Performance of the Classical Bidirectional Heuristic
Search Reconsidered

Stefan Lewandowski

Abstract: The classical bidirectional heuristic search was introduced in
1971 by Pohl. In practice it did not turn out to be as good as supposed —
in fact, in most cases, running times are worse than using the unidirectional
heuristc search variant, which was introduced 1968 by Hart et. al., well
known as the A* algorithm. In this article, we show that one of the uni-
directional searches must always be faster than the bidirectional one. This
result also extends to some heuristic improvements made to the bidirectional
heuristic search during the past 35 years.

Keywords: heuristic search, bidirectional search, shortest path

1 Introduction

Dijkstra [1] introduced his single source shortest path algorithm for graphs
with non-negative weights in 1959. Hart et. al. [3] suggested well known
heuristic improvements with their A* algorithm in 1968, using estimates of
the distances to the target node to perform a directed search towards the
target. When solving the single pair shortest path problem the A* algo-
rithm almost always outperforms Dijkstra’s algorithm as it is optimal in the
sense that it takes only those nodes into account that can be part of the
shortest path (based on the information given by the estimates) ([2], [10]).
The bidirectional variant of Dijkstra’s algorithm (introduced by Nicholson
[9]) in 1966 usually outperforms Dijkstra’s algorithm. So the bidirectional
heuristic version of A* (introduced by Pohl [11] in 1971) was supposed to
be better than the unidirectional variant as well. Dijkstra’s bidirectional
variant can be stopped as soon as the forward and backward search meet
somewhere in the middle (and a shortest path can then be determined with
linear additional time), but this does not apply to the classical bidirectional
heuristic search, and some more complicated termination criteria are nec-
essary. Neither the classical version nor improvements (made e.g. by Kwa
[6] in 1989) ever performed well in practice. Tkeda et. al. [4] introduced
a more efficient variant that uses Dijkstra’s bidirectional search and takes
into account the estimates using potential functions in 1994, but it was never
well understood why the classical version was less efficient in practice. It

is known ([6], [5]) that big parts of the graph are often considered twice
(once during the forward and once during the backward search), but even
the improvement by Kwa [6] that prevents these double calculations did not
perform well.

In this paper, we show the reason why: Either the forward or the back-
ward heuristic search will consider less nodes than the bidirectional version
(assuming that we are choosing nodes in the direction of the target node
first if more than one node can be chosen next — this can affect running
times only very near to the end of the search — we will describe this after
giving the proof of our main theorem). Usually, the time needed to compute
the forward and backward search do not differ significantly. Hence, using
heuristic search a random decision for either forward or backward search will
most often perform better than the bidirectional search — in correspondence
with the practical observations.

This paper is organized as follows: Section 2 introduces the basic defi-
nitions and a brief review of the referenced algorithms. Section 3 presents
some lemmas and our main theorem including the proofs.

2 Definitions, notation, and a brief review of the
algorithms

Let RT be the set of non-negative real numbers. A directed weighted graph
G = (V,E,~) consists of the set of nodes V', the set of edges E C V x V,
the weight function v : E — R*. Undirected graphs are included because
they can be regarded as directed graphs with (u,v) € F < (v,u) € E.
The shortest distance from source node s to any node v is denoted by dg(v)
and upper bounds (used in the algorithms) by D4 (v). The estimates of the
distances from node u to target node ¢ used in the A* algorithm are denoted
by ed;(u). When calculating shortest paths to a target node ¢ we denote the
shortest distance and the upper bounds with d;(u) and Dy(u) (so here ds(t)
will be identical to d;(s)).

In the following, we will describe the algorithms without prooving their
correctness. Proofs can be found in the original papers.

2.1 Dijkstra’s algorithm

This algorithm partitions the nodes in tree nodes Ts (v € Ty = Dg(v) =
ds(v)), their neighbours Ny (the nodes to be considered in the next it-

eration of the algorithm) and unvisited nodes. We initialize Ty := {s},
Ns = {u | (s,u) € E}, and accordingly Ds(s) := 0, Ds(u) := ~(s,u),
(s,u) € E, and Dg(u) := o0, (s,u) ¢ E. In every iteration take one

node u € N, with minimal value D4(u) (for this node Dijkstra proofed
Ds(u) = ds(u)), move u to Ts, and update Ny (for every edge (u,v) € E if

v € Ng we set Dg(v) := min{Ds(v),Ds(u) + y(u,v)} else if Ds(v) = oo we
move v to Ny and set Dg(v) := Dg(u)+v(u,v)). We call one iteration a dijk-
stra_forward_iteration(s). For solving the single target shortest path prob-
lem to target node ¢, we execute the corresponding steps in inverse direction
of the edges, and we call such an iteration a dijkstra_backward_iteration(t).

2.2 The A* algorithm

The A* algorithm is usually used to solve the single pair shortest path
problem using estimates of the distances to the target node ¢, but it also
can be used to calculate the distances to all other nodes. We consider only
monotone estimates ed; : V — R¥, i.e. edy(t) = 0 and to all edges (u,v) € E
applies ed;(u) > y(u,v)+eds(v) [10] — otherwise nodes may have to be moved
back from Ts to Ny and running times may become exponential [8]. The
A* algorithm differs from Dijkstra’s only in choosing a node u € Ny with
minimal value Dg(u) + edy(u) (for this also holds Dgs(u) = ds(u)). All other
steps are identical and we denote one iteration by astar_forward_iteration(s)
and astar_backward_iteration(t).

2.3 Bidirectional search with Dijkstra’s algorithm

If we want to solve a single pair shortest path problem with source s and tar-
get t, we can use a bidirectional search. This performs independent forward
and backward searches from the source node and to the target node, respec-
tively. In each iteration, we choose to do either a dijkstra_forward_iteration(s)
or a dijkstra_backward_iteration(¢). As soon as we move a node to T or T}
such that Ty NT; # 0, we can stop and find the distance from s to ¢ with
the help of the following lemma.

Lemma 1 Dijkstra’s bidirectional search satisfies

T:NT, ds(t) = i D, D
PA0 S) = min (D) + Dy(w)}
and
T, NT, ds(t) = i D, D
170 = ds(t) ue(TsmUﬁ)ﬂTt{ (u) + Di(u)}

The calculation can be stopped as soon as Ts N T; # 0, and the correct
distance can be found with linear additional time.

2.4 The classical bidirectional heuristic search

Using heuristics (i.e. using A* and two monotone estimates ¢dy and eAdS)7 we
also choose in each iteration to perform either an
astar_forward _iteration(s) or an astar_backward_iteration(t).

Unfortunately, lemma 1 does not hold when using heuristics!. When a
new node in Ts N T} is found, we only update a value Dy, (giving the min-
imum length of the paths found so far, i.e. Dpiy, = min{Dg(u) + Ds(u) |
u € Ty NT;}). We have to continue calculations until we can be sure that
either the forward search or the backward search cannot find a path with
length less than Dy, (this is sufficient as ds(t) = d¢(s)). This leads to the
following lemma first stated by Pohl ([11]):

Lemma 2 The classical bidirectional heuristic search satisfies

max{ min {Dy(v) +ed(v)}, min {Di(v) +eds(0)}} > Dinin

= Dmin = ds(t)

The bidirectional search using Dijkstra’s algorithm most often outper-
forms the standard Dijkstra algorithm, and also the unidirectional heuristic
search almost always outperforms standard Dijkstra. Hence, normally we
would expect that the bidirectional heuristic search also outperforms the
bidirectional search using Dijkstra’s algorithm. Surprisingly, this is not the
case.

3 Main theorem

In this section, we proof that for every bidirectional heuristic search the
number of nodes moved to T and T} is not less than the number of nodes
considered in the better case of either the unidirectional heuristic search
from s to t or the search from ¢ to s. In order to show this, we need two
lemmas about the order of the nodes moved to T, during the unidirectional
heuristic search, and one lemma about the order of choosing the A* iteration
in forward or backward direction in the bidirectional heuristic search.

Lemma 3 The A* algorithm with monotone estimates eAdt(') moves the
nodes to Ts in increasing order of the values dg(-) + edy(-).

Proof: For the chosen node u (which has minimum value D (u) —I—eAdt(u) of
nodes in Ng) we know Ds(u) = ds(u). So in the update process for all other
nodes in N either Dg(v) is unchanged and still satisfies Dg(v) + eds(v) >
Dy(u) 4 edy(u). Otherwise Dy(v) is changed to Dy(v) := Dy(u) + y(u,v),
and therefore

D,(v) + eds(v) = Dy(u) + v(u, v) + ode(v) > Dy(u) + edz(u)

'If the estimates meet the condition gc\ls/t() <dsn() < (1+¢) -E&S/t(-) we can use
lemma 1 and guarantee a distance < (14 ¢/(2 + ¢€)) - ds(¢) as shown in [7]. Worst case
examples exist even for graphs with edge lengths and estimates all being Euclidean. In
such Euclidean graphs another approximation given by [7] may give better results: if

do(t) = (1 +¢€') - eds(t), the distance is guaranteed to be < (1+¢'/(1+¢')) - da(t).

because we have monotone estimates eAdt(-). So the next u’ to be chosen will
have a value > Dg(u) + ed¢(u). O

Lemma 4 Let w = vgvy - - - v be a shortest path from s =g tot = vy, then
the function f:{0,... .k} — RT with f(i) := ds(v;) + ed¢(v;) is monotonic
imncreasing.

Proof: With the monotone property of the estimates edt() we have dg(v;)+
edt(”t) < ds(vi) + (i, vig1) + edt(UH-l) = ds(viy1) + edt(”l-ﬁ-l) U

Lemma 5 Let a = aj,ag,...,a; € {f, b}k give the sequence of choosing
a forward or backward iteration in bidirectional heuristic search. Let a =
ay,as,...,ar € {f,b}* be another sequence with the same number of forward
iterations and the same number of backward iterations. Then the sets Ty
and T; and the value Dy, will be identical at the end of both runs of the
bidirectional heuristic search.

Proof: The forward search has no influence on any steps made during the
backward search and vice versa. Hence, we will move the same nodes to T
and T3, respectively, in both runs of the bidirectional heuristic search, be-
cause the number of forward iterations and backward iterations is identical.
Dumin is set to min{Ds(u) + D¢(u) | u € Ts N T3}, so we will end up with the
same value Dy, — note that D, (u) = d,(u) for u € Ty,. O

Corollary 6 In the classical bidirectional heuristic search we can exrecute
all forward iterations first, then all backward iterations, and will end up
with the same result as with any other sequence that has the same number
of forward and backward iterations.

We are now ready to proof our main theorem.

Theorem 7 For every run of a classical bidirectional heuristic search with
monotone estimates ed;(-) and eds(-) solving the single pair shortest path
problem between nodes s and t moving a total number of r = |Ts| + |T}|
nodes to the tree sets, either a unidirectional search from s to t will have
|T!| < r nodes moved to T, or a unidirectional backward search from t to
s will have |T]| < r nodes moved to T] — both using the same monotone
estimates eAdt(') or &is(-), respectively.

Proof: In order to satisfy the termination criterion of the classical bidirec-
tional heuristic search (lemma 2) we must set Dy, to ds(t) (this is done as
soon as one node of a shortest path from s to t is in Ts NT; — remember that
ds(v) + di(v) = ds(t) for any v on a shortest path from s to ¢, this node v
may be s or t), and we must satisfy min,cy\7,{Ds(v) +ed¢(v)} > ds(t) (or
the corresponding condition in the backward search — we will focus on the

forward search here and assume |T7| < |T{|). The sketch of the proof is that
we either will terminate the algorithm by moving ¢ to T (case 1 below) or by
trying to move as few nodes as possible to Ts and T} after having moved as
many nodes as necessary to Ty during the forward search (case 2 below). In
both cases we implicitely use corollary 6 and execute all forward iterations
first.

Case 1: If the bidirectional heuristic search moves the node t to Ty the
criterion of lemma 2 applies: Dy,in = Ds(t) + Dy (¢) = ds(¢) +0 = ds(¢) (note,
we just moved t to T and t € T; right from the start) and from lemma 3
we get min,cy\7, {Ds(v) +ed¢(v)} > Dmin = ds(t). So all steps made in the
calls of astar_backward_iteration(t) were done in vain. Analogously, if s is
moved to T} in the backward search, all calls of astar_forward_iteration(s)
were unnecessary.

Case 2: There must be at least one node of a shortest path from s to
t that is moved to both Ty and T} in order to set Dy, := ds(t). We focus
on the forward search here (otherwise we have the same argument for the
backward search). Due to lemma 3 all nodes v with dy(v) + ed(v) < ds(t)
will have to be moved to T, first because these are candidates for shorter
paths from s to t.

Let w = vgv1 - - - v be a shortest path from s = vy to t = v with the
minimum number of nodes v; having the property ds(v;) + e/at(vj) = d4(t)
— the reason for choosing a shortest path with this additional property is
given at the end of this proof. Let v; be the first node on path w with
ds(v;) + edy(v;) = dg(t). From lemma 4 we get ds(vj) + eAdt(Uj) = d,(t) for
all v € {viy..., vk}

We observe that when v;_; was moved to T we set Ds(v;) := dg(vi-1) +
Y(vi—1,v;) = ds(v;). Thus Dg(v;) + edy(v;) = minyey 7, {Ds(v) + edy(v)} =

ds(t), and we can choose v; to be moved to Ts next — and then v;41,..., vk
afterwards. Hence, we would terminate the algorithm again by moving v, =
t to Ts as in case 1. If v; = s we can move v;y1,...,U; to Ts in this order

by the same argument.

Otherwise, for a suitable j (i —1 < j < k), we must at least move
Vi, ...,v; to Ty and vj, ..., vy (in reverse order) to T} to be able to terminate
the algorithm — observe that the termination condition is then satisfied:
Dumin is set to ds(t) and minyey\7,{Ds(v) + ed(v)} > Dmin. This way the
number of nodes in [Ty| + |Ty| is [{v | ds(v) + eds(v) < ds(t)} +k — i + 2,
but the unidirectional heuristic search from s to ¢t would only move [{v |
ds(v) + edy(v) < dg()}Y] + &k — i + 1 nodes to T;. Furthermore, the nodes u
(not on the path w) with d¢(u) + eds(u) < di(v;) + eds(vj) would have to
be moved to T; before v;. Hence, the unidirectional search is preferable.

The reason for choosing the path w with the minimum number of nodes
vj having the property ds(v;) + edi(v;) = ds(t) is only necessary to make
sure that we move as few nodes as possible to 77 in the unidirectional search.

Figure 1: Hlustration of lemma 4 and case 2 in the proof of theorem 7

4 Conclusion

We proofed that either the heuristic forward or the heuristic backward search
will be at least as fast as the classical bidirectional heuristic search. It will
not use more iterations and needs less additional time due to a much simpler
termination criterion.

In practice, we cannot choose specific nodes from the set of nodes {v |
ds(v) + ed¢(v) = dy(t)}. Therefore, the bidirectional variant may be faster
if there are many such nodes and moving nodes to T or 1} is decided in
favour of the bidirectional search. When solving the single pair shortest
path problem in real transportation networks, Euclidean distances are often
used as estimates ed, ;. Likely, only a few nodes v will meet ds(v)+ed;(v) =
ds(t), and hence, bidirectional heuristic search will not speed up calculations.
In case the costs for the calculation of the shortest path from s to ¢ and
backward from ¢ to s differ significantly, it is still preferable to calculate
those two searches independently and in parallel.

The main problem of the classical bidirectional heuristic search is that
most parts of the graph are considered twice. Kwa [6] gave an improved
algorithm called BS* by ignoring neighbours in the update of a forward it-

eration that are already in T} (and analogously the nodes in T in a backward
iteration). This keeps Ts N T} small and prevents unnecessary calculations.
Though examples exist with lower running times than both unidirectional
heuristic searches, these are not very easy to find, and on an average [6] ob-
served slightly longer running times than with the unidirectional heuristic
searches. When we compare BS* with the unidirectional A* on a grid (e.g.
with Euclidean distances as estimates ed,/;), we can use a similar proof as in
our main theorem to show that BS* cannot be faster than the unidirectional
A* algorithm — the BS* will prevent double calculations, but any node not
moved to T will have to be moved to T; and vice versa. Hence, the overall
performance of the BS* algorithm on Euclidean grids will always be worse
than by using the simple A* algorithm.

References

[1] E.W. DUKSTRA, A Note on Two Problems in Connexion with Graphs,
Numerische Mathematik 1 (4) (1959) 269-271.

[2] D. GELPERIN: On the Optimality of A% Artificial Intelligence 8 (1)
(1977) 69-76.

3] P. HArT, N. NiLssoN and B. RAPHAEL, A Formal Basis for the
Heuristic Determination of Minimum Cost Paths, IEEE Transactions
on Systems Science and Cybernetics SSC-4 (2) (1968) 100-107.

[4] T. IKEDA, M.-Y. Hsu and H. Ima1r, A Fast Algorithm for Finding
Better Routes by Al Search Techniques, in: 1994 Vehicle Navigation &
Information Systems Conference Proceedings, 1994, pp. 291-296.

[5] H.KAINDL and G. KAINZ, Bidirectional Heuristic Search Reconsidered,
Journal of Artificial Intelligence Research 7 (1997) 283-317.

6] J.B.H. Kwa, BS*: An Admissable Bidirectional Staged Heuristic
Search Algorithm, Artificial Intelligence 38 (1) (1989) 95-109.

[71 S. LEWANDOWSKI, Vereinheitlichte Darstellung von Techniken zur
effizienten Kiirzeste- Wege-Suche, Dissertation, Universitat Stuttgart,
Der Andere Verlag, Ténning, Liibeck, Marburg, 2005, ISBN 3-89959-
339-1.

8] A. MARTELLI, On the Complexity of Admissible Search Algorithms,
Artificial Intelligence 8 (1) (1977) 1-13.

9] T.A.J. NICHOLSON, Finding the shortest route between two points in a
network, Computer Journal 9 (3) (1966) 275-280.

[10] J. PEARL, Heuristics : intelligent search strategies for computer
problem solving, The Addison-Wesley series in artificial intelligence,
Addison-Wesley, Reading, Mass., 1984.

[11] I. PoHL, Bi-Directional Search, in: B. MELTZER (ed.), Machine intel-
ligence 6, University Press, Edinburgh, 1971, pp. 127-140.

