
On Fixed Point Equations over Commutative

Semirings

Javier Esparza, Stefan Kiefer, and Michael Luttenberger

Universität Stuttgart
Institute for Formal Methods in Computer Science

Stuttgart, Germany
{esparza,kiefersn,luttenml}@informatik.uni-stuttgart.de

Abstract. Fixed point equations x = f(x) over ω-continuous semirings
can be seen as the mathematical foundation of interprocedural program
analysis. The sequence 0, f(0), f2(0), . . . converges to the least fixed point
µf . The convergence can be accelerated if the underlying semiring is com-
mutative. We show that accelerations in the literature, namely Newton’s
method for the arithmetic semiring [3] and an acceleration for commu-
tative Kleene algebras due to Hopkins and Kozen [4], are instances of a
general algorithm for arbitrary commutative ω-continuous semirings. In
a second contribution, we improve the O(3n) bound of [4] and show that
their acceleration reaches µf after n iterations, where n is the number
of equations. Finally, we apply the Hopkins-Kozen acceleration to itself
and study the resulting hierarchy of increasingly fast accelerations.

1 Introduction

Interprocedural program analysis is the art of extracting information about the
executions of a procedural program without executing it, and fixed point equa-
tions over ω-continuous semirings can be seen as its mathematical foundation.
A program can be mapped (in a syntax-driven way) to a system of fixed point
equations over an abstract semiring containing one equation for each program
point. Depending on the information on the program one wants to compute, the
carrier and the abstract semiring operations can be instantiated so that the de-
sired information is the least solution of the system. To illustrate this, consider
a (very abstractly defined) program consisting of one single procedure X . This
procedure can either do an action a and terminate, or do an action b and call
itself twice. Schematically:

X
a
−→ ε X

b
−→XX

The abstract equation corresponding to this program is

x = ra + rb · x · x (1)

where + and · are the abstract semiring operations. In order to compute the
language L(X) of terminating executions of the program, we instantiate the



semiring as follows: The carrier is 2{a,b}∗

(the set of languages over the alphabet
{a, b}), ra = {a}, rb = {b}, + is set union, and · is language concatenation. It is
easy to prove that L(X) is the least solution of (1) under this interpretation. But
we can also be interested in other questions. We may wish to compute the Parikh
image of L(X), i.e., the set of vectors (na, nb) ∈ N

2 such that some terminating
execution of the program does exactly na a’s and nb b’s, respectively. For this,
we take 2N

2

as carrier, ra = {(1, 0)}, rb = {(0, 1)}, define + as set union and
· by X · Y = {(xa + ya, xb + yb) | (xa, xb) ∈ X, (ya, yb) ∈ Y }. We may also be
interested in quantitative questions. For instance, assume that the program X
executes a with probability p and b with probability (1−p). The probability that
X eventually terminates is the least solution of (1) interpreted over R

+ ∪{0,∞}
with ra = p, rb = (1 − p), and the standard interpretation of + and · (see for
instance [2, 3]). If instead of the probability of termination we are interested in
the probability of the most likely execution, we just have to reinterpret + as the
max operator.

The semirings corresponding to all these interpretations share a property
called ω-continuity [7]. This property allows to apply the Kleene fixed point
theorem and to prove that the least solution of a system of equations x = f(x)
is the supremum of the sequence 0, f(0), f 2(0), . . ., where 0 is the vector whose
components are all equal to the neutral element of +. If the carrier of the semiring
is finite, this yields a procedure to compute the solution. However, if the carrier
is infinite, the procedure rarely terminates, and its convergence can be very slow.
For instance, the approximations to L(X) are all finite sets of words, while L(X)
is infinite. Another example is the probability case with p = 1/2; the least fixed
point (the least solution of x = 1/2x2 + 1/2) is 1, but fk(0) ≤ 1− 1

k+1 for every

k ≥ 0, which means that the Kleene scheme needs 2i iterations to approximate
the solution within i bits of precision1.

Due to the slow convergence of (fk(0))k≥0, it is natural to look for “acceler-
ations”. Loosely speaking, an acceleration is a procedure of low complexity that
on input f yields a function g having the same least fixed point µf as f , but
such that (gk(0))k≥0 converges faster to µf than (fk(0))k≥0. In [4], Hopkins and
Kozen present a very elegant acceleration—although they do not use this term—
that works for every commutative and idempotent ω-continuous semiring2, i.e.,
for every ω-continuous semiring in which · is commutative and + is idempotent
(this is the case for both the Parikh image and the probability of the most likley
computation). They prove that, remarkably, the acceleration is guaranteed to
terminate. More precisely, they show that the fixed point is always reached after
at most O(3n) iterations, where n is the number of equations.

In this paper we further investigate the Hopkins-Kozen acceleration. In the
first part of the paper we show that, in a certain formal sense, this acceleration
was already discovered by Newton more than 300 years ago. In the arithmetic
semiring, where the carrier is R

+∪{0,∞} and + and · have their usual meanings,

1 This example is adapted from [3].
2 Actually, in [4] the result is proved for commutative Kleene algebras, an algebraic

structure more general than our semirings (cf. Section 4.1).
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one can compute the least solution of x = f(x) as a zero of f(x) − x. Due to
this connection, Newton’s numerical method for approximating the zeros of a
differentiable function (see e.g. [8]) can also be seen as an acceleration for the
arithmetic case, which has been been studied by Etessami and Yannakakis in
[3] in a different context. Here we show that the Hopkins-Kozen acceleration
and Newton’s are two particular instances of an acceleration for equations over
arbitrary commutative ω-continuous semirings [7] and, in this sense, “the same
thing”.

In a second contribution, we improve the O(3n) bound of [4] and show that
the acceleration is actually much faster: the fixed point is already reached after
n iterations. Finally, in a third contribution we investigate the possibility of
“accelerating the acceleration”. We study a hierarchy {Hi}i≥1 of increasingly
faster accelerations, with H1 as the Hopkins-Kozen acceleration, and show that
k iterations of the i-th acceleration can already be matched by ki iterations of
the basic acceleration.

In Section 2 we introduce commutative ω-continuous semirings following [7].
In Section 3 we introduce the Hopkins-Kozen acceleration and Newton’s method.
In Section 4 we present our generalisation and derive both the Hopkins-Kozen
acceleration and Newton’s method as particular cases. In Section 5 we prove
that the Hopkins-Kozen acceleration terminates after n-steps. The hierarchy of
accelerations is studied in Section 6. For space reasons all proofs have been
moved to an appendix.

2 ω-Continuous Semirings

A semiring is a quintuple 〈A, +, ·, 0, 1〉 s.t.

(i) 〈A, +, 0〉 is a commutative monoid,
(ii) 〈A, ·, 1〉 is a monoid,
(iii) a · (b + c) = a · b + a · c and (a + b) · c = a · c + b · c for all a, b, c ∈ A,
(iv) 0 · a = a · 0 for all a ∈ A.

A semiring is

– commutative if a · b = b · a for all a, b ∈ A;
– idempotent if a + a = a for all a ∈ A;
– naturally ordered if the relation ≤ given by a ≤ b ⇔ ∃c ∈ A : a + c = b

is a partial order (this relation is always reflexive and transitive, but not
necessarily antisymmetric);

– complete if it is possible to define “infinite sums” as an extension of finite
sums, that are associative, commutative and distributive with respect to · as
are finite sums. The formal axioms are given in [7]. In complete semirings,
the unary ∗-operator is defined by a∗ =

∑

j≥0 aj . Notice that a∗ = 1 + aa∗;
– ω-continuous if it is naturally ordered, complete, and for all sequences (ai)i∈N

with ai ∈ A

sup

{

n
∑

i=0

ai | n ∈ N

}

=
∑

i∈N

ai.
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Notation 1. We abbreviate commutative ω-continuous semiring to cc-semiring.

Remark 1. For our proofs the existence and ω-continuity of countable sums is
sufficient. While in the idempotent case there is the term of commutative closed
semirings for such structures (see [5]), it seems that there is no such term in the
non-idempotent case.

Examples of semirings include 〈N ∪ {0,∞}, +, ·, 0, 1〉, 〈R+ ∪ {0,∞}, +, ·, 0, 1〉,
〈N ∪ {0,∞}, min, +,∞, 0〉 and 〈2Σ∗

,∪, ·, ∅, ε〉. They are all ω-continuous. The
last two have an idempotent +-operation (min resp. ∪), and all but the last one
are commutative.

2.1 Systems of Power Series

Let A be an ω-continuous semiring and let X = {x1, . . . , xn} be a set of variables.
We write x for the vector (x1, . . . , xn)>. For every i ∈ {1, . . . , n}, let fi(x) be a
(semiring) power series with coefficients in A, i.e., a countable sum of products
of elements of A ∪ X , and let f(x) = (f1(x), . . . , fn(x))>. We call x = f(x) a
system of power series over A. A vector x̄ ∈ An with f(x̄) = x̄ is called a solution
or a fixed point of f .

Given two vectors x̄, ȳ ∈ An, we write x̄ ≤ ȳ if x̄i ≤ ȳi (w.r.t. the natural
order of A) in every component. The least fixed point of f , denoted by µf , is the
fixed point x̄ with x̄ ≤ ȳ for every fixed point ȳ. It exists and can be computed
by the following theorem.

Theorem 1 (Kleene fixed point theorem, cf. [7]). Let x = f(x) be a
system of power series over an ω-continuous semiring. Then µf exists and
µf = supk∈N fk(0).

3 Two Acceleration Schemes

Loosely speaking, an acceleration is a procedure that on input f yields a function
g having the same least fixed point µf as f , but converging “faster” to it, meaning
that fk(0) ≤ gk(0) for every k ≥ 0. In order to exclude trivial accelerations
like g(x) = µf , a formal definition should require the procedure to have low
complexity with respect to some reasonable complexity measure. Since such a
definition would take too much space and would not be relevant for our results,
we only use the term “acceleration” informally.

We describe two accelerations for different classes of cc-semirings. Both of
them are based on the notion of derivatives. Given a polynomial or a power
series f(x), its derivative ∂f

∂xi
with respect to the variable xi is defined as follows,

where a ∈ A and g, gj , h are polynomials or power series (see also [4]):

∂a

∂xi

= 0
∂

∂xi

(g + h) =
∂g

∂xi

+
∂h

∂xi

∂

∂xi

(g · h) =
∂g

∂xi

· h + g ·
∂h

∂xi

∂xj

∂xi

=

{

0 if i 6= j
1 if i = j

∂

∂xi

∑

j∈N

gj =
∑

j∈N

∂gj

∂xi
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As usual, the Jacobian of a vector f(x) is the n × n-matrix f ′(x) given by

f ′(x)ij =
∂fi

∂xj

.

3.1 The Hopkins-Kozen Acceleration

In [4] Hopkins and Kozen introduce an acceleration of the Kleene procedure for
idempotent cc-semirings and prove that it reaches the fixed point after finitely
many steps. Given a system of power series x = f(x), the Hopkins-Kozen se-
quence is defined by

κ
(0) = f(0)

κ(k+1) = f ′(κ(k))∗ · κ(k)

Theorem 2 (Hopkins and Kozen [4]). Let x = f(x) be a system of power
series over an idempotent cc-semiring. There is a function N : N → N with
N(n) ∈ O(3n) s.t. κ(N(n)) = µf , where n is the number of variables of the
system.

Actually, [4] prove the theorem for commutative Kleene algebras, whose ax-
ioms are weaker than those of idempotent cc-semirings. There is no notion of
infinite sums in the Kleene algebra axioms, especially the Kleene star operator
∗ and its derivative are defined axiomatically.

Example 1. Let 〈2{a}∗

, +, ·, 0, 1〉 denote the cc-semiring 〈2{a}∗

,∪, ·, ∅, {ε}〉. For
simplicity, we write ai instead of {ai}. Consider the equation system

x =

(

x1

x2

)

=

(

x2
2 + a
x2

1

)

= f(x) with f ′(x)∗ = (x1x2)
∗

(

1 x2

x1 1

)

.

The Hopkins-Kozen acceleration reaches the least fixed point µf after two steps:

κ
(0) = (a, 0)>, κ

(1) = (a, a2)>, κ
(2) = (a3)∗(a, a2)>.

It is easy to check that κ(2) is a fixed point of f . By Theorem 2 we have κ(2) = µf .

3.2 Newton’s Acceleration

Newton’s method for approximating the zeros of a differentiable real function
g(x) is one of the best known methods of numerical analysis. It computes the
sequence

x(0) = s

x(k+1) = x(k) − g′(x(k))−1 · g(x(k))

starting at the seed s. Under certain conditions on g(x) and on the seed s (typ-
ically the seed must be “close enough” to the solution) the sequence converges
to a solution of the equation g(x) = 0.
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In order to approximate a solution of an equation system x = f(x) over the
reals, we can apply Newton’s method to the function g(x) = f(x) − x, which
gives the sequence

x(0) = 0

x(k+1) = x(k) + (1 − f ′(x(k)))−1(f(x(k)) − x(k)).

4 An Acceleration for Arbitrary cc-Semirings

We show that the Hopkins-Kozen and Newton’s accelerations are two instances
of a general acceleration for arbitrary cc-semirings, which we call the cc-scheme.
The proof relies on lemmata from [4] and [3], which we reformulate and generalise
so that they hold for arbitrary cc-semirings.

The cc-scheme is given by:

ν(0) = 0

ν(k+1) = ν(k) + f ′(ν(k))∗ · δ(ν(k)),
where δ(ν(k)) is any vector s.t. ν(k) + δ(ν(k)) = f(ν(k))

The scheme leaves the choice of δ(ν(k)) free, but there is always at least one
δ(ν(k)) satisfying the condition (see Lemma 2 below).

The following theorem states that the cc-scheme accelerates the Kleene scheme
(fk(0))k∈N.

Theorem 3. Let x = f(x) be a system of power series over a cc-semiring.
Then the iterates ν(k) of the cc-scheme exist and satisfy fk(0) ≤ ν(k) ≤ µf for
all k ≥ 0.

The proof uses the following fundamental property of derivatives in cc-semirings:

Lemma 1 (Taylor’s Theorem, cf. [4]). Let f(x) and d be vectors of power
series over a cc-semiring. Then

f(x) + f ′(x) · d ≤ f(x + d) ≤ f(x) + f ′(x + d) · d.

The following lemma assures the existence of a suitable δ(ν (k)) for each k.

Lemma 2. Let ν(k) be the k-th iterate of the cc-scheme. For all k ≥ 0 :
f(ν(k)) ≥ ν(k). So, there is a δ(ν(k)) such that ν(k) + δ(ν(k)) = f(ν(k)).

What remains to show for Theorem 3 is fk(0) ≤ ν(k) ≤ µf . See Appendix A for
detailed proofs.

In the rest of the section we show that the Hopkins-Kozen acceleration and
Newton’s acceleration are special cases of the cc-scheme.
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4.1 Idempotent cc-Semirings

If addition is idempotent, we have x ≤ y iff x + y = y, as x ≤ y implies that
there is a d with x+ d = y so that x+ y = x+(x+ d) = x+ d = y. By Lemma 2
we have ν(k) ≤ f(ν(k)). In the cc-scheme

ν(0) = 0
ν(k+1) = ν(k) + f ′(ν(k))∗ · δ(ν(k)),

where δ(ν(k)) is any vector s.t. ν(k) + δ(ν(k)) = f(ν(k))

we therefore may choose δ(ν(k)) = f(ν(k)). Moreover, since f ′(ν(k))∗ ≥ 1 by
the definition of the Kleene star and since ν(k) ≤ f(ν(k)) by Lemma 2 we get

ν
(k) ≤ f(ν(k)) ≤ f ′(ν(k))∗ · f(ν(k))

and by idempotence

ν
(k) + f ′(ν(k))∗ · f(ν(k)) = f ′(ν(k))∗ · f(ν(k)) .

So the cc-scheme collapses in the idempotent case to

ν(0) = 0

ν
(k+1) = f ′(ν(k))∗ · f(ν(k)).

In other words, ν(k+1) results from ν(k) by applying the operator Nf (x) :=
f ′(x)∗ · f(x). Recall that the Hopkins-Kozen sequence is given by

κ(0) = f(0)

κ(k+1) = f ′(κ(k))∗ · κ(k).

So it is obtained by repeatedly applying the Hopkins-Kozen operator Hf (x) :=
f ′(x)∗ · x, starting from f(0). While the two sequences are not identical, the
following theorem shows that they are essentially the same.

Theorem 4.

1. For all k > 0 : κ(k−1) ≤ ν(k) ≤ κ(k).
2. For all k ≥ 0 : κ(k) = Hk

f
(f(0)) = N k

f
(f(0)).

4.2 The Semiring over the Nonnegative Reals

We now consider the cc-semiring 〈R+ ∪ {0,∞}, +, ·, 0, 1〉. In order to instantiate
the cc-scheme, we have to choose δ(ν(k)) so that ν

(k) + δ(ν(k)) = f(ν(k)) holds.
By Lemma 2 we have ν(k) ≤ f(ν(k)), and so we can take δ(ν(k)) = f(ν(k))−ν(k).
The cc-acceleration becomes

ν(0) = 0

ν(k+1) = ν(k) + f ′(ν(k))∗ · (f(ν(k)) − ν(k)) .

It is easy to see that for any nonnegative real-valued square matrix A, if
∑

k∈N
Ak = A∗ has only finite entries, then (1 − A)−1 exists and equals A∗.

If this is the case for A = f ′(ν(k))∗, then Newton’s method coincides with
the cc-acceleration for the reals and thus converges to µf . In [3] Etessami and
Yannakakis give sufficient conditions for f ′(ν(k))∗ = (1 − f ′(ν(k)))−1 when f is
derived from a recursive Markov chain.
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5 Convergence Speed in Idempotent Semirings

In the first subsection we want to analyse how many steps the Newton iteration
or, equivalently, the Hopkins-Kozen iteration needs to reach µf when we consider
an idempotent cc-semiring 〈A, +, ·, 0, 1〉, i.e. we have the additional equation
1 + 1 = 1. In the subsequent subsection we then generalise the obtained results
to the setting of commutative Kleene algebras.

5.1 Idempotent cc-Semirings

In this subsection f again denotes a system of n power series in the variables
X = {x1, . . . , xn}, i.e. we have

fi(x) =
∑

ι∈Nn

c(i)
ι

xι,

where xι denotes the product xι1
1 · . . . · xιn

n and c
(i)
ι ∈ A for all ι ∈ N

n and
1 ≤ i ≤ n. We define the concept of derivation trees of our system f as in formal
language theory.

Notation 2. In the following, if u is a node of a tree t, we identify u with the
subtree of t rooted at u. In particular, t is also used to denote t’s root. A chain
in a tree t is any path from t’s root to a leaf of t. The height h(t) of t is then
the length of its longest chain, e.g. a tree consisting only of a single node has
height 0.

Definition 1. A partial derivation tree t of xi is a labelled tree satisfying these
conditions:

– every node of t is labelled by either an element of A or an element of X ,
– its root is labelled by xi, and
– for each node u of t labeled by some variable xk the following holds: Let pu(x)

be the product of the labels of u’s children. Then pu is a summand of fk, i.e.

there exists a ι ∈ N
n with c

(k)
ι 6= 0 and c

(k)
ι xι = pu(x).

We call a partial derivation tree t a derivation tree if no leaf of t is labelled by
a variable. The yield Y (t) of a derivation tree t is the product of the labels of its
leaves.

As in the case of formal languages we have the following

Theorem 5.

1. The sum of yields of all derivation trees of xi with height at most h equals
(fh(0))i.

2. The sum of yields of all derivation trees of xi equals (µf)i.

In the following we show that because of commutativity and idempotence already
a special class of derivation trees is sufficient to reach µf .
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T<k

T<k

T<k

Tk−1 Tk−1

(a) (b) (c)

Fig. 1. (a) shows the general structure of a tree of dimension k, where T<k (Tk−1)
represents any tree of dimension < k (= k − 1). (b) and (c) give some idea of the
topology of one-, resp. two-dimensional trees in general.

Definition 2. We define the dimension dim(t) of a tree t as follows.

1. A tree of height 0 or 1 has dimension 0.
2. Let t be a tree of height h(t) > 1 with children c1, c2, . . . , cs where dim(c1) ≥

dim(c2) ≥ . . . dim(cs). Let d1 = dim(c1). If s > 1, let d2 = dim(c2), other-
wise let d2 = 0. Then we define

dim(t) :=

{

d1 + 1 if d1 = d2

d1 if d1 > d2.

(See also Fig. 5.1).

Remark 2. For every derivation tree t we have h(t) > dim(t).

Definition 3. Let t be a derivation tree. We denote with V (t) the number of
distinct variables appearing as labels in t. We call t compact if dim(t) ≤ V (t).

In the following, we state two central lemmata that lead to the main result
of this section. Lemma 3 tells us that it is sufficient to consider only compact
derivation trees. Lemma 4 shows the connection between the dimension of a
derivation tree and the Hopkins-Kozen sequence.

Lemma 3. For each derivation tree t of xi there is a compact derivation tree t′

of xi with equal yield.

Lemma 4. Let t be a derivation tree of xi s.t. dim(t) ≤ k. Then Y (t) ≤ (κ(k))i.
3

The proof of Lemma 3 bears some similarity to the proof of the pumping
lemma for context free languages. Let us call a partial derivation tree a pumping
tree (p-tree) if it has exactly one leaf which bears the same label as its root

3 In fact one can similarly show that (κ(k))i equals exactly the sum of yields of all
derivation trees of xi of dimension less than or equal to k.
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and all other leaves are labelled by elements of A. Because of commutativity,
reallocating such a p-tree from one subtree of t to another one does not change
t’s yield. We use a reallocation procedure to inductively reduce the dimension of
t’s subtrees, which eventually results in decreasing the dimension of t itself.

Theorem 6. Let f : An → An be a system of power series over an idempotent
cc-semiring 〈A, +, ·, 0, 1〉. Then µf = κ(n).

Proof. First recall that by Theorem 3 (ν(k) ≤ µf) and Theorem 4 (κ(k−1) ≤
ν

(k) ≤ κ
(k)) we have κ

(n) ≤ µf . Obviously, V (t) ≤ n for every derivation tree
t of xi. Lemma 3 allows to assume that t is compact, i.e. dim(t) ≤ V (t) ≤ n.
Lemma 4 thus implies Y (t) ≤ (κ(n))i. Therefore the sum of yields of derivation
trees of xi is less than or equal to (κ(n))i. But Theorem 5 tells us that this sum
is already (µf)i. Hence µf ≤ κ(n) ≤ µf . ut

Remark 3. The bound of this theorem is tight as can be shown by a general-
isation of Example 1: If f(x) = (x2

2 + a, x2
3, . . . , x

2
n, x2

1)
>, then (κ(k))1 = a for

k < n, but a2n

≤ (κ(n))1 = (µf)1.

5.2 Generalisation to Commutative Kleene Algebras

Notation 3. Let M be any set. Then RExpM denotes the set of regular expres-
sions generated by the elements of M . We write RM : RExpM → 2M∗

for their
canonical interpretation as languages.

For this subsection, let f denote a system of n regular expressions fi ∈ RExpK∪X .
We are again interested in the least solution µf of x = f(x), but this time over
the commutative Kleene algebra 〈K, +, ·,∗ , 0, 1〉. A commutative Kleene algebra is
an idempotent commutative semiring 〈K, +, ·, 0, 1〉 where the ∗-operator is only
required to satisfy these two equations for all a, b, c ∈ K:

1 + aa∗ ≤ a∗ and a + bc ≤ c → b∗a ≤ c.

In [4] it is proved that µf can be computed by applying the Hopkins-Kozen
operator Hf to f(0) for a finite number of times. In addition, Hi

f
(f(0)) ≤ µf for

all i ∈ N.
As in the setting of cc-semirings the Hopkins-Kozen operator is defined by

Hf (x) = f ′(x)∗x. For H to be well defined over Kleene algebras, one has to
define the partial derivatives ∂

∂xj
over RegK∪X . This is done in [4] just as in the

case of cc-semirings (see the beginning of Section 3), however the equation for
the

∑

-operator is replaced by the axiom ∂α∗

∂xj
= α∗ ∂α

∂xj
for α ∈ RExpK∪X .

We lift the result of the previous subsection to commutative Kleene algebras,
improving the O(3n) bound in [4]. More precisely we show that

f(Hn
f (f(0))) = Hn

f (f(0)). (2)

In order to prove (2) we appeal to Redko’s theorem [1] that essentially states
that an equation of terms over any commutative Kleene algebra holds if it holds
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under the canonical commutative interpretation. See Appendix B for a technical
justification of this fact. Let Σ be the finite set of elements of K appearing in f .

The canonical commutative interpretation cΣ : RExpΣ → 2N
Σ

is then defined by

cΣ(α) = {#w | w ∈ RΣ(α)},

where #w is the Parikh-vector of w ∈ Σ∗, i.e. a ∈ Σ appears exactly (#w)a-
times in w. We omit the subscript of cΣ in the following. The idempotent cc-

semiring of sets of Parikh-vectors CΣ is defined by CΣ = 〈2N
Σ

,∪, +, ∅, {0}〉 with

A+B = {a+b | a ∈ A, b ∈ B} for all A, B ⊆ N
Σ and

∑

S =
⋃

S for all S ⊆ 2N
Σ

.
By Redko’s theorem, we can prove (2) by showing c(f(Hn

f
(f(0)))) = c(Hn

f
(f(0)))

over CΣ.
For any function g : RExpΣ → RExpΣ , let gc denote the commutative inter-

pretation of g as a map over CΣ , i.e. c(g(α)) = gc(c(α)) for all α ∈ RExpΣ . In
particular c(α∗) =

⋃

i∈N
c(αi). Notice that this definition is consistent with the

axiomatic definition of derivatives of ∗-expressions, since

c(
∂

∂xi

(α∗)) = c(α∗ ∂

∂xi

(α)) =
⋃

j∈N

c(αj)
∂

∂xi

(c(α)) =
∂

∂xi





⋃

j∈N

c(αj)



 =
∂

∂xi

(c(α∗)).

We then have (Hf )
c = Hf c . Furthermore, by Theorem 6, Hn

f c(f c(∅)) solves
the equation system x = f c(x) over CΣ. Combined, we have

c(f(Hn
f (f(0)))) = f c((Hn

f )c(f c(∅))) = f c(Hn
f c(f c(∅))) = Hn

f c(f c(∅)) = c(Hn
f (f(0))).

This proves the following theorem.

Theorem 7. Let f ∈ RExpn
K∪X define a system x = f(x) over a commutative

Kleene algebra 〈K, +, ·,∗ , 0, 1〉. Then µf = κ(n).

6 A Hierarchy of Accelerations

In this section we apply the Hopkins-Kozen acceleration to itself. Let x = f(x) be
an equation system of degree-2-polynomials over a commutative Kleene algebra.
Any polynomial equation system (even with ∗-expressions) can be reduced to
this “Chomsky normal” form by introducing auxiliary variables.

Recall the Hopkins-Kozen operator Hf (x) = f ′(x)∗x. As shown in [4] and
in the previous section, the sequence Hi

f
(f(0)) is “faster” than f i(f(0)) to the

extent that the fixed point iteration of Hf reaches µf in a finite number of
steps, whereas the fixed point iteration of f may not reach µf . We study in this
section how fast accelerations HHf

,HHH
f
, . . . are compared to Hf . We write H1

for Hf and Hi+1 for HHi
= ( ∂

∂x
(Hi(x)))∗x. In the following we mean Hf when

the subscript of H is omitted. Our hierarchy theorem states that using Hi once
amounts to using H i-times:

Theorem 8. For all i ≥ 1 : Hi(x) = Hi(x).

11



Combined with Theorem 6 we conclude that the least fixed point µf can be
computed by (a) iteratively applying H to f(0) (n times) or (b) computing the
operator Hn and applying it to f(0) once or (c) computing the operator Hn and
applying it to f(0) once. A discussion which method is most appropriate depends
on the the particular applications and is beyond the scope of this paper.

Example 2. We continue Example 1 where we have shown that H2(f(0)) = µf .
Now we illustrate Theorem 8 by showing that H2(f(0)) = µf . We have

H(x) = f ′(x)∗x = (x1x2)
∗

(

x1 + x2
2

x2
1 + x2

)

,

H′(x) = (x1x2)
∗

(

1 + x3
2 x2

1 + x2

x2
2 + x1 1 + x3

1

)

,

H′(f(0)) =

(

1 a2

a 1 + a3

)

and H′(f(0))∗ = (a3)∗
(

1 a2

a 1

)

.

So H2(f(0)) = H′(f(0))∗f(0) = (a3)∗
(

a
a2

)

= µf .

7 Conclusions

We have studied the Hopkins-Kozen acceleration scheme for solving fixed point
equations x = f(x) over commutative Kleene algebras [4]. We have shown that,
maybe surprisingly, the scheme is tightly related to Newton’s method for approx-
imating a zero of a differentiable real function. Loosely speaking, the scheme is
the result of generalising Newton’s method to commutative ω-continuous semi-
rings in a very straightforward way, and then instantiating this generalisation to
the case in which addition is idempotent. In the proof we very much profit from
a result by Etessami and Yannakakis on using Newton’s method to solve fixed
point equations derived from recursive Markov chains [3]. At the same time,
our result extends Etessami and Yannakakis’ result to arbitrary commutative
ω-continuous semirings, a much more general algebraic setting.

We have also proved that the Hopkins-Kozen scheme terminates after n it-
erations for a system of n equations, improving on the O(3n) bound of [4]. As
in [4], our bound holds for arbitrary commutative Kleene algebras.

Finally, we have studied the result of applying the scheme to itself, leading
to a sequence of faster and faster accelerations. The Hopkins-Kozen scheme can
be “arbitrarily faster” than the basis scheme derived from Kleene’s theorem
(the scheme computing (fk(0))k≥0) because it is guaranteed to terminate, while
Kleene’s scheme is not. We have shown that, on the contrary, the reduction in
the number of iterations achieved by subsequent accelerations is very moderate:
one iteration of the scheme obtained by applying k times the acceleration to
itself is already matched by k iterations of the Hopkins-Kozen scheme.

Our work can be extended in several directions. Our proof of the new bound
relies on formal languages concepts, and is therefore very non-algebraic. We

12



intend to search for an algebraic proof. We also plan to investigate accelerations
for the non-commutative case.
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A Proofs

A.1 Proof of Theorem 1

Theorem 1 (Kleene fixed point theorem, cf. [7]). Let x = f(x) be a
system of power series over an ω-continuous semiring. Then µf exists and µf =
supk∈N

fk(0).

Proof. This theorem is similarly stated in [7] for semiring polynomials. In order
to generalise it to power series, we only need to argue that infinite sums are ω-
continuous functions, as are addition and multiplication. A function f : A → A is
said to be ω-continuous if for any sequence (si)i∈N of elements of A s.t. si ≤ si+1,

f(sup
i∈N

si) = sup
i∈N

f(si).

We show that any power series is ω-continuous, i.e., let fj = cjx
j for j ∈ N and

cj ∈ A, and let f =
∑

j∈N
fj . Any power series can be written in this sum form.

Because we have
∑

j∈N
fj(supi si) ≥

∑

j∈N
fj(si) for all i, also

∑

j∈N

fj(sup
i

si) ≥ sup
i

∑

j∈N

fj(si)

holds. For the other direction, we have for all n ∈ N:

∑n
j=0 fj(supi si) =

∑n
j=0 supi fj(si) (ω-continuity of fj)

= supi

∑n
j=0 fj(si) (ω-continuity of finite sums)

≤ supi

∑∞
j=0 fj(si).

Because the structure A is ω-continuous, it follows that

∑

j∈N

fj(sup
i

si) ≤ sup
i

∑

j∈N

fj(si).

ut

A.2 Proof of Lemma 1

Lemma 1 (Taylor’s Theorem, cf. [4] (stronger version)). Let f(x) and
d be vectors of power series over a cc-semiring. Then

f(x) + f ′(x) · d ≤ f(x + d) ≤ f(x) + f ′(x + d) · d.

Moreover, in the idempotent case we have f(x + d) = f(x) + f ′(x + d) · d.

Proof. The proof handles only the first inequation and the case n = 1 explicitly.
The general result is obtained by iteration as in [4].

We first consider the case of f being a (finite) polynomial. We argue by
induction over the polynomial structure.

14



Case 1: f(x) = a, where a is a constant or a variable different from x. Then
f ′(x) = 0 and f(x + d) = f(x) = a.

Case 2: f(x) = x. Then f ′(x) = 1 and f(x + d) = x + d = f(x) + 1 · d.
Case 3: f(x) = g(x) + h(x). Then f ′(x) = g′(x) + h′(x) and (by induction)

f(x+d) = g(x+d)+h(x+d) ≥ g(x)+g′(x)·d+h(x)+h′(x)·d = f(x)+f ′(x)·d.
Case 4: f(x) = g(x)h(x). Then f ′(x) = g′(x)h(x) + g(x)h′(x) and (by in-

duction) f(x + d) = g(x + d)h(x + d) ≥ (g(x) + g′(x)d)(h(x) + h′(x)d) ≥
g(x)h(x) + (g′(x)h(x) + g(x)h′(x))d = f(x) + f ′(x)d.

Now, to generalise the result to power series, we exploit the fact that the
power series over an ω-continuous semiring form again an ω-continuous semi-
ring [7]. Let f(x) be any power series, i.e., f(x) =

∑

j∈N
fj(x) with fj(x) = cjx

j

where the cj are constants. By the proof above we have fj(x)+f ′
j(x)·d ≤ fj(x+d)

and therefore
∑n

j=0 fj(x)+f ′
j(x)·d ≤

∑n
j=0 fj(x+d) ≤ f(x+d). By ω-continuity,

f(x) + f ′(x) · d ≤ f(x + d) follows.
The result in the idempotent case is proved similarly to [4]. ut

A.3 Proof of Lemma 2

Lemma 2 (stronger version). Let ν(k) be the k-th iterate of the cc-scheme.
For all k ≥ 0 : f(ν(k)) ≥ ν(k) ≥ fk(0).
In particular, since f(ν(k)) ≥ ν(k), there is a δ(ν(k)) s.t. ν(k)+δ(ν(k)) = f(ν(k)).

Proof. By induction on k. The base case k = 0 is obvious. For the step:

f(ν(k+1)) ≥ f(ν(k)) + f ′(ν(k))f ′(ν(k))∗δ(ν(k)) (Taylor)

= ν
(k) + δ(ν(k)) + f ′(ν(k))f ′(ν(k))∗δ(ν(k)) (ind. hyp.)

= ν(k) + f ′(ν(k))∗δ(ν(k)) (a∗ = 1 + aa∗)

= ν(k+1)

≥ ν(k) + δ(ν(k)) (f ′(ν(k))∗ ≥ 1)

= f(ν(k))
≥ f(fk(0)) (ind. hyp., monot. of f)
= fk+1(0) ut

A.4 Proof of Theorem 3

Lemma 5. Let f(x) ≥ x. For all d ≥ 0 there exists a vector δ
(d)(x) s.t.

fd(x) + δ
(d)(x) = fd+1(x) and

δ
(d)(x) ≥ f ′(fd−1(x)) · . . . · f ′(x) · δ(0)(x) ≥ f ′(x)d · δ(0)(x).

Proof. By induction on d. For d = 0 there is an appropriate δ
(0)(x) by assump-

tion. Let d ≥ 0.

fd+2(x) = f(fd(x) + δ
(d)(x)) (ind. hyp.)

≥ fd+1(x) + f ′(fd(x)) · δ(d)(x) (Taylor)

≥ fd+1(x) + f ′(fd(x)) · . . . · f ′(x) · δ(0)(x) (ind. hyp.)
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Therefore, there exists a δ
(d+1)(x) ≥ f ′(fd(x)) · . . . · f ′(x) · δ

(0)(x). Since f ′ is
monotone and x ≤ f(x) ≤ f2(x) ≤ . . ., the second inequality also holds. ut

Notice that by virtue of Lemma 2, Lemma 5 applies to the iterates of the
cc-scheme.

Lemma 6. For all k ≥ 0 : ν(k) ≤ µf .

Proof. By induction on k.

ν
(k+1) = ν

(k) + f ′(ν(k))∗ · δ(ν(k))
= ν(k) +

∑∞
d=0 f ′(ν(k))d · δ(ν(k)) (definition of ∗)

≤ ν(k) +
∑∞

d=0 δ
(d)(ν(k)) (Lemma 5)

= supd≥0 fd(ν(k)) (ω-continuity)
≤ µf (ind. hyp., monotonicity:

ν(k) ≤ f(ν(k)) ≤ f2(ν(k)) ≤ · · · ≤ µf)

ut

Theorem 3. Let x = f(x) be a system of power series over a cc-semiring.
Then the iterates ν(k) of the cc-scheme exist and satisfy fk(0) ≤ ν(k) ≤ µf for
all k ≥ 0.

Proof. The proof follows from Lemma 2 and Lemma 6. ut

A.5 Proof of Theorem 4

We first show the following lemma.

Lemma 7. For all i ≥ 0 : Hi+1
f

(x) = f ′(Hi
f
(x))∗x.

Proof. By induction on k. The base case is trivial. Let k ≥ 1. Then

Hk+1
f

(x) = Hf (Hk
f
(x)) = f ′(Hk

f
(x))∗Hk

f
(x) (by definition)

= f ′(Hk
f
(x))∗f ′(Hk−1

f
(x))∗x (by induction hyp.)

= f ′(Hk
f
)∗x (Hk−1

f
(x) ≤ Hk

f
(x)).

ut

Set Bf (x) := f ′(x)∗ · f(0). With the help of Lemma 7 we may prove the fol-
lowing stronger version of Theorem 4.

Theorem 4 (stronger version).

1. For all k > 0 : κ(k−1) ≤ ν(k) ≤ κ(k).
2. For all k ≥ 0 : κ(k) = Hk

f
(f(0) = N k

f
(f(0)) = Bk

f
(f(0)).

Proof.
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(a) By induction on k. We show the two inequations separately starting with
the first one. We have κ(0) = f(0) ≤ f ′(0)∗f(0) = ν(1) and, inductively,
κ

(k) = f ′(κ(k−1))∗κ(k−1) ≤ f ′(ν(k))∗ν(k) ≤ f ′(ν(k))∗f(ν(k)) = ν
(k+1).

For the second inequation we have ν(0) = 0 ≤ f(0) = κ(0) and, inductively,
ν(k+1) = f ′(ν(k))∗f(ν(k)) ≤ f ′(κ(k))∗f(κ(k)) ≤ f ′(κ(k))∗f ′(κ(k))∗κ(k) =
f ′(κ(k))∗κ(k) = κ(k+1), where the last inequation follows from Taylor’s The-
orem: f(κ(k)) ≤ f(0) + f ′(κ(k))κ(k) ≤ κ(k) + f ′(κ(k))κ(k) ≤ f ′(κ(k))∗κ(k).

(b) By induction on k. We have obviously

κ
(0) = H0

f (f(0)) = N 0
f (f(0)) = B0

f (f(0)) = f(0).

Let k ≥ 0. Using Lemma 7 and the induction hypothesis we have

κ
(k+1) = Hk+1

f
(f(0)) = f ′(Hk

f
(x))∗x |x=f(0)= Bf (H

k
f
(f(0))) = Bk+1

f
(f(0))

and

N k+1
f

(f(0)) = Nf (N k
f
(f(0))) (by definition)

= Nf (κ
(k)) (by induction hyp.)

= f ′(κ(k))∗f(κ(k)) (by definition)

= f ′(κ(k))∗(f(0) + f ′(κ(k))κ(k)) (Taylor)

= κ(k+1) + f ′(κ(k))∗f ′(κ(k))κ(k) (see above)
{

≤ κ(k+1) + Hf (κ
(k))

≥ κ(k+1)

= κ(k+1).

ut

A.6 Proof of Theorem 5

Theorem 5.

1. The sum of yields of all derivation trees of xi with height at most h equals
(fh(0))i.

2. The sum of yields of all derivation trees of xi equals (µf)i.

Proof. For h = 0 this holds by definition as there are no derivation trees of
height 0 and f0(0) = 0. Let T h

i be the set of all derivations of xi with height at
most h. Ti then denotes the set of all derivation trees of xi. We then have

(fh+1(0))i = fi((
∑

t∈T h
j

Y (t))1≤j≤n)

=
∑

ι∈Nn

(c(i)
ι

xι |x=(
P

t∈T h
j

Y (t))1≤j≤n
) + c

(i)
0

= (
∑

t∈T h+1

j

Y (t))1≤j≤n.
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One simply has to realise that c
(i)
ι xι evaluated at (

∑

t∈T h
j

Y (t))1≤j≤n equals the

sum of yields of all derivation trees t′ of xi with pt′(x) = c
(i)
ι xι and h(t′) ≤ h+1.

A similar argument shows that the vector x0 = (
∑

t∈Tj
Y (t))1≤j≤n is a fixed

point of f . As shown in the first part we have x0 = suph∈N fh(0). With fh(0) ≤ µf
we then may conclude µf = x0. ut

A.7 Proof of Lemma 3

Lemma 3. For each derivation tree t of xi there is a compact derivation tree
t′ of xi with equal yield.

Proof. First, let us introduce the following notation: we write t = t1 ·t2 to denote
that the root of t2 has the same label as some leaf l of t1, and that t can be
obtained by identifying l with t2.

We proceed by induction on the dimension followed by an induction on the
number of nodes. If dim(t) = 0, t is compact and we are done. Assume dim(t) >
V (t). Let s1, s2, . . . , sr be the children of t with dim(s1) ≥ dim(s2) ≥ . . . ≥
dim(sr). By induction on the number of nodes, we may assume that every child
is compact, i.e. dim(si) ≤ V (si). We then have by definition of dimension

V (t) + 1 ≤ dim(t) ≤ dim(s1) + 1 ≤ V (s1) + 1 ≤ V (t) + 1.

Hence, we have dim(t) = dim(s1) + 1 which by definition implies dim(s1) =
dim(s2) = V (t) = V (s1) = V (s2). As h(s2) > dim(s2), we find a chain in s2

which passes at least two inner nodes both labelled by, say, xj . This means, we
may factor s2 into tb1 · (t

b
2 · t

b
3). We also have V (s1) = V (s2), thus we find an inner

node of s1 labelled by xj which allows us to write s1 = ta1 · ta2 . We define t′ by
reallocating tb2 to s1, i.e., by induction on the number of nodes, we find a compact
derivation tree s′1, resp. s′2, equivalent to ta1 · (t

b
2 · t

a
3), resp. tb1 · t

b
3, and substitute

this one for s1, resp. s2. We then have V (s′2) ≤ V (s2) = V (s1) = V (s′1) and, by
compactness of s′1 and s′2, dim(s′1) ≤ dim(s1) = dim(s2) ≥ dim(s′2).

We iterate this procedure until the dimension of t drops by one, i.e. t becomes
compact. This has to happen as the number of nodes of (the current) s2 strictly
decreases in every iteration, and the number of nodes is, obviously, an upper
bound for the height, and, therefore, for the dimension of a tree. ut

A.8 Proof of Lemma 4

Lemma 4. Let t be a derivation tree of xi with dim(t) ≤ k. Then Y (t) ≤
(κ(k))i.

Proof. We proceed by induction on the height. If h(t) = 1, we have obviously
Y (t) = fi(0) ≤ (κ(k))i.

Hence, assume h(t) > 1, so dim(t) > 0. Let s1, . . . , sr be the children of
t being derivation trees themselves with yields Yl = Y (sl). Again we assume
dim(s1) ≥ dim(s2) ≥ . . . ≥ dim(ss). We note that we either have dim(t) >
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dim(s1) ≥ dim(s2) or dim(t) = dim(s1) > dim(s2), i.e. dim(s2) ≤ k − 1. We

have pt(x) = c
(i)
ι xι for some ι ∈ N

n by definition of derivation tree. Then

Y (t) = c
(i)
ι Y1 · . . . · Ys. Let xj be the label of s1. By induction hypothesis,

Y1 ≤ (κ(k))j , and Y2, . . . , Ys are subsumed in their respective components of

κ(k−1). As ∂pt

∂xj
results from pt(x) by removing exactly one occurrence of xj

(the “occurrence” of c1), we have c
(i)
ι Y2 · . . . · Yr ≤ ∂pt

∂xj
(κ(k−1)). Put together:

Y (t) = c
(i)
ι Y1 · . . . · Yr ≤ ∂pt

∂xj
(κ(k−1)) · Y1 ≤ ∂fi

∂xj
(κ(k−1)) · (κ(k))j ≤ (κ(k))i. ut

A.9 Proof of Theorem 8

Theorem 8. For all i ≥ 1 : Hi(x) = Hi(x).

For the proof of Theorem 8 we use tensor algebra to calculate with vectors
of polynomials and their derivatives. All the tensors we are dealing with have
exactly one contravariant index. In particular, vectors of polynomials (such as
f) are rank-1 tensors Tα. For ease of notation we often omit indices that do
not change. In addition, we use the Einstein summation convention, i.e., indices
appearing twice in a single term, once contravariant and once covariant, are
implicitly summed over. This allows to identify a tensor with its entries. Addi-
tional covariant indices are introduced when taking a derivative of a tensor T:
T′ = T′

α = ∂
∂xα

T.
A general tensor-tensor multiplication is written and defined as SαTα where

the resulting tensor has the indices of S and T except for the repeated index α.
Using tensor algebra and the definition of derivatives (Section 3) we can state
and prove the following derivation rules:

Lemma 8 (derivation rules).

(a) product rule: Let S,T be tensors. Then (SαTα)′ = S′
αβTα + SαT′α

β .
(b) chain rule: Let V = Vα be a vector. Then (T(V))′ = (T′(V))αV′α

β .

(c) matrix star rule: Let M be a matrix. Then (M∗α
β)′ = M∗α

γM′γ
δηM

∗δ
β,

where M′γ
δη = ∂

∂xη
(Mγ

δ ).

Proof. The proofs of parts (a) and (b) are standard. We prove only part (c),
since it requires more care. The entries of M are regular expressions over Σ∪X .
So are the entries of M∗ (following the construction in [6]). In order to show

∂
∂xη

(M∗α
β ) = M∗α

γ M′γ
δηM

∗δ
β , we exploit again Redko’s theorem, i.e., it suffices

to show c
(

∂
∂xη

(M∗α
β)

)

= c
(

M∗α
γM′γ

δηM
∗δ
β

)

, where c denotes the canonical

commutative interpretation, i.e., the Parikh images.
For convenience of notation we identify in the following a Parikh vector with

any word having this Parikh vector. Let w′ ∈ c
(

∂
∂xη

(M∗α
β )

)

. By definition

of derivatives, w′ can be obtained from some w ∈ c
(

M∗α
β

)

by deleting one

occurrence of xη . Say, w = wα
θ1

wθ1

θ2
· · ·w

θN−2

θN−1
w

θN−1

β s.t. wx
y ∈ c

(

Mx
y

)

, and say,

w′ = wα
θ1

wθ1

θ2
· · ·w

θK−2

θK−1
u′θK−1

θK
wθK

θK+1
· · ·w

θN−2

θN−1
w

θN−1

β , where u′θK−1

θK
be obtained

19



from w
θK−1

θK
(for a K ∈ {1, . . . , N}) by deleting one occurrence of xη . Then we

have u′θK−1

θK
∈ c

(

M′γ
δη

)

and thus w′ ∈ c
(

M∗α
γM′γ

δηM
∗δ
β

)

.

The other direction (M∗α
γ M′γ

δηM
∗δ
β ≤ ∂

∂xη
(M∗α

β)) is shown similarly. ut

The following lemma has already been implicitly used in Section 5 for vectors
and holds for arbitrary tensors.

Lemma 9 (Taylor’s theorem in commutative Kleene algebra, cf. [4]).
Let V = Vα be a vector. Then T(V) = T(0) + (T′(V))αVα.

Proof. This is proved in [4] for vectors T. It is easy to see that it holds for general
tensors as well. ut

In the following, we mean H(x) when the argument is omitted, and similarly
for other operators. Theorem 8 then states Hi = Hi. To prove it, we rely on
Lemmata 8 and 9 and on the fact that the set of matrices of a fixed dimension
over a Kleene algebra forms again a (non-commutative) Kleene algebra [6]. We
prove the inequations Hi ≥ Hi and Hi ≤ Hi of Theorem 8 in turn. For both of
them we use the following equation.

Lemma 10. For i ≥ 1 : ∂
∂x

(Hi) = f ′(Hi−1)∗f ′′{ ∂
∂x

(Hi−1),Hi} + f ′(Hi−1)∗,

where f ′′{ ∂
∂x

(Hi−1),Hi} denotes the matrix Mα
β = f ′′αδη( ∂

∂x
(Hi−1))δ

β(Hi)η.

Proof.

∂
∂x

(Hi) = ∂
∂x

(f ′(Hi−1)∗x) (Lemma 7)
= ∂

∂x
(f ′(Hi−1)∗)x + f ′(Hi−1)∗ (Lemma 8 a)

= f ′(Hi−1)∗ ∂
∂x

(f ′(Hi−1))f ′(Hi−1)∗x + f ′(Hi−1)∗ (Lemma 8 c)
= f ′(Hi−1)∗ ∂

∂x
(f ′(Hi−1))Hi + f ′(Hi−1)∗ (Lemma 7)

= f ′(Hi−1)∗f ′′{ ∂
∂x

(Hi−1),Hi} + f ′(Hi−1)∗ (Lemma 8 b) ut

Lemma 11. For i ≥ 1 : Hi ≥ Hi.

Proof. By induction on i. The base case i = 1 is trivial. Let i ≥ 1.

Hi+1 =
[

∂
∂x

(Hi)
]∗

x (by definition)

≥
[

∂
∂x

(Hi)
]∗

x (ind. hyp.)

=
[

f ′(Hi−1)∗f ′′{ ∂
∂x

(Hi−1),Hi} + f ′(Hi−1)∗
]∗

x (Lemma 10)

=
[

f ′(Hi−1) + f ′′{ ∂
∂x

(Hi−1),Hi}
]∗

x (Kleene algebra)

≥
[

f ′(0) + f ′′{ ∂
∂x

(Hi−1),Hi}
]∗

x (Kleene algebra)

≥
[

f ′(0) + f ′′Hi
]∗

x (Hi−1 ≥ x)

=
[

f ′(Hi)
]∗

x (Lemma 9)
= Hi+1 (Lemma 7) ut

For the other direction (see Lemma 13 below) the following lemma is used.

Lemma 12. For i < k : ( ∂
∂x

(Hi))∗Hk ≤ Hk.
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Proof. By the axioms of Kleene algebra [6] it suffices to show ∂
∂x

(Hi)Hk ≤ Hk.
This is proved by induction on i. The base case i = 0 is trivial, because H0 = x.
Let 1 ≤ i < k.

∂
∂x

(Hi)Hk = (f ′(Hi−1)∗f ′′{ ∂
∂x

(Hi−1),Hi} + f ′(Hi−1)∗)Hk (Lemma 10)
= f ′(Hi−1)∗f ′′{ ∂

∂x
(Hi−1)Hk,Hi} + f ′(Hi−1)∗Hk (distributivity)

≤ f ′(Hi−1)∗f ′′{Hi,Hk} + f ′(Hi−1)∗Hk (ind. hyp.)
≤ f ′(Hi−1)∗f ′(Hi)Hk + f ′(Hi−1)∗Hk (Lemma 9)
≤ f ′(Hk−1)∗Hk (Hi−1 ≤ Hi)
= Hk (Lemma 7) ut

Lemma 13. For i ≥ 1 : Hi ≤ Hi.

Proof. By induction on i. The base case i = 1 is trivial. Let i ≥ 1.

Hi+1 =
(

∂
∂x

(Hi)
)∗

x (by definition)

≤
(

∂
∂x

(Hi)
)∗

x (ind. hyp.)

≤
(

∂
∂x

(Hi)
)∗
Hi+1 (x ≤ Hi+1)

≤ Hi+1 (Lemma 12) ut

This finishes the proof of Theorem 8.

B Redko’s Theorem and Commutative Kleene Algebras

There is a number of inequivalent definitions of Kleene algebras. This includes
C-algebras and Kleene algebras in the sense of Kozen the latter of which we
simply refer to as Kleene algebras.

Both definitions require an algebraic structure (K, +, ·, ∗, 0, 1) that is an
idempotent semiring under +, ·, 0, 1. In addition, different sets of axioms are
required.

A C-algebra [1] must satisfy the following axioms:

C11 (a + b)∗ = (a∗b)∗a∗

C12 (ab)∗ = 1 + a(ba)∗b
C13 (a∗)∗ = a∗

C14.n a∗ = an∗a<n (n > 0).

A Kleene algebra [6] on the other hand must satisfy the following axioms:

K1 1 + aa∗ ≤ a∗

K2 1 + a∗a ≤ a∗

K3 a + bc ≤ c → b∗a ≤ c
K4 a + cb ≤ c → ab∗ ≤ c,

where ≤ refers to the natural partial order on K.
It was shown by Kozen [6] that the axioms of Kleene algebra are complete

for the algebra of regular languages. That means, if an equation α = β between
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regular expressions holds under the canonical interpretation over the regular
languages, then it holds in any Kleene algebra. It is easy to see that equations
C11 – C14 hold under the canonical interpretation. Therefore any Kleene algebra
is a C-algebra.

The axioms of C-algebra are not complete, i.e., they are too weak to derive
some equation valid under the canonical interpretation [1]. However, if two more
axioms (C+1 and C+2, see below) describing commutativity are added, the
resulting system of axioms (defining commutative C-algebras) becomes complete
for the algebra of commutative regular languages. In other words, if the Parikh
images of languages L(α) and L(β) are equal, then α = β can be proved using
only the axioms of commutative C-algebras. The additional axioms are:

C+1 ab = ba
C+2 a∗b∗ = (ab)∗(a∗ + b∗).

The completeness of commutative C-algebras is called Redko’s theorem. Con-
way’s monograph [1] contains a proof of this theorem.

We want to show that the system of axioms of Kleene algebra plus the com-
mutativity axiom ab = ba (defining commutative Kleene algebras) is complete for
commutative regular languages as well. Appealing to Redko’s theorem, we only
have to show that equation C+2 is a theorem of commutative Kleene algebra.

We use the identity a∗b∗ = (a+b)∗ which is a theorem of commutative Kleene
algebra [4]. Since (a + b)∗ ≥ (ab)∗(a∗ + b∗) holds in any Kleene algebra, we only
need to show (a + b)∗ ≤ (ab)∗(a∗ + b∗). With K3 it suffices to show

1 + (a + b)(ab)∗(a∗ + b∗) ≤ (ab)∗(a∗ + b∗).

We show this inequality for each term of the sum at the left hand side. For 1 it ob-
viously holds. We also have a(ab)∗a∗ = (ab)∗aa∗ ≤ (ab)∗a∗ using commutativity
and K1. Similarly, a(ab)∗b∗ = (ab)∗ab∗ = (ab)∗a+(ab)∗abb∗ ≤ (ab)∗a+(ab)∗b∗ ≤
(ab)∗(a∗ + b∗). Here we used that b∗ = 1 + bb∗ is a theorem of Kleene algebra.
The other inequalities follow symmetrically.
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