v) = 1 ∧ deg(w) = 1)
⇒ γ(v) 6= γ(w)

and the|M |−2 internal vertices to hypothetical sequences.
It is noteworthy to emphasize that the phylogenetic tree

has no given root. In fact, the root might be placed at any
edge of the tree. In order to evaluate phylogenetic trees,
a measure for the similarity of two sequences is necessary.
This is based on the Hamming distance between two se-
quences.
Definition 2 (Hamming distance) The Hamming distance
of two sequencess, t ∈ Σk is defined as

dH(s, t) =
∣∣{i | 1 ≤ i ≤ k ∧ si 6= ti}

∣∣.
Definition 3 (Phylogeny problem) A phylogeny problem
is determined by a set of sequencesM ⊂ Σk for which a
phylogenetic treeG = (V,E, γ) is searched that has mini-
mal cost, i.e. difference between neighbors in the tree

cost(G) =
∑

(v,w)∈E

dH(γ(v), γ(w)).

Note that the definition above leaves the topology of the
tree (including the assignmentγ of the sequences) and the
choice of the labels at the internal vertices open. However,
Fitch (1971) has presented an algorithm for the computation
of optimal hypothetical sequences at internal vertices for ar-
bitrary phylogenetic trees. As a consequence the phylogeny
problem is usually reduced to the search for the topology
and the assignment of the given sequences to the leaves.

2.1 Different phylogeny problems

There are many different variants of the phylogeny prob-
lem. Where in the beginning morphological data was of
primary interest, today the sequencing of DNA, RNA, and
amino acid chains delivers data in a very large scale. How-
ever these data sets are only partially suited to gain deeper
insight into the processing of particular optimization algo-
rithms since the optimum and the characteristics of an op-
timal structure are not known and can only assessed by the
best known solution.

2.2 Phylogeny problem generator

In order to produce sets of sequences with special charac-
teristics that are similar to real DNA, RNA, or amino acid
data we constructed a phylogeny problem generator. The
parameters for this generator are the number of sequences
n, the finite alphabetΣ, the length of the sequencesk, and a
mutation probabilityp. For a general discussion of the use
of test problem generators see the repository of Spears and
Potter (1999).

The number of sequences determine the size of the phy-
logenetic tree as defined in definition 1. The generator pro-
duces the structure of the phylogenetic tree by random; i.e.
there are no sequences assigned and each possible topology
has the same probability. Then, a random start vertex (leaf
or inner vertex) is chosen and a random sequences ∈ Σk is
assigned to this vertex.

In the next step the generator copies the assigned se-
quence, i.e.s in case of the start vertex, to the neigh-
bored vertices and changes randomly each position in the
sequence by the mutation probabilityp (point mutation).
This step is iterated until all vertices of the tree have an as-
signed sequence.

Then the sequences of the leaves are saved and define an
artificial instance of the phylogeny problem. The cost of the
generated tree is saved as a reference value for optimizations
of the instance.

The described generator has some advantages over the
widely used practice to use uniformly created random 0-1
sequences as test problems.
• In the case of a uniform random generation no tree

structure (or phylogeny) is contained in the data but
all sequences have the same distance to each other on
average. With our problem generator there is at least
an artificial evolution that needs to be matched which
is closer to real world problem instances.

• Furthermore, the problem generator is parameterized,
i.e. the problem instances become more difficult with

decreasing generating mutation rate. This is shown in
Figure 1 where the algorithm described in Section 3
(with n = 50, k = 50, µ = 1, λ = 99) is applied
to five different problems and the results are averaged
over 30 experiments. As it can be seen, the optimum
cannot be found anymore for the problem generated
with a small mutation rate.

1.5

2.5

1

2

3

0 50 100 150 200 250
time

gen. mut. rate0.05

gen. mut. rate0.01

gen. mut. rate0.02

gen. mut. rate0.10

gen. mut. rate0.20

re
la

tiv
e

fit
ch

-v
al

ue
(o

pt
im

um
:

1.
0)

Figure 1: Problem difficulty depending on the generating
mutation rate in the problem generator.

One advantage of the described generator is teh strong
relation between the generated sequences because of the
simulated evolution with a given mutation probability. An-
other advantage is the known cost value of the production,
since this cost value is the aim of optimization.

In most cases this cost value of the production is the
global optimum to be reached by the optimization. How-
ever, under certain circumstances it is possible that a evolu-
tionary algorithm can find a phylogenetic tree with a better
cost value. This is the case if the chosen mutation prob-
ability is high which leads to overlapping subtrees in the
generated phylogenetic tree.

In order to get a benchmark producing problem genera-
tor we plan to include known statistics of the mutation prob-
ability between the different amino acids, i.e. BLOSUM-
matrices (Henikoff and Henikoff, 1992) and PAM-matrices
(Dayhoff, 1978). Also a probability to produces gaps should
be added together with a rule that makes growing gaps more
probable than newly create gaps – it is more probable to get
a gap of size five than five gaps of length one. Nevertheless
the described generator is practical for the following analy-
sis.

3 Analysis of representation and evolutionary
operators

There are at least two distinct possibilities to represent a
phylogenetic tree. First, a rooted GP-like tree may be used
(e.g. Cotta and Moscato, 2002) which appears to be plausi-
ble since the position of the root has no effect on the cost
of a tree. Second, the tree is represented as general graph

without root which was used in this paper. As we will ar-
gue later, the first representation restricts the evolutionary
operators.

3.1 Representation

We decided to represent the tree by an arrayA of length
|M |+3(|M |−2) which is twice the number of edges in the
tree. The first|M | positions in the array contain the edge
information of the leaves. The remaining fields the edge
information of the inner vertices where for each vertex three
fields are used. We require that for all indicesi it holds that
A[A[i]] = i. That means that an inner vertex is represented
by three consecutive values, e.g. the first node by|M | + 1,
|M |+2, and|M |+3. The mappingγ from the leaves to the
sequences is in a fixed order. Figure 2 shows two different
individuals that both map to the same tree.

inner 1 inner 2 inner 3

inner 1 inner 3 inner 2

sequence 1
sequence 2

sequence 3

sequence 4

sequence 5
inner 2

inner 1 inner 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14

leaves inner vertices

1 2 3 4 5 6 7 8 9 10 11 12 13 14

leaves inner vertices

γ:

γ:

s 1 s 2 s 4 s 5s 3

8 14 13 7 10 1 12 6 3 9 4 2511

7 9 14 10 8 12 5 2 4 13 6 11 31

s 1 s 2 s 3 s 4 s 5

Figure 2: Two different encodings of the shown tree.

3.2 Size of the search space

As it can be shown easily by induction the number of phy-
logenetic trees is

Tn =
n∏

i=3

(2i− 5) =
(2n− 4)!

2n−2 · (n− 2)!

for n = |M | sequences and a fixed mappingγ of sequences
to the leaves of the tree.

As it can be seen in Figure 2, the representation is highly
redundant. Since the order of the inner vertices can be
changed as well as the order of edges for each inner ver-
tex, each phylogenetic tree is represented by

Rn = 6n−2 · (n− 2)!

individuals. As a consequence the size of the search space
results as

|Ω| = Tn ·Rn = (2n− 4)! · 3n−2

in whichRn copies of the global optimum are contained.
In a GP-like representation, redundancy is introduced by

the order of the subtrees at each node and the edge where
the artificial root, which is not part of the phylogenetic tree,
is placed. As a consequence the redundancy for this repre-
sentation is

R′
n = 2n−1 · (n− 1).

3.3 Used operators

For the variation of phylogenetic trees two different muta-
tion operators are used. First, the exchange of two leaves is
described in Algorithm 1. Within our representation the mu-
tation needsO(1) time. Note that this mutation is not able to
change the topology of the tree. For a given tree one appli-
cation of the mutation may result in12 ·|M |·(|M |−1) differ-
ent offspring. With a probability of 1

|M | the given parental
individual is not changed.

Algorithm 1 Mutation: Exchange two leaves

1: INPUT: phylogenetic treeG = (V,E, γ).
2: u1, u2 ← choose random leaves fromV
3: v1 ← vertex with{u1, v1} ∈ E
4: v2 ← vertex with{u2, v2} ∈ E
5: E′ ← (E\{{u1, v1}, {u2, v2}})∪{{u1, v2}, {u2, v1}}
6: RETURN: (V,E′, γ)

Second, an arbitrary leaf can be deleted in the tree which
results in the transformation of the associated internal vertex
into an edge. The leaf is reinserted at an arbitrary edge in
the tree which is expanded to a new internal vertex. This
mutation is described in Algorithm 2 and is also referred to
as single step (Andreatta and Ribeiro, 2002). It needs again
timeO(1). Contrary to the first mutation this operator may
change the topology of the tree. This operator can result
in |M | · (2|M | − 6) trees. Note that no neutral mutations
can occur, however if two adjacent leaves are involved in a
mutation, the same offspring can be created on two ways.

Algorithm 2 Mutation: Move one leaf
1: INPUT: phylogenetic treeG = (V,E, γ).
2: u← choose a random leaf fromV
3: v ← vertex with{u, v} ∈ E
4: e = {w1, w2} ← choose an edge fromE \ {{u, v}}

such that{v, w1} 6∈ E and{v, w2} 6∈ E
5: r, s ← vertices ofV with {v, r} ∈ E, {v, s} ∈ E,

r 6= u, ands 6= u
6: E′ ← (E \ {{v, r}, {v, s}}) ∪ {{r, s}}
7: E′′ ← (E′ \ {{w1, w2}}) ∪ {{v, w1}, {v, w2}}
8: RETURN: (V,E′′, γ)

To recombine two different phylogenetic trees, the
well-known prune-delete-graft recombination (pdg) is used
(Cotta and Moscato, 2002). Algorithm 3 describes how a
subtree is chosen in one phylogenetic tree, all vertices in the
other tree that are assigned to the same sequences used at the
leaves of the subtree are deleted, and the subtree is reintro-
duced at an arbitrary edge of the pruned tree. Within our

representation the operator needsO(n) time wheren is the
size of the subtree and an additional space ofO(n) is needed
to memorize the positions of the deleted internal vertices. In
our experiments we apply frequently the prune-delete-graft
recombination to identical individuals. Then the operator
just moves a subtree to a different edge in the tree. Then the
mere modification of the tree is inO(1) time, butO(n) is
needed to ensure that the subtree will be added at an edge
not contained in the subtree itself. The different possible
offsprings result from the consideration that4 · |M | − 6
different subtrees may be selected. The distribution of the
sizes of the subtrees depends on the topology of the parental
tree. If the subtree containsm leaves it can be added to
2 · |M | − 3 − 2 · m edges in the other parent. If the re-
combination is applied to two identical individuals a neutral
recombination is possible.

Remark that in our representation every subtree of the
phylogenetic tree can be chosen while in a rooted tree this
is not possible. The root restricts the number of heritable
subtrees since no real subtree can include the root.

Algorithm 3 Prune-delete-graft (pdg)

1: INPUT: phylogenetic treesG1 = (V1, E1, γ1) and
G2 = (V2, E2, γ2).

2: e = {u, v} ← choose edge fromE2 whereu is the root
of a subtreeGsub

2 = (V sub
2 , Esub

2 , γsub
2) andv does not

belong to the subtree
3: for all leavesw in the subtree ofu in G2 do
4: w′ ← vertex ofV1 with γ1(w′) = γ2(w)
5: w′′ ← vertex ofV1 with {w′, w′′} ∈ E2

6: r, s← vertices ofV1 with {w′′, r} ∈ E2, {w′′, s} ∈
E2, r 6= w′, ands 6= w′

7: E1 ← (E1 \ {{w′, w′′}, {w′′, r}, {w′′, s}}) ∪
{{r, s}}

8: V1 ← V1 \ {w′}
9: end for

10: f = {x, y} ← choose an edge fromE1

11: E1 ← E1 \ {f}
12: V ′ ← V sub

2 ∪̇V1

13: E′ ← Esub
2 ∪ E1 ∪ {{x, u}, {y, u}}

14: γ′ ← γ1

∣∣∣
V1

∪ γ2

∣∣∣
V sub

2

15: RETURN: (V ′, E′, γ′)

It is well known that the degree of redundancy has an
impact on the evolutionary search dynamics. As we have
shown for the knapsack problem the number of local op-
tima decreases with increasing redundancy (Weicker and
Weicker, 2001). However this is not true for this algorithm
and representation since all operators only make phenotyp-
ical modifications.

4 Qualitative comparison of the evolutionary
operators

The goal of our experiments is to gain insight into the im-
pact of the operators during different phases of the search
process. As it is known (Weicker and Weicker, 1999), the

importance of different operators changes over the course
of evolution.

4.1 Outline of the experiments

The evolutionary algorithms follow the usual scheme. After
an initialization and evaluation of the population the cycle
begins with a ranking selection of the parents. The offspring
are produced by application of the prune-delete-graft and
subsequent mutation (with a certain probability). After a
new evaluation the best individuals among the parents and
the offspring are chosen to be the new parents. The effective
selection in both parental and environmental selection leads
to a rather high selective pressure.

To setup an experiment the following parameters have to
be determined:
• number of independent runs of the experiment (R)

• number of generations

• type of the sequences (amino acid, DNA): alphabet of
size (l)

• number of sequences (|M | = n)

• length of each sequence (k)

• number of parents in the population (µ)

• number of offspring (λ)

• kind of mutation (by default move-mutation)

• probability to apply the mutation (pm)

• type of problem (P – real data or produced by the
phylogeny problem generator with a certain probabil-
ity of point mutation)

For the comparison of all experiments hypothesis tests
have been executed. In most cases we only refer to the test
results in the text since they are plausible.

All performance graphs show the best values averaged
over the executed independent experiments.

4.2 Comparison of the mutation operators

We compared the two mutation operators described in Al-
gorithm 1 and 2. The setup of the two experiments us-
ing prune-delete-graft operator (pdg) as recombination on
a generated test problem with amino acids as underlying al-
phabet is summarized in figure 3 which also shows the re-
sult. There is no significant difference between the move
mutation and the exchange mutation.

This result is a little bit surprising, since the move mu-
tation changes the topology contrary to the exchange muta-
tion. Apparently the pdg operator compensates this effect.

For the following experiments we concentrate our anal-
ysis on the move mutation.

4.3 Effectivity of mutation and prune-delete-graft

For three different problems we analyzed the influence of
the move mutation and the prune-delete-graft applied as a
mutation operator. The latter uses more problem specific
knowledge. All experiments in this section are set up with
a (1+99) strategy and we are interested in the contribution

R l n k µ λ pm P
10 20 50 50 10 90 0.2 gen. 0.05

250

300

350

400

450

500

550

600

650

0 50 100 150

movemutation

time

fit
ch

-v
al

ue
(o

pt
im

um
:

21
3) exchangemutation

Figure 3: Different mutations together with prune-delete-
graft recombination.

R l n k µ λ pm P
30 20 50 50 1 99 * gen. 0.1

500

600

700

800

900

1000

0 50 100 150
time

fit
ch

-v
al

ue
(o

pt
im

um
:

45
0)

pdgonly

mutationonly

pdgandmutation

Figure 4: Algorithms with mutation only (pm = 1.0),
prune-delete-graft only, and the standard algorithm with
both operators (pm = 0.2) are compared on a small gen-
erated problem.

each operator yields depending on the stage of the search
process. Therefore, the operators are applied both alone in
an evolutionary algorithm as well as in combination. The
results of the experiments are shown in Figures 4, 5, and 6.

The first two problems have been produced by the pro-
posed phylogeny problem generator with different num-
bers of sequences. The third problem is a real data
problem where the amino acid chains code a subset of
the cytochrome-P-450-enzyme (van der Weide and Steijns,
1999).

The results of all these experiments are similar. In the
first few generations (35 for the first problem, 75 for the

R l n k µ λ pm P
30 20 100 50 1 99 * gen. 0.1

pdgandmutation

1000

1200

1400

1600

1800

2000

0 100 200 300 400 500
time

fit
ch

-v
al

ue
(o

pt
im

um
:

90
1)

pdgonly

mutationonly

Figure 5: Algorithms with mutation only (pm = 1.0),
prune-delete-graft only, and the standard algorithm with
both operators (pm = 0.2) are compared on a large gen-
erated problem.

R l n k µ λ pm P
10 20 33 509 1 99 * real

2500

2600

2700

2800

2900

3000

3100

3200

3300

3400

0 20 40 60 80 100 120 140
time

fit
ch

-v
al

ue
(o

pt
im

um
:

no
tk

no
w

n)

pdgonly

mutationonly

pdgandmutation

Figure 6: Algorithms with mutation only (pm = 1.0),
prune-delete-graft only, and the standard algorithm with
both operators (pm = 0.2) are compared on a large gen-
erated problem.

second problem) the move mutation only is not significantly
worse than the combination of move mutation and pdg. For
the second the move mutation only is even significantly bet-
ter than the combination. But although the experiments with
pdg only are significant worse than the combination of both
operators, the pdg only reaches the optimum in half of the
experiments. The experiments with move mutation only get
stuck in local optima on a rather worse fitch-value and the
algorithm is not able to get out of it in even 1000 generations
for the first problem.

The move mutation is needed to sort the leaves of the
phylogenetic tree in order to produce good subtrees. The
pdg mutation needs more time to optimize if it has to pro-
duce good subtrees itself. But if the phylogenetic tree is
already quite good the pdg mutation is able to find the op-
timum in even half of the experiments. Although the move
mutation is not able to bring a significant progress by its
own, it helps the pdg mutation to find the optimum reliably.

From this results we can learn two things. First, the move
mutation and the pdg complement each other. Second, it is
not really helpful to follow the wide-spread memetic ap-
proach that tries in each step to find the optimum of the
operator-defined neighborhood (using the move mutation).

4.4 Comparison of population based EAs

The impact of the parental population size is examined for
the first problem of Section 4.3. The(1 + 99)-, (10 + 99)-,
and(20 + 99)-strategies all find the optimum for the small
problem. However, the algorithms prove to be sensitive

R l n k µ λ pm P
30 20 50 50 * 99 0.2 gen. 0.1

significance for µ = 20

significance for µ = 10

significance for µ = 20

significance for µ = 10

significance for µ = 1

significance for µ = 1

µ = 20, λ = 99

0

-2

0

2

-2

0

2

2

-2

500

600

700

800

900

1000

0 50 100 150 200 250
time

fit
ch

-v
al

ue
(o

pt
im

um
:

45
0)

µ = 1, λ = 99

µ = 10, λ = 99

Figure 7: Comparison of different parental population sizes.
The performance of the three different population sizes is
shown as well as the results of pairwise hypothesis tests.

concerning the population size which is displayed in Fig-
ure 7.µ = 10 is only during the first 37 generations signifi-
cantly better thanµ = 1. However, parental population size
µ = 20 is significantly worse almost until it is converged.

A second examination on the effects of the offspring
population size is shown in Figure 8. Apparently the num-
ber of offspring individuals has a clear influence on the con-
vergence speed. Again, the first problem of Section 4.3 is
optimized with(1 + 1)-, (1 + 3)-, (1 + 33)-, and(1 + 99)-
strategies. For a better comparison of the results the graphs
are scaled such that the number of evaluations is shown in
the x-axis. Obviously, a smaller number of offspring leads
to faster convergence. As already discussed in Section 4.3
for the move mutation, the memetic approach appears to be
disadvantageous for a combination of move mutation and
pdg mutation too.

5 Discussion

5.1 Summary

This paper provides some punctual insight into how char-
acteristics of phylogeny problems and parameter settings of
the evolutionary algorithm influence the search process.

A phylogeny problem generator is proposed that simu-
lates evolution to produce sets of sequences. This generator
is tunable by the size of the underlying alphabet, the num-
ber of sequences, and the probability of the point mutation
of the simulated evolution. As a consequence sets of prob-
lems with pre-defined difficulty can be produced.

The main results of our analysis of the evolutionary algo-
rithm are the equivalence of move and exchange mutation in
combination with pdg recombination, the insights regarding
the role of move and pdg mutation at different phases of the
search, and some findings concerning the role of the popula-
tion size of two kinds the number of parents and the number
of offspring.

R l n k µ λ pm P
10 20 50 50 1 * 0.2 gen. 0.1

500

600

800

900

1000

0 5000 10000 15000
evaluations

700

fit
ch

-v
al

ue
(o

pt
im

um
:

45
0)

λ = 1
λ = 3

λ = 99

λ = 33

Figure 8: Comparison of different offspring population
sizes.

5.2 Future work

As mentioned in section 2.2 we plan to extend the phy-
logeny problem generator. Especially, we will include more
knowledge about the problem properties. The aim is to
present a tunable benchmark problem generator that is able
to produce realistic phylogeny problems with certain char-
acteristics and known optimum.

The regarded real data problem in section 4.3 shows a
very similar behavior to the generated problems. A next step
is to analyze more real data problems whether the results of
the proposed work will still hold for that problems.

Another planed examination concerns the scalability of
the gained insights. Most of the experiments in the pre-
sented work are performed on rather small problems with
50 sequences of length 50. It is interesting whether a simi-
lar behavior can be observed for very big problems.

Bibliography

A.A. Andreatta and C.C. Ribeiro. Heuristics for the phy-
logeny problem. Journal of Heuristics, 8(4):429–447,
2002.

H.L Bodlaender, M.R. Fellows, and T.J. Warnow. Two
strikes against the perfect phylogeny problem. InPro-
ceedings of the International Conference on Algorithms,
Languages and Programming, pages 273–283, Wien,
1992. Springer Verlag.

Carlos Cotta and Pablo Moscato. Inferring phylogenetic
trees using evolutionary algorithms. In Juan Julián
Merelo Guerv́os, Panagiotis Adamidis, Hans-Georg
Beyer, Jośe-Luis Ferńandez-Villacãnas, and Hans-Paul
Schwefel, editors,Parallel Problem Solving from Nature
- PPSN VII, pages 720–729, Berlin, 2002. Springer.

W.H.E. Day, D.S. Johnson, and D. Sankoff. The computa-
tional complexity of inferring rooted phylogenies by par-
simony.Mathematical Biosciences, 81:33–42, 1986.

M.O. Dayhoff. Atlas of protein sequence and structure.Na-
tional Biomedical Research Foundation, 5(3):345–352,
1978.

A. Dress and M. Kr̈uger. Parsimonious phylogenetic trees
in metric spaces and simulated annealing.Advances in
Applied Mathematics, 8:8–37, 1987.

W. M. Fitch. Towards defining the course of evolution: Min-
imum chances for a specific tree topology.Systematic
Zoology, 20:406–419, 1971.

L.R. Foulds and R.L. Graham. The Steiner problem in phy-
logeny is NP-complete.Advances in Applied Mathemat-
ics, 3:43–49, 1982a.

L.R. Foulds and R.L. Graham. Unlikelihood that minimal
phylogeny for a realistic biological study can be con-
structed in reasonable computational time.Mathematical
Biosciences, 60:133–142, 1982b.

D. Gusfield. Efficient algorithms for inferring evolutionary
trees.Networks, 21:19–28, 1991.

Steven Henikoff and Jorja G. Henikoff. Amino acid substi-
tution matrices from protein blocks.Proceedings of the
National Academy of Sciences, 89:10915–10919, 1992.

N.I. Platnick. An empirical comparison of microcomputer
parsimony programs.Cladistics, 3:121–144, 1987.

C.C. Ribeiro and D.S. Vianna. A genetic algorithm for the
phylogeny problem using an optimized crossover strategy
based on path-relinking. InII Workshop Brasileiro de
Bioinformatica, pages 97–102, Macae, 2003. Springer.

William M. Spears and Mitchell A. Pot-
ter. Genetic algorithms (evolutionary algo-
rithms): Repository of test problem generators.
http://www.cs.uwyo.edu/˜wspears/generators.html,
1999.

Jan van der Weide and Linda S.W. Steijns. Cytochrome
P450 enzyme system: genetic polymorphisms and impact
on clinical pharmacology.Ann Clin Biochem, 36:722–
729, 1999.

M.S. Waterman. Introductino to Computation Biology –
Maps, Seqeunces, and Genomes. Chapman & Hall/CRC,
London, 1995.

Karsten Weicker and Nicole Weicker. Locality vs. random-
ness – dependence of operator quality on the search state.
In Wolfgang Banzhaf and Colin Reeves, editors,Founda-
tions of Genetic Algorithms 5, pages 147–163. Morgan
Kaufmann, San Francisco, CA, 1999.

Karsten Weicker and Nicole Weicker. Burden and bene-
fits of redundancy. In Worthy N. Martin and William M.
Spears, editors,Foundations of Genetic Algorithms 6,
pages 313–333. Morgan Kaufmann, San Francisco, 2001.

