
A Note on On-The-Fly Verification Algorithms

Stefan Schwoon and Javier Esparza

Institut für Formale Methoden der Informatik, Universität Stuttgart
{esparza,schwoosn}@informatik.uni-stuttgart.de

Abstract. The automata-theoretic approach to verification of LTL relies on an
algorithm for finding accepting cycles in the product of the system and a Büchi
automaton for the negation of the formula. Explicit-state model checkers typically
construct the product space “on the fly” and explore the states using depth-
first search. We survey algorithms proposed for this purpose and propose two
improved algorithms, one based on nested DFS, the other on strongly connected
components. We compare these algorithms both theoretically and experimentally
and determine cases where both algorithms can be useful.

1 Introduction

The model-checking problem for finite-state systems and linear-time temporal
logic (LTL) is usually reduced to checking the emptiness of a Büchi automaton,
i.e. the product of the system and an automaton for the negated formula [23].
Various strategies exist for reducing the size of the automaton. For instance,
symbolic model checking employs data structures to compactly represent large
sets of states. This strategy combines well with breadth-first search, leading to
solutions whose worst-case time is essentially O(n2) or O(n log n), if n is the size
of the product. A survey of symbolic emptiness algorithms can be found in [8].

Explicit-state model checkers, on the other hand, construct the product au-
tomaton ‘on the fly’, i.e. while searching the automaton. Thus, the model checker
may be able to find a counterexample without ever constructing the complete
state space. On-the-fly verification can be combined with partial order meth-
ods [18, 15] to reduce the effect of state explosion.

The best known on-the-fly algorithms use depth-first-search (DFS) strategies
to explore the state space; their running time is linear in the size of the product
automaton (i.e. the number of states plus the number of transitions). These
algorithms can be partitioned into two classes:

Nested DFS, originally proposed by Courcoubetis et al [5], conducts a first
search to find and sort the accepting states. A second search, interleaved with
the first, checks for cycles around accepting states. Holzmann et al’s modifica-
tion of this algorithm [15] is widely regarded as the state-of-the-art algorithm for
on-the-fly model checking and is used in Spin [14]. The advantage of this algo-
rithm is its memory efficiency. On the downside, it tends to produce rather long
counterexamples. Recently, Gastin et al [10] proposed two modifications to [5]:
one to find counterexamples faster, and another to find the minimal counterex-
ample. Another problem with Nested DFS is that its extension to generalised
Büchi automata creates significant additional effort, see Subsection 5.2.

The other class can be characterised as SCC-based algorithms. Clearly, a
counterexample exists if and only if there is a strongly connected component
(SCC) that is reachable from the initial state and contains at least one ac-
cepting state and at least one transition. SCCs can be identified using, e.g.,

Tarjan’s algorithm [21]. Tarjan’s algorithm can easily accomodate generalised
Büchi automata, but uses much more memory than Nested DFS. Couvreur [6]
and Geldenhuys and Valmari [11] have proposed modifications of Tarjan’s al-
gorithm, whose common feature is that they recognize an accepting cycle as
soon as all transitions on the cycle are explored. Thus, the search may explore
a smaller part of the automaton and tends to produce shorter counterexamples.

In this paper, we survey existing algorithms of both classes and discuss their
relations to each other. This discussion leads to the following contributions:

– We propose an improved Nested-DFS algorithm. The algorithm finds coun-
terexamples with less exploration than [15] and [10] and needs less memory.

– We analyse a simplified version of Couvreur’s algorithm [6] and show that
it has advantages over the more recently proposed algorithm from [11]. We
make several other interesting observations about this algorithm that were
missed in [6]. With these, we reinforce the argument made in [11], i.e. that
SCC-based algorithms are competitive with Nested DFS.

– As a byproduct, we propose an algorithm for finding SCCs, which, to the
best of our knowledge, has not been considered previously. This algorithm
can be used to improve model checkers for CTL.

– Having identified one dominating algorithm in each class, we discuss their rel-
ative advantages for specialised classes of automata. It is known that model
checking can be done more efficiently for automata with certain structural
properties [2]. Our observations sharpen the results from [2] and provide a
guideline on which algorithms should be used in which case.

– We suggest a modification to the way partial-order reduction can be com-
bined with depth-first search.

– Finally, we back up our findings by experimental results.

We proceed as follows: Section 2 establishes the notation used to present
the algorithms. Sections 3 and 4 discuss nested and SCC-based algorithms, re-
spectively. Section 5 takes a closer look at the pros and cons of both classes,
while Section 6 discusses the combination with partial order methods. Section 7
reports experiments on some examples, and Section 8 contains the conclusions
and an open question.

2 Notation

The accepting cycle problem can be stated in many different variants. For now,
we concentrate on its most basic form in order to present the algorithms in a
simple and uniform manner. Thus, our problem is as follows:

Let B = (S, T,A, s0), where T ⊆ S × S, be a Büchi automaton (or just
automaton) with states S and transitions T . We call s0 ∈ S the initial state,
and A ⊆ S the set of accepting states. A path is a sequence of states s1 · · · sk,
k ≥ 1, such that (si, si+1) ∈ T for all 1 ≤ i < k. Let dB denote the length of
the longest path of B in which all states are different. A cycle is a path with
s1 = sk; the cycle is accepting if it contains a state from A. An accepting run

(or counterexample) is a path s0 · · · sk · · · sl, l > k, where sk · · · sl forms an
accepting cycle. The cycle detection problem is to determine whether a given
automaton B has an accepting run.

1 procedure nested dfs ()
2 call dfs blue(s0);

3 procedure dfs blue (s)
4 s.blue := true;
5 for all t ∈ post(s) do

6 if ¬t.blue then

7 call dfs blue(t);
8 if s ∈ A then

9 seed := s;
10 call dfs red(s);

11 procedure dfs red (s)
12 s.red := true;
13 for all t ∈ post(s) do

14 if ¬t.red then

15 call dfs red(t);
16 else if t = seed then

17 report cycle;

Fig. 1. The Nested-DFS algorithm from [5].

Extensions of the problem, such as generalised Büchi automata, production
of counterexamples (as opposed to merely reporting that one exists), partial-
order reduction, and exploiting additional knowledge about the automaton are
discussed partly along with the algorithms, and partly in Sections 5 and 6.

All algorithms presented below use depth-first-search strategies and are de-
signed to work ‘on the fly’, i.e. B can be constructed during the search. In the
presentation of all algorithms, we make the following assumptions:

– Initially, the state s0 is known.
– Given a state s, we can compute the set post(s) := { t | (s, t) ∈ T }.
– For each state s, s ∈ A can be decided (in constant time).
– The statement report cycle ends the algorithm with a positive answer.

When the algorithm ends normally, no accepting run is assumed to exist.

3 Algorithms based on Nested DFS

The Nested-DFS algorithm was proposed by Courcoubetis, Vardi, Wolper, and
Yannakakis [5]. It can be said to consist of a blue and a red search procedure,
both of which can visit any state at most once. It requires two bits per state, one
for each of the searches. We assume that when a state is generated by post for
the first time, both bits are false. The algorithm is shown in Figure 1. The first
procedure, dfs blue, conducts a depth-first search from its argument state. The
blue bit is set on all states encountered by the procedure. When the search from
an accepting state s finishes, dfs red is invoked from s. This procedure sets the
red bit on all the states it encounters and avoids visiting states twice. If dfs red

finds that s can be reached from itself, an accepting run is reported.

3.1 Known improvements on Nested DFS

The Nested-DFS algorithm can be improved to find counterexamples earlier
under certain circumstances. Consider the automaton shown in Figure 2 (a). To
find the counterexample, the blue DFS must first reach the accepting state s1,
and then the red DFS needs to go from s1 to s0 and back again to s1, even
though an accepting run is already completed at s0. A modification suggested
by Holzmann, Peled, and Yannakakis [15] eliminates this situation: As soon as a
red DFS initiated at s finds a state t such that t is on the call stack of the blue
DFS, the search can be terminated, because t is obviously guaranteed to reach s.

To check in constant time whether a state is on the call stack, one additional bit
per state is used (or, alternatively, a hash table containing the stack states).

s0

(b)

s0 s1 s1

(a)

Fig. 2. Two examples for improvements on the Nested-DFS algorithm.

Another improvement on Nested DFS was recently published by Gastin,
Moro, and Zeitoun [10], who suggested the following additions:

1. The blue DFS can detect an accepting run if it finds an edge back to an
accepting state that is currently on the call stack. Consider Figure 2 (b):
In [15], both the blue and the red search need to search the whole automaton
to find the accepting cycle. With the suggestion in [10], the cycle is found
without entering the red search. We note that this improvement can be
slightly generalized to include the case where the current search state is
accepting and finds an edge back to a state on the stack.

2. States are marked black during the blue DFS if they have been found not
to be part of an accepting run. Thus, the red search can ignore black states.
However, the computational effort required to make states black is asymptot-
ically as big as the effort expended in the red search: one additional visit to
every successor state. Moreover, the effort is necessary for every blue state,
even if the state is never going to be touched by the red search. Therefore,
the use of black states is not necessarily an improvement.1

The algorithm from [10] requires three bits per state.

3.2 A new proposal

We now formulate a version of Nested DFS that includes the improvements for
early detection of cycles from [15, 10], but without the extra memory require-
ments. This is based on the observation that, out of the eight cases that could be
encoded in [15] with the three bits blue, red, and stack, four can never happen:

– A state with its blue and red bit false cannot have its stack bit set to true
(obvious).

– By induction, we show that no state can have its red bit set to true and
its blue bit set to false, independently of its stack bit: When the red search
is initiated, all successors of seed have appeared in the blue search. Later,
if the red search encounters a blue state t with non-blue successor u, we
can conclude that t has not yet terminated its blue search. Thus, t must be
on the call stack, and the improvement of [15] will cause the red search to
terminate before considering u.

– The case where a state has both its red and stack bit set need not be con-
sidered: With the improvement from [15], the red search terminates as soon
as it encounters a state with the stack bit.

1 The authors of [10] also propose an algorithm for finding a minimal counterexample, which
has exponential worst-time complexity, and for which the black search can provide useful
preprocessing. Since the scope of this paper is on linear-time algorithms, the minimization
algorithm is not considered here.

1 procedure new dfs ()
2 call dfs blue(s0);

3 procedure dfs blue (s)
4 s.colour := cyan;
5 for all t ∈ post(s) do

6 if t.colour = cyan

7 ∧ (s ∈ A ∨ t ∈ A) then

8 report cycle;
9 else if t.colour = white then

10 call dfs blue(t);
11 if s ∈ A then

12 call dfs red(s);
13 s.colour := red ;
14 else

15 s.colour := blue;

16 procedure dfs red (s)
17 for all t ∈ post(s) do

18 if t.colour = cyan then

19 report cycle;
20 else if t.colour = blue then

21 t.colour := red ;
22 call dfs red(t);

Fig. 3. New Nested-DFS algorithm.

The remaining four cases can be encoded with two bits. The algorithm in
Figure 3 assigns one of four colours to each state:

– white: We assume that states are white when they are first generated by a
call to post .

– cyan: A state whose blue search has not yet terminated.
– blue: A state that has finished its blue search and has not yet been reached

in a red search.
– red: A state that has been considered in both the blue and the red search.

The seed state of the red search is treated specially: It remains cyan during
the red search and is made red afterwards. Thus, it matches the check at line 18,
and the need for a seed variable is eliminated. Like in the other algorithms based
on Nested DFS, the counterexample can be obtained from the call stack at the
time when the cycle is reported.

4 Algorithms based on SCCs

The algorithms in this class are based on the notion of strongly-connected com-

ponents (SCCs). Formally, an SCC is a maximal subset of states C such that
for every pair s, t ∈ C there is a path from s to t and vice versa. The first
state of C entered during a depth-first search is called the root of C. An SCC
is called trivial if it consists of a single state, and if this single state does not
have a transition to itself. An accepting run exists if and only if there exists
a non-trivial SCC that contains at least one accepting state and whose states
are reachable from s0. In the following we present the main ideas behind three
SCC-based algorithms. These explanations are not intended as a full proof, but
should serve to explain the relationship between the algorithms.

Tarjan [21] first developed an algorithm for identifying SCCs in linear time
in the size of the automaton. His algorithm uses depth-first search and is based
on the following concepts: Every state is annotated with a DFS number and a
lowlink number. DFS numbers are assigned in the order in which states appear
in the DFS; we assume that the DFS number is 0 when a state is first generated
by post . The lowlink number of a state s is the lowest DFS number of a state t
in the same SCC as s such that t was reachable from s via states that were not
yet explored when the search reached s. Moreover, Tarjan maintains a set called

Current to which states are added when they are first detected by the DFS. A
state is removed from Current when its SCC is completely explored, i.e. when
the DFS of its root concludes. Current is represented twice, as a bit-array and
as a stack. The following properties hold:

(1) Current contains only states from partially explored SCCs whose roots are
still on the call stack. Thus, every state in Current has a path to a state on
the call stack (e.g., its root).

(2) Therefore, if t is in Current when the DFS at state s detects a transition
to t, t has a path to its root, from there to s, so both are in the same SCC.

(3) Roots have the lowest DFS number within their SCC and are the only states
whose DFS number equals their lowlink number.

(4) A root r is the first state of its SCC to be added to Current. At the time
when the DFS at r concludes, all other SCCs reachable from r have been
completely explored and removed from Current . Thus, the nodes belonging
to the SCC can be identified by removing nodes from the stack representation
of Current until r is found. At the same time, one can check whether the
SCC is non-trivial and contains an accepting state.

For the purpose of finding accepting cycles, Tarjan’s algorithm has several
drawbacks compared to Nested-DFS algorithms: It uses more memory per state
(one bit plus two integers as opposed to two bits), and a larger stack: In Nested
DFS, the stack may grow as large as dB whereas in Tarjan’s algorithm Current

may at worst contain all states, even if dB is small. Moreover, Tarjan’s algorithm
may need longer to find a counterexample: An SCC is not checked for acceptance
until itself and all SCCs reachable from it have been completely explored. In
Nested DFS, a red search may be started even before an SCC has been completely
explored. Figure 4 illustrates this: Nested-DFS algorithms may find the cycle
s0s1s0 and stop without examining the right part of the automaton provided
that edge (s0, s1) is explored before (s0, s2); Tarjan’s algorithm is bound to
explore the whole automaton regardless of the order of exploration.

without cycles
large subgraph

s2s1 s0

Fig. 4. Nested DFS may outperform Tarjan’s algorithm on this automaton.

Recent developments, however, have shown that Tarjan’s algorithm can be
modified to eliminate or reduce some of these disadvantages, and that SCC-based
algorithms can be competitive to Nested DFS. Two modifications are presented
below. Their common feature is that they can detect a counterexample as soon
as all transitions along an accepting run have been explored. In other words,
their amount of exploration is minimal (i.e., minimal among all DFS algorithms
that follow the search order given by post).

4.1 The Geldenhuys-Valmari algorithm

The algorithm recently proposed by Geldenhuys and Valmari [11] extends Tar-
jan’s algorithm with the following idea: Suppose that the DFS starts exploring

an accepting state s. At this point, all states in Current (including s) have a path
to s (property (1)). Moreover, the states that are in Current at this point can
be distinguished from those that are added later by the fact that their lowlink
number is less than or equal to the DFS number of s. Thus, to find a cycle
including s, we need to find a state with such a lowlink number in the DFS
starting at s. In [11], this is accomplished by making s a ‘target’ during the sub-
sequent DFS. When a cycle is found, the search can be terminated immediately.
An implementation of the algorithm is shown in Appendix A.

The memory consumption of the Geldenhuys-Valmari algorithm is slightly
higher than that of Tarjan’s due to the extra argument in the recursion. However,
if a counterexample exists, the algorithm may find it earlier than Nested DFS.

4.2 Couvreur’s algorithm

Couvreur [6] proposed (in his own words) “a simple variation of the Tarjan al-
gorithm” that solves the accepting cycle problem on generalised automata (see
Subsection 5.2), but where acceptance conditions are associated with transitions.
This algorithm has the advantage of detecting counterexamples early, as in [11].
Here, we translate and simplify the algorithm for the problem stated in Section 2
and then show that it has a number of additional benefits that were not con-
sidered in [6]. The following ideas, which improve upon Tarjan’s algorithm, are
relevant for the algorithm:

– The stack representation of Current is unnecessary. By property (4), when
the DFS of a root r finishes, all other SCCs reachable from the root have
already been removed from Current . Therefore, the SCC of r consists of all
nodes that are reachable from r and still in Current . These can be found by
a second DFS starting at r, using the bit-array representation of Current .

– Lowlink numbers can be avoided. The purpose of lowlink numbers is to test
whether a given state is a root. However, the DFS number already con-
tains partial knowledge about the lowlink: it is greater than or equal to it.
Couvreur’s algorithm maintains a stack (called Roots) of potential roots to
which a state is added when it appears on the call stack. Recall property (2):
When the DFS sees a transition from s to t after the DFS of t, and t is still
in Current , then s and t are in the same SCC. A root has the lowest DFS
number in its SCC. Thus, all states in the call stack with a DFS number
greater than that of t cannot be roots and are removed from Roots. More-
over, these states are part of a cycle around s; if one of them is accepting,
then a counterexample exists. Finally, a node r can now be identified as a
root by checking whether r is still in Roots when its DFS finishes. At this
point, r can also be removed from Roots.

Figure 5 presents the algorithm. Even though we believe the transformation
from the algorithm in [6] to be faithful, it uses different notation and solves a
slightly different problem. Therefore, we provide a new proof in Appendix B.

The issue of generating an actual counterexample was not considered in [6].
Fortunately, adding this is relatively easy: At line 18, the call stack plus the
transition (s, t) provide a path from s0 via u to t. To complete the cycle, we

1 procedure couv ()
2 count := 0; Roots := ∅;
3 call couv dfs(s0);

4 procedure remove (s):
5 if ¬s.current then return;
6 s.current := false;
7 for all t ∈ post(s) do remove(t);

8 procedure couv dfs(s):
9 count := count + 1;

10 s.dfsnum := count;
11 push(Roots, s); s.current := true;

12 for all t ∈ post(s) do

13 if t.dfsnum = 0 then

14 call couv dfs(t);
15 else if t.current then

16 repeat

17 u := pop(Roots);
18 if u ∈ A then report cycle;
19 until u.dfsnum ≤ t.dfsnum;
20 push(Roots, u);
21 if top(Roots) = s then

22 pop(Roots);
23 call remove(s);

Fig. 5. Translation of Couvreur’s algorithm.

need a path from t to u, which can be found with a simple DFS within the non-
removed states starting at u (the current bit can be abused to avoid exploring
states twice in this DFS). Alternatively, we could search for any state on the call
stack of the DFS whose number is at least t.dfsnum, which may lead to slightly
smaller counterexamples, but requires an additional ‘on stack’ bit for each state.

4.3 Comparison

The algorithms presented in Subsections 4.1 and 4.2 report a counterexample
as soon as all the transitions belonging to it have been explored. (For the full
proofs, see [11] and Appendix B, resp.) Thus, they find the same counterexamples
with the same amount of exploration. However, Couvreur’s algorithm has several
advantages to those of both Tarjan and Geldenhuys and Valmari:

– It needs just one integer per state instead of two.
– Current is a superset of the call stack and contains at worst all the states ([11]

mentions the use of stack space as a drawback). The Roots stack, however,
is only a subset of the call stack. This eliminates one disadvantage of SCC-
based algorithms when compared to Nested DFS.

– Couvreur’s algorithm can be easily extended to multiple acceptance condi-
tions. This is explained in greater detail in Subsection 5.2. It is not clear
how such an extension could be done with the algorithm of [11].

Note that the first two advantages are not pointed out in [6]. It seems that this
has caused Couvreur’s algorithm to remain largely unappreciated (as evidenced
by the fact that [11] does not seem to be aware of [6]).

On the downside, Couvreur’s algorithm may need two calls to post per state
whereas the others need only one.

4.4 On identifying strongly connected components

The algorithm in Figure 5 can be easily transformed into an algorithm for iden-
tifying the SCCs of the automaton. All that is required is to remove line 18 and
to output the nodes as they are processed in the remove procedure.

To the best of our knowledge, this algorithm is superior to previously known
algorithms for identifying SCCs: The advantages over Tarjan’s algorithm [21]
have already been pointed out; Gabow [9] avoids computing lowlink numbers, but

still uses the stack representation of Current. Nuutila and Soisalon-Soininen [17]
reduce stack usage in special cases only, and still use lowlink numbers. Sharir’s
algorithm [19] has none of these drawbacks, but requires reversed edges. Sur-
prisingly, the issue of detecting SCCs was not considered in [6].

Compared to the algorithms that use a stack representation of Current, the
new algorithm traverses edges twice, whereas the others traverse edges only once.
This might be a disadvantage if the calls to post are computationally expensive.
However, the algorithm remains linear in the size of B, and the memory savings
can be significant (see Section 7).

In the model-checking world, SCC decomposition is used in CTL for comput-
ing the semantics of the EG operator [4] or for adding fairness constraints [3].
Therefore, this algorithm can benefit explicit-state CTL model checkers.

5 Nested DFS vs SCC-based algorithms

In Sections 3 and 4 we have shown that the new Nested-DFS algorithm (Figure 3)
and the modification of Couvreur’s algorithm (Figure 5) dominate the other
algorithms in their class. Of these two, the nested algorithm is more memory-
efficient: While the difference in stack usage, where the SCC algorithm consumes
at most twice as much as the nested algorithm, is harmless, the difference in
memory needed per state can be more significant: the nested algorithm needs
only two bits, the SCC algorithm needs an integer.

Nested DFS therefore remains the best alternative for combination with the
bitstate hashing technique [13], which allows to analyse very large systems while
potentially missing parts of the state space. If traditional, lossless hashing tech-
niques are used, the picture is different: State descriptors even for small systems
often include dozens of bytes, so that an extra integer becomes negligible. In
addition, this small disadvantage of the SCC algorithm is offset by its earlier
detection of counterexamples: the SCC algorithm always detects a counterex-
ample as soon as all transitions on a cycle have been explored (i.e. with minimal
exploration), while the nested algorithm may take arbitrarily longer.

For instance, assume that in the automaton shown in Figure 6, the path
from s1 back to s0 is explored before the subgraph starting at s2. Then, the
SCC algorithm reports a counterexample as soon as the cycle is closed, without
visiting s2 and the states beyond. The nested search, however, needs to explore
the large subgraph before the second DFS can start at s1 and detect the cycle.

large subgraph
states

path of
non−accepting

s1

s0

s2

Fig. 6. SCC-based algorithm outperforms Nested DFS on this automaton.

In Subsection 5.1, we examine how this advantage of the SCC-based algo-
rithm is influenced by structural properties of the automaton. It turns out that
for an important class of automata (namely weak automata), nested DFS avoids

the aforementioned disadavantage (and can in fact be replaced by a simple,
non-nested DFS).

5.1 Exploiting structural properties

In [2], Černá and Pelánek defined the following structural hierarchy of Büchi
automata (see also [16, 1]):

– Any Büchi automaton is an unrestricted automaton.

– A Büchi automaton is weak if and only if its states can be partitioned into
sets Q1, . . . , Qn such that each Qi, 1 ≤ i ≤ n is either contained in the set
of accepting states or disjoint from it; moreover, if there is a transition from
a state in Qi to a state in Qj then i ≤ j.

– A weak automaton is terminal if and only if the partitions containing ac-
cepting states have no transitions into other partitions.

The automata encountered in LTL model checking are the products of a system
and a Büchi automaton specifying some (un)desirable property. Clearly, if the
specification automaton is weak or terminal, then so is its product with the
system. Thus, the type of the product can be safely approximated by the type
of the specification automaton, which is usually much smaller.

Any run on an automaton eventually gets stuck in one of the partitions.
Accepting runs of weak automata have the property that their cycle parts consist
exclusively of accepting states. We now prove that the nested DFS algorithm
(Figure 3) will discover (and report) an accepting run in procedure blue dfs as
soon as all of its transitions have been explored: Assume that no counterexample
has been completely explored so far, that the blue DFS is currently at state s,
and that (s, t) is the last transition in the counterexample that has not been
explored. We can assume that (s, t) is in the ‘cycle’ part of the counterexample
(otherwise a complete reachable cycle would have been explored before, which
violates the assumption). Therefore, both s and tmust be accepting states. Then,
the blue DFS will report a counterexample at line 8 if and only if t is cyan when
(s, t) is explored. We prove that t is cyan by contradiction: Being an accepting
state, t cannot be blue; if t is white, then discovering (s, t) will not close a cycle;
and if t is red, then by construction t is not be part of a counterexample.

A consequence of this is that the nested algorithm, when processing a weak
automaton, always finds cycles in line 8 (when they exist). Thus, when examining
weak automata, the algorithm of Figure 3 can be improved by disabling the red
search (if an accepting state reaches line 11, it is not part of an accepting cycle,
because such a cycle would have been found during the blue search). Thus,
we end up with a simple, non-nested DFS. Černá and Pelánek [2] previously
proposed simple DFS on weak systems because of its efficiency; we have shown
that it also finds counterexamples with minimal exploration.

Weak automata are important because they can represent (the negation of)
many ‘popular’ properties, e.g. invariants (G p), inevitability (F p), progress
(GF p), or response (G(p → F q)). In fact, [2] claims that 95% of the formu-
las in a well-known specification patterns database lead to weak automata, and
propose a method that generates weak automata for a suitably restricted subset

of LTL formulas. Somenzi and Bloem [20] propose an algorithm for unrestricted
formulas that attempts to produce automata that are ‘as weak as possible’.

For terminal automata, [2] proposes to use simple reachability checks. For
correctness, this requires the assumption that every state has a successor.

For unrestricted automata, the new nested-DFS algorithm can be combined
with the changes proposed by Edelkamp et al [7], which further exploit structural
properties of the system and allow to combine the approach with guided search.

5.2 Handling Generalised Büchi automata

The accepting cycle problem can also be posed for generalised Büchi automata, in
which A is replaced by a set of acceptance sets A ⊆ 2S . Here, a cycle is accepting
if it intersects all sets A ∈ A. Generalised Büchi automata arise naturally during
the translation of LTL into Büchi automata (see, e.g., [12, 6]). Moreover, fairness
constraints of the form GF p can be efficiently encoded with acceptance sets.
Generalised Büchi automata can be translated into (normal) Büchi automata,
but checking them directly may lead to more efficient procedures. The following
paragraph briefly reviews the solutions proposed for this method:

Let n be the number of acceptance sets in A. For nested DFS, Courcoubetis
et al [5] proposed a method with at worst 2n traversals of each state. Tauriainen’s
solution [22] reduces the number of traversals to n+1. Couvreur’s algorithm [6]
works directly on generalised automata; the number of traversals is at most 2,
independently of n. This is accomplished by implementing the elements of Roots
as tuples (state, set), where set contains the acceptance sets represented in the
SCC of state; these sets are merged during pop sequences.

Thus, Couvreur’s algorithm has a clear edge over nested DFS in the gener-
alised case: It can detect accepting runs with minimal exploration and with less
runtime overhead.

5.3 Summary

The question of optimised algorithms for specialised classes of Büchi automata
has been addressed before in [2], as pointed out in Subsection 5.1. Likewise, [6]
and [11] previously raised the point that SCC-based algorithms may be faster
than nested DFS, but without addressing the issue of when this was the case. Our
results show that these issues are related, which leads to the following picture:

– For weak automata, simple DFS should be used by default: it is simpler and
more memory-efficient than SCC algorithms and finds counterexamples with
minimal exploration.

– For unrestricted automata, an SCC-based algorithm should be used unless
bit hashing is required. The memory overhead of Couvreur’s algorithm (Fig-
ure 5) is not significant, and it can find counterexamples with less exploration
than nested DFS (and often shorter ones, see Section 7). If post is computa-
tionally expensive, Geldenhuys and Valmari’s algorithm may be preferable.

– The improved nested DFS algorithm (Figure 3) should be used for unre-
stricted automata if bitstate hashing is needed.

Note also that when generalised Büchi automata can be used, the balance shifts
in favour of Couvreur’s algorithm.

6 Compatibility with partial order reduction

DFS-based model checking may be combined with partial-order reduction to
alleviate the state explosion problem. This technique tries not to explore all suc-
cessors of a state, but only a subset matching certain conditions. In the practical
approach of Peled [18], several candidate subsets of successors are tried until one
is found that matches the conditions. Crucially, the chosen subset at a state s
depends on the DFS call stack at s. For correctness, one must ensure that each
call to post(s) choses the same subset. This can be done by (i) ensuring that
the call stack is always the same for any given state, or (ii) remembering the
chosen successor set, which costs extra memory. Holzmann et al [15] describe
memory-efficient methods for (ii), which, however, constrain the kinds of can-
didate successor sets that can be used. We show that there is an alternative
solution for both nested DFS and SCC-based algorithms that does not require
to remember successor sets, and that does not constrain the candidate sets.

Note first that the nested DFS algorithms do not have property (i); the call
stack in the red DFS may differ from the one in the blue DFS. In [6], Couvreur
claims that his algorithm satisfies property (i). However, adding counterexam-
ple generation destroys this property: a state can be entered with a different
call stack during the extra DFS needed for generating a counterexample, see
Subsection 4.2. In both cases, the methods from [15] can be used as a remedy.

The alternative solution is a simple idea based on the following observations:
The red search of the new nested algorithm (Figure 3) only explores cyan or
blue states. The extra DFS in the SCC-based algorithm touches only states in
the explored, but unremoved part of the automaton. Thus, if the partial-order
reduction produces an unexplored successor during these searches, that successor
can be discarded, because it cannot have been generated during the first search.
In other words, the partial-order reduction may simply generate all successor
states and then discard those that have not been explored before.

As this solution does not impose constraints on candidate successor sets, it
could lead to larger reductions at a (probably small) run-time price. We have
not yet tried whether this leads to improvements in practice. No partial-order-
related precautions are required when simple DFS is used for weak automata
(see Section 5.1), as was already observed in [2].

7 Experiments

For experimental comparisons, we replicated two of the three variants from
Geldenhuys and Valmari’s example [11], a leader election protocol with extinc-
tion for arbitrary networks. In both variants, the election starts over after com-
pletion; in Variant 1, the same node wins every time, in Variant 2, each node
gets a turn at becoming the leader. Like in [11], the network specified in the
model consisted of three nodes.

Both variants were modelled in Promela. Spin [14] was used to generate the
complete product state space (with partial-order reduction), and the result was
given as input to our own implementation of the algorithms. All related files are
at http://www.fmi.uni-stuttgart.de/szs/people/schwoon/dfs.tar.gz.

The results are summarized in Table 1. The first two sections of the table
contain the results for the instances in which accepting cycles were found (for
nested and SCC-based algorithms, resp.), whereas the third section contains
the examples that did not contain accepting cycles. In all tables, φ indicates the
LTL properties that were checked; these are again the same as in [11]. The ‘weak’
column indicates whether the resulting automaton was weak or not, ‘states’ is the
total number of states in the product, and ‘trans’ the total number of transitions.
(Note that the exact numbers differ from [11] because we used our own models
of the algorithms). The algorithms that were compared were:

– HPY: the algorithm of Holzmann et al [15];
– GMZ: the algorithm of Gastin et al [10];
– New: the new nested algorithm from Figure 3;
– Couv: the simplified version of Couvreur’s algorithm [6], see Figure 5;
– GV: the algorithm of Geldenhuys and Valmari [11].

To ensure comparable results, the order of successors given by post was the
same in all algorithms and was always followed. The following (implementation-
independent) statistics are provided: Columns marked ‘st’ indicate the number of
distinct states visited during the search; ‘tr’ indicates how many transitions were
generated by calls to post , i.e. individual transitions may count more than once.
‘dp’ indicates the maximal depth of the call stack. The length of counterexamples
was almost always equal to the value of ‘dp’, and only slightly less otherwise.
For the SCC-based algorithms, we also provide the maximal size of their explicit
state stacks. In the last section, the whole graph is explored, therefore the only
differences are in the transition count, and the size of the explicit state stacks.

Even though these are just a few examples, they suffice to demonstrate
the most important observations made in the theoretical discussion of the al-
gorithms. In particular, we can see the following:

– The new nested-DFS algorithm finds counterexamples faster than the other
nested algorithms in three cases. In those cases, the counterexamples are
found as fast as in the SCC algorithms, but that is just a lucky coincidence.

– The GMZ algorithm was never faster than the new algorithm, i.e. its extra
black search did not provide an advantage.

– The SCC-based algorithms found counterexamples earlier than HPY and
GMZ on all weak automata, and earlier than the new nested algorithm in
three cases. In all cases, earlier detection of counterexamples also translated
to shorter counterexamples, but this is not guaranteed in general.

– The Roots stack of Couvreur’s algorithm is often much smaller than the
Current stack of the GV algorithm; in return, it may touch transitions twice.

8 Conclusions

We have portrayed and compared a number of algorithms for finding accepting
cycles in Büchi automata. A new nested-DFS algorithm was proposed, which was
experimentally shown to perform better than existing ones. Moreover, we have
presented an adaptation of Couvreur’s SCC-based algorithm and shown that it
has important advantages, some of which were not previously observed. Thus,

Ex. w/ cycles (nested) HPY GMZ New

φ weak states trans st tr dp st tr dp st tr dp

Variant 1

B no 16685 31405 385 409 386 371 392 372 214 215 215
E yes 4849 6081 129 130 130 129 129 130 129 129 130
H no 29564 46059 17658 21769 582 17658 42916 582 17658 21769 582
I no 29564 46059 17658 21769 582 17658 42916 582 17658 21769 582

Variant 2

A no 42564 77358 7218 16485 740 7218 16498 740 5786 13398 557
B no 49256 93765 721 746 722 707 729 708 439 440 440
E yes 14115 17794 367 368 368 367 367 368 367 367 368
G yes 28126 37457 3982 4589 1040 3982 8130 1040 3982 4588 1040
H no 111094 181559 33128 53575 906 33128 106364 906 33128 53575 906

Ex. w/ cycles (SCC) Couv/GV Couv GV

φ weak states trans st dp tr |Roots| tr |Current|

Variant 1

B no 16685 31405 214 215 215 129 215 214
E yes 4849 6081 129 130 129 129 129 129
H no 29564 46059 16132 328 38249 129 20009 4825
I no 29564 46059 16132 328 38249 129 20009 4825

Variant 2

A no 42564 77358 5786 557 13398 367 6983 561
B no 49256 93765 439 440 440 354 440 439
E yes 14115 17794 367 368 367 367 367 367
G yes 28126 37457 3982 1040 4588 379 4588 3982
H no 111094 181559 15259 798 36791 367 18998 14091

Ex. w/o cycles transitions explored stack size

φ states depth HPY GMZ New Couv GV |Roots| |Current |

Variant 1

A 13057 312 30554 41600 30554 41600 20800 129 4825
C 3925 113 9372 9372 9372 9372 4686 113 113
D 8964 312 20822 31868 20822 31868 15394 129 4825
F 8964 312 20822 31868 20822 31868 15394 129 4825
G 4849 312 6081 12162 6081 12162 6081 129 4825

Variant 2

C 3925 113 9372 9372 9372 9372 4686 113 113
D 27323 825 66522 100724 66522 100724 50362 367 14091
F 27323 825 64512 96704 64512 96704 48352 367 14091
I 83658 900 173557 247748 173557 247748 123874 367 14091

Table 1. Experimental results on leader election example.

we believe that both nested DFS and SCC algorithms have their place in LTL
verification; the one uses less memory, the other finds counterexamples faster.
Moreover, we provide a refined judgement that takes into account structural
properties of the Büchi automaton.

There remains an interesting open question: Is there a linear-time algorithm
that combines the advantages of nested DFS and SCC-based algorithms, i.e. one

that finds counterexamples with minimal exploration and uses only a constant
number of bits per state?

References

1. R. Bloem, K. Ravi, and F. Somenzi. Efficient decision procedures for model check-
ing of linear time logic properties. In CAV’99, LNCS 1633, pages 222–235, 1999.

2. I. Černá and R. Pelánek. Relating hierarchy of linear temporal properties to model
checking. In Proc. of MFCS, LNCS 2747, pages 318–327, 2003.

3. E. Clarke, A. Emerson, and P. Sistla. Automatic verification of finite-state con-
current systems using temporal logic specifications. TOPLAS, 8:244–263, 1986.

4. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
5. C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient

algorithms for the verification of temporal properties. Formal Methods in System

Design, 1(2/3):275–288, 1992.
6. J.-M. Couvreur. On-the-fly verification of linear temporal logic. In Proc. Formal

Methods, LNCS 1708, pages 253–271, 1999.
7. S. Edelkamp, A. Lluch-Lafuente, and S. Leue. Directed explicit-state model check-

ing in the validation of communication protocols. STTT, 2004.
8. K. Fisler, R. Fraer, G. Kamhi, M. Y. Vardi, and Z. Yang. Is there a best symbolic

cycle-detection algorithm? In Proc. of TACAS, LNCS 2031, pages 420–434, 2001.
9. H. N. Gabow. Path-based depth-first search for strong and biconnected compo-

nents. Information Processing Letters, 74(3–4):107–114, 2000.
10. P. Gastin, P. Moro, and M. Zeitoun. Minimization of counterexamples in SPIN.

In Proc. 11th SPIN Workshop, LNCS 2989, pages 92–108, 2004.
11. J. Geldenhuys and A. Valmari. Tarjan’s algorithm makes on-the-fly LTL verifica-

tion more efficient. In Proc. of TACAS, LNCS 2988, pages 205–219, 2004.
12. R. Gerth, D. A. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic

verification of linear temporal logic. In Proc. of PSTV, pages 3–18. IFIP, 1996.
13. G. J. Holzmann. An analysis of bitstate hashing. Formal Methods in System

Design, 13(3):289–307, 1998.
14. G. J. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-

Wesley, 2003.
15. G. J. Holzmann, D. A. Peled, and M. Yannakakis. On nested depth first search.

In Proc. 2nd SPIN Workshop, pages 23–32, 1996.
16. O. Kupferman and M. Y. Vardi. Freedom, weakness, and determinism: From

linear-time to branching-time. In Proc. of LICS, pages 81–92. IEEE, 1998.
17. E. Nuutila and E. Soisalon-Soininen. On finding the strongly connected compo-

nents in a directed graph. Information Processing Letters, 49:9–14, 1994.
18. D. A. Peled. Combining partial order reductions with on-the-fly model-checking.

Formal Methods in System Design, 8(1):39–64, January 1996.
19. M. Sharir. A strong-connectivity algorithm and its applications in data flow anal-

ysis. Computers and Mathematics with Applications, 7(1):67–72, 1981.
20. F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae. In Proc.

of CAV, LNCS 1855, pages 248–263, 2000.
21. R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on

Computing, 1(2):146–160, 1972.
22. H. Tauriainen. Nested emptiness search for generalized Büchi automata. Technical

Report A79, Helsinki University of Technology, July 2003.
23. M. Y. Vardi and P. Wolper. Automata theoretic techniques for modal logics of

programs. Journal of Computer and System Sciences, 32:183–221, 1986.

Appendix

For convenience, this appendix provides additional information on some of the
algorithms. This material is not intended for publication in the proceedings.

Appendix A

Figure 7 shows a representation of the Geldenhuys-Valmari algorithm [11]. The
bottom symbol (⊥) indicates that no accepting state has appeared on the call
stack so far. Notice that this presentation differs from the one in [11] inasmuch
as the latter is iterative instead of recursive and uses slightly different data
structures. However, the differences are minor, and the presentation in Figure 7
is better suited for comparison with other algorithms.
1 procedure gv ()
2 count := 0;
3 current := ∅;
4 if s0 ∈ A then call gv dfs(s0, s0);
5 else call gv dfs(s0,⊥);

6 procedure gv dfs (s, goal)
7 count := count + 1;
8 s.dfsnum := count;
9 s.lowlink := count;

10 push(Current , s); s.current := true;
11 for all t ∈ post(s) do

12 if t.dfsnum = 0 then

13 if t ∈ A then call gv dfs(t, t)
14 else call gv dfs(t, goal);
15 if t.current then

16 s.lowlink := min{s.lowlink , t.lowlink};
17 if goal 6= ⊥ ∧ s.lowlink ≤ goal .dfsnum then

18 report cycle;
19 if s.lowlink = s.dfsnum then

20 repeat

21 t := pop(Current); t.current := false;
22 until s = t;

Fig. 7. The Geldenhuys-Valmari algorithm.

Appendix B

This appendix contains a proof of the adaptation of Couvreur’s algorithm. The
proof follows the ideas from [6], but is adapted to the presentation in Figure 5
and provides more detailed explanations. We distinguish two specific parts of
the automaton:

– The explored part: This is the subgraph consisting of the states and the
transitions that have been considered in the for-loop at line 12.

– The removed part: This is the subgraph induced by the states on which the
remove procedure has been called.

To show that the algorithm is correct, we prove that the following three
properties are invariant at line 12:

(1) Roots contains a subsequence of the call stack of the couv dfs procedure.
(2) The removed part contains exactly the non-accepting SCCs of the explored

part that cannot reach any of the states on the call stack.
(3) All states in Roots are roots of non-accepting SCCs of the explored part. If

Stack = s0s1 . . . sn, then the SCC containing si consists of the unremoved
states with numbers between si.dfsnum and si+1.dfsnum − 1, for 0 ≤ i < n,
and the SCC containing sn consists of the unremoved states with numbers
greater than or equal to sn.dfsnum.

It is straightforward to see that all three properties hold when line 12 is first
reached in the call to couv dfs(s0). When a transition from s to t is considered,
we distinguish the following cases:

– Either t is a fresh state. In that case, t forms a new (trivial) SCC in the
explored part. The procedure is now called recursively on t and t is pushed
onto the stack before line 12 is reached next (in the call on t), and thus
properties (1)–(3) are re-established.

– Or t is in the removed part, i.e. t.in current is false in line 15. Then, due to
property (2), t belongs to a non-accepting SCC and cannot reach s. There-
fore, neither t nor any of its descendants can be part of an accepting cycle,
and t can be ignored for the rest of the search.

– Or t has been explored but not yet removed. Let r be the highest-numbered
state in Roots such that r.num ≤ t.num. Then, due to property (3), r and t

are in the same SCC, i.e. r can be reached from t. Because of property (1), r
can reach s. Thus, we have found a cycle, and all unremoved states between
r.num and count form an SCC. To re-establish property (3), we must re-
move all states up to, but not including, r from Roots. This is done between
lines 16 and 20. Doing so preserves property (1). Due to property (3), all
previous SCCs were non-accepting. Therefore, the newly agglomerated SCC
is accepting if and only if one of the previous SCCs was trivial, consisting
of a single accepting state. Thus the new, agglomerated SCC is accepting if
and only if one of the previous roots was accepting. This condition is tested
in line 18.

Finally, we need to consider the actions taken when all the outgoing tran-
sitions from s have been exhausted. Because of property (1), s is either at the
top of Roots or not contained in Roots at all. In the first case, s is part of an
SCC whose root is higher up on the call stack, and no action needs to be taken
to preserve properties (1)–(3). Otherwise, due to property (3), s is the root of a
non-accepting SCC of the explored part. We need to show that s is in fact a root
of the whole automaton, i.e. no states other than those mentioned in property (3)
can belong to the same DFS as s:

– No currently unexplored state can belong to the same DFS because all de-
scendants of s have been explored,

– No unremoved state with a lower DFS number than s can belong to the
same DFS because no descendant of s could reach them (otherwise s would
have been removed from Roots earlier).

– No removed state can be in the same DFS because of property (2).

Thus, s is removed Roots to preserve (1) and (3). All states reachable from s

have been explored, i.e. all states explored by the algorithm in the future are not
reachable from s. Thus, to preserve property (2), the SCC containing s needs to
be removed, which is done in line 4.2.

We conclude that the algorithm is correct and detects a counterexample as
soon as all of its transitions are explored because properties (2) and (3) are
maintained after each processed transition: The algorithm continues only if the
explored part consists exclusively of non-accepting SCCs.

