
Minimal proof obligations for ordered sets

Dirk Nowotka

Turku Centre for Computer Science, 20520 Turku, Finland

Abstract

We show how the smallest set of lemmas can be generated that is sufficient to prove
an assumed partial-order relation on a finite set. This idea is developed from a
mathematical formulation up to an algorithm implemented in ML. The process of
establishing a Hasse diagram from a set of subsets serves as an applicative example.

1 Introduction

This paper describes an algorithm that is useful for minimizing the proof effort
to establish a partial order over a finite set.

Suppose, we have a finite set of objects A and a preorder relation 4 on A,
and also, it is assumed to be hard to check whether or not x 4 y, for some
x, y ∈ A. Further, suppose that something is already known about 4, namely
a partial order ≤ contained in 4. Now, let our goal be to show that actually
≤ = 4. For that, we need to check that all elements in A not related in ≤ are
also not related in 4. Formally, for all x, y ∈ A we have x 6≤ y implies x 64 y.
Since it is assumed to be difficult to check the membership property for 4, we
look for the smallest number of pairs (x, y) 6∈ ≤ to be investigated.

The following example illustrates that often not all possible pairs have to be
considered. Let A = {a, b, c} be a set of sets and we investigate the subset
relation on A. Assume, further we only know that a ⊆ b, so in this case
≤ = {(a, a), (b, b), (c, c), (a, b)}. Proving now that ≤ = ⊆, means to show that
the following Hasse diagram of A is correct for ⊆.

b
c

a

For that, we need to show that for all x, y ∈ A, if x 6≤ y then x 6⊆ y, which
means in our case to check: b 6⊆ a, b 6⊆ c, c 6⊆ b, a 6⊆ c, and c 6⊆ a. But

Preprint submitted to Elsevier Preprint 25th April 2001

actually, once we know that a 6⊆ c, we immediately have that b 6⊆ c because
we know a ⊆ b, and similarly, from c 6⊆ b follows that c 6⊆ a. So instead of five
propositions we need to prove only three.

This paper shows how the smallest set of pairs S ⊆ {(x, y) | x 6≤ y}, from
which follows that ≤ = 4, can be calculated. We give an algorithm and also
show that S is unique for a given problem.

The topic of this paper was originally motivated by the practical goal to reduce
work on comparing sets of formal languages, see for example [FV98] where
this result is cited as a personal communication. There, given a set of sets of
languages which are to be arranged in a Hasse diagram can be a nontrivial
task, since comparing the expressive power of certain methods to generate a
language might be difficult.

This paper is divided into two parts: Section 2, where the result is given, and
Section 3, where we give an implementation of it.

2 Minimal Proof Obligations

Our terminology is chosen acording to the motivation given in the introduc-
tion. Since this is about a method to verify a finite partial-order relation on
its elements, let us call a finite nonempty set universe which is ment to con-
tain the objects of our interest, and let a preorder on a universe represent the
actual relation the induced partial-order relation of which we would like to
determine, called goal. Let further a partial-order relation that is contained in
the goal denote a set of assumptions in a goal. A set of assumptions should
represent the knowledge that we assume to be precise about the goal, it is
defined to be a partial-order instead of a preorder by identifying elements of
the universe in question that are known to be related symetrically in its goal.
By proving the validity of our goal, we mean to show that our assumptions
are precise, that is, the set of assumptions equals the goal.

Let us fix a universe A, a goal 4 on A, and a set of assumptions ≤ in 4. The
result we present now is how to determine the smallest set of pairs not in ≤
that is sufficient to show ≤ = 4 and how that can be used in prove efforts
such as arranging sets in a Hasse diagram.

We write x ρ y for a pair (x, y) contained in ρ, where x ∈ M , y ∈ N ,
and ρ ⊆M ×N . Our notations are taken from [BS81].

Example 1 (Hasse diagram) Let us fix a running example. Let our uni-
verse M = {p, q, r, s, t} be a set of sets. Suppose that the subset relation ⊆

2

on M is our goal with the known pairs p ⊆ q, q ⊆ s, q ⊆ t, and r ⊆ t,
so, our set of assumptions ⊂ is the transitive reflexive closure of the set
{(p, q), (q, s), (q, t), (r, t)}.

We want to show that the assumed set inclusions are proper and elements
which are not related by ⊆ are incomparable indeed. In fact, we want to prove
that

s

======== t

��������

========

q r

p

is the most general Hasse diagram for (M,⊆). Of course, we need to show that
q properly contains p, i.e., p 6⊆ q, that s and r are incomparable, i.e., r 6⊆ s
and s 6⊆ r, and so on. Naturally, we wish to prove only those lemmas which
are absolutely necessary to establish the result under the given assumption.

In order to prove ≤ = 4, we have to show that any pair (x, y) not in ≤ is also
not in 4. This is easy to see, since 4 ⊆ ≤ by the above requirement, and we
have ≤ ⊆ 4 by definition.

Let A = ≤c be called the complete set of lemmas, so x A y, with x, y ∈ A, is
called a lemma.

The complete set of lemmas is the counterpart of our assumptions. It gives us
the lemmas that ought to be proven to get the complete picture, i.e., to have a
statement about every possible relation between the investigated objects which
does not contradict the assumptions. In some sense, the proof relation gives
us complete negative knowledge by saying what is not known by assumption.

Example 2 (Hasse diagram—continued) In this example, x A y trans-
lates to x 6⊆ y for x, y ∈M . There are exactly fourteen lemmas in A:

{q 6⊆ p, p 6⊆ t, s 6⊆ q, r 6⊆ q, t 6⊆ q, s 6⊆ t, s 6⊆ r,

p 6⊆ s, p 6⊆ r, q 6⊆ r, r 6⊆ p, t 6⊆ r, t 6⊆ s, r 6⊆ s}

Fortunately, most lemmas follow from others directly, and we will see which
of them.

Now, we observe that some lemmas follow from others directly by using the
set of assumtions, e.g., let x1 A y1 be established, which translates to x1 64 y1,
and let also x1 4 x2 and y2 4 y1 by assumption, then x2 64 y2 immediately
follows, since x1 4 x2 4 y2 4 y1 would give a contradiction. This observation
is expressed in the following definition.

3

Definition 3 The lemma structure → ⊆ A × A on a complete set of lem-
mas A is defined by

(x1, y1)→ (x2, y2) ⇐⇒ x1 ≤ x2 and y2 ≤ y1

where (x1, y1), (x2, y2) ∈ A.

Proposition 4 A lemma structure → is a partial-order relation.

PROOF. Reflexivity: For any (x, y) in A, we have (x, y) → (x, y) by the
reflexivity of ≤. Antisymmetry: Let (x1, y1)→ (x2, y2) and (x2, y2)→ (x1, y1),
then x1 ≤ x2, x2 ≤ x1, y2 ≤ y1, and y1 ≤ y2, and also x1 = x2 and y1 = y2

since≤ is antisymmetric, hence, (x1, y1) = (x2, y2). Transitivity: Let (x1, y1)→
(x3, y3) and (x3, y3) → (x2, y2), then x1 ≤ x3, x3 ≤ x2, y2 ≤ y3, and y3 ≤ y1,
and also x1 ≤ x2 and y2 ≤ y1 since ≤ is transitive, hence, (x1, y1)→ (x2, y2).

Example 5 (Hasse diagram—continued) Reading → as “implies”

(q 6⊆ r)→ (s 6⊆ r)

holds in our example, which follows from the assumption q ⊆ s.

The following theorem shows that the maximal elements in → are necessary
and sufficient to prove ≤ = 4. Let →max= {x ∈ A | if y → x then x = y, for
all y ∈ A} denote the maximal elements in→. It is clear that every nonempty
finite partial-order has a nonempty set of maximal elements.

Theorem 6 →max is the smallest set of lemmas to prove ≤ = 4.

PROOF. (i) We have to show that A follows from →max. The set →max is
not empty if A is not empty, since → is a partial-order by Proposition 4. So,
for every lemma x A y there is a lemma x′ A y′ with (p′, q′) ∈→max such that
(x′, y′) → (x, y) by the definition of →max. (ii) Every element in →max only
follows from itself, which is clear from the definition of →max.

Example 7 (Hasse diagram—continued) The lemma structure of our ex-
ample is indicated by the following graph, where reflexive and transitive edges

4

are omitted:

r 6⊆ s

��zzvvvvvvvvv
q 6⊆ p

��

�������������������������
s 6⊆ t

s 6⊆ q

�������

�������

p 6⊆ r

��

t 6⊆ s

��

r 6⊆ q

��zzvvvvvvvvv
q 6⊆ r

��

t 6⊆ q

$$HHHHHHHHH r 6⊆ p

��

s 6⊆ p s 6⊆ r

�������

��

t 6⊆ p t 6⊆ r

One can check that the proposed Hasse diagram on page 3 follows from our
set of assumptions and the four lemmas r 6⊆ s, q 6⊆ p, s 6⊆ t, and p 6⊆ r.

3 Implementation

The algorithm described in the previous section—take the complement of the
set of assumptions and find the maximal elements in the corresponding lemma
structure—has been imlpemented as a Haskell program which reads a file con-
taining the describtion of a relation, calculates the transitive reflexive closure,
and takes the smallest partial-order relation of that as set of assumptions. A
file is generated where these steps are documented and the solution is given.
The program can be found at [Now] and it requires the Glasgow Haskell Com-
piler [GHC] to run.

The following Haskell listing shows the core of our program. It defines a func-
tion minlem that takes a list of pairs defining a partial-order relation over some
eqtype to a list of pairs of the same type. The argument of minlem represents
a set of assumptions, and the result of its evaluation gives the smallest set of
pairs that have to be checked to prove the assumption to be precise.

import List

elements :: Eq a => [(a,b)] -> [a]

elements ord = (nub . fst . unzip) ord

complement :: Eq a => [(a,a)] -> [(a,a)]

complement ord = let elems = elements ord

in [(x,y) | x <- elems, y <- elems,

(x,y) ‘notElem‘ ord]

lemma_structure :: Eq a => [(a,a)] -> [(a,a)] -> [((a,a),(a,a))]

5

lemma_structure ord lems =

[((x,y),(x’,y’)) | (x,y) <- lems, (x’,y’) <- lems,

(x,x’) ‘elem‘ ord, (y’,y) ‘elem‘ ord]

maxElems :: Eq a => [(a,a)] -> [a] -> [a]

maxElems lemStruct lems =

let pred x y = if (y,x) ‘elem‘ lemStruct then x == y else True

in [x | x <- lems, all (pred x) lems]

minlem :: Eq a => [(a,a)] -> [(a,a)]

minlem assume = let lems = complement assume

in maxElems (lemma_structure assume lems) lems

References

[BS81] S. Burris and H. P. Sankappanavar. A Course in Universal Algebra.
Graduate Texts in Mathematics. Springer-Verlag, 1981.

[FV98] Z. Fülöp and H. Vogler. Syntax-Directed Semantics. Monographs on
Theoretical Computer Science. Springer-Verlag, 1998.

[GHC] http://www.haskell.org/ghc/.

[Now] http://www.cs.utu.fi/staff/nowotka/minlem.html.

6

