Computer Arithmetic: Logic, Calculation, and
Rewriting

M. Benini* D. Nowotka
University of Warwick! University of Warwick?

C. Pulley
University of Huddersfield®

August 12, 1998

1 Introduction

Computer arithmetic is the mathematical theory which underlies the way
calculational machines operate on integer numbers.

Computers manipulate integer numbers of a finite, fixed precision, inter-
nally represented as strings of bits of fixed length. A processor’s hardware
[Braun, 1963] is built to perform additions, multiplications, and other stan-
dard arithmetical operations along with logical operations like “or”, “and”,
“not”, “exclusive or”, and so on.

The distinguishing features of computer arithmetic are:

e logical operations, i.e., the ability to calculate bit per bit the con-
junction, disjunction and negation of integers. For clarity, since we
deal with a logical theory, we will refer to these operations with the
adjective bitwise;

e fixed precision, which means every representable number lies in a fixed,
well-defined range of values and every operation must signal excep-
tions, when unable to provide a result which fits into that range, usu-
ally by means of carry and/or overflows bits.

The goal of this paper is to provide a logical formulation for computer
arithmetic, suitable for coding in a theorem proving environment, along
with an algorithmic, as opposed to logically declarative, calculational engine

*This work has been sponsored by EPSRC under grant GR/K52447.
fmarcob@dcs . warwick.ac.uk

tdirkedcs.warwick.ac.uk

Sc.J. Pulley@hud.ac.uk

based on equational rewriting techniques, which forms the natural coun-
terpart for the logical representation, and a decision procedure providing
efficiency in computation, without compromising validity of results.

Even if it may appear to be a very specialized topic, an integrated de-
cision procedure and a calculational engine for computer arithmetic is very
general and very useful as well.

Dropping the constraint of finite precision, computer arithmetic is ac-
tually an extension of the standard theory of integer numbers [Smorynski,
1991], i.e., it provides the usual operations on integers as well as bitwise
operations.

From another point of view, the one of formal verification [Gordon, 1986],
computer arithmetic is essential, since it is the theory we are really dealing
with when we execute a program, or when we design a digital circuit.

What we are about to show is a logical theory plus a rewriting engine to
perform calculations and an automatic procedure for deciding (in)equalities.
Our discussion will be general, but we will constantly refer, for the applica-
tive aspects, to our particular implementation which uses Isabelle’s higher-
order logic theory (Isabelle/HOL) [Paulson, 1997a] and Standard ML [Paul-
son, 1996].

Our tool is particularly designed to approach the formal verification of
object code, since it was developed as a part of a bigger project, Holly [Benini
et al., 1998], on this subject. Despite its origin, the designing purposes do not
affect the generality of the ideas, nor the applicability of the implementation
to other theories and problems.

The outline of the paper is as follows: Section 2 is devoted to the pre-
cise description of what computer arithmetic is; in Section 3, we specify
each component of the system to deal with computer arithmetic; Section 4
explains how the combination of the previous parts allows us to tackle non
trivial problems and how the interaction of components is the key for success
in this application; in Section 5 we briefly discuss what we have achieved.

2 Computer Arithmetic

We said in the introduction that computer arithmetic is the logical theory
which models the way computers treat numbers. In fact, we developed an
abstract model for the arithmetic implemented by computers.

Every computer works by using bits, bytes, words and so on. These are
the elements (interpreted as numbers) the Arithmetical Logical Unit (ALU,
the part of a processor which is devoted to perform calculations [Braun,
1963]) is able to deal with. There are significant differences between proces-
sors in the size of numerical types (i.e., the precision) and in their bounds
(i.e., the range of values an element can represent). Nowadays most proces-
sors are able to deal with operations on bytes, double bytes and quadruple

bytes; the usual convention they use for the sign of a number is the two’s
complement representation, and they are able to perform additions, sub-
tractions, multiplications, divisions, bitwise conjunction, bitwise disjunction
and bitwise negation on the numerical types they provide.

We want to have a general theory, which closely resembles the way ALUs
perform calculations, but we do not want to choose a particular set of nu-
merical types for a specific processor. Since we aim to be very general, we
adopt a simplifying decision: we specify only one numerical type, integers
(formally represented as the type int), with no bounds and infinite precision,
and we represent them in the two’s complement notation, with the full set
of standard operations. In section 3.1, we will provide the technical details.

We can define the computer numerical types by subtyping [Andrews,
1986; Paulson, 1997c]:

unsigned _bytes = {z : int | 0 < x < 256}
signed_bytes = {z:int|—-128 <z <128} ,

or by quotienting with an equivalence relation [Paulson, 1997a):
byte = int/{(z,y) | * mod 256 = y mod 256} .

If we do not consider the bitwise operations, int is isomorphic to Z, the
ring of integers numbers. In this way our system can be effectively used as
an arithmetical oracle on integers.

We can even use our tool as an oracle for standard arithmetic, that is
the theory of natural numbers: they could be represented by subtyping

nat = {z :int | 2 > 0} ,
or by quotienting
nat = int/{(z,y) |z =y Ve =—y} .

Both of these axiomatizations have some difficulties: the former does not
respect subtraction, e.g., 3 — 7 = —4 on integers, but 3 — 7 should be 0 on
naturals; the latter does not respect the ordering relation, e.g., —3 < 2 on
integers, but 3 £ 2 on naturals.

For this reason, and because Isabelle provides a good implementation for
the theory of natural numbers (terms of type nat), our tool is able to treat
them directly.

Our system is developed as a package for the higher-order logic theory
of the Isabelle theorem prover, so it seems worthwhile to compare it with
similar theories/packages for Isabelle and other theorem provers.

Isabelle has no specialized decision procedures for the theory of integer
numbers: its formalization of natural number arithmetic is quite advanced
and a powerful simplification procedure is able to decide most elementary

propositions in a reasonably efficient way. But, for the moment, the theory
of integer numbers is quite undeveloped; for instance, it lacks the division
and modulus operations, and, without modifying the simplifier, it fails to
prove simple goals like

r+1—xz=1.

The comparison with other, similar, theorem provers is more problem-
atic, since their designs are different and it is not simple to identify a subsys-
tem which could be properly compared with our tool. From a very general
point of view, the HOL theorem prover [Gordon and Melham, 1993] has a
decision procedure (coded up as a tactic) which could be roughly equivalent
to the calculation engine (Section 3.2), while the logical theory is an essen-
tial part of the logic the prover provides. There are no specialized decision
procedures for arithmetic in HOL, but only clever instances of the tactics
for the general logic.

The situation for PVS [Owre et al, 1996] is different: this theorem
prover provides a decision procedure for integer arithmetic, which is based
on the same algorithm we use (see Section 3.3); the logical representation for
integers is part of the standard logic, and an equivalent of the calculational
engine is embedded into the simplification tactics. But, in contrast with
our tool, PVS does not provide bitwise operations on pure integers, but
it develops a specialized theory (called bitvector) to reason about binary
represented numbers.

3 The Components

The concept of computer arithmetic is implemented by three major parts.
A logical theory for arithmetic is developed in section 3.1. It comprises a
definition of integer numbers and operations on them using Isabelle/HOL
[Paulson, 1997b] as an example environment. Section 3.2 presents the cal-
culation engine used to do calculations and simplifications on arithmetical
expressions, efficiently. Last but not least, a decision procedure is introduced
in section 3.3. We have chosen SHOSTAK’S SUP-INF method [Shostak, 1979]
for proving formulas of an extension of quantifier-free Presburger arithmetic.

3.1 The Logical Development

Our first goal is to devise a logical theory which describes what we intend to
call integer numbers, the definitions of operations and their basic properties.
This theory is an instrument to reason, in a formal way, e.g., using a theorem
prover, about properties of integers which could be modeled inside computer
arithmetic.

As remarked in Section 2, computer arithmetic is based on a particular
representation of numbers: every number is represented as a string of binary
digits. Formally the type for integer numbers is defined as follows!:

datatype int = PlusSign
| MinusSign
| Bcons int bool
The value PlusSign stands for 0 while the value MinusSign stands for
—1; looking at the binary representation, PlusSign is the infinite string
where every bit is 0, while MinusSign is the infinite string where every bit is
1. The Bcons constructor works by appending a bit (False for 0, and T'rue

for 1) to a string of bits.
Intuitively, 6 (binary 110) will be represented as

Bcons (Bcons (Bcons PlusSign True) True) False
and —6 (binary ...1010) will be represented as
Bcons (Bcons (Bcons MinusSign False) True) False
The mapping from int to integers is straightforward:

PlusSign =20
MinusSign R

Bcons &y b 2(map) + (if y then 1 else 0)
and vice versa

0 [l PlusSign
-1 [MinusSign
2¢ 2 Bcons (map’ z) False ifz #0

2x 4+ 1 =5 Bcons (map’) True if x #£ —1

We will use, for clarity, the usual numerical representation?, or a binary
representation, where it is convenient. Both notations are unambiguous.

An important point about this representation lays in the fact that it is
not fully determined: the same integer could be represented in different,
but equivalent, ways. For example 5 could be represented by ...0101, or by
...00000101. The difference between two equivalent representation is in the
trailing bits: formally,

Bcons PlusSign False = PlusSign

!This representation is borrowed from the Bin theory of Isabelle/HOL.
2So PlusSign becomes 0, MinusSign becomes —1, Bcons 2 True is written as 2z + 1
and Bcons x Flalse is written as 2z.

and
Bcons MinusSign True = MinusSign .

Propagating these equations through the inductive structure of the defi-
nition of ¢nt, we eventually get a normal form for our representation. In this
way, an easy definition of equality is given: two representations are equal if
and only if their normal forms are syntactically identical.

The definition of the successor and predecessor functions, as well as of
addition, subtraction and multiplication is straightforward, and it is sum-
marized in Figure 1.

Successor function Predecessor function
Succ(0) =1 Pred(0) =-1
Suce(—1) =0 Pred(—-1) =-2
Succ(2z + 1) = 2 Succ(z) Pred(2z + 1) = 2z
Succ(2z) =2r+1 Pred(2z) =2 Pred(x) + 1
Addition
0+ =z .
R — Pred(z) Numeric Complement

-0 —0

x40 =7

—(—1) =1
4+ —1 = Pred(z) :

—(2 1) = Pred(—2
(22 +1) + (2y + 1) = 2 Suce(z +y) —éxw o = 21%6—2) "
(22 + 1) + 2y =2(z+y)+1
20+ (2y+1) =2w+y)+1
27 + 2y =2(z+y)

Multiplication
Subtraction (ilx T i (ix

Figure 1: Definitions for arithmetical operations

Formalizing division is more complex, since it is a partial operation, i.e.,
it is not defined when the divisor is 0. For the same reason, the remainder
operation (mod) is awkward to define in a direct way. We define these pair
of operators as the ones satisfying the basic equation:

z/y+xzmody =x when y # 0
under the additional constraint

0<zmody<y

Bitwise operations are easily defined by induction on the structure of
integer representation: the precise statements are given in Figure 2.

Conjunction
OAx =
—1Ax =x Negation
A0 = =0 =-1
z A —1 = =1 =0
r+1DAQRy+1)=2Ay)+1 2(22+1) =2(2w)
2z+1)A2y =2(zAy) o(22) =2(zx) + 1
20 A (2y + 1) =2(xAy)
2z A\ 2y =2(zAy)
Disjunction

OVz ==z

—1Vzx =-1

zVO0 ==z

zV—1 =-1

(2z+1)Vv(Q2y+1)=2=Vy) +1

(22 +1)V 2y =2(xVy) +1

20V (2y+1) =2(xzVy) +1

2z V 2y =2(zVy)

Figure 2: Definitions for bitwise operations

In order to reason about inequalities we need to define the ordering
relation. This is done as a two-step process: first, we reduce the less than
to 0 is less than

r<y=3z0<zAz+z=1y,

then, we state the conditions under which an integer is positive

0£0
0 —1
O0<2z=0<12x
0<2z+1=0<2zV0=2z

In the usual way we define z < y=ax <yVe=y, z>y=y <z and
r>y=y<um.

In order to be able to deduce interesting properties about numbers, we
need some induction principles: we provide the ones summarized in Figure
3. They encode induction over the structure of the binary representation,

and two variants of the standard induction over natural numbers. These
instruments are used to prove a wide set of lemmas which provides a (partial)
validation for the other components, specifically for the rewrite rules of the
calculation engine and the axioms of the decision procedure.

P(z),z <k P(z),z >k
P Plz+1) P Plz+1)
Vo < k.P(x) Va > k.P(x)

Figure 3: Induction principles

3.2 The Calculational Engine

A theory of integer numbers is developed in a logical framework; see section
3.1. The purpose of the Calculational Engine is to do reductions on integer
expressions outside the logic.

A calculational engine works in a syntactical way by term rewriting and
in a semantical way by doing actual calculations on integer numbers using
the implementation programming language. It has been implemented in
a functional programming language, namely Standard ML [Paulson, 1996].
This engine is defined by a function that takes the representation of an in-
teger expression and gives back a term that represents an equivalent, but
reduced integer expression. We clarify next what we understand by repre-
sentation of an integer expression, by equivalent, and by reduced.

The syntax of an internal language, in which the calculations and rewrit-
ings are done, is fixed by a data type. The corresponding construct IntTerm
in ML is shown in Figure 4. It defines inductively a set of terms, called Int
for the rest of this section.

Since the calculational engine is used to reason about integer expressions,
that data type closely corresponds to the syntax for integer expressions
used in section 3.1. In fact, to allow a smooth combination of deduction
system and calculational engine, there is an obvious mapping from integer
expressions to their representations in the internal language. That mapping
is a bijection between the quotient of integer expressions formed by the

IntConstant of term * IntTerm list
IntValue of int

datatype IntTerm

|

| IntSucc of IntTerm

| IntPred of IntTerm

| IntComp of IntTerm

| IntPlus of IntTerm * IntTerm

| IntMinus of IntTerm * IntTerm

| IntTimes of IntTerm * IntTerm

| IntDivide of IntTerm * IntTerm

| IntModulus of IntTerm * IntTerm;

Figure 4: The syntax of the internal language.

equivalence relation, that relates different representations of the same integer
number, and the representation of integer expressions in ML. See section 4
for the combination of reasoners.

We call expressions, formed by IntTerm, integer expressions for the rest
of this section, bearing in mind that those are just a representation of the
expressions developed in 3.1.

The manipulation of integer expressions is done by a set of ML func-
tions, called rewrite functions. Figure 5 shows such a function. The pattern
matching feature of ML is used here to rewrite terms that have a certain
structure and leave others unchanged.

fun Axioml (IntPlus (IntValue O, x): IntTerm) =
x
| Axioml default = default;

Figure 5: A rewrite function.

A rewrite rule is gained by taking a lemma about the equivalence of
integer expressions deduced from the definition of integers on the logical
level and directing the equation, say from left to right, then we also translate
the left- and the right-hand side to Int, using the obvious mapping where
integer variables are taken to ML variables to allow pattern matching. A
rewrite function is made from such rules in the obvious way. The following
shows the preparing steps to implement the rewrite function of figure 5. We
take a lemma given by the definition of integers in section 3.1.

r+0==x
That translates to the rewrite rule

IntPlus (z, IntValue 0) — x

where z is a ML variable over IntTerm.

This tight relation between rewrite functions in ML and lemmas derived
on the logical level gives a good justification for the claim that an integer
expression is rewritten into an expression which is equivalent by means of the
logical definition of integers. A formal treatment of that matter is beyond the
scope of this paper, textbooks on term rewriting or overview articles such as
[Dershowitz and Jounnaud, 1990] may be referred to for the standard proofs
necessary.

A crucial matter for the practical use of the calculational engine is the
guarantee of termination. Since the rewrite procedure stops only if no more
rules can be applied to any subterm of a given expression, it is therefore
obvious that one cannot choose arbitrary lemmas to make them to rewrite
rules. For instance, the unconditional application of

IntPlus (x, y) — IntPlus (y, z)

is always possible if the argument expression contains addition.

The rewriting stops if every rewrite rule produces a “reduced” version of
its argument, if applied. To express this reduction a well-founded ordering
over Int has to be defined, and then one has to show that every rewrite
rule in the system, if applied, gives a result that is strictly smaller than the
argument. Provided that holds, the rewrite process must terminate, because
the reduction cannot go on forever.

An ordering over terms can be conveniently defined by a homomorphism
from the ground terms of Int to an algebra A (of the same signature) which
already has a well founded ordering. Let > be such a well founded ordering
on A, then the monotonicity condition:

falccxoo)= fal.cy...) if x>y

for all operations f4 and all x, vy in A has to hold, as well.

The mapping 7 : Int — {2, 3, ...} explained in Figure 6 is a good
starting point for an overall termination argument, where > is the usual
well-ordering on natural numbers.

IntConstant 4(a, b) = 2 IntPlusy4(a, b) =a+b+1
IntValuey a =2 IntMinus(a, b) = a+2°+1
IntSuccy a = a+4 IntTimesy(a, b) = a-b
IntPredy a = a+4 IntDividey(a, b) = a-b
IntCompy a = 2¢ IntModulus(a, b) = a-b

Figure 6: A reduction mapping.

A reduction ordering >, over Int is now given by:

S 7 t iff 7'1(8) - Tl(t)

10

with s, t € Int. However, we need further reduction relations for coping
with associative and commutative rewrite rules. Such measures are given
by the mappings 7o and 73 sketched in Figure 7 and Figure 8, respectively,
where a suitable ordering relation < has to be defined.

IntPlus 4 (a, IntPlusy (b, ¢)) = 2
IntPlus 4 (IntPlusy (a,), ¢) =3

Figure 7: A reduction mapping.

IntPlusy (a, b) =2 if a<bd
IntPlusy (a, b) =3 if b<a

Figure 8: A reduction mapping.

The reduction ordering >,, which we use, is built from 71, 7o, and 73 in
the standard way of composing orderings by the lexicographical ordering of
the cross-product. That is, given s and t € textbfInt, then s >, t iff s >, ¢,
or in case s = ¢, then s >, ¢, or in case s = ¢, then s >, . The termination
of the calculational engine can be easily shown with .

The following example appeared when an actual correctness proof of
a program was performed by the authors. It shows the effectiveness of
reasoning with this rewrite engine in practice. We do not use the syntax of
IntTerm here to increase readability. The expression:

¢+ (B+ (f(z) + (=4)) + (=0)

is subsequently reduced to

c+ ((f() + B+ (=4) + (=0)),
¢+ ((f(@) + (=1)) + (=),

¢+ (f(z) + ((=1) + (=9))),

¢+ (f(2) + (=) + (1)),

¢+ ((=o) + (f(2) + (=1))),

0+ (f(2) + (=1)),

and finally
flz) + (1)

The treatment of rewriting bitwise operations is done in the same way

as the one of integer expressions. For reasons of space and readability, we
do not go further into this here.

11

3.3 The Decision Procedure

The third part of our representation of Computer Arithmetic consists of a
decision procedure for integer arithmetic with function symbols. We use
SHOSTAK’S SUP-INF algorithm [Shostak, 1977; Shostak, 1979] for solving
unquantified Presburger formulas which might also contain an unlimited
number of function and predicate symbols.

Intuitively, Presburger formulas are those that can be built up from inte-
gers and variables over integers, addition, equality and inequality relations,
and first-order logical connectives. The decision procedure we use here, see
[Shostak, 1979], operates on an extension of the quantifier-free version of
Presburger arithmetic. This extension allows an unlimited number of n-ary
function symbols f(™ : Z" — Z. and n-ary predicate symbols P(") : Z™,
with 0 < n, in each formula. These symbols are treated as undefined, i.e.,
they are not interpreted. A small example of this kind of formula is the
following:

< [y ANf(y) < (@ +1) = (P(z) < P(fy) + (=1))) -

More generally, SHOSTAK’S algorithm works on unquantified formulas of
first-order logic which contain any function and predicate symbols over the
set of integers. Those symbols are not interpreted except the function +
and the predicates <, >, >, and =. A more general treatment of decision
procedures is given in [Shostak, 1984] and [Cyrluk et al., 1996].

The decision procedure is linked to the theory of integers in Isabelle/HOL
by a straightforward translation from logical formulas to an internal lan-
guage similarly to the way described in section 3.2. In addition to that,
we allow multiplication with constants, for they can be rewritten as a fi-
nite sum, and also subtraction, since that can be rewritten as addition by
complementing the second addend.

The decision procedure rejects terms which cannot be translated into the
internal language, i.e., which are not recognized as formulas of the described
extension of unquantified Presburger arithmetic. An exception is signaled
in that case and the calling procedure, e.g., a proof tactic, has to cope with
it.

If a formula was read in, the procedure gives a true or false as answer,
depending on which conclusion it has reached.

4 The Combined System

The strength of our approach to computer arithmetic is the combination
of systems that have different fields of application but which are chosen
and implemented to work together in order to solve a demanding problem.
Efficient interaction and a reasonable “division of labour” was a major design
goal.

12

Stemming from the demand to reason about computer arithmetic, a the-
ory was developed which fits these needs and overcomes limitations of ex-
isting solutions by extending them, i.e., providing the division and modulus
operation and integrating bitwise operations on integers.

In order to make use of this theory we need a way to reason about it.
The most basic way to do that is to use basic rewriting of goals by rules
gained from the equational theory induced by the definition of integers.
Isabelle provides a powerful rewrite engine, called simplifier, that supports
the proving procedure in a sophisticated way. Nevertheless, its generality
prevents the simplifier to be as efficient and useful as a specialized rewrite
engine could be. Many arithmetical goals could only awkwardly or not at all
be proved with that tool alone. Apart from rewriting, actual calculations like
division cannot be done in a reasonable way in Isabelle. The calculational
engine is used to remedy such problems.

Simplifying arithmetical expressions by calculations and simple rewriting
is a basic way of reasoning but is too “primitive” to provide efficient tactics.
SHOSTAK'’S decision procedure is therefore used to solve more sophisticated
goals when reasoning about Computer Arithmetic. It should be remarked
that the Computational Engine is used to aid the decision procedure directly
by rewriting an integer expression into a proper format such that the decision
procedure can reason about it.

Technically, the integration of the calculational engine into Isabelle is
done as a simple tactic that calls an oracle which maps an Isabelle term to
the internal language of the calculational engine. Given the conclusion of
the current subgoal, the oracle then provides the result of the calculations
as a theorem which states that the argument and the reduced expression are
equivalent. The subgoal and that theorem are then resolved.

Alternatively, the calculational engine is linked to the simplifier in Is-
abelle. By setting up a simplification procedure the external reasoner can
aid the simplifier when rewriting complex subgoals which involve arithmeti-
cal expressions.

The decision procedure is linked to the theorem prover in a similar way
as the calculational engine.

Finally, we can say that a logical theory of integers and bitwise oper-
ations provides a suitable basis for modeling Computer Arithmetic. The
reasoning in that theory is made feasible by the tight coupling of a special-
ized rewrite engine, combined with calculation capabilities, and a powerful
decision procedure.

5 Conclusions

A combined system for reasoning in computer arithmetic has been shown
in this contribution. An integrated approach of logical, calculational and

13

rewriting techniques makes it feasible to deduce complex theorems in com-
puter arithmetic.

For the future, we plan to generalize the decision procedure in the way
discussed in [Shostak, 1984] and [Cyrluk et al., 1996].

We would like to acknowledge the help of Dr. Sara Kalvala in improving
the ideas and the form of this article.

A Examples

The following examples have been performed in Isabelle94-8 using version 1.0

beta 2 of CAT? (Computer Arithmetic Toolkit), developed by the authors.
The examples show the formulas that are reasoned about and the corre-

sponding (slightly modified) dialog in the Isabelle/HOL environment.

Example 1
P(:)Az=1NAg(y) = z+4— f(g(y)) = F(3+22) vV ~P(1)

> goal thy "((P(z) & z = #1) & g(y::int) = z + #4) --> \
\ ((F(g(y))::int) = £(#3 + #2 % z) | ~(PGHD))";
Level O

> by (supinf_tac 1);

Level 1

Pz&z=4%#1) &gy=z+#4 -——>f (gy) =f (#3 + #2 *x z) | ~ P #1
No subgoals!

Example 2
VeVy(zr<y—4)V(e=y—4)V@e=y—-3)Vez=y—2)< (z<y—1)
> goal ExtBin.thy "! x y. (x <y - #4 | \

\ x =y - # |\

\ x=y - #3 | \

\ x=y - #2) = (x <y - #D";

Level O

> by (supinf_tac 1);

Level 1

lxy., (x<y#4 | x =y-#4 | x = y-#3 | x = y-#2) = (x < y-#1)
No subgoals!

The examples 3 and 4 are taken from [Shostak, 1977].

3see http://www.dcs.warwick.ac.uk/holly/CAT

14

Example 3
The formula Vz.Vy.2x 4+ 3y # 1 is not valid; proof level 0 and 1 are the same.

> goal ExtBin.thy "! x y. “(#2 * x + #3 *x y = #1)";
Level O

' xy. #2 * x + #3 x y "= #1

1. P xy. #2 x x + #3 *x y "= #1

> by (supinf_tac 1);
Warning: same as previous level
Level 1
' xy. #2 * x + #3 x y "= #1
1. ' xy. #2 *x x + #3 * y "= #1

Example 4

The formula Vz.Vy.2x + 2y # 1 is valid but SUP-INF cannot prove that.
This example shows the incompleteness of the decision procedure.

> goal ExtBin.thy "! x y. "(#2 * x + #2 * y = #1)";
Level O

P xy. #2 x x + #2 * y "= #1

1. PV xy. #2 x x + #2 *x y "= #1

> by (supinf_tac 1);
Warning: same as previous level
Level 1
' xy. #2 x x + #2 *x y "= #1
1. P xy. #2 x x + #2 *x y "= #1

The following examples show the use of the calculational engine in CAT.

Example 5

The formula (z +y)? = 22 + 22y + y? is solved by reflexivity of “=" after it
was rewritten.

> goal ExtBin.thy "(x + y) zexp #2 = x * x + #2 *x x *x y + y *x y";
Level O

> by (extbin_tac 1);

Level 1

(x +y) zexp #2 = x * x + #2 *x x * y + y *x y
No subgoals!

Example 6

The formula x — 1 =y + (24 (x + —3) + —y) is solved by reflexivity of “="
after it was rewritten.

15

> goal ExtBin.thy "x - #1 =y + (#2 + (x + $~ #3) + $~ y)";
Level O

> by (extbin_tac 1);

Level 1
x-#l=y+ @#2+ (x+§ #3) + 8§ y)
No subgoals!

References

[Andrews, 1986] P. Andrews. An Introduction to Higher-Order Logic: to
Truth through Proof. Academic Press, New York, 1986.

[Benini et al., 1998] Marco Benini, Sara Kalvala, and Dirk Nowotka. Pro-
gram abstraction in a higher-order logic framework. In Proceedings of
Theorem Proving in Higher-Order Logic °98 International Conference.
Theorem Proving in Higher-Order Logic "98, 1998. To appear.

[Braun, 1963] Edward L. Braun. Digital Computer Design. Academic Press,
New York and London, 1963.

[Cyrluk et al., 1996] David Cyrluk, Patrick Lincoln, and N. Shankar. On
Shostak’s decision procedure for combinations of theories. In M. A.
McRobbie and J. K. Slaney, editors, Automated Deduction—CADE-13,
number 1104 in Lecture Notes in Artificial Intelligence, pages 463—477,
New Brunswick, NJ, July/August 1996. Springer-Verlag.

[Dershowitz and Jounnaud, 1990] Nachum Dershowitz and Jean-Pierre
Jounnaud. Rewrite systems. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, pages 244-320. Elsevier Science Publish-
ers, 1990.

[Gordon and Melham, 1993] Michael J. C. Gordon and Tom F. Melham.
Introduction to HOL: A Theorem Proving Environment for Higher Order
Logic. Cambridge University Press, 1993.

[Gordon, 1986] Michael J. Gordon. Why higher-order logic is a good for-
malism for specifying and verifying hardware. In G. Milne and P. Sub-

rahmanyan, editors, Formal Aspects of VLSI Design: Proceedings of the
1985 Edinburgh Workshop on VLSI, Amsterdam, 1986. North Holland.

[Owre et al., 1996] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K.
Srivas. PVS: Combining specification, proof checking, and model check-
ing. In Rajeev Alur and Thomas A. Henzinger, editors, Computer-Aided
Verification, CAV ’96, number 1102 in Lecture Notes in Computer Sci-
ence, pages 411-414, New Brunswick, NJ, July/August 1996. Springer-
Verlag.

16

[Paulson, 1996] Lawrence C. Paulson. ML for the Working Programmer.
Cambridge University Press, 2nd edition, 1996.

[Paulson, 1997a] Lawrence C. Paulson. Isabelle’s Object-logics, chapter
Higher-Order Logic, pages 59-99. In [1997b], May 1997.

[Paulson, 1997b] Lawrence C. Paulson. Isabelle’s object-logics. Technical
Report 286, Computer Laboratory, University of Cambridge, May 1997.

[Paulson, 1997c] Lawrence C. Paulson. Isabelle’s reference manual. Tech-
nical Report 283, Computer Laboratory, University of Cambridge, May
1997.

[Shostak, 1977] Robert E. Shostak. On the SUP-INF method for proving
presburger formulas. JACM, 24(4):529-543, October 1977.

[Shostak, 1979] Robert E. Shostak. A practical decision procedure for arith-
metic with function symbols. JACM, 26(2):351-360, April 1979.

[Shostak, 1984] Robert E. Shostak. Deciding combinations of theories.
JACM, 31(1):1-12, January 1984.

[Smorynski, 1991] Craig Smorynski. Logical Number Theory, volume I.
Springer-Verlag, 1991.

17

