
Formal Methods
in Software engineering
Mathematically reasoning
complements traditional methods
Traditional, informal techniques in software engineering reach their limits when complex systems are to be devel-
oped efficiently. The Institute for Formal Methods in Computer Science of the Universität Stuttgart states: Tools like
IDEs, automatic code generation from graphical descriptions, visualization techniques like UML diagrams, and
others are certainly necessary. However, they often lack the ability to support detailed and provably sound reason-
ing about complex systems. Formal methods in software engineering provide approaches to close that gap.

Development Methods

ATZelektronik 04I2008 Volume 3�

IT

Figure 1: An emergency brake assistant like investigated in a case study

1 Introduction

The increased use of electronics in cars
leads to a continuously growing portion
of software engineering costs of the total
automobile development costs. The ex-
penditure of developing software, e.g.,
design and implementation, modifica-
tions, tests, and maintenance of software,
are only part of the overall costs. Hard to
estimated but certainly high excess costs
arrise when software causes malfunction
of some car component or even the
whole car. The employment of formal
methods in software engineering can
substantially contribute to the reduction
of such costs.

The term “Formal Methods” compris-
es a variety of approaches, methodolo-
gies, and techniques based on mathemat-
ics and logics. Section 2 considers formal
methods in general – without pretens of
completeness. An exemplary application
of formal methods in the development
process of a larger real-time system is
sketched in Section 3. The Universität
Stuttgart and the Daimler AG used the
model-checking approach of the tempo-
ral logic TCTL on timed automata to find
flaws early in the design process of an
adaptive brake assistant.

2 Formal Methods

First experiences in the use of formal
methods for verifying software had been
gathered already in the 1950s and 60s.

However, the initial exuberant and unre-
alistic expectations soon turned out to
be futile. The illusion of gaining an “ab-
solute security” and a “totally correct
program” led to frustrations. The formal-
ization of intended properties of a pro-
gram alone is a process which can nei-
ther be formally conducted nor verified.
Only when a formal specification exists
further development steps of the soft-
ware can use formal methods.

A further misconception exists in the
assumption that formal methods can
only be used for program verification. Of
course, the formal verification of a pro-
gram against its specification is a classi-
cal application of formal methods. An-
other big advantage of a formal specifica-
tion over informal ones is the unambigu-
ity of statements. When a formal descrip-
tion of a system exists, one can not only
precisely reason about and prove proper-
ties, but it also constitutes communica-
tion tool beneficial to everyone involved
in the design process. Neither the cus-
tomer nor the developer can interpret a
formal description differently. This un-
ambiguity alone increases the productiv-
ity of software development. Case stud-
ies, like [1] and [2] support that claim
about the use of a formal specification in
the software development process. The
transfer of an idea into a particular pro-
gram always implicitly contains the step
of formalization into an unambiguous
language: the programming language.
Unfortunately, the semantics of a pro-
gramming language is often not explic-

The Author

Dr. Dirk Nowotka
works at the Institute
for Formal Methods
in Computer Science
at the Universität
Stuttgart.

ATZelektronik 04I2008 Volume 3 �

Figure 2: Structure of an emergency brake assistant

Figure 3: Model of a radar unit in UPPAAL

itly, that is, formally, given – rather it is
defined by the particular implementa-
tion of the language by a compiler and
the underlying hardware. Productivity
gains a lot when this formalization step
is made explicit and taken early in the
design process.

A large variety of formal methods for
the specification and analysis of software
exists. Every such method has its advan-
tages and disadvantages which deter-
mine its area of employment. There is no
single solution for all formal problems as
much as formal methods are not the sin-
gle solution for all problems in software
development. Some parts of formal
methods are named below. However, that
list is certainly not complete.

Every formal calculus can form the
base of a formal specification. Conse-
quently, a number of formal specifica-
tion languages exist, for example, lan-
guages base don set theory and logic [3],

[4], [5], where logics like propositional
logic, first-order logic or various modal
logics (LTL, CTL, or µ-calculus) are used.
Moreover, Petri nets [6], various automa-
ta models, like finite automata, push-
down automata or timed automata (see
further below), process algebras, like
CSP [7] or CCS [8], and other formalisms
are employed.

Once a formal specification is writ-
ten, it can be investigated with suitable
methods, like for example, abstract in-
terpretation, (bi-)simulation, model-
finding (using a SAT solver), or model-
checking [9]. In particular, the model-
checking approach allows an efficient
and fully automatic verification of prop-
erties of the investigated system. The
success of model-checking in the hard-
and software industry has recently been
recognized by the ACM in giving the Tu-
ring-Award to the founding fathers of
model-checking Clarke, Emmerson, and

Sifakis. The following section is devoted
to a case study in the area of software
development for automobile applica-
tions and shall illustrate the use of a for-
mal method therein.

3 A Case Study

A range of case studies about the employ-
ment of formal methods in the develop-
ment of complex systems have been pub-
lished; see [10] through [14]. These papers
investigate the analysis of embedded sys-
tems in the automotive industry – among
others, a gear shift controller, and adap-
tive cruise controller or the CAN bus. The
presented case study [15] differs from
others by the investigation of the em-
ployment of a model-checker in the de-
sign process of a rather large system – il-
lustrating its advantages and limits. To
be more precise, we used the UPPAAL
model-checker [16].

The modeled system is an emergency
brake assistant (EBA), Figure 1, that con-
sists of four embedded control units
(ECU): a radar unit for measuring the dis-
tance to objects in front, an adaptive
cruise controller (ACC), an emergency
brake system (EBS), and a brake unit for
calculating the necessary brake pressure.
These units are connected by the CAN
bus. Figure 2 illustrates the structure of
the system.

Each of the control units and the CAN
bus is augmented with precise time
bounds for the necessary calculations
and signal transmission. For example,
the ACC is to calculate and send a speed

Development Methods

ATZelektronik 04I2008 Volume 3�

IT

correction command every 5 ms using at
most 3 ms.

The theory of timed automata [17] is
used for formalizing the system. Firstly,
timed automata are well-suited for de-
scribing real-time systems, and second-
ly, there exists tool support in, for ex-
ample, UPPAAL. UPPAAL provides a
graphical front-end for modeling timed
automata and a model-checker for ana-
lyzing a model. Figure 3 shows an exam-
ple of a possible model of the radar
unit in UPPAAL.

A model-checker is a tool that auto-
matically checks whether or not a given
model possesses a given property. The
model has to be formally given – in many
applications as an automaton. In the
present case study timed automata are
used. The investigated property also has
to be given, formally, as a set of system
states or runs. In general, properties are
formulated in a suitable logic or as au-
tomata themselves. A fragment of the
timed computation tree logic (TCTL) [18]
is used in UPPAAL for specifying proper-
ties. The following two formulas shall
serve as formalization examples in the
TCTL fragment of UPPAAL: “A[](not dead-
lock)” formulates that deadlock freeness
of the system. “Radar.Close --> (Brake.
EmergencyBrake and (CloseTimer <=
30000))” formulates the property that in
case an object is recognized as being
close (Radar.Close) an emergency brake
(Brake.EmergencyBrake) is initiated with-
in 30 ms (CloseTimer <= 30000).

The model-checking procedure not
just checks whether or not a given mod-
el satisfies a given formula, i.e., proper-
ty, but also gives a counter-example
when the property does not hold, that
is, it provides a calculation path that
leads to the violation of the property.
This can be used to gain precise timing
contraints by entering suitable formu-
las. Such time bounds can be fed back to
the design process.

The Universität Stuttgart and the
Daimler AG verified several security
properties in the presented case study.
For example, a possible violation of a
time bound was diagnosed. The cause of
which was found to be in the wrong as-
signment of communication priorities
for the used components. Automatized
verification methods possess a very high
asymptotic computational complexity:

in UPPAALs case we have that the model-
checking problem of TCTL on timed au-
tomata is PSPACE-hard. The presented
case study shows that, nevertheless, a
method of such high computational
complexity can be useful in the early
phase of development. Design flaws and
inconsistencies can be detected early.
This alone justifies the employment of
formal methods.

4 Conclusion

Formal methods have reached a degree
of maturity that suggests their use out-
side classical application areas, like the
design of hardware or space- and avia-
tion systems. They are not a substitute
for traditional methods, but they provide
various approaches and opportunities to
handle complex systems. In particular,
the automotive industry can benefit
from formal methods.

References
[1]	 Brookes, T. M.; Fitzgerald, J. S.; Larsen, P. G.: For-

mal and Informal Specifications of a Secure Sys-
tem Component: Final Results in a Comparative
Study. In: 3rd International Symposium of Formal
Methods Europe, Industrial Benefit and Advances
in Formal Methods (1996), Springer Verlag, Lecture
Notes in Computer Science, vol. 1051, pp. 214 –
227

[2]	 Sobel, A. E. K.; Clarkson, M. R.: Formal Methods
Application: An Empirical Tale of Software Devel-
opment: IEEE Transactions on Software Engineer-
ing (2002), vol. 28, nr. 3, pp. 308 – 320

[3]	 Spivey, J. M.: An introduction to Z and formal
specifications: IEE/BCS Software Engineering
Journal (1989), vol. 4, nr. 1, pp. 40 – 50

[4]	 Abrial, J.-R.: The B-Book: Assigning Programs to
Meanings. Cambridge University Press, 1996

[5]	 Jackson, D.: Software Abstractions: Resources
and Additional Materials. MIT Press, 2006

[6]	 Reisig, W: Petrinetze – Eine Einführung. Springer
Verlag, 1990

[7]	 Hoare, C. A. R.: Communicating Sequential Proc-
esses. Prentice Hall International, 1985

[8]	 Milner, R: A Calculus of Communicating Systems.
Springer Verlag, 1980

[9]	 Clarke, E. M.; Grumberg, O.; Peled, D. A.: Model
Checking. MIT Press, 1999

[10]	Lindahl, M.; Pettersson, P.; Yi, W.: Formal Design
and Analysis of a Gear Controller. In: International
Journal on Software Tools for Technology Transfer
(2001), vol. 3, nr. 3, pp. 353 – 368

[11]	Hansson, H.; Åkerholm, M.; Crnkovic, I.; Törngren,
M.: SaveCCM – A Component Model for Safety-
Critical Real-Time Systems. In: Euromicro Confer-
ence, Special Session Component Models for De-
pendable Systems, Rennes, Frankreich (2004), IEEE

[12]	Tindell, K.; Burns, A.: Guaranteed Message Laten-
cies for Distributed Safety-Critical Hard Real-Time
Control Networks. University of York, YCS 229,
1994

[13]	Van Osch, M.; Smolka, S. A.:Finite-State Analysis
of the CAN Bus Protocol. In: The 6th IEEE Interna-
tional Symposium on High-Assurance Systems En-
gineering (2001), IEEE, pp. 42 – 54

[14]	Krákora, J.; Hanzálek, Z.: Timed Automata Ap-
proach to Real Time Distributed System Verifica-
tion. In: 5th IEEE International Workshop on Factory
Communication Systems (2004), IEEE

[15]	Montag, P.; Nowotka, D.; Levi, P.: Verification in the
Design Process of Large Real-Time Systems: A
Case Study. In: Automotive - Safety & Security
2006 - Sicherheit und Zuverlässigkeit für automo-
bile Informationstechnik, Stuttgart (2006), Shaker
Verlag

[16]	UPPAAL: http://www.uppaal.com
[17]	Alur, R.; Dill, D.: A Theory of Timed Automata:

Theoretical Computer Science (1994), vol. 126,
nr. 2, pp. 183 – 235

[18]	Alur, R.; Courcoubetis, C.; Dill, D.: Model-Checking
in Dense Real-Time: Information and Computation
(1993), vol. 104, nr. 1, pp. 2 – 34 ((Bosch Firmenbez-
eichnung und Überschrift aus Figure 1 löschen,
Danke))

ATZelektronik 04I2008 Volume 3 �

