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Abstract. Code generators are widely used in the development of em-
bedded software to automatically generate executable code from graphi-
cal specifications. However, at present, code generators are not as mature
as classical compilers and they need to be extensively tested. This paper
proposes a technique for systematically deriving suitable test cases for
code generators, involving the interaction of chosen sets of rules. This
is done by formalising the behaviour of a code generator by means of
graph transformation rules and exploiting unfolding-based techniques.
Since the representation of code generators in terms of graph grammars
typically makes use of rules with negative application conditions, the
unfolding approach is extended to deal with this feature.

1 Introduction

The development of embedded software has become increasingly complex and
abstraction appears to be the only viable means of dealing with this complexity.
For instance, in the automotive sector, the way embedded software is developed
has changed in that executable models are used at all stages of development,
from the first design phase up to implementation (model-based development).
Such models are designed with popular and well-established graphical modelling
languages such as Simulink or Stateflow from The MathWorks4. While in the
past the models were implemented manually by the programmers, some recent
approaches allow the automatic generation of efficient code directly from the
software model via code generators. However, at present, they are not as mature
as tried and tested C or ADA compilers and their output must be checked with
almost the same expensive effort as for manually written code.

One of the main problems in code generator testing is the methodical inabil-
ity to describe, in a clear and formal way, the mode of operation of the code
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generator’s transformation rules and the interaction between such rules (this
is especially true for optimisation rules), a fact which makes it hard to devise
effective and meaningful tests. Therefore, an essential prerequisite for testing a
code generator is the choice of a formal specification language which describes
the code generator’s mode of action in a clear way [6].

When dealing with a code generator which translates a graphical source lan-
guage into a textual target language (e.g. C or Ada), a natural approach consists
in representing the generator via a set of graph transformation rules. Besides pro-
viding a clear and understandable description of the transformation process, as
suggested in [19], this formal specification technique can be used for test case
derivation, allowing the specific and thorough testing of individual transforma-
tion rules as well as of their interactions. We remark that, while each rule is
specified with a single transformation step in mind, it might be quite difficult
to gain a clear understanding of how different rules are implemented and how
they can interfere over an input graph. Testing all input models triggering any
possible application sequence is impractical (if not impossible), because of the
large (possibly infinite) number of combinatorial possibilities, and also unneces-
sary as not all combinations will lead to useful results. It is, however, of crucial
importance to select those test cases which are likely to reveal errors in the code
generator’s implementation.

In this paper we will use unfoldings of graph transformation systems [18, 4]
in order to produce a compact description of the behaviour of code generators,
which can then be used to systematically derive suitable test cases, involving
the interaction of chosen sets of (optimising) rules. Our proposal is based on
the definition of two graph grammars: the generating grammar, which generates
all possible input models for the code generator (Simulink models, in this pa-
per) and the optimising grammar, which formalises specific transformation steps
within the code generator (here we focus only on optimisations). The structure
obtained by unfolding the two grammars describes the behaviour of the code
generator on all possible input models. Since the full unfolding is, in general,
infinite, the procedure is terminated by unfolding the grammars up to a finite
causal depth which can be chosen by the user. Finally, we will show how the
unfolded structure can be used to select test cases (i.e., code generator input
models), which are likely to uncover an erroneous implementation of the opti-
misation techniques (as specified within the second graph grammar). The task
of identifying sets of rules whose interaction could be problematic and should
thus be tested, might require input from the tester. However once such sets are
singled out, the proposed technique makes it possible to automatically determine
corresponding test cases, namely input models triggering the desired behaviours,
straight from the structure produced via the the unfolding procedure.

The behaviour of code generators is naturally represented by graph grammars
with negative application conditions [9], while the unfolding approach has been
developed only for “basic” double- or single-pushout graph grammars [18, 4].
Hence, a side contribution of the paper is also the generalisation of the unfolding



construction to a class of graph grammars with negative application conditions,
of which, due to space limitations, we will provide only an informal account.

The rest of the paper is structured as follows. Section 2 gives an overview
of the automatic code generation approach and discusses code generator testing
techniques. Section 3 presents the class of graph transformation systems used
in the paper. Section 4 discusses the idea of specifying a code generator and
its possible input models by means of graph transformation rules. Section 5
presents an unfolding-based technique for constructing a compact description of
the behaviour of a code generator and Section 6 shows how suitable test cases can
be extracted from such a description. Finally, Section 7 draws some conclusions.

2 Automatic Code Generation

In the process of automatic code generation, a graphical model, consisting for
instance of dataflow graphs or state charts, is translated into a textual language.
First, a working graph free of layout information is created and, in the next
step, a gradual conversion of the working graph into a syntax tree takes place.
In the individual transformation phases from the working graph to the syntax
tree, optimisations are applied in which, for instance, subgraphs are merged,
discarded or redrawn. Finally, actual code generation is performed, during which
the syntax tree is translated into linear code.

In practice, a complete test in this framework is impossible due to the large or
even infinite number of possible input situations. Accordingly, the essential task
during testing is the determination of suitable (i.e. error-sensitive) test cases,
which ultimately determines the scope and quality of the test.

In the field of compiler testing much research has been done concerning test
case design, namely test case generation techniques. We can distinguish two main
approaches: automatic test case generation and manual test case generation.
The first approach yields a great number of test cases in a short time and at a
relatively low cost. In most cases, as originally proposed by Purdom [17], test
programs are derived from a grammar of the source language by systematically
exercising all its productions. An overview of this and related approaches is given
in [6]. However, the quality of the test cases is questionable because the test case
generation process is not guided by the requirements (i.e. the specification).

A different (and more reliable) method is to generate test cases manually
with respect to given language standards, like the Ada Conformity Assessment
Test Suite (ACATS)5, or commercial testsuites for ANSI/ISO C language confor-
mance6. However, there is no published standard for graphical source languages
such as Simulink or Stateflow. Moreover, the manual creation and maintenance
of test cases is cost-intensive, time-consuming and also requires knowledge about
tool internals.

A technique for testing a code generator systematically on the basis of graph
rewriting rules was proposed in [19]. The graph-rewriting rules themselves are
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used as a blueprint for systematic test case (i.e. model) generation. Additionally,
the mentioned paper shows how such models can be used in practice. A two-level
hierarchy of testing is proposed: First, suitable input models to be used as test
cases for the code generator are determined; then the behaviour of the code gen-
erated from such models over specific (suitably chosen) input data is compared
with that of the (executable) specification, in order to ensure correctness. A dif-
ference with the work in the present paper is that in [19] a test case is selected
on the basis of a single rule, while here we will consider the interaction of several
rules to derive test cases which can trigger these complex behaviours. Still the
methodology proposed in [19] to use the test cases once they are available, can
be applied also to the test cases produced via the technique in our paper.

Graph transformation systems have also been used in other ways in con-
nection with code generator specification or verification. For instance, in [11,
16] graph and tree replacement patterns are used for verifying a code generator
formally and in [2] graph rewriting rules are used for generating an optimiser.
A complete code generator, capable of translating Simulink or Stateflow models
into C code, has been specified in [14] with the Graph Rewriting and Transfor-
mation language GReAT [12].

3 Graph Transformation Systems

We use hypergraphs, which allow us to conveniently represent functions with
n arguments by (n + 1)-ary hyperedges (one connection for the result, the rest
for the parameters). Moreover we use graph rewriting rules as in the double-
pushout approach [8, 10] with added negative application conditions [9]. A rule,
apart from specifying a left-hand side graph that is removed and a right-hand
side graph that replaces it, specifies also a context graph that is preserved, and
forbidden edges that must not occur attached to the left-hand side.

Hereafter Λ is a fixed set of edge labels and each label l ∈ Λ is associated with
an arity ar(l) ∈ N. Given a set A, we denote by A∗ the set of finite sequences of
elements of A and for s ∈ A∗, |s| denotes its length.

Definition 1 (Hypergraph). A (Λ-)hypergraph G is a tuple (VG, EG, cG, lG),
where VG is a set of nodes, EG is a set of edges, cG:EG → V ∗

G is a connection
function and lG:EG → Λ is the labelling function for edges satisfying ar(lG(e)) =
|cG(e)| for every e ∈ EG. Nodes are not labelled.

Hypergraph morphisms ϕ:G→ G′ and isomorphisms are defined as usual.

Definition 2 (Graph rewriting rules with negative conditions). A graph

rewriting rule r is a tuple (L
ϕL
← I

ϕR
→ R,N) where ϕL: I → L and ϕR: I → R are

injective graph morphisms. We call L the left-hand side, R the right-hand side
and I the context. We assume that (i) ϕL is bijective on nodes, (ii) L does not
contain isolated nodes, (iii) any node isolated in R is in the image of ϕR.

Furthermore N is a set of injective morphisms η:L → Lη, called negative
application conditions, where (iv) ELη

− η(EL) contains a single edge referred
to as eη and (v) Lη does not contain isolated nodes.



A rule r = (L
ϕL
← I

ϕR
→ R,N) consists of two components. The first component

L
ϕL
← I

ϕR
→ R is a graph production, specifying that an occurrence of the left-

hand side L can be rewritten into the right-hand side graph R, preserving the
context I. Condition (i) stating that ϕL is bijective on nodes ensures that no
nodes are deleted. Nodes may become disconnected, having no further influence
on rewriting, and one can imagine that they are garbage-collected. Actually,
Conditions (ii) and (iii) essentially state that we are interested only in rewriting
up to isolated nodes. By (iii) no node is isolated when created and by (ii) nodes
that become isolated have no influence on further reductions.

The second component N is the set of negative application conditions. In-
tuitively, each Lη extends the left-hand side L with an edge eη which must not
be connected to the match of L to allow a rule to be applied. The negative ap-
plication conditions here are weaker than in [9]. This will allow us to represent
negative application conditions by inhibitor arcs in the unfolding (see Section 5).

Definition 3 (Match). Let r = (L
ϕL
← I

ϕR
→ R,N) be a graph rewriting rule and

let G be a graph. Given an injective morphism ϕ:L→ G, a falsifying extension
for ϕ is an injective morphism ϕ′:Lη → G such that ϕ′ ◦ η = ϕ for some η ∈ N .
In this case ϕ′(eη) is called a falsifying edge for ϕ. The morphism ϕ is called a
match of r whenever it does not admit any falsifying extension.

Given a graph G and a match in it, G can be rewritten to H (in symbols:
G⇒ H), by applying rule r as specified in the double-pushout approach [8].

Definition 4 (Graph grammar). A graph grammar G = (R, G0) consists of
a set of rewriting rules R and a start graph G0 without isolated nodes. We say
that a graph G is generated by G whenever G0 ⇒

∗ G.

4 Specifying Code Generation by Graph Transformation

In our setting, code generation starts from an internal graph representation of a
Simulink or Stateflow model, free of layout information. Especially the first steps
of code generation, involving optimisations that change the graph structure of
a model (e.g. for dead code elimination), can be naturally described by graph
rewriting rules. In the sequel, the set of optimising rules is called optimising
grammar, even if we do not fix a start graph. Since our aim is to test the code
generator itself, independently of a specific Simulink model, we need some means
to describe the set of all possible models that can be given as input to the code
generator. In our proposal this is seen as a graph language generated by another
grammar, called generating grammar.

Example: We illustrate the above concepts with an example describing the first
steps of code generation, starting from acyclic graphs which represent arithmetic
expressions. We will give only excerpts of the two graph rewriting systems: the
generating grammar, describing acyclic graphs which represent arithmetic ex-
pressions, and the optimising grammar, describing constant folding, i.e., simpli-
fication and partial evaluation of arithmetic expressions.
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Fig. 1. Edge types for the graph rewriting system (constant folding).
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Fig. 2. Rules of the generating grammar (constant folding).

We assume that a maximal depth a is fixed for arithmetic expressions. Then
we will use the edge types depicted in Fig. 1 for 1 ≤ i ≤ a. Integers and variables
are generically represented by I and V edges. Since in our setting we are mainly
concerned with structural optimisation steps, we do not consider attributes here:
As soon as a test case is generated, it can be equipped with suitable values for all
the constants involved. For instance, Fig. 3 shows an acyclic graph representing
the arithmetic expression i1 + (i1 ∗ i2) for some arbitrary integers i1, i2.

The generating grammar Gg, which is depicted in Fig. 2, generates operator,
result, integer and variable edges and connects them via E-edges (connecting
edges), provided no edge of this kind is present yet. The rules are specified in the
form “left-hand side ⇒ right-hand side”. Edges of the context are drawn with
dashed lines and nodes of the context are marked with numbers. Negative ap-
plication conditions are depicted as crossed-out edges. Note that (CreateConn2)
is a rule schema: an E-edge between operator edges is only allowed if the first
operator has a smaller (arithmetic) depth than the second one, i.e., if i < j, thus
ensuring acyclicity. Some of the rules are missing, for example the rule generat-
ing a product edge (analogous to the rule (CreateSum)) and several more rules
connecting operator edges. The start graph is the empty graph.
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Fig. 3. A graph representing the arithmetic expression i1 + (i1 ∗ i2).

The optimising grammar Go is (partially) presented in Fig. 4: We give rules
for reducing the sharing of constants (ConstantSplitting), for removing useless or
isolated parts of the graph (KillUselessFunction), (KillLonelyEdge), and for sim-
plifying the graph by evaluating the sum of two integers (ConstantFoldingSum).
More specifically, the optimisation corresponding to the last rule computes the
integer of the right-hand side as the sum of the two integers of the left-hand
side. A requirement for its application is the absence of constant sharing.

5 Unfolding Graph Transformation Systems

The unfolding approach, originally devised for Petri nets [15], is based on the
idea of associating to a system a single branching structure, representing all its
possible runs, with all the possible events and their mutual dependencies. For
graph rewriting systems, the unfolding is constructed starting from the start
graph, considering at each step the rewriting rules which could be applied and
then recording in the unfolding possible rule applications and the graph items
which they generate (see [18, 4]). Here we sketch how the unfolding construction
can be extended to graph grammars with negative application conditions. Space
limitations keep us from giving a formal presentation of the theory.

The unfolding of a graph grammar will be represented as a Petri net-like
structure. We next introduce the class of Petri nets which plays a basic role in
the presentation. Given a set S, we denote by S⊕ the set of multisets over S,
i.e., S⊕ = {m | m : S → N}. A multiset m can be thought of as a subset of S

where each s ∈ S occurs with a multiplicity m(s). When m(s) ∈ {0, 1} for all
s ∈ S the multiset m will often be confused with the set {s ∈ S | m(s) = 1}.

Definition 5 (Petri net with read and inhibitor arcs). Let L be a set
of transition labels. A Petri net with read and inhibitor arcs is a tuple N =
(SN , TN , •(), ()•, (), �(), pN ) where SN is a set of places, TN is a set of tran-
sitions and pN :TN → L is a labelling function. For any transition t ∈ TN , •t,
t•, t, �t ∈ SN

⊕ denote pre-set, post-set, context and set of inhibitor places of t.

When s ∈ t we say that t is connected to s via a read arc. In this case t may
only fire if place s contains a token. This token will not be affected by the firing.
On the other hand, when s ∈ �t we say that t is connected to s via an inhibitor
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Fig. 4. Rules of the optimising grammar (constant folding).

arc and t is allowed to fire only if s does not contain a token. Read arcs [13]
will be used to represent, at the level of Petri nets, the effects arising from the
possibility of preserving graph edges in a rewriting step. Inhibitor arcs [1] will
be used to model the effects of the negative application conditions that we have
at the level of graph grammar rules.

The mutual dependencies between transitions play a crucial role in the def-
inition of the unfolding. Given a net N , the causality relation <N is the least
transitive relation such that t1 <N t2 if t1

• ∩ ( •t2 ∪ t2) 6= ∅, i.e., if t1 produces
a token consumed or read by t2.

In ordinary Petri nets, two transitions t1 and t2 competing for a resource,
i.e., which have a common place in the pre-set, are said to be in conflict. The
presence of read arcs leads to an asymmetric form of conflict: if a transition t2
“consumes” a token which is “read” by t1 then the execution of t2 prevents t1
to be executed, while the sequence “t1 followed by t2” is legal. The asymmetric
conflict ↗N can be formally defined by t1 ↗N t2 if t1∩

•t2 6= ∅ or •t1∩
•t2 6= ∅.

The last clause includes the ordinary symmetric conflict as asymmetric conflict
in both directions, i.e., t1 ↗N t2 and t2 ↗N t1. More generally, transitions
occurring in a cycle of asymmetric conflicts t1 ↗N t2 ↗N . . . ↗N tn cannot
appear in the same computation since each of them should precede all the others.



The unfolding of a graph grammar with negative application conditions is
defined as a Petri graph [5], i.e., a graph with a Petri net “over it”, using the
edges of the graph as places.

Definition 6 (Petri graph). Let G = (R, G0) be a graph grammar. A Petri
graph (over G) is a tuple P = (G,N) where G is a hypergraph, N is a Petri net
with read and inhibitor arcs whose places are the edges of G, i.e., SN = EG, and
the labelling pN :TN → R of the net maps the transitions to the graph rewriting
rules of G. A Petri graph with initial marking is a tuple (P,m0) where m0 ∈ EG

⊕.

Each transition in the Petri net will be interpreted as an occurrence of a graph
production at a given match. Note that Definition 6 does not ask that the pre-
set, post-set, context or inhibitor places of a transition t have any relation with
the corresponding graph rewriting rule pN (t), but the unfolding construction
presented later will ensure a close relation.

As in Petri net theory, a marking m ∈ EG
⊕ is called safe if any place (edge)

contains at most one token. A safe marking m of a Petri graph P = (G,N)
can be seen as a graph, i.e., the least subgraph of G including exactly the edges
which contain a token in m. Such a graph, denoted by graph(m), is called the
graph generated by m.

We next describe how a suitable unfolding can be produced from the gen-
erating/optimising grammars associated to a code generator. We introduce the
criteria and conditions that must be met step by step. At first, the graph gram-
mars are unfolded disregarding the negative application conditions.

Petri graph corresponding to a rewriting rule: Every graph rewriting rule can be
represented as a Petri graph without considering negative application conditions:
Take both the left-hand side L and the right-hand side R, merge edges and
nodes that belong to the context and add a transition, recording which edges
are deleted, preserved and created. For instance the Petri graph P corresponding
to rule (CreateConn1) in Fig. 2 is depicted in Fig. 5 (see the Petri graph in the
middle). Observe that the transition preserves the edges labelled + and I (read
arcs are indicated by undirected dotted lines) and produces an edge labelled E.
In this case no edges are deleted. In order to distinguish connections of the graph
and connections between transitions and places, we draw the latter as dashed
lines.

Unfolding step: The initial Petri graph is obviously the start graph G0 of the
generating grammar, with no transitions. At every step, we first search for a
match of a left-hand side L, belonging to a graph production r. This match
must be potentially coverable (concurrent), i.e., it must not contain items which
are causally related and the set of causes of the items in the match must be
conflict-free (negative application conditions will be taken into account later).
We now take the Petri graph P associated to r and merge the edges and nodes
of L in P with the corresponding items of the occurrence of L in the partial
unfolding. Fig. 5 exemplifies this situation for an incomplete unfolding U and
the Petri graph P representing rule (CreateConn1) of Fig. 2. The left-hand side
L which indicates how the merging is to be performed, is marked in grey.



=

I

E

+ i

I I

E

+ i

I

E

I

+ i

E+

U P
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The unfolding of a given graph grammar is usually infinite and thus its con-
struction could continue for an arbitrarily long time. To avoid this we employ
two mechanisms, called depth restriction and width restriction.

Depth restriction: The idea consists of truncating the unfolding after a certain
depth has been reached. To make this more formal, define the depth of a tran-
sition t to be the length of the longest sequence t0 <N t1 <N . . . <N tn <N t,
where <N is the causality relation. The depth of an edge is the depth of the
unique transition having such an edge in its post-set. If the edge is in the start
graph, then its depth is set to 0. For our purposes it is not necessary to define the
depth of a node. Then we fix a parameter k, called depth restriction, asking that
no items of depth greater than k are ever created by the unfolding construction.

Width restriction: Depth restriction is not sufficient to keep the unfolding finite,
since matches of a left-hand side could be unfolded more than once. To stop after
a finite number of steps we impose the following conditions:

(1) A rule r which deletes at least one edge, i.e., for which the left-hand side is
strictly larger than the context, is applied only once to every match. Note that
we would not gain anything from unfolding such a match twice: since at least
one token is consumed by firing the corresponding transition and the unfolding
is acyclic, the pre-set could never be covered again and thus it would not be
possible to fire another copy of the same transition.

(2) A rule r which does not delete any edge, i.e., for which the left-hand side
is equal to the context, is unfolded w times for every match, where w is a fixed
parameter called width restriction. The different copies of this transition can
potentially all be fired since no edge is ever consumed. Actually, since each copy
of the transition has an empty pre-set it could possibly be fired more than once,
leading to more than one token in a place, a situation which must be avoided in
the unfolding where each transition is intended to represent a single occurrence
of firing and each place a single occurrence of a token. This problem is solved by



transition rule depth

t1 CreateSum 1
t2 CreateSumRes 1

t3, t4 CreateInt 1
t5, t6 CreateConn 2

(a) Grammar Gg

transition rule depth

t8 ConstantSplitting 3
t9 KillUselessFunction 2
t10 KillLonelyEdge 3
t11 ConstantFoldingSum 3

(b) Grammar Go

Table 1. Correspondence between transitions and rules.

introducing a dummy place—initially marked—as the pre-set of such transitions,
ensuring that every transition is fired only once.

Generating grammar before optimising grammar: We still have to avoid mixing
the two grammars. So far it is still possible to create an unfolding that includes
sequences of rewriting steps where rules of the generating grammar are applied
to the start graph, followed by the application of rules of the optimising grammar
and then again by rules of the generating grammar. Derivations of this kind do
not model any interesting situation: in practice, first the model is created, and
only then are optimising steps allowed. Hence we impose that whenever there
are transitions t1 and t2 such that t1 <N t2 and pN (t2) is a rule of the generating
grammar, then also pN (t1) must be a rule of the generating grammar. In such a
situation we say that <N is compatible with the grammar ordering.

Add inhibitor arcs: In the next step, the final unfolding is obtained by taking
every transition t in the Petri graph, labelled by a rule r, considering the corre-
sponding match and adding, for any falsifying edge, an inhibitor arc. Inhibitor
arcs are represented by dotted lines with a small circle at one end.

Initial marking: The initial marking contains exactly the edges of the start graph
and, in addition, all dummy places that were created during the unfolding.

The structure produced by the above procedure is referred to as unfolding
up to depth k and width w and denoted by Uw

k .

Example (continued): Fig. 6 shows a part of the unfolding for the grammars
of the running example. We assume that the depth restriction k is at least 3,
the width restriction is at least 2 and the arithmetic depth a is also at least
2. Table 1 shows the labelling of transitions over rewriting rules and the causal
depth of each transition. The depth of every dummy place is 0, while the depth
of any other place (edge) is the depth of the transition which has this edge in
its post-set. Note that two inhibitor arcs at transitions t10 and t11 in Fig. 6 are
inserted because of the presence of falsifying edges.

The unfolding faithfully represents system behaviour in the following sense.

Proposition 1. Let G0 be the start graph of the generating grammar and let
G0 ⇒

∗ G be a derivation of G such that: (i) the derivation consists of at most k
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Fig. 6. A part of the unfolding for the example grammars (constant folding).

(possibly concurrent) steps, (ii) no rewriting rule is applied more than w times to
the same match, (iii) rules of the optimising grammar are applied only after those
of the generating grammar. Then there is a reachable marking m in the unfolding
truncated at depth k and width w, such that G is isomorphic to graph(m) up to
isolated nodes. Furthermore, for every reachable marking m there is a graph G

such that G0 ⇒
∗ G and G is isomorphic to graph(m), up to isolated nodes.

6 Generating Test Cases

The application order of optimisation techniques is not fixed a priori, but de-
pends on specific situations within the input graph. Hence, with respect to test-
ing, the situation is quite different from that of imperative programs for which
there exists a widely accepted notion of coverage. In order to achieve in our case
an adequate coverage for possible optimisation applications (of a single optimi-
sation rule or a combination of different optimisation techniques) we propose to
derive (graphical) input models which trigger the application of a single opti-
misation step or trigger the “combination” of several rules. In the last case the
occurrences of the selected rules should be causally dependent on each other or
in asymmetric conflict, such that error-prone interactions of rules can be tested.

Test cases triggering such a behaviour can be derived from the unfolding (up
to depth k and up to width w) which provides a very compact description of all
graphs which can be reached and of all rules which can be applied in a certain
number of steps (see Proposition 1).

In the following, we denote by Rg the set of rules of the generating grammar,
by Gs its start graph and by Ro the set of optimising rules.
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Definition 7 (Test case). Given a set of optimising rules R ⊆ Ro, a test case
for R is an input model G such that a computation of the optimiser over G can
use all the rules in R.

Take a set R of interesting rules the interaction of which should be tested.
The set R can be determined by the tester or by general principles, for instance
one could take all sets R up to a certain size. Then proceed as follows:

(1) Take a set T of transitions in Uw
k (the unfolding up to depth k and up

to width w) labelled by rules in R such that (a) for all r ∈ R, there exists a
transition tr ∈ T such that tr is labelled by r; (b) for all transitions tr ∈ T there
exists a transition t′r ∈ T which is related to tr by asymmetric conflict or causal
dependency.

(2) Look for a set T ′ of transitions in Uw
k such that T ⊆ T ′, and exactly the

transitions of T ′ can be fired in a derivation of the grammar. Note that not every
set T can be extended to such a T ′, since transitions might be in conflict or block
each other by inhibitor arcs.

(3) Take the subset of transitions in T ′ labelled by rules in Rg and fire such
rules, obtaining a marking m. Then graph(m) is a test case for R.

See Fig. 7 for a schematical representation of the above procedure. Whenever
the specification is non-deterministic, we cannot guarantee that the execution
over the test case really involves the transformation rules in R, but this is a
problem inherent to the testing of non-deterministic systems.

The set T ′ can be concretely defined by resorting to the notions of con-
figuration and history in the theory of inhibitor Petri nets [7, 3]. Roughly, a
configuration of Uw

k is a pair 〈C,<C〉 where C is a set of transitions closed under
causality and <C is a partial order including causality <U , asymmetric conflict
↗U and a relation <p which considers the effects of inhibitor arcs: For any place
s connected to a transition t ∈ C by means of an inhibitor arc (s ∈ �t) it
chooses if t is executed before the place is filled or after the place is emptied.
A configuration 〈C,<C〉 can be seen as a concurrent computation, <C being a
computational ordering on transitions, in the sense that the transitions in C can
be fired in any total order compatible with <C . A configuration 〈C,<C〉 is called
proper if the partial order <C is compatible with the grammar ordering, i.e., if
t1 <C t2 and t2 belongs to the generating grammar then also t1 belongs to the
generating grammar.



The history of a transition t in a configuration 〈C,<C〉, denoted by C[t] is
the set of transitions which must precede t in any computation represented by
C. Formally, C[t] = {t′ ∈ C | t′ ≤C t}. Note that a transition t can have several
possible histories in different configurations. This is caused by the presence of
read arcs and, even more severely, by inhibitor arcs. With asymmetric conflict
only, there is a least history, the set of (proper) causes btc = {t′ | t′ ≤N t},
and the history of an event in a given configuration is completely determined by
the configuration itself. With inhibitor arcs, in general, there might be several
histories of a transition in a given configuration, and even several minimal ones.

Hence, coming back to the problem in step (2) above, the set T ′ we are looking
for can be defined as a proper configuration including T . The choice among the
possible configurations T ′ including T could be influenced by the actual needs
of the tester. In many cases the obvious choice will be to privilege configurations
with minimal cardinality, since these contain only the events which are strictly
necessary to make the rules in T applicable.

Example (continued): We continue with our running example. Assume that
we want a test case including the application of rule (ConstantFoldingSum),
i.e., R = {(ConstantFoldingSum)} (the procedure works in the same way for
more than one rule). Transition t11 is an instance of this rule and it is con-
tained in several different configurations, for example H1 = {t2, t3, t4, t5, t6, t11}
which creates only a sum with two integers and corresponding connections,
H2 = {t1, t2, t3, t4, t5, t6, t7, t8, t11} which creates another E-edge and removes
it by (ConstantSplitting) and H3 = {t1, t2, t3, t4, t5, t6, t7, t9, t10, t11} which cre-
ates another E-edge and another sum and removes them by (KillUselessFunction)
and (KillLonelyEdge). All these configurations are histories of t11. Depending on
the choice of the history, one obtains the two different test cases (the first for
H1 and the other for H2 and H3) in Fig. 8.

To understand how such a test case is derived, consider the history H3.
Causality (<U ), asymmetric conflict (↗U ) and the relation <p in H3 are de-
picted in Fig. 9. Note, for instance, that t7 is forced to fire before t11, since t7
corresponds to a rule of grammar Gg, while t11 is labelled with a rule of Go.
After firing t7, transition t11 is blocked by an inhibitor arc, and t11 can only be
enabled by firing t9 and t10. Thus t9 <p t10 <p t11 is the only possible choice.
Furthermore t7 and t9 are in asymmetric conflict (t7 ↗N t9), since t9 removes
an element of the context of t7. By taking the subset of rules in H3 which belong
to the generating grammar Gg, namely t1, t2, t3, t4, t5, t6, t7, and firing them, we
obtain the test case on the right-hand side of Fig. 8.

7 Conclusion

We have presented a technique for deriving test cases for code generators with a
graphical source language. The technique is based on the formalisation of code
generators by means of graph transformation rules and on the use of (variants
of the) unfolding semantics as a compact description of their behaviour.
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Fig. 9. Causality, asymmetric conflict and relation <p.

The novelty of our approach consists in the fact that we consider graphical
models and that we generate a compact description of system behaviour from
which we can systematically derive test cases triggering specific behaviours. By
using an unfolding technique we can avoid considering all interleavings of con-
current events, thereby preventing combinatorial explosion to a large extent. We
believe that this technique can also be very useful for testing programs of visual
programming languages.

This paper does not address efficiency issues. Note that the causality rela-
tion and asymmetric conflict of an occurrence net can be computed statically
without firing the net. Hence, it is important to note that without inhibitor
arcs, configurations and histories and hence test cases can be determined in a
very efficient way. In the presence of inhibitor arcs, it is necessary to construct
suitable relations <p, leading to configurations. Obtaining such relations <p is
quite involved and requires efficient heuristics, which we have already started
to develop in view of an upcoming implementation of the test case generation
procedure.
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