
Automatic Synthesis of Distributed Transition Systems

Von der Fakultät Informatik, Elektrotechnik und Informationstechnik
der Universität Stuttgart zur Erlangung der Würde eines

Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Alin Ştefănescu

aus Slatina, Rumänien

Vorsitzender des Prüfungsausschusses: Prof. Dr. Volker Diekert
Hauptberichter: Prof. Dr. Javier Esparza
Mitberichter: Prof. Dr. Colin Stirling

Tag der mündlichen Prüfung: 13.2.2006

Institut für Formale Methoden der Informatik
Universität Stuttgart

2006

Automatic Synthesis of Dis

trib

ut

ed Transition Systems

Alin Ştefănescu

February 28, 2006

Abstract

This thesis investigates the synthesis problem for two classes of distributed transition
systems: synchronous products and asynchronous automata. The underlying structure of
these models consist of local automata synchronizing on common actions. The synthesis
problem discussed is as follows: Given a global specification as a transition system TS and
a distribution pattern ∆, find a distributed transition system over ∆ whose global state
space is ‘equivalent’ to TS . As criteria for the correctness of the (distributed) implementa-
tion vs. the specification (i.e., their ‘equivalence’) we use: transition system isomorphism,
language equivalence, and bisimilarity respectively. In particular, the synthesis of asyn-
chronous automata modulo language equivalence is a notoriously hard problem solved by
Zielonka at the end of the 80s. One of the motivations behind our work was to bring this
theory closer to practical applications.

From the theoretical point of view, we conduct a detailed analysis of the synthesis
problem for both models of distributed systems, look at effective algorithmic approaches
and draw a map of computational complexity results. E.g., we provide several matching
lower and upper complexity bounds for the distributed implementability problem.

From the practical perspective, we provide prototype implementations for most of
the synthesis algorithms discussed in the thesis. Moreover, we offer assistance when a
given specification is not distributable by trying to modify this specification such that
distributed synthesis can be applied. By using several heuristics to overcome the classical
state space explosion, we are able to automatically generate small distributed algorithms
for problems such as mutual exclusion.

Acknowledgments

In the first place I would like to thank to my supervisor Javier Esparza, for all the kindness
he has showed, the model he has been, and all the help he has provided to make this work
come into being.

Then, there is a long list of people I am indebted to regarding this work and my
formation. I will mention here only a few of them: Keijo Heljanko, Barbara König, Vitali
Kozioura, Ioana and Laurenţiu Leuştean, Rémi Morin, Anca Muscholl, Claus Schröter,
Stefan Schwoon, Gheorghe Ştefănescu, Ljiljana and Joseph Spadavecchia, Marin Toloşi.
Moreover, to all the friends in München, Edinburgh, and Stuttgart I am grateful for the
moments we shared. Also, I thank Stefan Leue for the support during the last part of the
writing-up process and Colin Stirling for accepting to referee this thesis.

I owe a deep debt of gratitude to my family for love, support, and understanding.

This thesis is dedicated to my daughter Anastasia

Because of Anastasia, the thesis may have a couple of sections less.
Because of the thesis, Anastasia had her father around less.

This thesis is also dedicated to my wife Cornelia

Because of Cornelia, I have now both the thesis and Anastasia.

Contents

1 Introduction 1

1.1 The Synthesis Problem . 2

1.2 A Small Example . 3

1.3 The Contribution of this Thesis . 7

2 Preliminaries 9

2.1 Basic Notions and Notations . 9

2.1.1 Set Theory . 9

2.1.2 Algebraic Notions . 11

2.1.3 Formal Languages . 11

2.1.4 Graph Theory . 17

2.2 Transition Systems . 18

Discussion . 23

3 Distributed Transition Systems and the Synthesis Problem 24

3.1 Trace Theory . 24

3.2 Distributed Transition Systems . 30

3.2.1 Distributions . 31

3.2.2 Synchronous Products of Transition Systems 33

3.2.3 Asynchronous Automata . 36

3.3 Shapes . 39

3.3.1 Diamonds et al. 40

3.3.2 Synchronous Products of Transition Systems 43

3.3.3 Asynchronous Automata . 46

3.4 Languages . 49

3.4.1 Final States . 50

3.4.2 Traces of Diamonds . 50

3.4.3 Synchronous Products of Transition Systems 54

3.4.4 Asynchronous Automata . 62

3.4.5 Comparative Expressiveness . 64

3.5 The Synthesis Problem . 67

Discussion . 69

i

ii Contents

4 The Complexity of the Distributed Implementability Test 70
4.1 The Distributed Implementability Problem 71
4.2 Implementability modulo Isomorphism . 73

4.2.1 Synchronous Products of Transition Systems 73
4.2.2 Asynchronous Automata . 82
4.2.3 Implementability for Concurrent Alphabets 91

4.3 Implementability modulo Language Equivalence 98
4.3.1 Synchronous Products of Transition Systems 98
4.3.2 Asynchronous Automata . 104
4.3.3 Non-regular specifications . 112

4.4 Implementability modulo Bisimulation . 113
4.4.1 Synchronous Products of Transition Systems 114
4.4.2 Asynchronous Automata . 115

4.5 Relaxed Implementability . 116
4.5.1 Language Inclusion . 117
4.5.2 Isomorphic Embedding Heuristic 120

Discussion . 125

5 Synthesis of Distributed Transition Systems 128
5.1 Synchronous Products of Transition Systems 128

5.1.1 Synthesis modulo Isomorphism . 128
5.1.2 Synthesis modulo Language Equivalence 129

5.2 Asynchronous Automata . 130
5.2.1 Synthesis modulo Isomorphism . 130
5.2.2 Synthesis modulo Language Equivalence 131
5.2.3 Alternative Constructions for Special Cases 137

Discussion . 151

6 Implementations and Case Studies 152
6.1 Motivating Example: Mutual Exclusion . 155

6.1.1 A Classical Solution for Mutual Exclusion 156
6.1.2 Mutual Exclusion Modeled in Our Framework 158
6.1.3 Mutual Exclusion Revisited . 163
6.1.4 Parametrized Mutual Exclusion . 169
6.1.5 Dining Philosophers . 170

6.2 Implementation for Synchronous Products of Transition Systems 172
6.3 Implementations for Asynchronous Automata 177

6.3.1 Synthesis modulo Isomorphism . 177
6.3.2 Heuristics to Construct Under-Approximations 181
6.3.3 A Heuristic using Unfoldings for Zielonka’s Construction 186

Discussion . 195

7 Conclusions 198

A Appendix 199
A.1 Implementability Test modulo Isomorphism for Asynchronous Automata . 199

Contents iii

Bibliography 201

Index 210

We are at the very beginning of time
for the human race. It is not
unreasonable that we grapple with
problems. But there are tens of
thousands of years in the future. Our
responsibility is to do what we can,
learn what we can, improve the
solutions, and pass them on.

Richard FeynmanChapter 1

Introduction

T
he design of distributed systems has always been a challenging and error-prone task.
The difficulty resides in the multitude of possible interactions between the concurrent

components of the system. In this thesis, we study automatic procedures of generating
distributed implementations from global specifications.

There are two complementary classic approaches to the problem of finding a (distrib-
uted) model for a given specification: verification and synthesis (both proposed in the
seminal works [CE82, MW84]). The verification procedure checks if a model (provided
by the user) satisfies the specification, whereas in the synthesis approach the model is
directly generated from the specification. Regarding verification, if the model fails to ful-
fill the specification, it should be iteratively improved and checked again by the user. In
the latter case of synthesis, the system is correct by construction, and therefore no need
for further verification. Despite this advantage and the fact that the approaches have
similar computational complexities, automatic synthesis has so far been less successful
than verification.

A possible explanation to this fact is that both approaches were mostly studied using
temporal logics like LTL or CTL for the specification. A shortcoming of these logics is
their inability of expressing properties about casual independences between the different
actions of the system, hence these properties cannot play a rôle in the synthesis procedure.
Although a couple of distributed versions of temporal logics have been proposed over the
last decade [TH98, Wal98, AS02, GM02, Wal02], they have not proved to be really better
in practice and a good candidate of a local temporal logic able to easily express natural
properties of distributed systems is still to be discovered.

Asynchronous automata are a well-known formal model that embed an independence
relation between actions. They were proposed by Zielonka [Zie87] as a natural gen-
eralization of finite state automata to concurrent systems and, loosely speaking, they
are sequential automata communicating through ‘rendez-vous’. Asynchronous automata
have been introduced to provide a model of computation for trace languages, which are
languages closed under an explicit independence relation between actions. (The trace
languages were introduced by Mazurkiewicz [Maz77] as a simple yet powerful formal lan-
guage tool to capture distributed behavior.) Zielonka gives a construction that accepts as
input a regular trace language and a distribution pattern and outputs an asynchronous
automaton accepting the given language.

1

2 Introduction

Little has been done to use the powerful theory of asynchronous automata to more
practical applications and to turn it into a reliable computer science tool: To the best
of our knowledge no steps towards implementation of it have been taken. A possible
explanation is the fact that the Zielonka’s algorithm is complicated and computationally
involved despite attempts over the years to simplify it. This thesis challenges the synthesis
of asynchronous automata from global specifications closed under independence. Since we
aim towards practical applications, we conduct a careful computational complexity study
of the problem together with heuristics targeting smaller solutions.

1.1 The Synthesis Problem

We study the problem of automatic synthesis of distributed systems. In system synthesis
we transform a specification into a system that is guaranteed to satisfy the specification.
This problem has been investigated in various frameworks and generally proved to be a
rather difficult question. In the following, we mention seminal works, which generated
the mainstreams in the area, and try to motivate our research.

Temporal Logics Most related work was carried out using temporal logic for the speci-
fication. In [CE82], Emerson and Clarke proposed a synthesis procedure using the branch-
ing time temporal logic CTL. Of similar nature, but using the linear time temporal logic
LTL, is the approach by Manna and Wolper in [MW84]. The main problem with ap-
proaches based on (classical) temporal logics is that such logics are not able to express
the independences between the involved actions, thus the procedure synthesizes a global
transition system and not a concurrent one. Moreover, the constructed transition sys-
tem might not be distributable (i.e., there is no distributed system exhibiting the same
behavior).

Further research on synthesis using temporal logics was generated by Pnueli and Ros-
ner [PR89], who studied the synthesis of reactive modules (open systems interacting with
their environment). In this setting, there is a module and its environment that alternate
their moves as in a game and the goal is to find a winning strategy for the module (in
other words, the module should satisfy the specification irrespective of how the environ-
ment behaves). The problem received further attention (see for example [KV01] for recent
acquisitions in the area), but the specification does not incorporate the notion of inde-
pendence of actions and the result of synthesis is a module and not a distributed system.
Another important disadvantage is that the problem is in most cases undecidable.

Recently distributed games were also considered [MW03] and the results look more
promising, since they are able to subsume other frameworks in the literature (for instance,
[MT02]). This still does not solve the high undecidability of the synthesis problem in
general, but it is hoped that the model will contribute to the identification of interesting
decidable fragments.

Petri nets Petri nets [Pet62] are well established models for concurrent systems. Ehren-
feucht and Rozenberg introduced in [ER90], the theory of regions as tool to synthe-
size a Petri net isomorphic to a given transition system. The approach was success-

1.2. A Small Example 3

ful [NRT92, BD98, CKLY98, BCD02] and it has inspired applications in the automatic
synthesis of asynchronous circuits [CKK+02] and synthesis of distributed transition sys-
tems [Mor98, CMT99, Muk02]. Nonetheless, the approach still lacks a very flexible speci-
fication language, independence between actions is not explicit and has no abstract notion
of action such that different system actions correspond to the same abstract action.

Mazurkiewicz traces and asynchronous automata The notion of trace was pro-
posed by Mazurkiewicz [Maz77] for the study of concurrent systems and constitutes now
a classical subject (see [DR95] for the extensive research over the years on traces). A
concurrent behavior is captured by enriching a set of actions with the information about
independence of actions, denoted ‖. (The notation ‖ suggests that two independent actions
can be executed in parallel and therefore can appear in a computation in any order.) The
executions of a distributed system can then be naturally grouped together into equivalence
classes, where two computations are equated in case they are two different interleavings
of the same partial order stretch of behavior. A trace is just such an equivalence class
of computations. Further, a trace language is a language closed under the independence
relation ‖. A trace language is regular if it is accepted by a conventional finite state
machine. (Note that the behavior of a distributed system exhibiting an independence
relation on the actions is always a trace language.)

A problem debated for a long time in the 80s, was to find a distributed model exactly
characterizing the class of regular trace languages. Zielonka [Zie87] solved it, introducing
the concept of asynchronous automata. An asynchronous automaton consists of a set of
local automata that periodically synchronize according to a communication structure in
order to process the input.

In this thesis, we choose the models of traces and asynchronous automata as theoretical
foundations for the proposed synthesis of distributed systems. There are meaningful
results characterizing their relation and they are naturally modeling the behavior of a
concurrent system involving independence between actions.

Synchronous products of transition systems The asynchronous automata are in
fact a generalization of a well-known model of distributed transitions systems: the syn-
chronous products of transitions systems [Arn94]. Although strictly less expressive than
the asynchronous automata, they enjoy a simpler synthesis procedure and also a better
understanding. We will also consider them as models of concurrent systems and compare
them with the asynchronous automata.

1.2 A Small Example

Just to provide an illustration of how the synthesis procedure works in our framework,
we synthesize a solution for a simplified version of the Producer-Consumer problem. We
will give a distributed alphabet together with a global specification of the problem over
the chosen alphabet and then we automatically construct a distributed implementation
for the given specification. Along with the example, we introduce the reader to some of
the concepts used in the thesis.

Specification

Distribution Global behavior

Σ = {prod , send , rcv , cons}

independences

prod ‖cons

prod ‖rcv
send‖cons

processes

P1, P2, P3

local alphabets

P1 : prod , send

P2 : send , rcv

P3 : rcv , cons

prod

send

rcv

prod

prod

rcv

send

prod

cons

cons cons

cons

synthesis
︸ ︷︷ ︸

Implementation

Synthesized distributed transition system

P1
︷ ︸︸ ︷

P2
︷ ︸︸ ︷

P3
︷ ︸︸ ︷

0

1

0

1

0

1

prod

send send

rcv rcv

cons

Translated distributed algorithm

Producer Consumer

repeat forever repeat forever
produce await (buffer=filled) then

await (buffer=empty) then buffer := empty
buffer := filled consume

end repeat end repeat

Figure 1.1: Synthesis at work for a simple Producer-Consumer problem

4

1.2. A Small Example 5

We first suppose that the actions involved in a trade between a producer and a con-
sumer consist of the atomic actions of producing, sending, receiving, and consuming. So,
first we fix the alphabet:

Σ = {prod , send , rcv , cons}.
Next, we specify a binary independence relation over the alphabet Σ:

‖ ⊆ Σ× Σ.

For instance, the independence relation is used to enforce that the actions of producing and
consuming can and will be executed in parallel in the intended distributed implementation.
A natural choice for our problem is to require that the following pairs of actions are
independent:

prod‖rcv , prod‖cons , send‖cons .

The complement with respect to Σ× Σ of the independence relation is called the depen-
dence relation and is denoted by 6 ‖. Hence, we have 6 ‖ = (Σ × Σ) \ ‖. The dependence
relation is usually visualized using its associated dependence graph. The dependence graph
is an undirected graph with the actions of Σ as vertices and the dependence relation 6 ‖ as
the edge relation. For our example, the dependence graph is:

prod

send rcv

cons

Since we want to synthesize a distributed system, we need to specify also a distribution
pattern that our distributed implementation must comply with. More precisely, we give
a set of names of processes (or agents), denoted by Proc, together with a local alphabet
Σloc(p) ⊆ Σ associated to each process p ∈ Proc. Once we have an independence relation
we can generate a distribution pattern such that two actions are independent if and only
if there is no process containing both actions in his local alphabet. This can be achieved
by choosing the local alphabets to be a covering by (maximal) cliques1 of the dependence
graph. For our example, the only covering by cliques of the dependence graph is given by
choosing one clique for each edge. This means, we have three processes

Proc := {P1, P2, P3}
with the local alphabets

Σloc(P1) := {prod , send},
Σloc(P2) := {send , rcv},
Σloc(P3) := {rcv , cons}.

The core of the synthesis problem is to associate a local (labeled) transition system
to each process name such that the global synchronization on common actions of all the
local transition systems is consistent with a given global behavior. For our example, we
choose a global (regular) behavior as follows:

Spec := Prefix(S1) ∩ Prefix(S2),

where
1A clique C of a graph G = (V,E) is by definition a subset of vertices C ⊆ V such that C × C ⊆ E.

6 Introduction

S1 = Shuffle((prod · send)∗, (rcv · cons)∗),
i.e., we allow the interleaving/shuffle of the behaviors of the ‘producer’ and ‘con-
sumer’,

S2 = (T ∗ · send · T ∗ · rcv · T ∗)∗, with T = Σ \ {send , rcv},
i.e., the consumer can only receive something that was previously sent, and

Prefix (L) is a notation for the prefix-closure of the language L,
i.e., the set of all the prefixes of the words of L.
(We observe all the partial runs of the system.)

The upper part of Figure 1.1 shows all the elements of the specification, i.e., the
distribution pattern (top-left position) and the transition system exhibiting the global
behavior1 described above (top-right position).

The synthesis procedure will test whether the specification can be distributed and, if
this is the case, will construct a distributed implementation (see also Figure 1.2). For
simplicity, we choose as model of distributed implementation the synchronous products of
transition systems [Arn94]. Informally, a synchronous product of transition systems over
a given distribution consists of a set of local transition systems associated to each process
which synchronize on common actions. For a given global specification, it is decidable
to check whether there exists a synchronous product of transition systems accepting the
same behavior as the global specification. The idea behind the distributability test is that
of projection onto the local alphabets. More precisely, for each process p we construct a
projection of the global specification onto the local alphabet Σloc(p) (that is, we ignore all
the actions not in Σloc(p) by turning them into ε’s). Then, we have that the specification
is distributable if and only if the synchronization on common actions of the projections
is behaviorally equivalent to the specification.

For our example, it turns out that the specification is indeed distributable. The
projections of the specification onto the three local alphabets are depicted in the middle
of Figure 1.1. It can be easily verified that their global synchronization on common
actions has the same behavior as the given specification. The distributed implementation
will then be the synchronous product of the three local component each of them having
two local states.

For instance, the run prod ·send ·rcv ·cons can be executed by the synchronous product
in the following way: We start in the global initial state (0, 0, 0). First, P1 can locally
execute a prod action and change its local state to 1, so the new global state is (1, 0, 0).
Then, P1 and P2 can synchronize on the their send actions (marked in the picture)
changing in the same step their local states and we obtain (0, 1, 0). Similarly, P2 and P3

are both able to execute a rcv action, so they synchronize changing the global state to
(0, 0, 1). Finally, P3 will locally execute a cons action, and by doing so, the distributed
system returns to its initial global state (0, 0, 0).

Once we have a distributed implementation, we can go further and translate the
distributed transition system into other formalisms. At the bottom of Figure 1.1 we show
such a possible translation that interprets P1 and P3 as two processes Producer and

1Here by the behavior of a system we understand the set of all possible runs (sequences of consecutive
actions) from the initial state of the system.

1.3. The Contribution of this Thesis 7

Specification

Distribution and global behavior

TEST

Is the specification distributable?

Heuristics

Try to refine the specification
so as to become distributable

Synthesis

Core algorithms + heuristics

Distributed implementation

Desired format

yes

no

if possible

Roadmap

Chapters 1, 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Figure 1.2: A diagrammatic flow of the synthesis approach followed in this thesis

Consumer communicating via P2 which models a buffer of capacity 1 (the state 0 of
P2 reads ‘buffer empty’, while state 1 reads ‘buffer filled’; we assume that the buffer is
initially empty). The Producer process will loop forever through the sequence of the
following atomic actions: First it produces, then it waits for the buffer to be emptied (i.e.,
P2 moves to state 0). When the buffer is empty, the Producer will fill it (note that we
abstracted away the information/material being traded between the Producer and the
Consumer). On the opposite site, the Consumer will wait until the capacity 1 buffer is
filled and only thereafter will empty it. Then, it will locally execute its ‘consume’ action.

1.3 The Contribution of this Thesis

The structure of the thesis follows the synthesis flow proposed in Figure 1.2. We discuss
it below profiling some outcomes of our work:

Chapter 2 We start with the prerequisites and some notations.

Chapter 3 Then, we introduce the theoretical models (traces, asynchronous automata,
synchronous products), together with various properties and characterizations used
in the following chapters for the synthesis problem.

Chapter 4 There exists the possibility that the given specification cannot be distribu-
tively implemented (this may be due to human error or incomplete specifications).

8 Introduction

The first major step is to check whether the two parts of the specification (the
distribution and the global behavior) are consistent, i.e., test whether there exists
indeed a distributed implementation for the given specification.

We study this implementability test from computational complexity point of view
and offer some heuristics to deal with the case when the test fails (i.e., we try to
shape the initial global specification taking concurrency into account).

Chapter 5 Assuming the implementability test is positive, the next step is the synthesis
procedure itself.

In some cases, checking the implementability of the specification may give a distrib-
uted implementation for free (e.g., for synchronous products). However, in other
cases we have to go through the notoriously hard construction of Zielonka. Although
we invested a great deal in trying to simplify this procedure, we managed to offer
some alternatives only in some special cases.

Chapter 6 We have prototype implementations for most of the algorithms proposed in
the thesis. We used several heuristics that try to construct smaller asynchronous
automata, which worked very well on the benchmarks used.

In particular, we automatically synthesized new distributed algorithms for classical
problems like mutual exclusion and dining philosophers.

Chapter 7 We end the thesis with a short account on what was achieved and possible
improvements.

Publications Some of the results included in this thesis appeared already in the fol-
lowing papers: [Şte02, ŞEM03, HŞ04, HŞ05].

⋄

I will not define time, space, place
and motion, as being well known to
all.

Isaac Newton

(Principia Mathematica)

Chapter 2

Preliminaries

I
n this chapter, we present definitions and results frequently used in the rest of the thesis.
Proofs will be sparsely given and those presented are there mainly for pedagogical

reasons. For the missing proofs, the reader is referred to the cited papers.
We start with basic notions and notations (from set, formal language, and graph

theory) in Section 2.1. In Section 2.2 we introduce the classic concept of transition
system and its accepting language together with some properties needed in the subsequent
chapters. We present the finite automata as transition systems with a refined acceptance
condition.

The index at the end of the thesis will help at a later time to relocate the definitions
and notations of this chapter.

2.1 Basic Notions and Notations

In this section we provide most of the basic notation conventions used throughout the
thesis. We start with basic set theory. We continue with basic definitions on the alge-
braic structure of monoids. Then we introduce the basic concepts of formal languages
over alphabets of actions used to generated words (alias executions) and languages (alias
behaviors). We end with some graph theoretical concepts needed by the exposition.

2.1.1 Set Theory

When dealing with sets, we apply the following usual conventions taken from the classic
set theory:

The names for the sets start with a capital letter (A,B,C, . . .), while their elements
with small letters (a, b, c, . . .). We use indices (a1, a2, a3, . . .) or the prime symbol
(a′) to distinguish between elements of the same type.

The cardinality of a given set S, i.e., the number of distinct elements of S, is denoted
by |S|.

The operations on sets are respectively denoted as follows:

9

10 Preliminaries

– The empty set is denoted by ∅.
– The union of two sets is denoted by ∪.

– The intersection of two sets is denoted by ∩.

– The strict or proper inclusion of one set into another is denoted by (.

– The cartesian product of two sets is denoted by ×. Given a set I of indices and
a family (Si)i∈I of sets, the cartesian product of them is denoted by

∏

i∈I Si.

– The difference of two sets is denoted by \. (By definition, A \ B := {x ∈ A |
x 6∈ B}.)

– If we suppose that a set B is a subset of a set A, then the complement of B with
respect to A is defined as A \ B and denoted by ∁B when A can be deduced
from the context or directly A \B, otherwise.

– The power set of a set A, i.e., the set of all subsets of A, is denoted by P(A).

– The set of all functions from a set A to a set B is denoted by BA.

– A singleton is a set with only one element, X = {x}. To simplify notation, we
may sometimes drop the braces around x.

Given a class of sets C and an operation on sets O, we say that the class C is closed
under operation O if and only if the result of the application of O to the elements
of C is still in C. For example, the class of sets with at most 3 elements is closed
under intersection, but not under union.

The set of natural numbers is denoted by N. For two natural numbers i, j ∈ N with
i ≤ j, we denote by [i..j] the set {k | i ≤ k ≤ j}.

A (binary) relation is a set of pairs. If R is a relation and (a, b) is a pair in R, then
we mostly write aRb.

Suppose P is a set of properties of relations. The P-closure of a relation R is the
smallest relation R′ that includes all the pairs of R and possesses the properties in
P .

For example, the transitive closure of R, denoted R+, is defined by:

1) If (a, b) is in R, then (a, b) is in R+.

2) If (a, b) is in R+ and (b, c) is in R, then (a, c) is in R+.

3) Nothing is in R+ unless it so also follows from (1) and (2).

An equivalence relation on a set S is a binary relation ∼⊆ S × S that satisfies the
properties of reflexivity (∀a ∈ S : a ∼ a), symmetry (∀a, b ∈ S : a ∼ b⇒ b ∼ a), and
transitivity (∀a, b, c ∈ S : a ∼ b and b ∼ c⇒ a ∼ c). For a set S and an equivalence
∼ on it, we have:

– The equivalence class of an element a ∈ S is defined as {b ∈ S | b ∼ a} and
denoted by [a]∼.

2.1. Basic Notions and Notations 11

– The quotient set of S by ∼ is defined as the set of all equivalence classes of ∼,
that is, {[a]∼ | a ∈ S} and is denoted by S/∼.

– An equivalence ∼ on S is said to have finite index, if the quotient set S/∼ is
finite.

A partial order relation on a set S is a binary relation ⊑ on S that satisfies the
properties of reflexivity (∀a ∈ S : a ⊑ a), antisymmetry (∀a, b ∈ S : a ⊑ b and b ⊑
a⇒ a = b), and transitivity (∀a, b, c ∈ S : a ⊑ b and b ⊑ c⇒ a ⊑ c).

A partially ordered set, alias poset, is a set equipped with a partial order relation.

2.1.2 Algebraic Notions

A monoid is a tuple (M, ·, 1), where M is a set, · is a associative binary operation, and
1 ∈M is the identity element. (When confusion does not arise, we can use xy to indicate
x · y.)

A congruence relation ∼ over a monoid (M, ·, 1) is an equivalence over M that is
compatible with the binary operation of the monoid, i.e., ∀x, y, x′, y′ ∈M : x ∼ x′ and y ∼
y′ ⇒ xy ∼ x′y′. The quotient of a monoid (M, ·, 1) under a congruence ∼ is the monoid
(M/∼, ◦, [1]∼), where [x]∼◦[y]∼ := [x·y]∼. (The fact that the equivalence ∼ is a congruence
is used to prove that the given definition is well-defined.)

A morphism φ from a monoid (M, ·M , 1M) to another monoid (S, ·S, 1S) is a function
φ : M → S such that φ(1M) = 1S and φ(x ·M y) = φ(x) ·S φ(y), for any x, y ∈ M .
The surjective morphism []∼ : M → M/∼ that associates to every element x ∈ M its
equivalence class [x]∼ is called the canonical morphism.

A subset X ⊆ M is closed under the congruence ∼ if and only if X is the union of
some equivalence classes of ∼. Stated differently, X ⊆ M is closed under the congruence
∼ if and only if ∀x, y ∈M : x ∈ X and x ∼ y ⇒ y ∈ X.

A congruence ∼ is said to have finite index if the quotient M/∼ is a finite set.

2.1.3 Formal Languages

We describe the behavior of a sequential system by means of the classical theory of formal
languages. The ingredients of this formalism are enumerated below:

First of all, we have a non-empty finite set called the alphabet of actions, which we
will usually denote by Σ.

Then, we have the notion of a (finite) word or execution1 over Σ, which is a finite
sequence of actions from the alphabet Σ. A word is represented by the concatenation
of its actions. E.g., w = a1a2 . . . an with ai ∈ Σ for all i ∈ [1..n]. The concatenation
of two words will again be a word. Furthermore, we have:

– We denote the concatenation of n copies of a word w ∈ Σ∗ as usually by wn.

– The length of a word w is denoted by |w|, i.e., if w = a1a2 . . . an, then |w| = n.

1In this thesis, we will not consider the case of infinite words/executions.

12 Preliminaries

– A special word is the empty word, denoted by ε, which is the word of length 0.

– For w ∈ Σ∗ and a ∈ Σ, we denote by #aw the number of occurrences of the
action a in the word w.

For w ∈ Σ∗, we denote by Σ(w) the alphabet of the word w, defined as the set
of actions appearing in w, i.e.,

Σ(w) := {a ∈ Σ | #aw > 0}.
Obviously, Σ(w) ⊆ Σ.

– For a word w ∈ Σ∗ and a subset S ⊆ Σ, we denote by w ↾S the projection of w
onto S, which is obtained by erasing all actions in w which do not belong to
S.

Formally, for S ⊆ Σ, we define a function − ↾S: Σ → Σ such that a ↾S:= ε if
a 6∈ S and a ↾S:= a if a ∈ S (we ‘erase’ the elements not belonging to S by
replacing them with ε’s which are eventually absorbed). This function can be
lifted to words −↾S: Σ∗ → Σ∗ by the natural recursive definition: ε↾S:= ε and
(xa)↾S:= x↾S ·a↾S for all x ∈ Σ∗ and a ∈ Σ.

– For two words t, u ∈ Σ∗, we denote by Shuffle(t, u) the shuffle product of the
two words t and u, which is the operation that constructs all the interleavings
of all possible ‘cuttings’ of each of the two words. Formally,

Shuffle(t, u) := {t1u1t2u2 . . . tnun t = t1 . . . tn and u = u1 . . . un,
where n ≥ 1 and ti, ui ∈ Σ∗,∀i ∈ [1..n]}.

Diagrammatically,

t = t1 · · · tk · · · tn

u = u1 · · · uk · · · un

⇒ t1 u1 · · · tk uk · · · tn un ∈ Shuffle(t, u).

For example, we have Shuffle(ab, cd) = {abcd, acbd, acdb, cabd, cadb, cdab} and
Shuffle(ab, a) = {aba, aab}. Note that in the above definition of Shuffle, ti, ui ∈
Σ∗, which means they might even be ε. For instance, cdab ∈ Shuffle(ab, cd) by
choosing k = 2, t1 = ε, t2 = ab, u1 = cd, and u2 = ε.

– The word v ∈ Σ∗ is called a prefix of the word w ∈ Σ∗ if and only if there exists
another word v′ ∈ Σ∗ such that vv′ = w. Dually, v′ is called a suffix of w if
and only if there exists v such that vv′ = w. (Note that a word w is always a
prefix of itself. Similarly, w is always the suffix of itself.)

The set of all words over Σ is denoted by Σ∗. In algebraic terms, the set Σ∗ together
with the operation of word concatenation and the empty word ε form a monoid. In
fact, Σ∗ is the free monoid generated by Σ.

A set of words over Σ (i.e., a subset of Σ∗) is called a language over Σ. If we look
at words as executions of a given system able to execute actions from an alphabet
Σ, then a language over Σ can describe a behavior of the system.

We can extend some of the operations on words to languages in the following way:

2.1. Basic Notions and Notations 13

– For two languages L1, L2 ⊆ Σ∗, we define their concatenation as follows:

L1L2 := {w1w2 | w1 ∈ L1 and w2 ∈ L2}.

For L ⊆ Σ∗ and a natural number n ≥ 1, we denote by Ln the concatenation
of n copies of the language L. For n = 0, by definition we choose L0 := {ε}.
Also, the union L1 ∪ L2 and intersection L1 ∩ L2 of the two languages L1 and
L2 are defined as the union, respectively intersection operations on sets (of
words).

The complement of a language ∁L is defined as the complement with respect
to Σ∗, i.e., ∁L := Σ∗ \ L.

Finally, we denote by L∗ the (Kleene) iteration of L which is defined as:

L∗ :=
⋃

n≥0

Ln.

– For L ⊆ Σ∗, we denote by Σ(L) the alphabet of the language L, which is defined
as the set of actions appearing in the words of L:

Σ(L) :=
⋃

w∈L

Σ(w).

Obviously, Σ(L) ⊆ Σ.

– For L ⊆ Σ∗ and a subset S ⊆ Σ, we denote by L↾S the projection of L onto S,
which is given by:

L↾S:= {w ↾S | w ∈ L}.
– For L1, L2 ⊆ Σ∗, we denote by Shuffle(L1, L2) the shuffle product of the lan-

guages L1 and L2 which is defined as:

Shuffle(L1, L2) :=
⋃

w1∈L1,w2∈L2

Shuffle(w1, w2).

– For L ⊆ Σ∗, we denote by Prefix(L) the prefix-closure of L, which is the set of
all prefixes of the words of L:

Prefix(L) := {v ∈ Σ∗ | there exists w ∈ L such that v is a prefix of w}.

A language L ⊆ Σ∗ is called prefix-closed if and only if L = Prefix(L).

It is easy to see that a language is prefix-closed if and only if for any v, w ∈ Σ∗,
if w ∈ L and v is a prefix of w, then also v ∈ L. In particular, ε ∈ Prefix(L)
for any language L.
Moreover, the language Prefix(L) coincides with the smallest (w.r.t. set inclu-
sion) prefix-closed language including L.

Since we want to observe the behaviors of systems in all the intermediary steps, we will
mainly work with prefix-closed languages, because they keep track of all the prefixes of
each execution. The following proposition shows that the class of prefix-closed languages
behaves well with respect to the operations introduced so far:

14 Preliminaries

Proposition 2.1 The class of prefix-closed languages over a given alphabet Σ is closed
under the operations of union, intersection, concatenation, iteration, projection, shuffle
product, and prefix-closure. The class of prefix-closed languages is not closed under com-
plementation.

Proof. For the union and intersection cases, the proof is obvious: If L1, L2 ⊆ Σ∗ are
two prefix-closed language, then both L1 ∪ L2 and L1 ∩ L2 are also prefix-closed. In fact,
it is true that the union (respectively intersection) of an infinite number of prefix-closed
languages is also prefix-closed.

For the concatenation case, we show that for any two languages L1, L2 ⊆ Σ∗ that are
prefix-closed, we have that L1L2 is also prefix-closed. Let w ∈ L1L2 and v a prefix of w.
From the fact that w ∈ L1L2, we have that there exist w1 ∈ L1 and w2 ∈ L2 such that
w = w1w2. If v is a prefix of w, we have two cases: either v is a prefix of w1 or v = w1v

′

with v′ a prefix of w2. In the first case, v ∈ L1 because w1 ∈ L1 and L1 is prefix-closed.
Since L2 is prefix-closed, we have ε ∈ L2. From v1 ∈ L1, ε ∈ L2, and the definition of the
concatenation operation, we have indeed that v = vε ∈ L1L2. In the second case, since
v′ is a prefix of w2 ∈ L2 and L2 is prefix-closed, we have that v′ ∈ L2. From this fact and
w1 ∈ L1, we deduce that v = w1v

′ ∈ L1L2.

For the iteration case, we show that for any prefix-closed language L ∈ Σ∗, we have
that L∗ is also prefix-closed. We can first prove Ln is a prefix-closed language for any
natural number n ≥ 0. The proof is by induction on n, using the fact that the class of
prefix-closed is closed under concatenation. Using this, L∗ will be prefix-closed because
the union of all the prefix-closed languages Ln with n ranging over N is also prefix-closed
(the class of prefix-closed languages is closed under (infinite) union).

For the projection case, we show that for any prefix-closed language L ⊆ Σ∗ over Σ
and any subset S of Σ, we have that L↾S is also prefix-closed. Let w ∈ L↾S and v a prefix
of w. From w ∈ L ↾S, we have that there exists a word u ∈ L such that w = u ↾S (w is
obtained from u by keeping only the action from S and removing all the others). Let a be
the last action of v and k := #a(v) the number of the occurrences of a in v. We choose
u′ to be the shortest prefix of u that contains exactly k occurrences of a. It is not difficult
to show that v = u′ ↾S (using also the fact that w = u ↾S). Since L is a prefix-closed
language, u ∈ L, and u′ is a prefix of u, we have that u′ ∈ L, which implies that v ∈ L↾S.

For the shuffle product case, we show that for any two languages L1, L2 ⊆ Σ∗ that are
prefix-closed, we have that Shuffle(L1, L2) is also prefix-closed. Let w ∈ Shuffle(L1, L2)
and v a prefix of w. From w ∈ Shuffle(L1, L2), by definition, there exist t ∈ L1 and
u ∈ L2 such that w ∈ Shuffle(t, u). Further, this means that there exist a natural
number k ≥ 1 together with the words ti, ui ∈ Σ∗ for i ∈ [1..k] such that t = t1 . . . tk,
u = u1 . . . uk, and w = t1u1 . . . tkuk. By hypothesis, v is a prefix of w = t1u1 . . . tkuk. Let
j be the smallest index from [1..k] such that v is a prefix of t1u1 . . . tjuj. This implies that
v = t1u1 . . . tj−1uj−1v0, where v0 is a prefix of tjuj (just in case, we choose by definition
t0 = u0 = ε). Performing an analysis similar to the concatenation case above, we can
decompose v as vt

0v
u
0 such that vt

0 is a prefix of tj and vu
0 is a prefix of uj. This means that

v = t1u1 . . . tj−1uj−1v
t
0v

u
0 , which further implies that v ∈ Shuffle(t1 . . . tj−1v

t
0, u1 . . . uj−1v

u
0).

Using the fact that L1 and L2 are prefix-closed in conjunction with property that vt
0 is a

prefix of tj and vu
0 a prefix of uj, we conclude that v ∈ Shuffle(L1, L2).

2.1. Basic Notions and Notations 15

For the prefix-closure case, we must prove that if L ⊆ Σ∗ is a prefix-closed language,
then Prefix(L) is also prefix-closed. But the very idea of the prefix-closure operation is to
construct a prefix-closed language from a given language, in particular also from a prefix-
closed one. Formally, it is easy to prove that the prefix-closure operation is idempotent,
i.e., Prefix(Prefix(L)) = Prefix(L) for any language L, and, by definition, this means that
Prefix(L) is prefix-closed for any L.

For the complementation case, we can prove in fact that for any prefix-closed language
L ⊆ Σ∗, the complement of L is not prefix-closed anymore. More precisely, if L is a prefix-
closed language, then ε ∈ L, which implies that ε 6∈ ∁L. But any prefix-closed language
contains the empty word ε, which necessarily implies that ∁L is not prefix-closed. �

Regular Languages
A ‘first-class citizen’ of the formal language theory is the class of regular languages (see
for instance [HU79, Chapter 2]):

Definition 2.2 (Regular language)
The class of regular languages over an alphabet Σ is the smallest class containing the
empty set ∅, the singleton languages {ε} and {a} for all a ∈ Σ, and being closed under the
operations of union, concatenation, and Kleene iteration. The class of regular languages
over Σ will be denoted by Reg(Σ).

A language is called regular if it belongs to Reg(Σ).

The regular languages can be represented by regular expressions. The latter show the
order in which the three operations union, concatenation, and iteration are applied to the
finite languages in order to obtain a given regular language.

The regular expressions over an alphabet Σ and the languages they denote are recur-
sively defined as follows:

1. ∅ is a regular expression and denotes the empty language.

2. ε is a regular expression and denotes the language {ε}.

3. For each a ∈ Σ, the symbol a is a regular expression and denotes the language {a}.

4. If r and s are regular expressions denoting the languages R and S, respectively, then
(r + s), (r · s), and (r∗) are regular expressions that denote the languages R ∪ S,
R · L, and R∗, respectively.

In writing regular expression we can omit many parentheses if we assume that ∗ has the
highest precedence and + the lowest.

If we denote by L(r) the language of the regular expression r, then we have

Reg(Σ) = {L(r) | r regular expression over Σ}.

16 Preliminaries

Example 2.3 In this thesis, we will mainly use regular languages for the specification of
the global behavior of a system. For instance, the regular expression

(send · rcv)∗

denotes a very simple communication pattern, where a message is sent (by a party), and
then instantaneously received (by a peer party), this play may be repeating at leisure.

Another classic characterization of regular languages is based on the notion of syntactic
congruence: For a language L ⊆ Σ∗, we denote by ∼L⊆ Σ∗×Σ∗ the syntactic congruence
of L on Σ∗, defined as follows: For v, w ∈ Σ∗,

v ∼L w if and only if ∀x, y ∈ Σ∗ : xvy ∈ L⇔ xwy ∈ L.

The characterization of regular languages based on the syntactic congruence is:

Theorem 2.4 [Lal79, Chapter 6] A language L ⊆ Σ∗ is regular if and only if the syntactic
congruence ∼L is of finite index.

The following proposition recalls the property of the class of regular languages of being
closed under all the language operations introduced so far:

Proposition 2.5 The class of regular languages over a given alphabet Σ is closed under
the operations of union, intersection, concatenation, iteration, complementation, projec-
tion, shuffle product, and prefix-closure.

Proof. Proofs for the closure under the operations of union, intersection, concatenation,
iteration, and complementation can be found for instance in [HU79, Section 3.2].

The projection − ↾S is a special case of homomorphism under which [HU79, Theo-
rem 3.5] shows that the class of regular languages is closed.

The closure of the class of regular languages under shuffle product is mentioned in
[HU79, Exercise 6.6] (with the solution involving closure under homomorphisms and in-
verse homomorphisms of the class of regular languages).

As far as the prefix-closure operation is concerned, if L ∈ Σ∗ is a regular language, it is
easy to show that also Prefix(L) is regular. We know that L is regular if and only if there
exists a finite-state automata A with a set of accepting states F such that L = L(A, F)
(see the notation of Definition 2.13). Then Prefix(L) = L(A, F ′), where F ′ is the set of
all states of A. Hence, Prefix(L) is also regular. �

Let us denote by PrefReg(Σ) the class of prefix-closed regular languages over a given
alphabet Σ. Then, from Propositions 2.1 and 2.5 we have the following closure result:

Corollary 2.6 The class PrefReg(Σ) is closed under all the operations on languages in-
troduced so far, except for the complementation operation.

2.1. Basic Notions and Notations 17

2.1.4 Graph Theory

We recall here some concepts of graph theory used throughout the thesis.

A graph G is a pair (V,E), where V is a finite set of vertices or nodes and E ⊆ V ×V
is the set of edges or arcs.

If E is symmetric, i.e., (x, y) ∈ E implies (y, x) ∈ E, then the graph is said to be
undirected, otherwise it is directed.

A subgraph G ′ of a graph G = (V,E) is a pair (V ′, E ′) with V ′ ⊆ V and E ′ ⊆
E ∩ (V ′ × V ′).

The subgraph G ′ of G induced by a subset of vertices V ′ of V is the graph (V ′, E ∩
(V ′ × V ′)).

A path from a node x to a node y in a graph G is a sequence (v0, v1, . . . , vn) of
vertices such that x = v0, y = vn, and (vi−1, vi) ∈ E, for all i ∈ [1..n].

A cycle is a path with the initial and final node identical. A graph is called acyclic
if it contains no cycles.

Two nodes x and y of a graph G are connected if there exists a path between them in
G. A graph G is called connected if and only if every pair of its nodes is connected.

A connected component of a graph G is a maximal connected induced subgraph, i.e.,
a subgraph G ′ = (V ′, E ′) with E ′ = E ∩ (V ′× V ′) such that G ′ is connected and for
every node a ∈ V \ V ′ the subgraph of G induced by V ′ ∪ {a} is not connected.

A tree is a graph in which any two nodes are connected by exactly one path. A
spanning tree of a connected graph is a tree that includes every node of that graph.

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there exists a bijection
f : V1 → V2 between the sets of nodes that complies with the edge relations, i.e.,
(v, v′) ∈ E1 if and only if (f(v), f(v′)) ∈ E2.

A clique of an undirected graph G = (V,E) is a subset V ′ of V that induces a
complete graph, i.e., (x, y) ∈ E for all x, y ∈ V ′ with x 6= y.

A clique V ′ of a graph G = (V,E) is maximal if every set V ′′ such that V ′ (V ′′ ⊆ V
is not a clique.

A clique cover of G is a family (V1, . . . , Vn) of cliques of G such V =
⋃n

i=1 Vi and for
every edge (x, y) ∈ E there exists an index i ∈ [1..n] such that (x, y) ∈ Vi.

For every undirected graph G = (V,E), there are two distinguished clique covers:

1. The clique cover consisting of cliques with at most two nodes. This cover contains
the clique {x, y} for every pair of nodes x, y ∈ V such that (x, y) ∈ E, and the
clique {x} for each isolated node x ∈ V , i.e., x is not connected to any other node
from V .

For the graph in Figure 2.1, this clique cover will consist of the sets:

{a, b}, {a, d}, {b, c}, {b, d}, {b, e}, {d, e}, {d, f}, {e, f}.

18 Preliminaries

a b c

d e

f

Figure 2.1: Example of a graph [Pig93a]

2. The clique cover consisting of all the maximal cliques of G.
For the graph in Figure 2.1, this clique cover will consist of the sets:

{a, b, d}, {d, b, e}, {e, b, c}, {d, e, f}.

Note that if we leave out the clique {d, b, e}, we still have a clique cover. This
observation means that we do not necessarily need to consider the set of all maximal
cliques in order to have a cover.

In fact, it may be dangerous to consider the set of all maximal cliques as this set can
be exponentially larger than the size of the graph: Take, for instance, G = (V,E),
where V := {x1, . . . , xn, y1, . . . , yn} and E := V × V \ {{xi, yi} | i ∈ [1..n]}. Then,
G has exactly 2n maximal cliques.

On the other hand, the problem of finding a covering with a minimal number of
cliques is NP-complete [GJ79].

Remark 2.7 If an undirected graph is transitive i.e., (x, y) ∈ E and (y, z) ∈ E implies
(x, z) ∈ E, then the maximal cliques of G are disjoint and coincide with the connected
components of G.

2.2 Transition Systems

One of the most general theoretical models able to capture (regular) behaviors of systems
is that of transition system. A transition system consists of a number of states and
a number of transitions between states which describe in each state which is the next
possible state that the system can move to. Moreover, we have one or more initial states.
Formally, we have the following definition:

Definition 2.8 (Labeled transition system)
A labeled transition system is a tuple TS = (Q, Σ,→, I), where

Q is the set of states (Q is also called the state space)

Σ is the alphabet of action labels,

→ is the transition relation, where →⊆ Q× Σ×Q, and

I is the (nonempty) set of initial states, where I ⊆ Q.

2.2. Transition Systems 19

Given a transition system TS = (Q, Σ,→, I), we have:

TS is called finite, if the state space Q is finite.

The size of TS is denoted by |TS | and is defined as the size of the state space |Σ|.

If (q, a, q′) ∈→, we use the usual notation q
a−→ q′.

Let w = w1 . . . wn be a word over Σ with wi ∈ Σ for all i ∈ [1..n]. For two states
q, q′, we write q

w−→ q′ if there exist a path q0, q1, . . . , qn ∈ Q such that q = q0,
q′ = qn, and qi−1

wi−→ qi for all i ∈ [1..n].

For two states q, q′ ∈ Q, if there exist w ∈ Σ∗ such that q
w−→ q′, we say that q′ is

reachable from q, and dually, q is co-reachable from q′.

A transition system is called reachable if all the states are reachable from the set of
initial states, that is,

∀q ∈ Q ∃q0 ∈ I, w ∈ Σ∗ : q0
w−→ q.

For an equivalence relation ≡⊆ Q × Q over the states of TS , the quotient of TS
over ≡ is defined as TS/≡ := (Q/≡, Σ,→, I/≡), where Q/≡, I/≡ are quotient sets
(cf. Section 2.1.1) and [q1]≡

a−→ [q2]≡ if and only if there exist q′1, q
′
2 ∈ Q such that

q1 ≡ q′1, q2 ≡ q′2, and q′1
a−→ q′2.

Two transition systems TS 1 = (Q1, Σ,→1, I1) and TS 2 = (Q2, Σ,→2, I2) over the
same alphabet of actions are isomorphic if there exists a bijection f : Q1 → Q2

between the state spaces that preserves the initial states and the transitions, i.e.,
f(I1) = I2 and (q, a, q′) ∈→1 if and only if (f(q), a, f(q′)) ∈→2.

We denote by Σ(TS) the alphabet of the transition system TS , defined as the set of
actions labeling transitions of TS reachable from an initial state, i.e.,

Σ(TS) := {a ∈ Σ | ∃q0 ∈ I, w ∈ Σ∗, q, q′ ∈ Q : q0
w−→ q

a−→ q′}.

Obviously, Σ(TS) ⊆ Σ.

TS is called deterministic, if

|I| = 1 and ∀q, q′, q′′ ∈ Q, a ∈ Σ : q
a−→ q′ and q

a−→ q′′ implies q′ = q′′.

TS is called acyclic, if the directed graph generated by the transition relation → is
acyclic.

Convention. Unless otherwise stated, when we say ‘transition system’, we mean ‘reach-
able finite labeled transition system’.

We can use transition systems to express in a compact way behaviors of systems.

20 Preliminaries

1 2

3 4

floor

floor

wall wall

roof

Figure 2.2: A house-like transition system

Definition 2.9 (Run and language of a transition system)
A run of TS is a word w ∈ Σ∗ that can be executed in TS starting in an initial state, i.e.,
∃qin ∈ I, q ∈ Q : q0

w−→ q. The language of TS , denoted by L(TS), is the set of all the
runs of TS :

L(TS) := {w ∈ Σ∗ | ∃qin ∈ I, q ∈ Q : qin w−→ q}.

Example 2.10 The language of the transition system in Figure 2.2 with 1 as the only
initial state (marked by a short incoming arrow) is

{ε, wall , floor , wall .floor , wall .roof , floor .wall}.
Remark 2.11 For any transition system TS , we have Σ(TS) = Σ(L(TS)), i.e., the
alphabet of TS is equal to the alphabet of its language.

Once we have two transition systems, we can compare their state spaces using the graph
isomorphism or compare their languages. There are situations where the isomorphism is
too strong and language equivalence too weak. An intermediate solution to this issue
is given by the notion of bisimulation, which proved useful in the study of concurrent
systems [Mil89]. Below we give a definition allowing multiple initial states:

Definition 2.12 (Bisimulation)
A (strong) bisimulation between a pair of transition systems TS 1 = (Q1, Σ,→1, I1) and
TS 2 = (Q2, Σ,→2, I2) is a binary relation ∼⊆ Q1 × Q2 (for which we use the infix
notation) such that:

For each qin
1 ∈ I1, there exists qin

2 ∈ I2 such that qin
1 ∼ qin

2 .

For each qin
2 ∈ I2, there exists qin

1 ∈ I1 such that qin
1 ∼ qin

2 .

If q1 ∼ q2 and q1
a−→1 q′1, there exists q′2 such that q2

a−→2 q′2 and q′1 ∼ q′2.

If q1 ∼ q2 and q2
a−→2 q′2, there exists q′1 such that q1

a−→1 q′1 and q′1 ∼ q′2.

Having defined the bisimulation, for a transition system TS one can define ∼TS as the
largest bisimulation between TS and itself. Since ∼TS defines an equivalence relation over
the states of TS , we can construct the quotient of TS over ∼TS , denoted by TS/∼TS

.

2.2. Transition Systems 21

Finite Automata
A finer control over the behavior described by a transition system is obtained by specifying
a set of accepting states. A run w will then be accepted only if the state of the transition
system after executing w is accepting. Such an enriched transition system is called a finite
automaton.

Definition 2.13 (Finite automaton)
A finite automaton is a tuple A = (Q, Σ,→, I, F), where (Q, Σ,→, I) is a transition
system and F ⊆ Q is a set of accepting or final states.

The language accepted by the automatonA with the set of accepting states F , denoted
by L(A, F) 1, is defined as

L(A, F) := {w ∈ Σ∗ | ∃qin ∈ I, qfin ∈ F : qin w−→ qfin}.

As intended, finite automata are more expressive than the plain transition systems.
The former are able to accept all the regular languages, while the latter only the strictly
smaller class of prefix-closed regular languages.

Theorem 2.14 (Kleene’s Theorem) For a fixed alphabet Σ, the class of languages ac-
cepted by finite automata coincides with the class of regular languages.

Corollary 2.15 For a fixed alphabet Σ, the class of languages accepted by transition
systems coincides with the class of prefix-closed regular languages.

Proof. For one direction, we can see a transition system TS as a finite automaton with
all states final. Then, by Theorem 2.14, L(TS) is regular. L(TS) is prefix-closed because
any partial run of a run w ∈ L(TS) is also a run of TS .

For the reverse direction, let L ⊆ Σ∗ be a prefix-closed regular language. Since L
is regular, by Theorem 2.14, there exists an automaton A = (Q, Σ,→, I, F) such that
L(A, F) = L, where F ⊆ Q is the set of accepting states. Let Q′ ⊆ Q be the subset
of states of A that are both reachable from an initial state and co-reachable from an
accepting state. I.e., Q′ consists of the states that are on a path from an initial to an
accepting state. We choose TS := (Q′, Σ,→, I ′) as the transition system induced by Q′

and we show that L(TS) = L(A, F) (so L(TS) = L).
The inclusion L(A, F) ⊆ L(TS) follows easily from the fact that in particular the

accepting states of Q are on a path from an initial to an accepting state in A (A is
reachable). For the reverse inclusion, L(TS) ⊆ L(A, F), we use the hypothesis that
L = L(A, F) is prefix-closed. Let w ∈ L(TS). Then, there exists a path qin w−→ q with
qin ∈ I ′ and q ∈ Q′ in TS . By construction, the state q ∈ Q′ is on a path from an initial
to an accepting state in A, so the word w is the prefix of a word of L(A, F) and, since
L(A, F) is prefix-closed, this implies that w ∈ L(A, F). �

Another classic result in automata theory shows that the deterministic restriction does
not decrease the expressiveness power of finite automata. The same result will hold for
transition systems.

1We include the set of accepting states into the notation L(A, F) for automata to stress the language
acceptance condition difference to the transition systems (where all states are seen as accepting). In this
thesis, we will mainly work with transition systems.

22 Preliminaries

Theorem 2.16 For a fixed alphabet Σ, the class of languages accepted by finite automata
coincides with the class of languages accepted by deterministic finite automata.

Corollary 2.17 For a fixed alphabet Σ, the class of languages accepted by transition
systems coincides with the class of languages accepted by deterministic transition systems.

Proof. Let L(TS) be the language of a (nondeterministic) transition system TS . TS can
be seen as a finite automaton with all states accepting. Then, we apply Theorem 2.16 (i.e.,
the usual subset construction) and we obtain a deterministic finite automaton A whose
language is equal to L(TS). Since L(TS) is prefix-closed, we can apply the construction
from the proof of Corollary 2.15 and obtain a deterministic transition system accepting
L(TS). �

An important property of deterministic finite automata regards minimization:

Theorem 2.18 [HU79, Section 3.4] For each regular language L, there exists a unique
(up to isomorphism) minimal deterministic finite automaton accepting L.

Proof. (Construction idea – recalled here for further reference) For each regular language
L, there exists a deterministic finite automaton A = (Q, Σ,→, {q0}, F) such that L =
L(A, F) (Theorems 2.14 and 2.16). Then, the minimal deterministic automaton accepting
the same language as A is obtained by the classical minimization algorithm:

1. Remove the states unreachable from the (unique) initial state q0.

2. Make the transition relation total, i.e., for any reachable state q ∈ Q and any action
a ∈ Σ, there exists q′ ∈ Q such that q

a−→ q′. If the original transition relation was
not total, introduce a new non-final ‘sink state’ ⊥ such that: ⊥ a−→⊥ for any a ∈ Σ
and q

a−→⊥ for each state q and action a such that there is no q′ with q
a−→ q′.

Once we know that → is deterministic and total, for each q ∈ Q and w ∈ Σ∗, there
exists a unique state q′ such that q

w−→ q′. We denote q′ by δ(q, w).

3. Compute the following equivalence on the state space depending on the set of final
states F :

q ≈F q′ if and only if (∀w ∈ Σ∗ : δ(q, w) ∈ F ⇔ δ(q′, w) ∈ F) .

4. The minimal deterministic automaton is then obtained by taking the quotient w.r.t.
≈F .

The above constructed automaton is unique up to isomorphism w.r.t. the given proper-
ties. �

Corollary 2.19 For each prefix-closed regular language L, there exists a unique (up to
isomorphism) minimal deterministic transition system accepting L.

2.2. Transition Systems 23

Proof. (Construction idea) For each prefix-closed regular language L, there exists a de-
terministic transition system TS = (Q, Σ,→, {q0}) accepting L (Corollaries 2.15 and
2.17). We can see TS as a finite automaton with all states final, i.e., F := Q and apply
the minimization construction presented in the proof of Theorem 2.18. Given the special
set of final states, computing the equivalence of step 3 in the minimization algorithm
becomes:

q ≈ q′ if and only if
(

∀w ∈ Σ∗ : q
w−→⊥⇔ q′

w−→⊥
)

.

Additionally, at the end of the minimization procedure, we remove the sink state ⊥ (which
was not final!) in order to obtain the minimal deterministic transition system TS ′ such
that L = L(TS ′). �

Finally, it is easy to see that imposing the acyclicity restriction to sequential machines,
we obtain finite behaviors. (Note that a finite language is always regular.)

Theorem 2.20 For a fixed alphabet Σ, the class of languages accepted by acyclic finite
automata coincides with the class of finite languages.

Corollary 2.21 For a fixed alphabet Σ, the class of languages accepted by acyclic transi-
tion systems coincides with the class of prefix-closed finite languages.

Discussion

In this chapter we provided the basic ingredients needed in this thesis: set and graph the-
ory, formal languages and sequential machines (transition systems and finite automata).

We are now ready to move forward to learn about models of distributed systems which
are introduced next.

⋄

A distributed system is one in which
the failure of a computer you didn’t
even know existed can render your
own computer unusable.

Leslie Lamport

Chapter 3

Distributed Transition Systems

and the Synthesis Problem

T
he synthesis problem for distributed systems we consider is: Given a global specifi-
cation and a distribution structure, find if possible a distributed system complying

with the specification. In this chapter, we present the models of distributed systems that
we are working with together with characterization results that help solving the synthesis
problem. The structure of the chapter is sketched below.

We meet the first inhabitants of the theoretical world of concurrency in Section 3.1,
where we get to know about independent actions and traces, which are classes of equiv-
alent executions w.r.t. the independence relation. In Section 3.2, we move deeper into
the concurrency area learning about distribution of actions over a set of processes and
distributed transition systems. We present two related models of local transition systems
synchronizing on common actions, namely the class of synchronous products of transition
systems [Arn94] and of asynchronous automata [Zie87]. (The index at the end of the
thesis will help at a later time to relocate the definitions and notations of this chapter.)
Sections 3.3, respectively 3.4, give properties and characterizations of the global state
space, respectively the languages, of the chosen models of distributed systems. Finally,
Section 3.5 describes the versions of synthesis of distributed systems considered in this
thesis.

3.1 Trace Theory

The theoretical interest for concurrent systems increased in the 60s with the seminal work
of C.A. Petri [Pet62]. The new stream of fundamental research required appropriate tools
to study the concurrent behaviors. The formal languages (Section 2.1.3) proved very suit-
able for sequential machines [HU79], but they showed their limitations when used within
the new paradigm1. At the end of the 70s, Mazurkiewicz [Maz77] introduced the notion

1The most popular approach to study concurrent systems using classical formal languages theory was
based on interleaving. In this case, true concurrency is replaced by the nondeterministic choice of the
order of execution of a set of concurrent actions. Although useful in many situations, the interleaving
unfortunately ‘forgets’ the concurrent structure of a computation which might be essential in problems

24

3.1. Trace Theory 25

wall

roof

floor

Figure 3.1: The dependence graph of the concurrent alphabet of the house-like transition
system

of trace as a mathematical object able to maintain the information regarding the indepen-
dence relation between the actions involved. Since then, the theory of traces continued
to develop finding various applications (see surveys in [Maz87] and the monograph The
Book of Traces [DR95]). In this section, we give the basics of trace theory.

The first ingredient that we need is the notion of concurrent alphabet, which is simply
an alphabet equipped with an independence relation between its actions:

Definition 3.1 (Concurrent alphabet)
A concurrent alphabet is a pair (Σ, ‖), where:

Σ is a finite alphabet of actions and

‖ ⊆ Σ×Σ is a symmetric and irreflexive binary relation called the independence or
concurrency relation.

The complementary relation of the independence relation is called the dependence
relation and it is denoted by 6 ‖. Hence, by definition, 6 ‖ := (Σ × Σ) \ ‖. Since ‖ is
symmetric and irreflexive, we have that 6 ‖ is a symmetric and reflexive relation.

Both the dependence and independence relations can be represented using undirected
graphs. More precisely, the dependence graph associated to a concurrent alphabet is the
undirected graph with vertex set Σ and with edge set 6 ‖ \ {(a, a) | a ∈ Σ}. Dually, the
independence graph of (Σ, ‖) is the undirected graph with vertex set Σ and with edge set
‖.
Example 3.2 We can add a concurrency flavor to the house-like transition system of
Figure 2.2 by supposing that the actions wall and floor are independent. So, we have the
concurrent alphabet

({wall ,floor , roof }, {wall ‖floor})

The dependence graph of the above concurrent alphabet is depicted in Figure 3.1.

We use the information provided by the independence relation so as to identify runs
where adjacent independent actions are permuted. The intuition goes as follows: If two
actions a and b are supposed to be independent (a‖b), then if at some point we can execute
a followed by b, executing a should not affect in any way the possibility of executing b,
so they may be executed in any order, in particular first b and then a. For instance, for
Σ := {a, b, c} and a‖b, the runs caab, caba, and cbaa must be all equivalent.

More precisely, we do not want to distinguish two runs that differ only in the order in
which two adjacent independent actions are executed. This is theoretically implemented
by constructing an equivalence relation in the following way:

like system refinement or serializability of transactions in concurrent databases.

26 Distributed Transition Systems and the Synthesis Problem

Definition 3.3 (Trace equivalence)
Given a concurrent alphabet (Σ, ‖), the trace equivalence ∼ over Σ∗ is defined as follows.
For w,w′ ∈ Σ∗, we have w ∼ w′ if and only if there exist the words v0, . . . , vn ∈ Σ∗ such
that w = v0, w′ = vn, and for each i ∈ [1..n], there exist ui, u

′
i ∈ Σ∗ and ai, bi ∈ Σ such

that
ai‖bi, vi−1 = uiaibiu

′
i, and vi = uibiaiu

′
i.

Equivalently, the trace equivalence is the smallest equivalence ∼ on Σ∗ such that

∀u, v ∈ Σ∗, a, b ∈ Σ : a‖b⇒ uabv ∼ ubav.

It is easy to see that the trace equivalence ∼ is in fact a congruence on Σ∗ with
respect to concatenation, i.e., whenever w ∼ w′, then for any words u, v ∈ Σ∗, we have
uwv ∼ uw′v.

Definition 3.4 (Trace monoid, trace, and trace language)
Given a concurrent alphabet (Σ, ‖), the quotient of Σ∗ over the congruence ∼ is called the
trace monoid and is usually denoted by M(Σ, ‖).1 If we denote by [w] the ∼-equivalence
class2 of the word w ∈ Σ∗, then M(Σ, ‖) = (Σ∗/∼, . , [ε])

where ∀u, v ∈ Σ∗ : [u].[v] := [uv].
A trace is by definition an element of M(Σ, ‖), that is, a ∼-equivalence class.
A trace language is a subset of M(Σ, ‖).

In case the independence (dependence) relation ‖ has a special form, the trace monoidM(Σ, ‖) allows special characterizations. For instance:

If ‖ = ∅, then the trace monoid M(Σ, ‖) is isomorphic to the free monoid Σ∗.

If ‖ is full, i.e., ‖ = Σ×Σ\{(a, a) | a ∈ Σ}, then w ∼ w′ if and only if #aw = #aw
′,

for all a ∈ Σ. This implies that M(Σ, ‖) is isomorphic to NΣ.

If the dependence relation 6 ‖ is transitive, then the maximal cliques Σ1, . . . , Σn of the
dependence graph are disjoint and M(Σ, ‖) is isomorphic to the cartesian product
Σ∗

1 × . . .× Σ∗
n of the free monoids generated by these cliques.

To every trace language T ⊆M(Σ, ‖), we can associate a (word) language of Σ∗ in the
following way:

lin(T) := {w ∈ Σ∗ | ∃t ∈ T such that w ∈ t}.
For a trace language T , lin(T) is a linearization3 function which generates the set of all
members of each trace (read: equivalence class) of T .

1The trace monoidM(Σ, ‖) is also known in the literature as the free partially commutative monoid.
2We could have written the ∼-equivalence class as [w]∼, but we did not what to unnecessarily burden

the notation with the subscript ∼, since in most contexts the ∼-equivalence will be implicit.
3The name linearization comes from the fact that a trace is compactly described by a poset and the

term linearization refers to the set of all linear (i.e., total) orders compatible with the poset.

3.1. Trace Theory 27

Trace-closed Languages
Since we are not mainly interested in studying the algebraic properties of trace languages,
we will treat the trace languages as (word) languages of Σ∗ satisfying a closure condition
rather than as subsets of the trace monoid M(Σ, ‖). The closure property will of course
depend on the equivalence relation ∼:

Definition 3.5 (Trace-closed language)
Given a concurrent alphabet (Σ, ‖), we say that L ⊆ Σ∗ is a trace-closed language if it
satisfies the following closure property:

∀w ∈ Σ∗ : w ∈ L⇒ [w] ⊆ L.

In other words, whenever w ∈ L and w ∼ w′, then also w′ ∈ L.

The following easy proposition shows that the classes of trace languages and trace-
closed languages are isomorphic:

Proposition 3.6 Given a concurrent alphabet (Σ, ‖), there is a 1–1 correspondence be-
tween the trace languages of M(Σ, ‖) and the trace-closed languages over Σ∗.

Proof. The 1–1 correspondence is given by the linearization function lin. For that, we
show that:

lin is well-defined: For any T ⊆M(Σ, ‖), lin(T) is a trace-closed language because
if w ∈ lin(T), then the trace t ∈ T such that w ∈ t is exactly [w], which will be
necessarily included in lin(T).

lin is injective: For T1, T2 ⊆M(Σ, ‖) with T1 6= T2, we show that lin(T1) 6= lin(T2).
Without loss of generality, suppose there exists t ∈ T1 \ T2. For w ∈ t, we have
that w ∈ lin(T1). On the other hand, w 6∈ lin(T2), otherwise t ∈ T2. So, w ∈
lin(T1) \ lin(T2), which means lin(T1) 6= lin(T2).

lin is surjective: Let L ⊆ Σ∗ be a trace-closed language. We show that there exists
a trace language T ⊆ M(Σ, ‖) such that L = lin(T). For T := {[w] | w ∈ L}, we
have indeed that L = lin(T): On one hand, L ⊆ lin(T) because ∀w ∈ L : w ∈ [w] ⊆
lin(T). On the other hand, lin(T) ⊆ L because for any w ∈ lin(T), there exists
t = [w′] ∈ T with w′ ∈ L such that w ∈ [w′]. This implies w ∼ w′ and using the
fact that L is trace-closed, we have that w ∈ L. �

We mainly use languages to describe behaviors of systems. As we will later see, the
behaviors of distributed systems are trace-closed, so it is good to know under which
operations is the class of trace-closed languages closed.

Proposition 3.7 The class of trace-closed languages over a concurrent alphabet (Σ, ‖) is
closed under the operations of union, intersection, complementation, projection, shuffle
product, and prefix-closure, but not closed under concatenation and iteration.

28 Distributed Transition Systems and the Synthesis Problem

t = t1 · · · t′.a · · · tn ∈ L1

u = u1 · · · b.u′ · · · un ∈ L2

⇒ t1 u1 · · · t′.a b.u′ · · · tn un ∈ Shuffle(L1, L2)

Splitting t′.a and b.u′, we manage to permute a and b using shuffle

t = t1 · · · t′ a · · · tn ∈ L1

u = u1 · · · b u′ · · · un ∈ L2

⇒ t1 u1 · · · t′ b a u′ · · · tn un ∈ Shuffle(L1, L2)

Figure 3.2: A detail in the proof of Proposition 3.7

Proof. The closure under union, intersection, complementation, projection, and prefix-
closure can be easily proved.

For the closure under shuffle product, the proof is a bit more elaborated. For every
trace-closed languages L1, L2 ⊆ Σ∗, we must show that Shuffle(L1, L2) is also trace-closed.

Let w ∈ Shuffle(L1, L2) and w′ ∼ w. By the definition of the trace equivalence, w′ is
obtained from w by a number of permutations of adjacent independent actions. We prove
that w′ ∈ Shuffle(L1, L2) by induction on the number of permutations needed to obtain
w′ from w.

Base case : We assume that w′ is obtained from w by one permutation of the independent
actions a‖b presumably appearing in a sequence ab in w. We show that w′ ∈
Shuffle(L1, L2).

By the definition of shuffle, there exist n ≥ 1 and ti, ui ∈ Σ∗ for i ∈ [1..n] such
that t = t1 . . . tn ∈ L1, u = u1 . . . un ∈ L2, and w = t1u1 . . . tnun ∈ Shuffle(t, u).
We have to consider two cases depending on the position of the sequence ab in
w = t1u1 . . . tnun:

Case 1 : ab appears inside a string tk, for a certain k ∈ [1..n].
Then, w′ = t1u1 . . . t′kuk . . . tnun, where t′k is obtained from tk by replacing the
chosen occurrence of ab by ba. Since t1 . . . tk . . . tn ∈ L1 and L1 is trace-closed,
we have that t1 . . . t′k . . . tn ∈ L1. So,

w′ ∈ Shuffle(t1 . . . t′k . . . tn, u1 . . . uk . . . un) ⊆ Shuffle(L1, L2).

Case 1’ : ab appears inside a string uk, for a certain k ∈ [1..n]. Similar to Case 1.

Case 2 : a appears as the last action of tk and b as the first action of uk, for a
certain k ∈ [1..n].
Formally, there exist t′, u′ ∈ Σ∗ such that tk = t′a and uk = bu′. In this
case, w = t1u1 . . . t′abu′ . . . tnun and w′ = t1u1 . . . t′bau′ . . . tnun (a and b where
permuted). To prove that w′ ∈ Shuffle(L1, L2) we apply the trick depicted
in Figure 3.2. More precisely, we refine the decomposition t1 . . . t′a . . . tn of
t, by considering t′ and a as separate substrings, i.e., we choose (t′i)i∈[1..n+1]

such that t′i := ti for i ∈ [1..k − 1], t′k = t′, t′k+1 = a, and t′i := ti−1 for
i ∈ [k +2..n]. Similarly, we split bu′ by choosing (u′

i)i∈[1..n+1] such that u′
i := ui

for i ∈ [1..k − 1], u′
k = b, u′

k+1 = u′, and u′
i := ui−1 for i ∈ [k + 2..n].

3.1. Trace Theory 29

Using the above decompositions of t and u, it is easy to see that

w′ ∈ Shuffle(t, u) ⊆ Shuffle(L1, L2)

Case 2’ : a appears as the last action of uk and b as the first action of tk+1, for a
certain k ∈ [1 .. n− 1]. Similar to Case 2.

Induction step : If we suppose w′ ∈ Shuffle(L1, L2) for all w′ obtained from w by N
permutations of adjacent independent actions, then it is immediate using the base
case to show that the same property holds for N + 1.

For the last part of the proposition, we show that the class of trace languages is not
closed under concatenation and iteration: Take for instance, Σ = {a, b} with a‖b and the
trace-closed languages L1 := {a}, L2 := {b}, and L := {ab, ba}. Then, L1L2 = {ab} is
not trace-closed, because ba 6∈ L1L2. Also, L∗ is not trace-closed, because abab ∈ L∗, but
aabb 6∈ L∗. �

For a run w, the trace [w] consists of all words ∼-equivalent to w, which means that
[w] is the closure of w with respect to the trace equivalence ∼. In a similar fashion, we
can lift the trace-closure operation from words to languages in the natural way:

For L ⊆ Σ∗, we denote by [L] the trace-closure of the language L, which is defined as:

[L] :=
⋃

w∈L

[w].

Equivalently, [L] is the smallest (w.r.t. set inclusion) trace-closed language including L.
Regarding the classes of languages introduced as far, the trace-closure operator behaves

as follows:

Proposition 3.8 For a concurrent alphabet (Σ, ‖), neither the class of prefix-closed lan-
guages nor the class of regular languages is closed under the trace-closure operation.

Proof. Counterexamples can be quickly given. Let the concurrent alphabet be

({a, b}, a‖b).

On one hand, take the prefix-closed language L := {ǫ, a, ab}. Then, [L] is not trace-closed
because ba ∈ [L], but b 6∈ [L]. On the other hand, take the regular language L := (ab)∗.
Then, [L] = {w ∈ Σ∗ | #aw = #bw}, which is a classical example of a non-regular
language. �

Regular Trace Languages
Maybe the most studied class of trace languages is that of regular trace languages. To
introduce them, we follow the presentation and terminology of [Zie87]. There are other
equivalent definitions and characterizations for the class of regular trace languages (which
are sometimes known as recognizable trace languages), but since they do not play a rôle
in this thesis we do not present them here (a curious reader is referred to [DR95]).

30 Distributed Transition Systems and the Synthesis Problem

Similar to the word languages, for a trace language T ⊆ M(Σ, ‖), we define the
syntactic congruence ∼T of T as follows: For t, t′ ∈M(Σ, ‖),

t ∼T t′ if and only if ∀x, y ∈M(Σ, ‖) : xty ∈ T ⇔ xt′y ∈ T.

Following [Zie87], we have the following definition (cf. Theorem 2.4):

Definition 3.9 (Regular trace language)
A trace language T ⊆ M(Σ, ‖) is regular, if its associated syntactic congruence ∼T is of
finite index.

We denote the class of regular trace languages by Reg(Σ, ‖).
The following two results relate the trace languages with their word counterparts:

Lemma 3.10 [Zie87] Let T ⊆ M(Σ, ‖) and v, w ∈ Σ∗. Then, [v] ∼T [w] if and only if
v ∼lin(T) w.

Proposition 3.11 [Zie87] For T ⊆ M(Σ, ‖), we have T ∈ Reg(Σ, ‖) if and only if
lin(T) ∈ Reg(Σ).

From the above result and Proposition 3.6 we easily obtain:

Corollary 3.12 Given a concurrent alphabet (Σ, ‖), there is a 1–1 correspondence be-
tween the regular trace languages of M(Σ, ‖) and the regular trace-closed languages over
Σ∗.

For convenience, we will work more with trace-closed languages rather than with trace
languages (we find it easier to work with classic languages of words than with languages
of equivalence classes of words).

3.2 Distributed Transition Systems

In this section we generalize the notion of transition system to a distributed setting.
A sequential system consists of one agent that executes a number of tasks in a certain

order. Such a system can be theoretically modeled, for instance, by a transition system
(see Definition 2.8). A distributed system consists of a number of agents that cooperate
to execute a number of tasks. In real life, given the complexity of possible interactions,
it is harder to find examples of sequential systems than of distributed ones. For instance,
reading this piece of text by a human implies a mechanical synchronization of the two eyes
(running over the lines) done in parallel with the synchronization of the hands (handling
the cup of coffee/browsing the pages).

A distributed system which has no interaction with the environment is called closed
(e.g., a distributed algorithm processing a given input), otherwise it is called open (e.g.,
an operating system interacting with several users). In this thesis, we will only consider
the case of closed distributed systems, so, unless otherwise specified, when we talk about
a ‘distributed system’, we mean ‘closed distributed system’.

Modeling a distributed system by an ordinary transition system is usually inefficient
and ontologically inaccurate since the very paradigm of distributed activity is flattened

3.2. Distributed Transition Systems 31

and thus structural information is lost. There is a number of already established theoret-
ical models for distributed computation (Petri nets occupying a prominent position). In
this thesis we will study two of them, both based on synchronization on common actions:
the synchronous products of transition systems [Arn94] and the asynchronous automata
[Zie87]. Loosely speaking, they consist of a number of local processes (or agents) that are
able to execute a set of actions and which must synchronize on their common actions in
order to change their local states. The latter model will take in consideration also the
local states of the agents synchronizing to execute an action (so the latter model is more
general than the former). Moreover, the synchronization on common actions requires a
distribution pattern telling which agents are able to execute what actions.

To exemplify the concepts, think of a building site with a team of diligent workers. We
suppose that each worker has several specializations (e.g., masonry, carpentry, plumbing,
plastering, painting). Due to their complexity, the tasks require the full manpower with a
given specialization. Then, we can see the multitasking activity of building as a distributed
transition system, where: the specializations are the possible actions, each task is the
synchronization of workers, and each worker is a local process that takes part only in
tasks involving his specializations.

The next sections will introduce and discuss the notion of distribution of actions over
a set of processes followed by the two notions of distributed transition systems which will
be studied in this thesis.

3.2.1 Distributions

In this section we define the notion of distributed alphabet or (shorter) distribution. This
will provide the ‘infrastructure’ of the distributed transition systems.

Informally, a distributed alphabet consists of an alphabet of actions together with a
set of processes and the information whether an action may be executed by a process or
not. Formally, we have:

Definition 3.13 (Distribution)
A distribution is a tuple (Σ,Proc, ∆), where

Σ is a nonempty, finite alphabet of actions,

Proc is a nonempty, finite set of process labels, and

∆ ⊆ Σ × Proc is a binary relation between actions and processes such that each
action is in relation with at least one process and vice versa, each process is in
relation with at least one action1.

Once we have a distribution (Σ,Proc, ∆), we can extract action-oriented, respectively
process-oriented information in the following way:

For each action we can derive the (nonempty) set of processes that are able to
execute that action. Namely, we have the function dom : Σ→ P(Proc) \ ∅ defined
for each a ∈ Σ as:

dom(a) := {p ∈ Proc | (a, p) ∈ ∆}.
1The two last conditions keep out abnormal specifications with ‘phantom’ actions or processes.

32 Distributed Transition Systems and the Synthesis Problem

The function dom is called the domain function, as it provides the ‘domain’ where
the action is active.

One can give directly a domain function dom and from it to uniquely determine the
distribution ∆ := {(a, p) | p ∈ dom(a)} that generates dom.1

Dually, for each process we can derive the (nonempty) set of actions that may be
executed by that process. Namely, we have the function Σloc : Proc → P(Σ) \ ∅
defined for each p ∈ Proc as:

Σloc(p) := {a ∈ Σ | (a, p) ∈ ∆}.

The function Σloc provides the local alphabet of each process, i.e., the set of actions
that the given process is able to execute.

One can give directly the local alphabets by Σloc and from them to uniquely deter-
mine the distribution ∆ := {(a, p) | a ∈ Σloc(p)} that can generate them.2

Convention. In unequivocal contexts we will simply use ∆ to denote (Σ,Proc, ∆). Also,
when it is more convenient, instead of the binary relation ∆, we provide the domain
function or the local alphabets. According to the observations above, the distribution ∆
can be immediately recovered.

Example 3.14 For the alphabet of the house-like transition system of Figure 2.2, Σ =
{wall ,floor , roof }, we can give a distribution over two processes/agents Proc = {1, 2} in
the following way:

∆ := {(wall , 1), (roof , 1), (floor , 2), (roof , 2)}.

If we interpret the set of processes as a team of two workers having various specializations,
then the above distribution says that worker 1 can raise walls and roofs, while worker 2
is skilled to build floors and roofs.

We can further generate the domains of the actions and the local alphabets of the
processes:

dom
wall 1
floor 2
roof 1, 2

Σloc

1 wall , roof
2 floor , roof

The Relation between Distributed and Concurrent Alphabets
We have now two generalizations of the notion of alphabet of actions: the concurrent

alphabet (Definition 3.1) and the distributed alphabet (Definition 3.13). The names
themselves already hint at the difference between the two notions. The term ‘concurrent’
suggests that a concurrent alphabet (Σ, ‖) tells which actions can be executed in parallel,
or concurrently. The term ‘distributed’ suggests that a distributed alphabet (Σ,Proc, ∆)

1To comply with Definition 3.13, one has to check whether each process occurs in at least one domain.
2To comply with Definition 3.13, one has to check whether each action occurs in at least one local

alphabet.

3.2. Distributed Transition Systems 33

provides more information, namely, how the actions are dispersed in a network of local
processes.

Every distribution (Σ,Proc, ∆) gives rise to a natural independence relation ‖ between
the actions of Σ. For each pair a, b ∈ Σ we set:

a‖b ⇔ dom(a) ∩ dom(b) = ∅.

The intuition is that two actions are independent if and only if they are can be executed by
disjoint sets of processes. With this definition, two independent actions cannot interfere
in any way and thus they may be executed in parallel. Clearly, the relation defined above
is irreflexive and symmetric.

The other way around, for every concurrent alphabet (Σ, ‖), we can construct a dis-
tribution (Σ,Proc, ∆) such that the independence relation induced by ∆ is the same as ‖
in the following way:

1. start with the dependence graph of (Σ, 6 ‖)

2. choose a clique cover of it

3. create a process pC for each clique C of the cover (so the size of Proc is equal to the
size of the cover)

4. set (a, pC) ∈ ∆ if and only if a belongs to the clique C.

It is easy to show that indeed, the independence relation generated by the above distri-
bution is equal to ‖.

According to the observations in Section 2.1.4, there are several possibilities to choose
a covering by cliques of a graph, and thus several distributions inducing the same indepen-
dence relation. Special cases are the distributions generated by the covers of all maximal
cliques and of cliques of at most two nodes (see page 17).

Let us consider the concurrent alphabet of Example 3.2. The associated dependence
graph (depicted in Figure 3.1) accepts the clique cover consisting of the two cliques
{wall , roof } and {floor , roof }. According to the above algorithm, we create a process
for each clique, say process 1, respectively process 2. Then the distribution obtained is
exactly the one given in Example 3.14.

3.2.2 Synchronous Products of Transition Systems

We introduce now the first of our two models of distributed transition systems that we
use in this thesis: the synchronous product of transition systems.

Let us give the general idea on the structure and dynamics of a synchronous product of
transition systems. As the name suggests, we have a number of local transition systems
that synchronize to execute shared actions. The relation between the actions and the
local transition systems is given by a distribution: We identify a process with each local
transition system and the binary relation between actions and processes tells which actions
can be executed by what local transition system. From this relation we extract the
domains of the actions and the local alphabets of the local transition systems. Then, an

34 Distributed Transition Systems and the Synthesis Problem

action a can be executed at a certain point by the synchronous product of the transition
systems only if all the local transition systems of dom(a) are able to execute a at that
point. The execution of a triggers the changing of the local states of the transition systems
of dom(a) and leaves the rest of the local transition systems unaffected.

The global state space of a synchronous product of transition systems is included in
the cartesian product of the state spaces of the local transition systems. More precisely,
the global state space consists of the global states that are reachable from a set of initial
global states. Formally, we have the following definition:

Definition 3.15 (Synchronous product of transition systems)
A synchronous product of transition systems SP over a distribution (Σ,Proc, ∆) is a
transition system (Q, Σ,→, I) for which there exist

a family of local state sets (Qp)p∈Proc and

a family of local transition relations (→p)p∈Proc with→p⊆ Qp×Σloc(p)×Qp for each
p ∈ Proc,

such that:

I ⊆∏p∈Proc Qp is the set of global initial states, and

Q ⊆ ∏p∈Proc Qp consists of all the global states reachable from I by the following
transition relation:

(qp)p∈Proc
a−→ (q′p)p∈Proc ⇔

{

qp
a−→p q′p for all p ∈ dom(a) and

qp = q′p for all p 6∈ dom(a).

The synchronous product of transition systems SP is deterministic if the transition
system (Q, Σ,→, I) is deterministic.

The synchronous product of transition systems SP is acyclic if the transition system
(Q, Σ,→, I) is acyclic.

Sometimes, we simply use ‘synchronous product’ as a shorter version of the longer
name ‘synchronous product of transition systems’. The synchronous product of transition
systems is a popular model of distributed systems and can be found in the literature under
different names like: mixed product [Dub86], product transition systems [TH98], loosely
cooperating systems [Zie87, Muk02].

We see that the distribution (Σ,Proc, ∆) is deeply embedded in the above definition.
We have one local state set together with a local transition relation for each process label.
The local transitions are labeled with actions taken from the local alphabet of the process.
Then, the synchronization on a common action affects only the processes of the domain
of that action.

Note that the transition systems are particular cases of synchronous products over
distributions with |Proc| = 1.

Definition 3.15 identifies a synchronous product of transition systems with the global
transition system obtained from synchronizations on common actions (starting with a set
of initial states). Nevertheless, this transition system can be generated using the local

3.2. Distributed Transition Systems 35

The local transition systems The synchronous product

0

1

0 1

wall

roof

floor

roof

(0, 0) (0, 1)

(1, 0) (1, 1)

floor

floor

wall wall

roof

Figure 3.3: The synchronization of two workers

state spaces (Qp)p∈Proc and (→p)p∈Proc, so an efficient data structure for synchronous
products keeps only this local information and generates the needed part of the global
transition system on demand. In this case, the size of a synchronous product is merely
the sum of the sizes of the local transition relations. We use the global transition system
in the first place of our definition just for the convenience of presentation.

Example 3.16 Let us return to the paradigm of specialized workers given at the begin-
ning of Section 3.2. We consider the distribution of Example 3.14 where we have two
processes, alias two workers, that have as specializations the local alphabets {wall , roof }
and {floor , roof }, respectively. To each worker we associate a behavior by two local states
and two local transitions for each worker as shown on the left of Figure 3.3. More precisely,
for the first worker we have

Q1 := {0, 1} and {0 wall−→ 1, 1
roof−→ 1},

while for the second we have

Q2 := {0, 1} and {0 floor−→ 1, 0
roof−→ 1}.

The synchronous product of the two transition systems starting in the global initial
state (0, 0) (so, I = {(0, 0)}) is given in the right of Figure 3.3.

In the global state (0, 0) there are two actions executable: wall and floor . The action
wall can be executed in (0, 0) because dom(wall) = {1} and wall can be executed in local
state 0 of the first component. In this case, only the first component will update to the

local state 1. Thus, (0, 0)
wall−→ (1, 0). A similar reasoning can be performed for the global

transition (0, 0)
floor−→ (0, 1).

The action roof has domain {1, 2}, so both workers must synchronize in order to
execute it. That is, both of them must be in a local state where roof is enabled and
they simultaneously change their local states by executing roof . In our case, roof can be

executed only in the global state (1, 0) by the transition (1, 0)
roof−→ (1, 1).

We see that the resulted global transition system is isomorphic to the transition system
of Example 2.10 (see Figure 2.2).

36 Distributed Transition Systems and the Synthesis Problem

According to the Definition 3.15, Q ⊆ ∏p∈Proc Qp, i.e., the global state space of a
synchronous product is embedded in the cartesian product of its local state spaces (note
that we consider in Q only the global states that are reachable from the initial states I).
In the worst case, we have that Q =

∏

p∈Proc Qp, which implies that |Q| = ×p∈Proc |Qp|.
This means that the size of the global state space may be exponentially (in the number
of processes) larger than the size of local state spaces. This phenomenon is called the
‘state space explosion problem’ and is responsible for most difficulties in reasoning about
distributed systems in practice. For instance, in the Example 3.16 above, we see that the
global state space has size 4 which is the product of the sizes of the local state spaces.

As a final notion of this section, by definition, the behavior of a synchronous product
is given by the language that its global transition system accepts:

Definition 3.17 (The language of a synchronous product of transition systems)

The language accepted by the synchronous product of transition systems SP = (Q, Σ,→
, I) is simply the language of its transition system:

L(SP) := {w ∈ Σ∗ | ∃qin ∈ I, q ∈ Q : qin w−→ q}.
For the synchronous product of Example 3.16 (see Figure 3.3), the accepted language is:

{ε, wall , floor , wall .floor , wall .roof , floor .wall}.
A finer control over the accepted language is obtained adding a set of global final

states F ⊆ Q and modifying the definition accordingly:

L(SP, F) := {w ∈ Σ∗ | ∃qin ∈ I, qfin ∈ F : qin w−→ qfin}.
Further details and discussions about the two versions above are postponed to Sec-

tion 3.4.

3.2.3 Asynchronous Automata

We introduce now the second of our two models of distributed transition systems that we
use in this thesis: the asynchronous automata [Zie87].

Compared to the synchronous products, the asynchronous automata are more complex
and also more powerful: Any synchronous product can be presented as an asynchronous
automaton and there are asynchronous automata that cannot be modeled by synchro-
nous products. Based also on synchronization on common actions, the particularity of
asynchronous automata is that the execution of an action depends on the local states of
the processes taking part in the synchronization (i.e., the processes of the domain of the
action). More precisely, we associate a transition relation with each action a which tells
for which tuples of local states in dom(a), the action a can be executed and how the local
states are modified. The local processes outside the domain are untouched. Formally, we
have:

Definition 3.18 (Asynchronous automaton)
An asynchronous automaton AA over a distribution (Σ,Proc, ∆) is a transition system
(Q, Σ,→, I) for which there exist

3.2. Distributed Transition Systems 37

a family of local state sets (Qp)p∈Proc and

a family of transition relations (→a)a∈Σ with →a⊆
∏

p∈dom(a) Qp×
∏

p∈dom(a) Qp for
each a ∈ Σ,

such that:

I ⊆∏p∈Proc Qp is the set of global initial states, and

Q ⊆ ∏p∈Proc Qp consists of all the global states reachable from I by the following
transition relation:

(qp)p∈Proc
a−→ (q′p)p∈Proc ⇔

{
(qp)p∈dom(a) →a (q′p)p∈dom(a) and
qp = q′p for all p 6∈ dom(a).

The asynchronous automaton AA is deterministic if the transition system (Q, Σ,→, I)
is deterministic.

The asynchronous automaton AA is acyclic if the transition system (Q, Σ,→, I) is
acyclic.

The synchronization mechanism of asynchronous automata is more powerful than
in the case of synchronous products. When synchronizing on a common action a, the
processes of dom(a) update their local state taking into account the local states of their
peers in dom(a). So, more information is exchanged via the relations →a (in the case
of synchronous products, the processes agree on synchronization, but update their local
states independently).

The global transition system on the right of Figure 3.3 can be realized by an asyn-
chronous automaton in the following way: The local state spaces associated with the two
processes {1, 2} are the same as before

Q1 = {0, 1} and Q2 = {0, 1},

and the local transition relations associated with the actions are:

0→wall 1 in state space Q1 (because dom(wall) = {1}),
0→floor 1 in state space Q2 (because dom(floor) = {2}), and

(1, 0)→roof (1, 1) in state space Q1 ×Q2 (because dom(roof) = {1, 2}).

In the global initial state (0, 0), we can execute wall and floor in parallel (since they affect
disjoint sets of processes, i.e., the first, respectively second component). For instance,

(0, 0)
wall−→ (1, 0) because 0→wall 1 and the first component of (0, 0) is 0. Then, (1, 0)

roof−→
(1, 1) because (1, 0) →roof (1, 1). In the global state (1, 0) also floor can be executed
because dom(floor) = {2}, the second component of (1, 0) is 0, and 0→floor 1, so we have

(1, 0)
floor−→ (1, 1). On the other hand, wall cannot be executed in (1, 0) because the first

component is 1 and there is no transition starting with 1 in →wall .
In fact, it is not difficult to see that the synchronous products are weaker than the

asynchronous automata:

38 Distributed Transition Systems and the Synthesis Problem

(0, 0)

(1, 0) (1, 2)

(2, 1)
(2, 2)

wall

roof

roof floor

Figure 3.4: A ‘futuristic ambient’ asynchronous automaton that is not a synchronous
product

Remark 3.19 Every synchronous product over a distribution ∆ accepts a description as
an asynchronous automaton over the same distribution ∆, but not the other way around.

Proof. Let SP = (Q, Σ,→, I) be a synchronous product over distribution (Σ,Proc, ∆).
Then, there exist a family of local state sets (Qp)p∈Proc and a family of local transition
relations (→p)p∈Proc with→p⊆ Qp×Σloc(p)×Qp for each p ∈ Proc. We construct a family
of transition relations (→a)a∈Σ with →a⊆

∏

p∈dom(a) Qp ×
∏

p∈dom(a) Qp for each a ∈ Σ in
the following way:

(qp)p∈dom(a) →a (q′p)p∈dom(a) ⇔ ∀p ∈ dom(a) : qp
a−→p q′p.

It is clear then that global transition system (Q, Σ,→, I) can be simulated by the syn-
chronization specific to asynchronous automata:

(qp)p∈Proc
a−→ (q′p)p∈Proc ⇔

{
(qp)p∈dom(a) →a (q′p)p∈dom(a) and
qp = q′p for all p 6∈ dom(a).

On the other hand, consider again the distribution of Example 3.14 and the asynchro-
nous automaton represented in Figure 3.4 obtained from the local state spaces

Q1 = {0, 1, 2} and Q2 = {0, 1, 2},

and the local transition relations associated with the actions as:

0→wall 1 in state space Q1 (dom(wall) = {1}),
1→floor 2 in state space Q2 (dom(floor) = {2}), and

(0, 0)→roof (2, 1) and (1, 0)→roof (1, 2) in state space Q1 ×Q2 (dom(roof) = {1, 2}).
It is easy to see that the ‘modern architecture’ of Figure 3.4 is indeed the global transition
system of the synchronization of the above transition relations. For instance, the only

transition labeled with floor is (2, 1)
floor−→ (2, 2) because (2, 1) is the only global reachable

state (from (0, 0)) that has the second component 1 as required by 1→floor 2.
We prove now that the above transition system cannot be simulated by any syn-

chronous product.1 By contradiction, suppose that such synchronous product exists.

1An alternative proof can be given once we introduce characterizations of the global transition systems
of synchronous products (see Theorem 3.26).

3.3. Shapes 39

Then, there exist two workers (i.e., local processes) that synchronize to execute the

given ‘architecture’ (i.e., global transition system). Since (0, 0)
wall−→ (1, 0)

roof−→ (1, 2)
and Σloc(1) = {wall , roof }, the schedule of the first worker (i.e., the first local transi-

tion relation) must include the sequence wall .roof . Since (0, 0)
roof−→ (2, 1)

floor−→ (2, 2) and
Σloc(2) = {floor , roof }, the schedule of the second worker (i.e., the second local transition
relation) must include the sequence roof .floor . Since the synchronization model is weaker
than the one of asynchronous automata, the two workers only agree that they synchronize
to construct a roof (dom(roof) = {1, 2}) without exchanging any other information, so
the following scenario is possible:

The first worker rises a wall, then both workers team up (i.e., synchronize) to
construct a roof, and at that point the second worker continues his schedule
and builds a floor.

The above will generate the sequence

wall .roof .floor ,

which contradicts the original plan of the ‘building’ in Figure 3.4. �

As a final notion of this section, by definition, the behavior of an asynchronous au-
tomaton is given by the language that its global transition system accepts:

Definition 3.20 (The language of an asynchronous automaton)
The language accepted by the asynchronous automaton AA = (Q, Σ,→, I) is simply the
language of its transition system:

L(AA) := {w ∈ Σ∗ | ∃qin ∈ I, q ∈ Q : qin w−→ q}.

A finer control over the accepted language is obtained adding a set of global final set
F ⊆ Q and modifying the definition accordingly:

L(AA, F) := {w ∈ Σ∗ | ∃qin ∈ I, qfin ∈ F : qin w−→ qfin}.

In fact, Zielonka included a set of final states in the original definition of asynchronous
automata [Zie87]. This refinement makes the model expressive enough that the class of
languages accepted by asynchronous automata with final states coincides with the class of
regular trace-closed languages. This solved the long-standing problem of finding a natural
distributed model to exactly capture the regular trace-closed behaviors. Nonetheless, we
will try to avoid a set of global final states for reasons given in Section 3.4.1.

3.3 Shapes

We know now that the distributed transition systems consist of local processes collabo-
rating to execute actions. The first natural questions are: ‘What are the characteristics
of the resulted global state space?’ and ‘Can we find a general pattern that allows us

40 Distributed Transition Systems and the Synthesis Problem

to recognize that a certain transition system originated from a distributed activity?’ In
other words: What is the global ‘shape’ of a distributed transition system?

In this section we examine structural properties of the global transition system of a
distributed system and present characterizations for them from the literature. These char-
acterizations provide theoretical bases for the synthesis of distributed transition systems
(Section 3.5).

3.3.1 Diamonds et al.

A distributed system follows a distribution pattern. In turn, the distribution hides a
natural independence relation between the actions (see end of Section 3.2.1), which can
be uncovered considering the domains of the actions:

a‖b ⇔ dom(a) ∩ dom(b) = ∅.
Thus we obtain a concurrent alphabet (Σ, ‖) (Definition 3.1) telling which pairs of actions
can be executed in parallel. We will see how this parallelism is reflected in our models of
distributed transition systems.

Looking at the Definitions 3.15 and 3.18, we notice that the synchronizations on
common actions depend on the domain of the actions. Two independent actions have
disjoint domains, which implies that the synchronizations on the two actions do not
interfere. This means that in a certain global state the two actions may be executed in
any order (cf. the trace equivalence in Definition 3.3). Moreover, if in a certain global
state both actions are enabled, the execution of one of them does not hinder the execution
of the other one. These two properties are formally captured by:

Definition 3.21 (Independent and forward diamond properties)
Let (Σ, ‖) be a concurrent alphabet and TS = (Q, Σ,→, I) a transition system. We say
that TS satisfies the independent diamond (ID) and forward diamond (FD) properties if
for any q1, q2, q3 ∈ Q and a, b ∈ Σ we have:

ID : q1
a−→ q2

b−→ q3 ∧ a‖b ⇒ ∃q4 ∈ Q : q1
b−→ q4

a−→ q3

FD : q1
a−→ q2 ∧ q1

b−→ q3 ∧ a‖b ⇒ ∃q4 ∈ Q : q2
b−→ q4 ∧ q3

a−→ q4.

(Figure 3.5 presents the above properties graphically.)

It is easy to see that every distributed transition system satisfies the ID and FD rules:

Proposition 3.22 Let (Σ,Proc, ∆) be a distribution and ‖ its corresponding indepen-
dence relation. Then, every synchronous product SP = (Q, Σ,→, I) over ∆ satisfies the
ID and FD properties. Similarly, every asynchronous automaton AA = (Q, Σ,→, I) over
∆ satisfies the ID and FD properties.

Proof. It is enough to show that ID and FD hold for asynchronous automata because the
same will hold for synchronous products using Remark 3.19.

Let AA = (Q, Σ,→, I) be an asynchronous automaton over distribution (Σ,Proc, ∆)
and q1 = (q1p)p∈Proc, q2 = (q2p)p∈Proc, and q3 = (q3p)p∈Proc be three global states of Q.
Then, we have:

3.3. Shapes 41

ID FD

1

2

3

a

b

a‖b
=⇒

1

2

3

4

a

b

b

a

1

2 3

a b a‖b
=⇒

1

2 3

4

a b

b a

Figure 3.5: The independent and forward diamond properties

Formal description Graphical description

Σ := {a, b}, a‖b
Q := {0, 1}, I := {0}
→ := { 0

a,b−→ 1
a,b−→ 0 }

0

1

ba ba

Figure 3.6: A transition system satisfying ID and FD, but not isomorphic to an asynchro-
nous automaton

If q1
a−→ q2

b−→ q3 and a‖b, it is easy to see that the global state q4 = (q4p)p∈Proc

given by: q4p := q3p for p ∈ dom(b) and q4p := q1p for p 6∈ dom(b), satisfies ID.

If q1
a−→ q2, q1

b−→ q3, and a‖b, it is easy to see that the global state q4 = (q4p)p∈Proc

given by: q4p := q2p for p ∈ dom(a) and q4p := q3p for p 6∈ dom(a), satisfies FD. �

Nevertheless, the ID and FD properties are not sufficient to characterize the shape of
(the global transition systems of) distributed transition systems as the simple example
below witnesses:

Example 3.23 [Mor98] Let TS = (Q, Σ,→, I) be the transition system of Figure 3.6. It
is easy to show that TS is the ‘smallest’ transition system such that TS satisfies ID and
FD, but there is no asynchronous automaton isomorphic to it (and by Remark 3.19, also
no synchronous product).

Proof. Since it is obvious that TS satisfies ID and FD, we only have to prove that there
is no asynchronous automaton isomorphic to it. By contradiction, suppose there exists
such an asynchronous automaton whose distribution pattern is compliant with the given
independence relation a‖b, i.e., dom(a) ∩ dom(b) = ∅.

From 0
a−→ 1 and the definition of synchronization for asynchronous automata (Defi-

nition 3.18) we have that the local states of (the global states) 0 and 1 must be equal on

all processes of Proc \dom(a). Similarly, from 0
b−→ 1, the local states of 0 and 1 must be

equal on all processes of Proc \ dom(b). Summing up, the local states of 0 and 1 coincide
on all processes of (Proc \dom(a))∪ (Proc \dom(b)) = Proc \ (dom(a)∩dom(b)) = Proc,
because dom(a)∩dom(b) = ∅. At this point we reached the contradiction that the distinct
global states 0 and 1 have all the local states equal. �

42 Distributed Transition Systems and the Synthesis Problem

Sometimes we can infer structural properties of the global transition relation from the
local ones, as shown below.

For synchronous products, we can lift the properties of being deterministic or acyclic
from the local transition relations to the global generated one:

Proposition 3.24 Let SP = (Q, Σ,→, I) be a synchronous product over a distribu-
tion (Σ,Proc, ∆) and let (→p)p∈Proc be its local transition relations (according to Defi-
nition 3.15). Then we have:

1. If all (→p)p∈Proc are deterministic1, then their global synchronization → is also
deterministic.

2. If all (→p)p∈Proc are acyclic, then their global synchronization → is also acyclic.

3. The converse implications of 1. and 2. above are not true in general.

Proof. Easy:

1. Let q = (qp)p∈Proc
a−→ q′ = (q′p)p∈Proc and q = (qp)p∈Proc

a−→ q′′(q′′p)p∈Proc in →.

Then, according to Definition 3.15, we have that qp
a−→ q′p and qp

a−→ q′′p for all
p ∈ dom(a) (*) and q′p = qp = q′′p for all p 6∈ dom(a) (**). From (*) and the
deterministic property of the local transition relations, we necessarily have that
q′p = q′′p for all p ∈ dom(a), which together with (**) implies q′ = q′′.

2. By contradiction, suppose that→ is contains the cycle q1
a1−→ q2

a2−→ . . .
an−1−→ qn

an−→
q1 (with n ≥ 1). Then, it not difficult to show that →p, where p ∈ dom(a1),
contains a cycle (the projection on the component p of the global cycle). But this
is a contradiction.

3. We choose the distribution of Σ := {a} over two processes Proc := {1, 2}, with
dom(a) := {1, 2}. Also, for each process we choose the local state spaces Q1 :=
{q1, q

′
1} with →1 := {(q1, a, q1), (q1, a, q′1)} and Q2 := {q2} with →2 := ∅.

If we take I := {(q1, q2)}, the global transition relation → is empty (because →2

= ∅), so → is both deterministic and acyclic. On the other hand, the first local
transition →1 is neither deterministic, nor acyclic. �

For asynchronous automata (which have a finer synchronization) the situation is
slightly different than for synchronous products:

Proposition 3.25 Let AA = (Q, Σ,→, I) be an asynchronous automaton over a distri-
bution (Σ,Proc, ∆) and let (→a)a∈Σ be its local transition relations (according to Defini-
tion 3.18). Then we have:

1. If all (→a)a∈Σ are deterministic2, then their global synchronization → is also deter-
ministic1.

1A labeled transition relation →⊆ Q × Σ × Q is deterministic if and only if for all q, q′, q′′ ∈ Q and
a ∈ Σ such that q

a−→ q′ and q
a−→ q′′, we necessarily have q′ = q′′.

2An unlabeled transition relation →⊆ S × S is deterministic if and only if for all s, s′, s′′ ∈ S such
that s→ s′ and s→ s′′, we necessarily have s′ = s′′.

3.3. Shapes 43

2. If all (→a)a∈Σ are acyclic, then their global synchronization → is not necessarily
acyclic.

3. If → is deterministic (respectively, acyclic), then not necessarily all (→a)a∈Σ are
also deterministic (respectively, acyclic).

Proof. Easy:

1. Let q = (qp)p∈Proc
a−→ q′ = (q′p)p∈Proc and q = (qp)p∈Proc

a−→ (q′′p)p∈Proc in →.
Then, according to Definition 3.18, we have that (qp)p∈dom(a) →a (q′p)p∈dom(a) and
(qp)p∈dom(a) →a (q′′p)p∈dom(a) (*), and q′p = qp = q′′p for all p 6∈ dom(a) (**). From (*)
and the deterministic property of the local transition relations, we necessarily have
that (q′p)p∈dom(a) = (q′′p)p∈dom(a), which together with (**) implies q′ = q′′.

2. Take for instance Σ = {a, b}, Proc = {1}, and dom(a) = dom(b) = 1. Also, take
Q1 := {0, 1} with →a:= {(0, 1)} and →b:= {(1, 0)}. For I := {0}, we have Q = Q1

and →= {(0, a, 1), (1, b, 0)}. Then, → is cyclic (because 0
a−→ 1

b−→ 0), while the
local transitions relations →a and →b are both acyclic.

3. In this case, the proof uses the fact in Definition 3.18 that the global state space is
reachable and → is restricted to this part only:

We choose Σ := {a}, Proc := {1}, with dom(a) = {1}, and Q1 := {0, 1, 2} with
→a:= {(1, 1), (1, 2)}. If we take I := {0}, then Q := {0} and the global transition
relation → is empty (because there is no s such that 0 →a s), so → is both deter-
ministic and acyclic. On the other hand, the local transition relation →a is neither
deterministic, nor acyclic. �

Example 3.23 testifies that the ID and FD properties are not sufficient to characterize
the shape of (the global transition systems of) distributed transition systems. Neverthe-
less, precise characterizations can be found in the literature [Mor98, CMT99, Mor99b,
Muk02] and are presented in the following two sections (3.3.2 and 3.3.3).

3.3.2 Synchronous Products of Transition Systems

We present a characterization theorem for the global transition system of synchronous
products. More precisely, [CMT99, Muk02] give a set of three necessary and sufficient
conditions that a transition system must satisfy in order to be isomorphic to a synchronous
product over a given distribution. If such isomorphic synchronous product exists, then
each of its local state spaces Qp (cf. Definition 3.15) is constructed as the quotient of
the input state space under a local equivalence relation ≡p. These equivalences must be
chosen such that the following hold:

1. an a-labeled transition does not affect the local states of the processes not contained
in dom(a);

2. the global state space is no more than the cartesian product of the Qp’s, and

44 Distributed Transition Systems and the Synthesis Problem

Last part of Definition 3.15
. . .
Q ⊆∏p∈Proc Qp consists of all the global states reachable from I

by the following transition relation:

(qp)p∈Proc
a−→ (q′p)p∈Proc ⇔

{

qp
a−→p q′p for all p ∈ dom(a) and

qp = q′p for all p 6∈ dom(a).

SP2

SP3

SP1

Figure 3.7: The relation between conditions SP1–SP3 and the definition of synchronous
products

3. for an action a ∈ Σ, if the local states of the processes in dom(a) are able to perform
an a-labeled transition, then a global synchronization must also be possible.

Before we give the theorem, we need to introduce an abbreviation:

Notation. For any two sets of indexes I and J such that J ⊆ I and an indexed family
of binary relations (≡i)i∈I , the expression (q1 ≡J q2) abbreviates (∀j ∈ J : q1 ≡j q2).

Theorem 3.26 [CMT99, Muk02] Let (Σ,Proc, ∆) be a distribution and TS = (Q, Σ,→
, I)1 be a transition system. Then, the following are equivalent:

(i) TS is isomorphic to a synchronous product of transition systems over ∆

(ii) For each p ∈ Proc, there exists an equivalence relation ≡p⊆ Q × Q such that the
following conditions hold (for any q1, q2 ∈ Q and a ∈ Σ):

SP1 : If q1
a−→ q2, then q1 ≡Proc\dom(a) q2.

SP2 : If q1 ≡Proc q2, then q1 = q2.

SP3 : Let a ∈ Σ and q ∈ Q. If for each p ∈ dom(a), there exist qp, q
′
p ∈ Q such that

qp
a−→ q′p and q ≡p qp, then for each choice of such qp’s and q′p’s, there exists

q′ ∈ Q such that q
a−→ q′ and q′ ≡p q′p for each p ∈ dom(a).

Since the above theorem is not very easy to digest, we link in Figure 3.7 the definition of
a synchronized product with the three conditions of Theorem 3.26 (see also the informal
discussion preceding the theorem). Below we give an example that shows Theorem 3.26
‘at work’:

Example 3.27 Consider again the transition system of Figure 3.4 together with the
distribution from Example 3.14, now with the austere look of Figure 3.8 (obtained by

1In [CMT99, Muk02], Theorem 3.26 is restricted to the case when |I| = 1 (i.e., all transition systems
have only one initial state). By inspecting the proof of [CMT99], it is easy to see that the theorem holds
in fact for an arbitrary I.

We also mention that in [CMT99, Muk02], the transition system TS is required to be reachable, but
this is indeed the case in our framework: We assumed in Section 2.2 that all transition systems we work
with are finite and reachable.

3.3. Shapes 45

The distribution Transition system

Σ := {a, b, c},
Proc := {1, 2}

dom
a {1}
b {2}
c {1, 2}

0

1

2

3

4

a c

c b

Figure 3.8: An asynchronous automaton that is not a synchronous product

relabeling wall by a, floor by b, and roof by c). In the proof of Remark 3.19, we gave in-
tuitive arguments why the transition system is not (isomorphic to) a synchronous product.
We can now provide an alternative formal proof using Theorem 3.26.

By contradiction, suppose that the transition system of Figure 3.8 is isomorphic to
a synchronous product over the distribution of Figure 3.8. Then, there exists a set of
equivalences (≡p)p∈Proc such that SP1–SP3 are satisfied and therefore we have:

From SP1 applied to 0
a−→ 1, we have that 0 ≡2 1 (recall that dom(a) = {1}, so

Proc \ dom(a) = {2}).

Next, we apply SP3 to the action c and the state q := 0 in the following way:

For each process p of dom(c) = {1, 2}, we choose

– for p = 1: 0
c−→ 3 with 0 ≡1 0 (reflexivity of ≡1) and

– for p = 2: 1
c−→ 2 with 0 ≡2 1 (the application of SP1 above).

Then, there exists necessarily q′ such that 0
c−→ q′ and q′ ≡1 3 and q′ ≡2 2. Looking

at the transition relation, we see that the only q′ such that 0
c−→ q′ is the state 3.

So, we have 3 ≡1 3 and 3 ≡2 2 (*).

Finally, we apply SP3 to the action b and the state 2. Since dom(b) = {2}, we

choose 3
b−→ 4 for which we have 2 ≡2 3 (from (*) above). Then, there must exist

a q′′ such that 2
b−→ q′′ and q′′ ≡2 4. But there is no transition going out of state 2,

so we reached a contradiction. �

Remark 3.28 At this point, we note that the characterization given by Theorem 3.26 is
effective and constructive:

effective, because we can always decide whether a transition system is isomorphic to
a synchronous product or not (the number of all possible local equivalences is finite
and we can test for each combination the SP1–SP3 conditions) and

46 Distributed Transition Systems and the Synthesis Problem

constructive, because if there exists an isomorphic synchronous product, then we can
derive its local transition systems by taking the quotients of the original transition
system w.r.t. the local equivalences (see [CMT99, Muk02] for more details).

The above remark solves what is called the synthesis problem for synchronous products
modulo isomorphism (see Section 3.5) and whose computational complexity will be dis-
cussed in Chapter 4.

In the special case of deterministic transition systems, Morin gave a similar charac-
terization in [Mor98]. (In fact, the result for the deterministic case was published before
the general case.)

Theorem 3.29 [Mor98] Let (Σ,Proc, ∆) be a distribution and TS = (Q, Σ,→, {qin}) be
a deterministic transition system. Then, we have:

1. There exists the least family of equivalences (≡p)p∈Proc over the states of Q such that
the following conditions hold (for any q1, q

′
1, q2, q

′
2 ∈ Q, a ∈ Σ, and p ∈ Proc):

DSP1 : If q1
a−→ q2, then q1 ≡Proc\dom(a) q2.

DSP2 : If q1
a−→ q′1, q2

a−→ q′2, and q1 ≡p q2, then q′1 ≡p q′2.

2. The following are equivalent:

(i) TS is isomorphic to a synchronous product of transition systems over ∆.

(ii) For the equivalences (≡k)k∈Proc from 1. the following conditions hold:

DSP3 : If q1 ≡Proc q2, then q1 = q2.

DSP4 : Let a ∈ Σ and q ∈ Q. If for each p ∈ dom(a), there exist qp, q
′
p ∈ Q

such that qp
a−→ q′p and q ≡p qp, then there exists q′ ∈ Q such that q

a−→ q′.

We note that SP1, respectively SP2 are the same as DSP1, respectively DSP3. Moreover,
for a deterministic transition system, SP3 is equivalent to DSP2 and DSP4. Even if the
conditions seem to be equivalent, the advantage of Theorem 3.29 over Theorem 3.26 is
given by the elimination of the existential quantifier on the class of local equivalences.
The first part of Theorem 3.29 constructs a set of equivalences (computed as a fixed point)
which are further tested in the second part. This should give a more efficient implemen-
tation compared to the ‘guessing’ of local equivalences suggested by Theorem 3.26. The
advantage of Theorem 3.29 over Theorem 3.26 is confirmed theoretically in Chapter 4 and
practically in Chapter 6.

3.3.3 Asynchronous Automata

A characterization similar to Theorem 3.26 can be given for asynchronous automata:

Theorem 3.30 [Mor99b, Muk02] Let (Σ,Proc, ∆) be a distribution and TS = (Q, Σ,→
, I)1 be a transition system. Then, the following are equivalent:

1We mention that in [Mor99b, Muk02], the transition system TS is required to be reachable, but this
is indeed the case in our framework: We assumed in Section 2.2 that all transition systems we work with
are finite and reachable.

3.3. Shapes 47

(i) TS is isomorphic to an asynchronous automaton over ∆

(ii) For each p ∈ Proc, there exists an equivalence relation ≡p⊆ Q × Q such that the
following conditions hold (for any q1, q2 ∈ Q and a ∈ Σ):

AA1 : If q1
a−→ q2, then q1 ≡Proc\dom(a) q2.

AA2 : If q1 ≡Proc q2, then q1 = q2.

AA3 : If q1
a−→ q′1 and q1 ≡dom(a) q2, then there exists q′2 ∈ Q such that q2

a−→ q′2
and q′2 ≡dom(a) q′1.

Since SP1, respectively SP2, is the same as AA1, respectively AA2, the difference between
Theorem 3.26 and Theorem 3.30 is given by SP3 vs. AA3. More precisely, it is easy to see
that SP3 implies AA3. This observation gives an alternative proof to Remark 3.19 saying
that any synchronous product accepts a description as an asynchronous automaton.

As a simple (pedagogical) exercise, we show how Theorem 3.30 can be used to prove
structural properties of distributed transition systems:

Remark 3.31 Let (Σ,Proc, ∆) be a distribution and TS = (Q, Σ,→, I) be (the global
transition system of) an asynchronous automata. Then:

1. TS satisfies ID and FD (Proposition 3.22).

2. There exist no q, q′ ∈ Q, a, b ∈ Σ such that q
a,b−→ q′, q 6= q′, and a‖b.

As a consequence, Example 3.23 cannot be an asynchronous automata (because

0
a,b−→ 1 and a‖b).

Proof. Easy:

1. We use Theorem 3.30 to give an alternative proof to Proposition 3.22. We consider
only the FD case (ID being similar).

For q1
a−→ q2, q1

b−→ q3, and a‖b, we show that there exists q4 such that q2
b−→ q4

and q3
a−→ q4 (cf. Figure 3.5). Since TS is an asynchronous automaton over ∆,

according to Theorem 3.30, there must exist a family of local equivalences (≡p)p∈Proc

satisfying AA1–AA3. We apply the three conditions in turn as follows:

From AA1 applied to q1
a−→ q2, we have q1 ≡Proc\dom(a) q2 and from a‖b, by

definition, we have dom(a) ∩ dom(b) = ∅, which is equivalent to dom(b) ⊆
(Proc \ dom(a)). Thus, we have q1 ≡dom(b) q2.

From AA1 applied to q1
b−→ q3, we similarly obtain q1 ≡dom(a) q3.

From AA3 applied to q1
b−→ q3 and q1 ≡dom(b) q2, there exists q′4 such that

q2
b−→ q′4 and q′4 ≡dom(b) q3. Moreover, we have that q′4 ≡Proc\dom(a) q3 (*):

If p ∈ (Proc \ dom(a)) \ dom(b), then q′4 ≡p q3 from transitivity applied to
q′4 ≡p q2, q2 ≡p q1, and q1 ≡p q3 (the last three equivalences are obtained

applying AA1 to q2
b−→ q′4, q1

a−→ q2, respectively q1
b−→ q3).

48 Distributed Transition Systems and the Synthesis Problem

From AA3 applied to q1
a−→ q2 and q1 ≡dom(a) q3, there exists q′′4 such that

q3
a−→ q′′4 and q′′4 ≡dom(a) q2. From AA1 applied to q3

a−→ q′′4 , we have
that q3 ≡Proc\dom(a) q′′4 , which together with (*) gives (by transitivity) that
q′4 ≡Proc\dom(a) q′′4 . Similarly, we have also q′4 ≡Proc\dom(b) q′′4 . From the last two
equivalences and dom(a) ∩ dom(b) = ∅, we have that q′4 ≡Proc q′′4 .

Finally, from AA2 applied to q′4 ≡Proc q′′4 , we have that q′4 = q′′4 and we denote
this single state by q4. Then, this state q4 satisfies condition FD for q1

a−→ q2,

q1
b−→ q3, and a‖b [q.e.d.].

2. By contradiction, assume there exist q 6= q′ such that q
a,b−→ q′ and a‖b. Applying

AA1 to q1
a−→ q2, respectively q1

b−→ q2 we easily obtain that q1 ≡Proc q2, which by
AA2 implies that q1 = q2, which is a contradiction. �

For deterministic transition systems, a characterization similar to Theorem 3.29 is
available also for asynchronous automata:

Theorem 3.32 [Mor98] Let (Σ,Proc, ∆) be a distribution and TS = (Q, Σ,→, {qin}) be
a deterministic transition system. Then, we have:

1. There exists the least family of equivalences (≡p)p∈Proc over the states of Q such that
the following conditions hold (for any q1, q

′
1, q2, q

′
2 ∈ Q, a ∈ Σ, and p ∈ Proc):

DAA1 : If q1
a−→ q2, then q1 ≡Proc\dom(a) q2.

DAA2 : If q1
a−→ q′1, q2

a−→ q′2, and q1 ≡dom(a) q2, then q′1 ≡dom(a) q′2.

2. The following are equivalent:

(i) TS is isomorphic to an asynchronous automaton over ∆.

(ii) For the equivalences (≡k)k∈Proc from 1. the following conditions hold:

DAA3 : If q1 ≡Proc q2, then q1 = q2.

DAA4 : If q1
a−→ q′1 and q1 ≡dom(a) q2, then there exists q′2 ∈ Q such that

q2
a−→ q′2.

We end with a ‘genealogical’ remark. The results of Sections 3.3.2 and 3.3.3 have
their roots in the theory of regions [ER90], proposed by Ehrenfeucht and Rozenberg in
the early 90s to characterize (modulo isomorphism) the reachability graphs of Petri nets1.
The connection between the Theorems 3.26, 3.30 and the theory of regions is given by
the fact that the synchronous products and the asynchronous automata can be seen as
particular cases of (1-safe) Petri nets.

1Loosely speaking, a region is a subset of states that is consistently entered, respectively exited by
transitions having the same label.

3.4. Languages 49

3.4 Languages

In this section we study the languages accepted by our two models of distributed systems.
We start with a short discussion regarding the final states of a distributed system. Then,
we show the relation between the structural diamond properties of transition systems
and closure properties of their accepted languages. We continue the presentation with
characterizations of the languages of distributed transition systems with remarks about
special cases. We finish with an expressiveness comparison of various classes of languages.

Before we start, we introduce notations for the classes of languages accepted by dis-
tributed transition systems with different constraints.

Notation. Let us fix a distribution (Σ,Proc, ∆). Then, for each of the theoretical models
M below:

NSP nondeterministic synchronous products,
DSP deterministic synchronous products,
NAA nondeterministic asynchronous automata, and
DAA deterministic asynchronous automata,

we denote by

L(M), respectively L(M,F)

the class of languages accepted by the model M over ∆ without, respectively with a set
of final states.

Moreover, we consider also acyclic versions of the above four classes of systems, and
the notation is obtained by adding the prefix ‘A’. So, we have

ANSP acyclic nondeterministic synchronous products,
ADSP acyclic deterministic synchronous products,
ANAA acyclic nondeterministic asynchronous automata, and
ADAA acyclic deterministic asynchronous automata,

For instance, L(DAA,F) denotes the class of all languages L = L(AA, F) where AA
is a deterministic asynchronous automaton over ∆ with a set of final states F , while
L(ANSP) denotes the class of all languages L = L(SP) where SP is an acyclic (nonde-
terministic) synchronous product over ∆.

A small clarification: As in classic automata theory, when we use the term ‘nonde-
terministic’ for a (distributed) transition system, we do not mean a system that is ‘not
deterministic’ (thus excluding the deterministic systems from the class), but we mean a
general transition system that may as well be deterministic or not. According to Defini-
tions 3.15 and 3.18, the usage of the descriptive adjective ‘nondeterministic’ is redundant,
but may help to better differentiate various classes of models.

50 Distributed Transition Systems and the Synthesis Problem

3.4.1 Final States

In this subsection we shortly discuss the appropriateness of final/accepting states to dis-
tributed systems.

The behavior or the language of a system is given by the set of all its possible runs.
A run has a starting point and an ending point. Therefore, we can ‘tune’ the language
of a system by appropriately modifying the set of initial and final states. This works per
se for sequential machines (Definition 2.13) and we could naturally extend the idea to
distributed transition systems and choose a set of initial and final global states. This is a
seamless theoretical approach, as one could simply observe the global transition system of
a distributed system as a sequential system and apply the classic reasoning. Yet, there is
a pragmatic objection to the above choice of global final states: An implementation of the
mechanism of telling when we can accept a run implies the existence of a global controller
that has access to all the local states and decides whether their tuple is accepting (i.e.,
final) or not. However, this is against the guiding principle that a distributed system
involves only local synchronization. Also, it is unnatural to have a set of final global
states that declare a posteriori that a run already executed is not valid because the reached
global state is not final (the processes have only partial views and therefore cannot prevent
possible executions that do not satisfy a global condition). Therefore:

In this thesis we will not to deal with final states and will observe all the pos-
sible executions of the distributed transition systems (see L(SP), respectively
L(AA) in Definitions 3.17, respectively 3.20). In other words, we consider by
default all the reachable global states as accepting.

We mention two other related models that address the above mentioned problems
regarding a set of global final states for asynchronous automata. In his paper [Zie89],
Zielonka restricts the model of asynchronous automata with final states to those having
the following safety property: from any global state reachable from an initial state, we can
always reach a final state. The new class, called safe asynchronous automata, was shown
to have the same expressive power as the asynchronous automata with final states, but
only in case we allow nondeterminism. Another possibility, mentioned by Pighizzini in
[Pig93a, Section 3.3], is to have a set of local final states for each process of the distribution
and to consider the cartesian product of the sets of local final states as the set of global
final states. We will further discuss these options at a later time.

3.4.2 Traces of Diamonds

In Section 3.3.1, we have seen how the independence relation between actions ‘watermarks’
the structures of distributed systems. In this section, we study the ‘reflexions’ of the
independence relation in the languages of distributed transition systems and show the
relation of these languages to the trace languages from Section 3.1.

In Section 3.3.1, the ID and FD diamond properties were shown to hold for the class
of distributed systems over a concurrent alphabet (Σ, ‖). Since the behavior of a system
depends of course on its shape, it is natural to investigate the properties of the languages of
systems satisfying the diamond properties. Thus, it is easy to see that to ID it corresponds

3.4. Languages 51

the trace-closure property (Definition 3.5): For all w,w′ ∈ Σ∗, and a, b ∈ Σ, it holds

wabw′ ∈ L ∧ a‖b ⇒ wbaw′ ∈ L.

On the other hand, to FD we can associate a notion of forward closure1:

Definition 3.33 (Forward-closed language)
Let (Σ, ‖) be a concurrent alphabet. A language L ⊆ Σ∗ is called forward-closed if for all
w ∈ Σ∗, and a, b ∈ Σ it holds:

wa ∈ L ∧ wb ∈ L ∧ a‖b ⇒ wab ∈ L.

The following proposition confirms the relation between the above structural and lan-
guage properties:

Proposition 3.34 For any concurrent alphabet (Σ, ‖) and any transition system TS =
(Q, Σ,→, I), we have:

1. If TS satisfies ID, then L(TS) is trace-closed.

2. If TS is deterministic and satisfies FD, then L(TS) is forward-closed.

3. If TS is nondeterministic and satisfies FD, then it is not always the case that L(TS)
is forward-closed.

Proof. 1. Let w,w′ ∈ Σ∗ and a, b ∈ Σ such that wabw′ ∈ L(TS) and a‖b. Then, there

exist qin ∈ I, q1, q2, q3 ∈ Q such that qin w−→ q1
a−→ q2

b−→ q3
w′

−→ q4. From q1
a−→

q2
b−→ q3 and a‖b, by ID we have that there exists q′2 such that q1

b−→ q′2
a−→ q3. So

qin w−→ q1
b−→ q′2

a−→ q3
w′

−→ q4, which implies that wbaw′ ∈ L(TS).

2. Let w ∈ Σ∗ and a, b ∈ Σ such that wa,wb ∈ L(TS) and a‖b. Since TS is deter-
ministic, there exists a unique initial state qin and unique states q1, q2, q3 ∈ Q such

that qin w−→ q1, q1
a−→ q2, and q1

b−→ q3. From q1
a−→ q2, q1

b−→ q3, and a‖b,
by FD we have that there exists q4 ∈ Q such that q2

b−→ q4 and q3
a−→ q4. So

qin w−→ q1
a−→ q2

b−→ q4 in TS , which implies that wab ∈ L(TS).

3. For the concurrent alphabet Σ := {a, b, c} with a‖b, the nondeterministic transition
systems of Figure 3.9 satisfy FD (and ID). On the other hand, the language accepted
by the left, respectively right, transition system, are

{ε, a, b}, respectively {ε, c, ca, cb}.

We see that none of the two languages above is forward-closed (E.g., for the second
language we have that a‖b and ca, cb belong to the language, but cab does not
belong to it.)

The left transition system has multiple initial states, while the second one has only
one initial state (but nondeterministic choice for c). �

1This property bears other different names like: properness in [Maz87] (see also [DR95, Chapter 9]),
fI-closure in [Muk02], coherence in [BM03], or safe-branching in [ŞEM03].

52 Distributed Transition Systems and the Synthesis Problem

Independence First transition system Second transition system

Σ := {a, b, c}

with a‖b
1 2

3
a b

0

1

3

2

4

c c

a b

Figure 3.9: Two transition systems satisfying FD whose languages are not forward-closed

Since the distributed transition systems satisfy the ID and FD properties (cf. Proposi-
tion 3.22), we further obtain:

Corollary 3.35 Let (Σ,Proc, ∆) be a distribution and ‖ its corresponding independence
relation. Then:

1. L(DSP), L(DAA), L(ADSP), and L(ADAA) are included in the class of forward-
closed trace-closed languages.

2. L(NSP), L(NAA), L(ANSP), and L(ANAA) are included in the class of trace-
closed languages.

We can investigate also the structural properties of regular languages satisfying the
forward and trace closure properties. Interestingly enough, we recover the ID and FD
properties, but only for the minimal transition system accepting the given language1.
The following result will later be useful in the distributed implementability test.

Proposition 3.36 Let (Σ, ‖) be a concurrent alphabet and L ⊆ Σ∗ a prefix-closed regular
language. Then, the following are equivalent:

1. L is forward- and trace-closed.

2. The minimal deterministic transition system accepting L satisfies ID and FD.

Proof. First of all, according to Corollary 2.19, for the prefix-closed regular language L,
there exists a unique (up to isomorphism) minimal deterministic transition system, say
TS = (Q, Σ,→, {qin}), such that L = L(TS).

1 ⇒ 2 : Let us first prove that TS satisfies ID. Let q1, q2, q3 ∈ Q and a‖b such that

q1
a−→ q2

b−→ q3. Since TS is reachable, there exists w0 ∈ Σ∗ such that qin w0−→ q1.
So, w0ab ∈ L(TS). Since L(TS) is trace-closed, we have that also w0ba ∈ L(TS),

which implies that there exists two states q4, q
′
4 ∈ Q such that qin w0−→ q1

b−→ q4
a−→

1According to Proposition 3.34, if a deterministic transition system satisfies FD, then its language is
forward-closed, but not the other way around: E.g., the language L := {ε, a, b, ab, ba} is forward-closed

for a‖b, but the (non-minimal) deterministic transition system 2
b←− 1

a←− 0
b−→ 3

a−→ 4 (with 0 initial
state) accepts L and does not satisfy FD.

3.4. Languages 53

q′4 (after executing w0 from qin , we always reach q1, because TS is deterministic).
If we prove that q3 is equal to q′4, we can conclude that the ‘diamond’ property ID
holds in q1 for a‖b.
By contradiction, assume q3 6= q′4. Recall now the construction of the minimal
deterministic transition system from the proof of Corollary 2.19. There, we made
the transition relation total by adding a ‘sink state’ ⊥. From q3 6= q′4, we have that
q3 6≈ q′4, which means that there exists an execution w ∈ Σ∗ such that q3

w−→ q′

and q′4
w−→ q′′ with either q′ =⊥ or q′′ =⊥, but not both equal to ⊥. Without

loss of generality, suppose q′ 6=⊥ and q′′ =⊥. Then, on one hand, we have that

qin w0−→ q1
a−→ q2

b−→ q3
w−→ q′, so w0abw ∈ L(TS). On the other hand, qin w0−→

q1
b−→ q4

a−→ q′4
w−→⊥, so w0baw 6∈ L(TS). Thus, we have w0abw ∈ L(TS),

a‖b, and w0baw 6∈ L(TS), which implies that L(TS) is not trace-closed, but this
contradicts the hypothesis that L(TS) is trace-closed.

Let us prove now that TS satisfies FD. Let q1, q2, q3 ∈ Q and a‖b such that q1
a−→ q2

and q1
b−→ q3. Since TS is reachable, there exists w0 ∈ Σ∗ such that qin w0−→ q1.

So, w0a ∈ L(TS) and w0b ∈ L(TS). Since L(TS) is forward-closed, we have
that also w0ab ∈ L(TS), which implies that there exists a state q4 ∈ Q such that

qin w0−→ q1
a−→ q2

b−→ q4. Symmetrically, from wb ∈ L(TS), wa ∈ L(TS), and
b‖a (the independence relation is symmetric), there exists q′4 ∈ Q such that qin w0−→
q1

b−→ q3
a−→ q′4. Finally, FD holds in q1 for a and b, because q4 = q′4 for the same

reasons as in the ID case above (i.e., we use the minimality of TS).

2 ⇒ 1 : Follows directly from 1. and 2. of Proposition 3.34. �

Final states We redo the analysis of the relation between diamond and closure prop-
erties taking a set of final states into account. The difference to the above results lies in
the forward diamond case. More precisely, the following hold:

Proposition 3.37 For any concurrent alphabet (Σ, ‖) and any finite automaton A =
(Q, Σ,→, I, F), we have:

1. If A satisfies ID, then L(A, F) is trace-closed.

2. If A satisfies FD, then it is not always the case that L(A, F) is forward-closed, even
for A deterministic.

Proof. 1. Same proof as the one for 1. of Proposition 3.37.

2. For the concurrent alphabet Σ := {a, b} with a‖b, the finite automaton A of Fig-
ure 3.10 with the set of final states F := {0, 1, 2} is deterministic and satisfies FD
(and ID). On the other hand, his language {ε, a, b} is not forward-closed. �

Last part of Proposition 3.37 suggests that taking final states into account is not suitable
to a distributed setting, since the structural information given by FD is not reflected in the
accepted language of the distributed system. Therefore, we can derive only the following
corollary from the first part of Proposition 3.37:

54 Distributed Transition Systems and the Synthesis Problem

0

1 2

3

where a‖b and
F := {0, 1, 2}

a b

b a

Figure 3.10: Deterministic finite automaton satisfying FD whose language is not forward-
closed

Corollary 3.38 Let (Σ,Proc, ∆) be a distribution and ‖ its corresponding independence
relation. Then, all L(DSP, F), L(DAA,F), L(NSP, F), L(NAA,F), L(ADSP, F),
L(ADAA,F), L(ANSP, F), and L(ANAA,F) are included in the class of trace-closed
languages.

We also have a similar of Proposition 3.36 for ID only.

Proposition 3.39 Let (Σ, ‖) be a concurrent alphabet and L ⊆ Σ∗ a regular language.
Then, the following are equivalent:

1. L is trace-closed.

2. The minimal deterministic finite automaton accepting L satisfies ID.

Proof. 1 ⇒ 2 : Similar to the proof of (1 ⇒ 2) from Proposition 3.36.

2 ⇒ 1 : Follows directly from 1. of Proposition 3.37. �

3.4.3 Synchronous Products of Transition Systems

In this section, we give characterizations for the class of languages accepted by synchro-
nous products of transition systems. Many of the results are picked up from the literature
[Dub86, Zie87, Thi95, CMT99, Muk02].

In Section 3.4.2 we have seen that the structural properties ID and FD induce the trace
and forward closure properties on the corresponding languages. Similarly, the synchro-
nization on common actions of a synchronous product will be present in the characteriza-
tion of the languages of synchronous products. We will see that the languages accepted
by synchronized products are synchronizations on common actions of the local languages
corresponding to the components. Thus the first step is to define a synchronization on
common actions for languages. The result of the synchronization will be called a product
language1:

1Maybe a more suitable name would have been ‘synchronous language’, but we stick to the nomencla-
ture used in [Thi95, CMT99, Muk02] in order to avoid confusion with the established name of ‘synchronous
language’ used inside the synchronous programming languages community [BCE+03].

3.4. Languages 55

Definition 3.40 (Product language)
Let (Σ,Proc, ∆) be a distribution together with its local alphabets1 (Σloc(p))p∈Proc. We
say that a language L ⊆ Σ∗ is a product language over ∆, if for each p ∈ Proc there exists
a language Lp ⊆ (Σloc(p))∗ such that

L = {w ∈ Σ∗ | w ↾Σloc(p)∈ Lp for all p ∈ Proc}.

In other words, L consists of all possible synchronizations on common actions of words of
the ‘local’ languages Lp. (Note that in the particular case where the actions of the local
alphabets are pairwise independent, the synchronization on common actions becomes the
shuffle operation. At the opposite pole, if the actions of the local alphabets are pairwise
dependent, we recover the intersection operation.)

Using the definition, it is not difficult to prove that the product languages are both
forward- and trace-closed:

Proposition 3.41 [Thi95] Assume L ⊆ Σ∗ is a product language over (Σ,Proc, ∆).
Then, L is forward- and trace-closed with respect to the independence generated by ∆.

The reverse of the above proposition is not true: Not all forward- and trace-closed lan-
guages are necessarily product languages as the following example shows.

Example 3.42 We choose the language of the transition system of Figure 3.8, i.e.,

L := {ε, a, c, ac, cb}

over the distribution ({a, b, c}, {1, 2}, {(a, 1), (b, 2), (c, 1), (c, 2)}). On the one hand, L is
forward- and trace-closed over the independence relation ‖ = {(a, b)}. On the other hand,
L is not a product language: By contradiction, assume L is a product language. Then,
there exist L1 ⊆ (Σloc(1))∗ = {a, c}∗ and L2 ⊆ (Σloc(2))∗ = {b, c}∗ as in Definition 3.40.
From ac ∈ L, we have ac ∈ L1. Similarly, from cb ∈ L, we have cb ∈ L2. Then, we must
also have acb ∈ L (because acb ↾{a,c}= ac ∈ L1 and acb ↾{b,c}= cb ∈ L2), but this is a
contradiction.

An important characterization of the product languages says that they are exactly
those languages that are equal to the synchronization of their own projections on the
local alphabets:

Proposition 3.43 [Thi95, CMT99] Let (Σ,Proc, ∆) be a distribution and L ⊆ Σ∗ a
language. Then, L is a product language over ∆ if and only if

L = {w ∈ Σ∗ | w ↾Σloc(p)∈ L↾Σloc(p) for all p ∈ Proc}.

We relate now the (regular) product languages to the languages of synchronous prod-
ucts of transition systems. Starting with the synchronous products having only one global
initial state (i.e., I = {qin}), one can show that their languages are product languages. The
proof relies on Proposition 3.43 and with the observation that the projections L↾Σloc(p) of
the language L of a synchronous product are exactly the languages of the local transition
systems (Qp,Σloc(p),→p, {qin

p }), where the initial state is qin = (qin
p)p∈Proc.

1Recall Definition 3.13.

56 Distributed Transition Systems and the Synthesis Problem

Proposition 3.44 [Dub86, Thi95] The language of a synchronous product with only one
global initial state (i.e., |I| = 1) over a distribution ∆ is a product language (over ∆).

Corollary 3.45 The language of a deterministic synchronous product (over a distribution
∆) is a product language (over ∆).

Proof. A deterministic synchronous product has by definition only one initial state.

In the general case, when there may exist multiple initial states, the language of a
synchronous product of transition systems is a finite union of product languages (each
initial state will generate a product language by Proposition 3.44, so the language of the
synchronous product is the union over the initial states of these product languages):

Proposition 3.46 [Dub86, Zie87, Thi95] The language of a synchronous product over a
distribution ∆ is a finite union of product languages (over ∆).

Note that the class of product languages over a (non-trivial) distribution may not be
closed under finite union as the following trivial example shows:

Example 3.47 For a distribution containing a pair of independent actions a‖b, the
languages L1 := {a} and L2 := {b} are obviously product languages, but their union
L1 ∪ L2 = {a, b} is not (because {a, b} is not forward-closed, whereas the forward-closure
is a property of product languages according to Proposition 3.41).

Moreover, since the language of a synchronous product is the language of its global
transition system (Definition 3.17) and the language of a transition system is prefix-closed
and regular (Corollary 2.15), we have:

Lemma 3.48 The language of a synchronous product is a prefix-closed regular language.

Until now we have seen that the class of languages of synchronous products is in-
cluded in the intersection of the class of (finite unions of) product languages (Proposi-
tions 3.44,3.46) and of prefix-closed regular languages (Lemma 3.48). The next proposition
says that the reverse inclusion also holds:

Proposition 3.49 [Thi95, CMT99] Let (Σ,Proc, ∆) be a distribution and L ∈ Σ∗ a
language. Then:

1. If L is a prefix-closed regular product language over ∆, then there exists a determin-
istic synchronous product SP over ∆ such that L = L(SP).

2. If L is a finite union of prefix-closed regular product languages over ∆, then there
exists a synchronous product SP over ∆ such that L = L(SP).

Proof. 1. Let L be a prefix-closed regular product language over ∆. According to
Proposition 3.43, L is the synchronization on common actions of its projections
L↾Σloc(p). Since the class of prefix-closed regular languages is closed under projection
(Corollary 2.6), all L ↾Σloc(p) are prefix-closed regular languages. Then, according

3.4. Languages 57

to Corollaries 2.15 and 2.17, there exists a deterministic local transition system
TS p = (Qp,Σloc(p),→p, {qin

p }) for each p ∈ Proc such that L(TS p) = L↾Σloc(p).

We consider now SP to be the synchronous product (over ∆) of the transition
systems (TS p)p∈Proc. Since all TS ps are deterministic, using Proposition 3.24, SP
is also deterministic. Using the definition of synchronization on common actions of
product languages, respectively of local transition systems, it is not hard to see that
indeed L(SP) = L.

2. Let L =
⋃

j∈J Lj be a finite union of prefix-closed regular product languages (Lj)j∈J

over ∆. According to the previous step, for each Lj there exists a deterministic
synchronous product SPj over ∆ such that L(SPj) = Lj. We can construct now a
synchronous product SP to accept the union of

⋃

j∈J Lj = L from the (SPj)j∈J in
the following way: For each process p ∈ Proc, the p-local transition system of SP is
constructed as the disjoint union of the p-local transition systems of the SPjs and
the set of global initial states of SP consists of the initial states of the SPjs.

It is not difficult to see that indeed L(SP) =
⋃

j∈J L(SPj).
The constructions sketched above play an important rôle in the synthesis of synchro-

nous products and we will revisit them at a later point. �

From all the above results we can characterize the class of synchronous products by
means of product languages in the following way:

Theorem 3.50 For a fixed distribution (Σ,Proc, ∆) we have:

1. L(DSP) is equal to the class of prefix-closed regular product languages.

2. L(NSP) is equal to the class of finite unions of prefix-closed regular product lan-
guages.

The above result can be adapted further to acyclic systems, by restricting the charac-
teristic ‘regular’ to ‘finite’ (the acyclic transition systems accept finite languages, i.e.,
languages with a finite number of words – cf. Theorem 2.20).

Corollary 3.51 For a fixed distribution (Σ,Proc, ∆) we have:

1. L(ADSP) is equal to the class of prefix-closed finite product languages.

2. L(ANSP) is equal to the class of finite unions of prefix-closed finite product lan-
guages.1

The above characterizations will prove helpful in the study of the computational com-
plexity of the synthesis problem for synchronous products.

As a last remark, from Example 3.47 and Theorem 3.50, we see that the nondeter-
ministic synchronous products are more expressive than their deterministic counterparts.
Nevertheless, this is due only to the multiple global initial states: Once we force the
(nondeterministic) synchronous products to have the set of global initial states as a carte-
sian product of local initial states, we obtain the same expressiveness power as for the
deterministic ones, as the following proposition shows:

1Note that according to Example 3.47 the class of prefix-closed finite product languages may not be
closed under finite union, so L(ADSP) (L(ANSP).

58 Distributed Transition Systems and the Synthesis Problem

Proposition 3.52 Let SP = (Q, Σ,→, I) be a nondeterministic synchronous product
over a distribution (Σ,Proc, ∆) such that

I =
∏

p∈Proc

Ip

with Ip ⊆ Qp (the Qp are the local state spaces of Definition 3.15). Then, there exists a
deterministic synchronous product SP ′ over the same ∆ such that L(SP) = L(SP ′).

Proof. The deterministic synchronous product SP ′ is obtained by determinizing the local
components of SP taking as local sets of initial states the local sets Ip (cf. Corollary 2.17).
The synchronous product of the determinized components preserves the original language
and is deterministic according to Proposition 3.24. �

Corollary 3.53 For any nondeterministic synchronous product SP = (Q, Σ,→, I) over
a distribution ∆ with only one initial state (i.e., |I| = 1), there exists a deterministic
synchronous product SP ′ over the same ∆ such that L(SP) = L(SP ′).

Final states Once we take final states into account, the accepted languages are in
general not prefix-closed anymore. The first thought might be that characterization results
similar to Theorem 3.50 (and Corollary 3.51) for final states can be obtained simply by
removing the ‘prefix-closure’ constraint. As we will see in the following, this is only part
of the story. If we want a result similar to Theorem 3.50, we need a set of final states of a
special form, and namely, we must require that the set of global final states is a cartesian
product of local final states.

Let us start the study with the class of regular product languages and let L be a
regular product language over a distribution ∆. Then, according to Proposition 3.43, L is
the synchronization of its projections L ↾Σloc(p), while according to Proposition 2.5, these
projections are regular (because L is regular). Next, for each process p ∈ Proc, we can
construct a local deterministic finite automaton Ap = (Qp,Σloc(p),→p, {qin

p }, Fp) accept-
ing the p-local projection, i.e., L(Ap, Fp) = L ↾Σloc(p). Then, the synchronous product,
denoted by SP, of the local transitions given by the Aps with the unique global initial
state qin = (qin

p)p∈Proc and the set of global final states

F :=
∏

p∈Proc

Fp,

accepts the original language, i.e., L(SP, F) = L. Moreover, SP is deterministic (because
the Aps are deterministic). Thus, the class of regular product languages is included in the
class of the languages accepted by deterministic synchronous products with local sets of
final states. It is easy to see that the reverse inclusion also holds. To ease the presentation,
we will introduce a new notation for the above-emerging class of languages.

Notation. We denote by

L(DSP, locF), respectively
L(NSP, locF),

3.4. Languages 59

the class of languages of deterministic, respectively nondeterministic, synchronous prod-
ucts with a set of global final states given by a cartesian product of sets of local final
states.

Now we are ready to give a theorem similar to Theorem 3.50 for local final states.

Theorem 3.54 For a fixed distribution (Σ,Proc, ∆) we have that:

1. L(DSP, locF) is equal to the class of regular product languages.

2. L(NSP, locF) is equal to the class of finite unions of regular product languages.

Proof. 1. The proof was already given above.

2. For the direct inclusion, let SP be a nondeterministic synchronous product together
with a local sets of final states (Fp)p∈Proc and F :=

∏

p∈Proc Fp. Then the accepted
language L(SP, F) is the finite union of the languages generated by each initial
state of SP. Using an argument similar to the proof of Proposition 3.52, each of the
languages generated by one initial state is a regular product language. Therefore,
L(SP, F) is a finite union of regular product languages.

For the inverse inclusion, let L be a finite union of regular product languages. Then,
there exists a family of, say k, product languages (Li)i∈[1..k] such that L =

⋃k
i=1 Li.

According to the first part of this theorem, for each regular product language Li

(with i ∈ [1..k]) there exists a deterministic synchronous product SP i over ∆ with
local final states accepting Li.

Suppose for convenience (and without loss of generality) that Proc = {1, . . . ,m}
(i.e., |Proc| = m). For each i ∈ [1..k], SP i is the synchronous product of a set
of local automata (Aip)p∈[1..m] where Aip := (Qip,Σloc(p),→ip, {qin

ip }, Fip). Then, by
hypothesis, Li = L(SP i,

∏m
p=1 Fip) where the unique global initial state of SP i is

qin
i = (qin

i1 , . . . , qin
im).

We construct now a (nondeterministic) synchronous product SP over ∆ with local fi-
nal states accepting the union

⋃k
i=1 Li in the following natural way (see Figure 3.11):

the local components consist of the disjoint union of the local automata of the
SP is, i.e.,

Ap :=
k⊎

i=1

Aip,

for each p ∈ [1..m].

the set of initial states of SP is the union of the initial states of the SP is, i.e.,

I := {qin
i | i ∈ [1..k]}.

the set of the global final states of SP is the cartesian product of the disjoint
union of the local final states of the SP is, i.e.,

F :=
m∏

p=1

(
k⊎

i=1

Fip

)

.

60 Distributed Transition Systems and the Synthesis Problem

qin
1

qin
k

qin
11

qin
k1

qin
1p

qin
kp

qin
1m

qin
km

F11

Fk1

F1p

Fkp

F1m

Fkm

A11

Ak1

A1p

Akp

A1m

Akm

A1 Ap Am

.

Figure 3.11: Nondeterministic synchronous product with local final states accepting a
finite union of regular product languages

We prove now that for the SP constructed above indeed holds that

L = L(SP, F).

For the direct inclusion, if w ∈ L =
⋃k

i=1 Li, there exists i ∈ [1..k] such that
w ∈ Li, which means that w ∈ L(SP i,

∏m
p=1 Fip), so there exists a global final state

qfin
i ∈

∏m
p=1 Fip such that qin

i
w−→ qfin

i . Looking at Figure 3.11, it is not difficult to

see that qin
i

w−→ qfin
i is also possible in SP and qfin

i ∈ F , so w ∈ L(SP, F).

For the reverse inclusion, let w ∈ L(SP, F). Then, there exists qin ∈ I and qfin ∈ F
such that qin w−→ qfin . Since I = {qin

i | i ∈ [1..k]}, there exists i ∈ [1..k] such that
qin = qin

i . According to the definition of a synchronous product (Definition 3.15), the
global state space consists only of states reachable from the initial ones. Moreover,
the local transition systems (Ap)p∈[1..m] are constructed as disjoint unions of Aips.
From the last two facts, we deduce that from qin by w we cannot ‘touch’ any of the
local states of Ajp, with j 6= i. This implies that the reachable global state qfin is
necessarily a reachable global state of SP i. Finally, since qfin ∈ F , we have that
qfin ∈∏m

p=1 Fip, which implies w ∈ L(SP i,
∏m

p=1 Fip) = Li ⊆ L. �

After the smooth characterization of Theorem 3.54 for languages of synchronous prod-
uct with local final states, we can further consider unrestricted sets of global final states.
The class of accepted languages in this case will not become richer than in the case of
local final states for nondeterministic systems. However, there will be a difference in the
deterministic case:

Corollary 3.55 In general, we have that

L(DSP, locF) (L(DSP, F) ⊆ L(NSP, F) = L(NSP, locF).

3.4. Languages 61

The local transition systems The synchronous product

P1: P2:0

1

0

1

a b

with I := {(0, 0)} and
F := {(0, 0), (0, 1), (1, 0)}

(0, 0)

(1, 0) (0, 1)

(1, 1)

a b

b a

Figure 3.12: Deterministic synchronous product with final states accepting {ε, a, b} for
a‖b

Proof. First, the following inclusions are obvious:

L(DSP, locF) ⊆ L(DSP, F), L(NSP, locF) ⊆ L(NSP, F),
L(DSP, locF) ⊆ L(NSP, locF), L(DSP, F) ⊆ L(NSP, F).

Then, the following are enough to the complete the proof:

L(NSP, F) ⊆ L(NSP, locF) : Similar to Proposition 3.46, the class L(NSP, F) of lan-
guages of synchronous products with global final states is included in the class of
finite unions of regular product languages [Dub86, Zie87]. Since the latter class is
equal to L(NSP, locF), we have the inclusion L(NSP, F) ⊆ L(NSP, locF).

L(DSP, F) ⊆ L(NSP, locF) : Because L(DSP, F) ⊆ L(NSP, F) = L(NSP, locF) (see
previous inclusions).

L(DSP, F) \ L(DSP, locF) 6= ∅ : Recall Example 3.47. Let L := {ε, a, b} and a distri-
bution of Σ := {a, b} over two processes Proc := {1, 2} with ∆ = {(a, 1), (b, 2)} (so,
a‖b). On one hand, the deterministic synchronous product with final states from
Figure 3.12 accepts L, so L ∈ L(DSP, F). On the other hand, L is not a product
language (because L is not forward-closed – cf. Proposition 3.41). From the first
part of Theorem 3.54, the languages of L(DSP, locF) are product languages, so
L 6∈ L(DSP, locF). �

In the last corollary, we have seen that L(DSP, F) ⊆ L(NSP, F). Nevertheless, it is not
clear yet whether L(DSP, F) is properly included in L(NSP, F) or not.

For the acyclic case, similar to the Corollary 3.51, we have:

Corollary 3.56 For a fixed distribution (Σ,Proc, ∆) we have:

1. L(ADSP, locF) is equal to the class of finite product languages.

2. L(ANSP, locF) is equal to the class of finite unions of finite product languages.1

1Note that according to Example 3.47 the class of finite product languages may not be closed under
finite union, so L(ADSP, locF) (L(ANSP, locF).

62 Distributed Transition Systems and the Synthesis Problem

Moreover, taking global final states into account we have:

Corollary 3.57 In general, we have that

L(ADSP, locF) (L(ADSP, F) = L(ANSP, F) = L(ANSP, locF).

Proof. See last section of [Zie87].

Furthermore, the unions of finite product languages admit the following simpler char-
acterization:

Proposition 3.58 [Zie87] L(ANSP, F) is equal to the class of trace-closed finite lan-
guages.1

Thus, from Corollary 3.57 and Proposition 3.58 we get:

Corollary 3.59 L(ADSP, F), L(ANSP, F), L(ANSP, locF) are all equal to the class
of trace-closed finite languages.

We end with the remark that if we want to consider final states for synchronous prod-
ucts, the right choice is to have local final states rather than global ones (the intuition lies
in the loose synchronization on common actions implemented by the synchronous prod-
ucts). As we will see in the next section, this is not necessarily the case for asynchronous
automata (for which there is more information exchanged between the processes during
a synchronization).

3.4.4 Asynchronous Automata

In this section, we give characterizations for the class of languages accepted by asynchro-
nous automata which are based on a fundamental result by Zielonka [Zie87]. This deep
result says that the class of languages of (deterministic) asynchronous automata with
global final states is equal to the class of regular trace-closed languages.

Theorem 3.60 [Zie87] For a fixed distribution (Σ,Proc, ∆) and a language T ⊆ Σ∗, the
following are equivalent:

1. T is a regular trace-closed language.

2. There exists a (deterministic) asynchronous automaton AA with a set of global final
states F such that L(AA, F) = T .

The difficult direction is from 1 to 2 (the other direction simply follows from Corol-
lary 3.38). The construction is indeed involved and produces very large asynchronous
automata (we will see ways to find smaller solutions in Chapter 5).

Motivated by problems regarding the global final states similar to those mentioned in
Section 3.4.1, Zielonka devoted a subsequent paper [Zie89] to obtain the same result (i.e.,
Theorem 3.60) for the restricted class of so-called safe asynchronous automata, which are
asynchronous automata with the additional property that any run from an initial state
can be extended to an accepted run.

1It is easy to see that a similar results holds when final states are not taken into account, and namely,
L(ANSP) (i.e., the class of finite unions of prefix-closed finite product languages) is equal to the class
of prefix-closed trace-closed finite languages.

3.4. Languages 63

Theorem 3.61 [Zie89] For a fixed distribution (Σ,Proc, ∆) and a language T ⊆ Σ∗, the
following are equivalent:

1. T is a regular trace-closed language.

2. There exists a safe asynchronous automaton AA with a set of global final states F
such that L(AA, F) = T .

Nevertheless, Theorem 3.61 is not true in general for deterministic safe asynchronous
automata (Theorem 3.60 holds also for deterministic asynchronous automata): Recall for
instance the language of Example 3.47. Then, there exists a deterministic asynchronous
automaton with final states accepting the language (see Figure 3.12), but it is not difficult
to see that there is no safe deterministic asynchronous automaton accepting it.

Faithful to the conclusions of Section 3.4.1, we are interested in similar results, but
without considering a set of global final states. Using the Theorems 3.60 and 3.61, we are
able to obtain the following characterizations:

Theorem 3.62 For a fixed distribution (Σ,Proc, ∆) we have that:

1. L(DAA) is equal to the class of prefix-closed regular forward-closed trace-closed
languages.

2. L(NAA) is equal to the class of prefix-closed regular trace-closed languages.

Proof. 1. By construction (Definition 3.20), the language of an asynchronous au-
tomaton is a prefix-closed regular language. Moreover, using Corollary 3.35, the
language of deterministic asynchronous automaton is a forward-closed trace-closed
language. Hence, L(DAA) is included in the class of prefix-closed regular forward-
closed trace-closed languages. For the reverse inclusion, the proof builds upon the
details of Zielonka’s construction (Theorem 3.60). Since it would be distracting at
this point to introduce the ingredients of Theorem 3.60, we shift the solution to
Chapter 5 (Section 5.2.2).

2. The inclusion of L(NAA) into the class of prefix-closed regular trace-closed lan-
guages is immediate.

For the reverse inclusion, let T be a prefix-closed regular trace-closed language.
According to Theorem 3.61, there exists a safe asynchronous automaton AA with a
set of global final states F such that L(AA, F) = T .

We show that L(AA, F) = L(AA), where L(AA) is our definition of language
containing all the runs starting in an initial state of AA. Since the inclusion
L(AA, F) ⊆ L(AA) is obvious, we only prove L(AA) ⊆ L(AA, F) using the hy-
pothesis that T = L(AA, F) is prefix-closed.

Let w ∈ L(AA). Then, there exists the run qin w−→ q with qin ∈ I in AA. By
construction, AA is a safe asynchronous automaton, so any run of AA from an
initial state can be extended to an accepting run. In particular, w can be extended

to a run qin w′

−→ qfin with qfin ∈ F . Hence w is a prefix of w′ ∈ L(AA, F) and since
L(AA, F) is prefix-closed, we conclude that w ∈ L(AA, F). �

64 Distributed Transition Systems and the Synthesis Problem

Remark 3.63 At this point we mention a small mistake in the literature. Theorem 3.62
is presented in [Muk02, Theorem 8] and [ŞEM03, Theorem 2] as L(NAA) being equal
to L(DAA), and further equal to the class of prefix-closed regular forward-closed trace-
closed languages. In reality, L(NAA) properly includes L(DAA) as the following example
shows.

Take, for instance, the transition systems of Figure 3.9. For each of them there exists an
isomorphic nondeterministic asynchronous automaton, this meaning that their languages
belong to L(NAA). On the other hand, since the languages are not forward-closed, they
cannot belong to L(DAA).

Adapting Theorem 3.62 to the acyclic case, we have

Corollary 3.64 For a fixed distribution (Σ,Proc, ∆) we have that:

1. L(ADAA) is equal to the class of prefix-closed forward-closed trace-closed finite
languages.

2. L(ANAA) is equal to the class of prefix-closed trace-closed finite languages.

Final states Taking the global final states into account we have the following result as
a direct consequence of Theorem 3.60:

Corollary 3.65 For a fixed distribution (Σ,Proc, ∆) we have that:

L(DAA,F) and L(NAA,F) are both equal to the class of regular trace-closed lan-
guages1.

L(ADAA,F) and L(ANAA,F) are both equal to the class of trace-closed finite
languages.

At the moment, there are no characterizations known for asynchronous automata with
local final states. This suggests that, in contrast to the model of synchronous products,
local sets of final states are not suitable for asynchronous automata.

3.4.5 Comparative Expressiveness

In this section, we collect the results from the previous subsections and give an overview
on the expressiveness power of various models. More precisely, we show the relation
between the behaviors of our distributed transition systems with or without final states,
imposing determinism and/or acyclicity or not. More precisely, the Figures 3.13, 3.14,
3.15, and 3.16 give the inclusion relations between the aforementioned classes of languages
(represented by arrows, i.e., if L1 → L2 in the diagram, then L1 ⊆ L2). For non-trivial
distributions (i.e., distributions involving concurrency), some of the inclusions are in fact
proper inclusions2, i.e., L1 (L2, and the labels on the arrows give an example of a
language belonging to L2 ⊆ L1. The correctness of the diagrams is discussed next.

1Direct determinization constructions for asynchronous automata are provided in the papers [KMS94,
Mus94].

2For trivial distributions involving for instance only one process (i.e., |Proc| = 1), the synchronous
products and asynchronous automata both reduce to the class of classical transition systems, so nothing
interesting from concurrency point of view.

3.4. Languages 65

L(NAA) =
prefix-closed regular
trace-closed languages

L(DAA) =
prefix-closed regular forward-
closed trace-closed languages

finite unions of prefix-closed
regular product languages

= L(NSP)

L(DSP) = prefix-closed regular product languages

Example 3.68Example 3.67

Example 3.67Example 3.69

Figure 3.13: Comparison between the classes of languages of distributed transition systems

Proposition 3.66 For each pair of nodes L1,L2 in the graphs of Figures 3.13, 3.14, 3.15,
and 3.16, if L2 is reachable from L1, then L1 ⊆ L2.

Moreover, the equality signs in the graphs correspond to equality of classes.

Proof. First, it is enough to show that for each arrow L1 → L2, we have L1 ⊆ L2. This
is easy, since: (1) the deterministic models are particular cases of nondeterministic ones,
(2) the synchronous products particular cases of asynchronous automata (Remark 3.19),
and (3) cartesian products of sets of local final states are particular cases of sets of global
final states.

The correctness of equalities is given by the results in Sections 3.4.3 and 3.4.4. �

Note that there exist also obvious inclusion relations between corresponding class
across the given figures: The models with final states are more expressive than the ones
without (the languages in the latter category are always prefix-closed); e.g., L(NSP) (

L(NSP, F) with the non-prefix-closed language {a} distinguishing them. Also, the acyclic
models are less expressive that the corresponding general ones (the languages in the former
category are always finite); e.g., L(ANSP) (L(NSP) with the infinite language {a}∗
distinguishing them.

Next, we give examples that prove the proper inclusions for non-trivial distributions.
Let us choose a generic distribution (Σ,Proc, ∆) such that {a, b, c} ⊆ Σ with a‖b, but
a 6 ‖c 6 ‖b.
Example 3.67 We choose the following prefix-closed language:

L := {ε, a, b}.

On one hand, since L is a prefix-closed trace-closed finite language, we have

L ∈ L(ANAA) = L(ANSP) (L(NSP) ⊆ L(NAA)

(for the equality L(ANAA) = L(ANSP) see the footnote of Proposition 3.58). On the
other hand, since L is not forward-closed, L 6∈ L(DAA) (and thus L 6∈ L(ADAA) and
L 6∈ L(DSP) – the two classes are included in L(DAA)). Thus, for a‖b, the arrows
labeled by ‘Example 3.67’ in Figures 3.13 and 3.14 depict indeed proper inclusions.

66 Distributed Transition Systems and the Synthesis Problem

L(ANSP) = L(ANAA) = prefix-closed trace-closed finite languages

L(ADAA) =
prefix-closed forward-closed
trace-closed finite languages

L(ADSP) = prefix-closed finite product languages

Example 3.68

Example 3.67

Figure 3.14: Comparison between the classes of languages of acyclic distributed transition
systems

Taking final states into account, on one hand, we have L ∈ L(DSP, F) (see Figure
3.12) and also L ∈ L(ANAA,F) (L is a trace-closed finite language). On the other
hand, L 6∈ L(DSP, locF) and L 6∈ L(ADSP, locF) (because L is not forward-closed, and
consequently, not a product language – cf. Proposition 3.41). Thus, for a‖b, the arrows
labeled by Example 3.67 in Figures 3.15 and 3.16 depict indeed proper inclusions.

Example 3.68 We choose the following prefix-closed language:

L = {ε, a, c, ac, cb}

(see also Figure 3.8). On one hand, since L is a prefix-closed finite forward-closed trace-
closed language, L ∈ L(ADAA) (L(DAA). On the other hand, since L is not a
product language (arguments similar to those given in Example 3.42), L 6∈ L(ADSP)
and L 6∈ L(DSP). Thus, for c 6 ‖a‖b 6 ‖c, the arrows labeled by ‘Example 3.68’ in Figures
3.13 and 3.14 depict indeed proper inclusions.

Example 3.69 [Zie87] We choose the following prefix-closed language:

L := Prefix((([ab] + [aabb])c)∗),

where [u] denotes the trace of the word u (see Section 3.1 for the definition). Figure 3.17
gives a transition system accepting L.

In [Zie87] it is proved that L ∈ L(NAA) (L(NAA,F) and that L is not a finite
union of (prefix-closed) regular product languages, so L 6∈ L(NSP, F) and L 6∈ L(NSP).
Thus, for c 6 ‖a‖b 6 ‖c, the arrows labeled by ‘Example 3.69’ in Figures 3.13 and 3.15 depict
indeed proper inclusions.

Obviously, we have L(DSP, F) ⊆ L(NSP, F). Nevertheless, since characterizations
for the class L(DSP, F) are missing, it seems difficult to decide whether the inclusion
L(DSP, F) ⊆ L(NSP, F) is proper or not. We depict this open question by a dotted line
in Figure 3.15.

As a final remark, we can conclude that the synchronous products are in general less
expressive than the asynchronous automata.

3.5. The Synthesis Problem 67

L(DAA,F) = L(NAA,F) = regular trace-closed languages

L(NSP, locF) = L(NSP, F) = finite unions of regular product languages

L(DSP, F)

L(DSP, locF) = regular product languages

Example 3.67

Example 3.69

Figure 3.15: Comparison between the classes of languages of distributed transition systems
with final states

L(ADSP, F) = L(ANSP, F) = L(ANSP, locF)

= L(ADAA,F) = L(ANAA,F) = trace-closed finite languages

L(ADSP, locF) = finite product languages

Example 3.67

Figure 3.16: Comparison between the classes of languages of acyclic distributed transition
systems with final states

3.5 The Synthesis Problem

Now we are able to state the main problem studied in this thesis, i.e., the synthesis of
distributed transition systems from global specifications:

Problem 3.70 (Synthesis of distributed transition systems)

Input: Given a distribution (Σ,Proc, ∆) and a transition system TS
over Σ,

Output: construct, if possible, a distributed transition system over ∆
whose global state space is equivalent to TS.

As ‘distributed transition systems’ we consider the two introduced models:

synchronous products of transition systems, respectively

asynchronous automata,

whereas, as ‘equivalence’ we consider respectively:

isomorphism,

68 Distributed Transition Systems and the Synthesis Problem

0

1 2

3 4 5

6 7

8

a

a
a

a a

a

b

b
b

bb

b

c

c

Figure 3.17: Transition system for the language of Example 3.69 [Zie87]

Distribution

+

Transition System

?⇒

Distributed Transition System

Figure 3.18: The synthesis problem for distributed transition systems

language-equivalence1, and

bisimulation.

A schematic view is given in Figure 3.18: We have a number of agents with a given
communication pattern (the distibution) and a global specification (the transition system)
and we want to know whether there exists a local behavior for each agent (the distributed
transition system) such that the their synchronization complies with the specification.

A first observation is that Problem 3.70 is parametrized by the possible interpreta-
tions for ‘distributed transition system’ (two choices) and for ‘equivalence’ (three choices),
giving thus altogether six versions of the problem.

A second observation is that we can decompose the synthesis problem in two parts:

1. test whether for a given distribution and transition system, there exists an equiv-
alent distribution transition system, and

2. if the previous test is positive, construct the equivalent distribution transition
system.

The structure of the following chapters is suggested by the above decomposition: Chap-
ter 4 studies the computational effort of the test of distributed implementability, whereas
Chapter 5 provide efficient constructions for implementable specifications.

1Following the literature (e.g., [BPS01]), one would use the term ‘trace equivalence’ instead of our
usage of ‘language equivalence’. We stick though to ‘language equivalence’, because the name ‘trace
equivalence’ might clash with the notion of ‘trace’ introduced in Section 3.1.

3.5. The Synthesis Problem 69

The characterizations given in the previous sections provide already some answers to
the first part of the problem and partially also to the second part (recall for instance
Remark 3.28). Since the presentation of solutions to various versions of Problem 3.70
needs further elaboration, we move it over to the next chapter.

Discussion

In this chapter, we have introduced the synchronous products of transition systems and
the asynchronous automata as theoretical models of distributed systems and presented
characterizations of their global state spaces, respectively their behaviors. A detailed
study for systems with and without final state and various particular cases was conducted.

All these results will be used to provide, when possible, decision procedures for the
implementability test which will be presented in the next chapter. The core of the next
chapter consists of upper and lower complexity bounds for the problems known until now
to be decidable (there are still open problems for instance in the case of bisimulation for
nondeterministic distributed systems). We will consider all six versions of Problem 3.70
together with special cases (deterministic and/or acyclic specifications).

The effective construction of distributed transition systems is discussed in Chapter 5,
where we focus on the challenging problem of synthesis of asynchronous automata from
trace-closed regular languages. Since the classical result of Zielonka produces very large
asynchronous automata, in Chapter 6 we provide heuristics in an effort to find smaller
asynchronous automata accepting the same language. Moreover, we give heuristics to find
under-approximated solutions in case the original synthesis problem has no solution.

⋄

I was working on the proof of one of
my poems all the morning, and took
out a comma. In the afternoon I put
it back again.

Oscar Wilde

Chapter 4

The Complexity of the Distributed

Implementability Test

T
he distributed implementability problem is defined as follows: ‘Given a specification
as a distribution of actions on a set of processes and a transition system, does there

exist a distributed transition system over the given distribution that is equivalent to the
transition system?’ As mentioned in the previous chapters (cf. Section 3.5 and Figure 1.2),
this is the first question to ask when solving the synthesis problem (Problem 3.70). If the
answer to this question is positive, we construct a solution to the problem. If the answer
to the question is negative, we do not surrender but try to relax the specification so as to
obtain an approximated solution to the problem (half a loaf is better than none).

In this chapter we investigate the computational complexity of the distributed imple-
mentability question together with some relaxations of it1. The chapter is organized as
follows. After a short introduction to the problem (Section 4.1), we present decision pro-
cedures together with upper and lower complexity bounds for the distributed implemen-
tability modulo isomorphism (Section 4.2), modulo language equivalence (Section 4.3),
respectively modulo bisimulation (Section 4.4). We consider in turn the synchronous
products and then the asynchronous automata as models for distributed systems. In
Section 4.5 we study a relaxed implementability problem where the distributed transi-
tion system is required to be ‘embedded into’ (rather than ‘equivalent to’) the transition
system given as specification. We end the chapter with a short discussion.

For definitions and representative problems for complexity classes like P (determinis-
tic polynomial time2), NP (nondeterministic polynomial time), PSPACE (deterministic
polynomial space) et al., the reader is referred to classical textbooks on computational
complexity theory [GJ79, Pap94, HMU01]. For the lower bound proofs in this chapter,
we use polynomial-time reductions3. (A hard-nosed reader can safely skip this chapter
and go for the practical approach of next chapter.)

1Most of the results in the first part of his chapter were published in [HŞ04, HŞ05], while the relaxed
implementability appeared in [ŞEM03].

2From now on, when we say ‘polynomial time’, we mean ‘deterministic polynomial time’.
3Without conducting a very careful analysis, we think that the reductions we use are in fact log-space

reductions.

70

4.1. The Distributed Implementability Problem 71

Table 4.1: Complexity results for the implementability of synchronous products of tran-
sition systems with one initial state (|I| = 1)

Specification (TS) Isomorphism Language Equivalence Bisim. (determ. impl.)

Nondeterministic NP-complete

Deterministic P [Mor98]
PSPACE-complete PSPACE-complete

Acyclic & Nondet. NP-complete

Acyclic & Determ. P [Mor98]
coNP-complete coNP-complete

4.1 The Distributed Implementability Problem

The problem whose computational complexity we will mainly study in this chapter is:

Problem 4.1 (Distributed implementability)

Instance: Given a distribution (Σ,Proc, ∆) and a transition system TS
over Σ,

Question: does there exist a distributed transition system over ∆ whose
global state space is equivalent to TS?

Similar to Problem 3.70, as ‘distributed transition systems’ we consider the models of
synchronous products of transition systems, respectively asynchronous automata, whereas
as ‘equivalence’ we consider the (transition system) isomorphism, the language equiva-
lence, respectively the bisimulation.

Overview Before going into details, we provide a short overview of the main complexity
results of the first part of this chapter with some references to related work.

The distributed implementability problem has been studied for a number of abstract
models of distributed systems (elementary net systems, place/transition Petri nets, syn-
chronous products of transition systems [Arn94], and Zielonka’s asynchronous automata
[Zie87]) using various behavioral equivalences between the implementation and the spec-
ification (isomorphism, language equivalence, and bisimulation). For nearly all these
variants, axiomatic or language theoretic characterizations of the transition systems that
can be distributed have been provided [ER90, NRT92, CKLY98, Mor98, CMT99, Vog99,
BCD02, Muk02] (see also Sections 3.3 and 3.4). Moreover, the computational complexity
of the variants concerning elementary net systems and place/transition Petri nets is rather
well understood [BBD95, BBD97]. However, the complexity of many variants concerning
synchronous products of transition systems and asynchronous automata were still open.
In this chapter we fill many of these gaps, and in particular solve some problems left open
in [CMT99, Mor99b].

Mukund [Muk02] surveys (structural, behavioural) characterizations for synchronous
products of transition systems and asynchronous automata. He presents the results with-
out a computational complexity analysis viewpoint. Since we are in the end interested to
know which cases are tractable in practice, in this chapter we provide (the missing) lower
and upper bounds for all the implementability tests presented in [Muk02].

72 The Complexity of the Distributed Implementability Test

Table 4.2: Complexity results for the implementability of asynchronous automata (with
multiple initial states)

Specification (TS) Isomorphism Language Equivalence Bisim. (determ. impl.)

Nondeterministic NP-complete PSPACE-complete

Deterministic P [Mor98] P
P

Acyclic & Nondet. NP-complete coNP-complete

Acyclic & Determ. P [Mor98] P
P

Tables 4.1 and 4.2 present a summary of most of new results together with some known
ones. A couple of corollaries not appearing at this point will be given in the following
chapters. Note that, due to slightly different existing characterizations, the two models
consider one, respectively multiple initial states (we touch upon the case of synchronous
products with multiple initial states in Section 4.3.2). As already discussed in Section 3.4,
we take into account special cases where the input transition system is supposed to be
deterministic and/or acyclic (see column 1 of Tables 4.1 and 4.2). As expected, the
complexity results for the special cases turn out to be usually more favorable than the
results for the general cases. In the following we detail a little.

In [Mor98], Morin proved that the distributed implementability problem modulo iso-
morphism for both synchronous products and asynchronous automata can be solved in
polynomial time when the input transition system is deterministic (see column 2 of Tables
4.1 and 4.2). In the nondeterministic case, results from [CMT99, Mor99b] show that the
problem is in NP, but precise lower bounds were explicitly left open: In [CMT99, Section
5], the authors conjecture that ‘the synthesis problem for deterministic systems is much
less expensive computationally than the synthesis problem in the general case’, while in
[Mor98, Conclusion], the author mentions that ‘till now precise complexity results for the
underlying synthesis problem are still missing’. We show that the implementability prob-
lem for nondeterministic distributed transition systems is NP-complete, even for acyclic
specifications.

In [CMT99, Muk02], Mukund et al. characterized the transition systems that can be
implemented as synchronous products modulo language equivalence. It is not difficult to
see that the characterization leads to a PSPACE algorithm. We show that the problem
is PSPACE-complete, even if the input transition system is deterministic, and coNP-
complete if it is acyclic (see column 3 of Table 4.1). From these results we then easily
obtain the same results for the implementability problem modulo bisimulation when the
implementation is required to be deterministic1 (see column 4 of Table 4.1). The proof is
based on a characterization from [CMT99] for the implementability modulo bisimulation
for deterministic implementations. Up to date there are no characterizations published
for the implementability modulo bisimulation for nondeterministic implementations and
also no known complexity bounds for it.

In [Zie87, Zie89], Zielonka characterized the transition systems that can be imple-
mented as asynchronous automata modulo language equivalence. Combining his results

1Note that this is a natural constraint in many areas (e.g., hardware design).

4.2. Implementability modulo Isomorphism 73

with several others from the literature, we show that the implementability problem has
the same complexity as for synchronous products in the nondeterministic case, but can be
solved in polynomial time in the deterministic case (see column 3 of Table 4.2). Maybe
surprisingly, a simple trick allows us to extend this result to the implementability prob-
lem modulo bisimulation, again when the implementation is required to be deterministic
(see column 4 of Table 4.2). Up to date there are no characterizations published for the
implementability modulo bisimulation for nondeterministic implementations and also no
known complexity bounds for it.

4.2 Implementability modulo Isomorphism

This section presents complexity results for checking whether an input transition system
is isomorphic to the global state space of a distributed transition system.

We mention that, although in practice the initial specification is usually not isomorphic
to a distributed transition system, the implementability problem is still of relevance be-
cause it can be used to guide heuristics for solving the synthesis problem modulo language
equivalence (see Chapter 5 and [ŞEM03] for more details).

4.2.1 Synchronous Products of Transition Systems

In Section 3.3.2 we presented a characterization result for the global transition systems of
synchronous products (Theorem 3.26). For convenience, we recall below the text of the
theorem and refer the reader to Section 3.3.2 for additional explanations.

Theorem 4.2 [CMT99, Muk02] Let (Σ,Proc, ∆) be a distribution and TS = (Q, Σ,→, I)
be a transition system. Then, the following are equivalent:

(i) TS is isomorphic to a synchronous product of transition systems over ∆

(ii) For each p ∈ Proc, there exists an equivalence relation ≡p⊆ Q × Q such that the
following conditions hold (for any q1, q2 ∈ Q and a ∈ Σ):

SP1 : If q1
a−→ q2, then q1 ≡Proc\dom(a) q2.

SP2 : If q1 ≡Proc q2, then q1 = q2.

SP3 : Let a ∈ Σ and q ∈ Q. If for each p ∈ dom(a), there exist qp, q
′
p ∈ Q such that

qp
a−→ q′p and q ≡p qp, then for each choice of such qp’s and q′p’s, there exists

q′ ∈ Q such that q
a−→ q′ and q′ ≡p q′p for each p ∈ dom(a).

This result is used below to show that the implementability problem for synchronous
products is hard even for acyclic specifications (see column 2 of Table 4.1). The result
holds for nondeterministic synchronous products with multiple initial states (Theorem
4.3), but also for the case of only one initial state (Corollary 4.7).

Theorem 4.3 The implementability problem for synchronous products of transition sys-
tems modulo isomorphism is NP-complete, even for acyclic specifications.

74 The Complexity of the Distributed Implementability Test

q0
x1

qx1 q′x1

ax1
ax1

Variable x2

Variable x2

q0
x2

qx2 q′x2

ax2
ax2

q0
x3

qx3 q′x3

ax3
ax3

qc1 q′c1

q0
c1

ax1c1 ax2c1 a′
x1c1

a′
x2c1

ac1

a′
c1

Clause c2

Clause c2

qc2 q′c2

q0
c2

ax2c2 ax3c2 a′
x2c2

a′
x3c2

ac2

a′
c2

Figure 4.1: The transition system TS associated to φ = (x1 ∨ x2) ∧ (x2 ∨ x3)

Proof. First, it is easy to see that the problem is in NP: Given a distribution (Σ,Proc, ∆)
and a transition system TS , a nondeterministic machine can ‘guess’ a family of equiva-
lences (≡p)p∈Proc and then verify in polynomial time (in the size of the distribution and
of the transition system), whether the properties SP1–SP3 from Theorem 4.3 are satisfied
or not.

For the NP-hardness part, we use a polynomial reduction from the classical Boolean
satisfiability problem (SAT). Before going into details, we present an overview of the
translation (from a Boolean formula to a transition system together with a distribution):
Given a formula in conjunctive normal form, we associate to each variable and each clause,
a group of three states and two transitions (see Figure 4.1). The nondeterminism is used
in the transition system to implement a choice gadget between the Boolean values True

and False for each variable. We connect then the triples with edges according to the
occurrence of variables as literals in the clauses (these edges will be the wires that will
transmit the ‘values’ of the variables to the clauses). The distribution is chosen such that
a clause will evaluate to False if and only if the condition SP3 will be violated for the
triple associated to the given clause. The use of Theorem 4.2 finishes the job.

Now the details. Let φ be a formula in conjunctive normal form with variables
x1, . . . , xn appearing in the clauses c1, . . . , cm. For technical reasons and without loss of
generality, we assume that no clause contains some variable as both positive and negative
literal.

We construct a distribution (Σφ,Procφ, ∆φ) and a (nondeterministic) transition system
TSφ = (Qφ, Σφ,→φ, Iφ) such that:

φ is satisfiable if and only if TSφ is isomorphic to a synchronous product of
transition systems over ∆φ.

4.2. Implementability modulo Isomorphism 75

To relieve a bit the notation, we will drop all the φ-indices.
First, the set of processes Proc consists of two processes for each variable and one

process for each clause:

Proc := {pxi
, pxi
| i ∈ [1..n]} ∪ {pcj

| j ∈ [1..m]}.

Then, the set Σ of actions and their domains (which determine ∆) consist of:

one action for each variable:
{axi
| i ∈ [1..n]} with dom(axi

) := {pxi
, pxi
},

two actions for each positive literal of each clause:
{axicj

, a′
xicj
| j ∈ [1..m], xi ∈ cj} with dom(axicj

) = dom(a′
xicj

) := Proc \ {pxi
},

two actions for each negative literal of each clause:
{axicj

, a′
xicj
| j ∈ [1..m], xi ∈ cj} with dom(axicj

) = dom(a′
xicj

) := Proc \ {pxi
}, and

two actions for each clause:
{acj

, a′
cj
| j ∈ [1..m]} with dom(acj

) := {pcj
} ∪ {pxi

| xi ∈ cj} ∪ {pxi
| xi ∈ cj}

(i.e., the domain of acj
consists of the process associated to cj and the processes

associated to the literals of cj) and dom(a′
cj

) := Proc \ {pcj
}.

Finally, we construct the transition system TS = (Q, Σ,→, I). The state space Q consists
of:

three states for each variable:
{q0

xi
, qxi

, q′xi
| i ∈ [1..n]} and

three states for each clause:
{qcj

, q′cj
, q0

cj
| j ∈ [1..m]}.

The transition relation →⊆ Q× Σ×Q is defined as follows:

for each i ∈ [1..n]:

q0
xi

axi−→ qxi
and q0

xi

axi−→ q′xi
(remember that nondeterminism is allowed).

for each j ∈ [1..m]:

qcj

axicj−→ qxi
for xi ∈ cj, qcj

axicj−→ qxi
for xi ∈ cj, and qcj

acj−→ q0
cj

.

for each j ∈ [1..m]:

q′cj

a′

xicj−→ q′xi
for xi ∈ cj, q′cj

a′

xicj−→ q′xi
for xi ∈ cj, and q′cj

a′

cj−→ qcj
.

The set of initial states I is chosen such that all states of Q are reachable from I using the
above transition relation (remember that we work with reachable (distributed) transition
systems). For instance, we can take

I := {q0
xi
| i ∈ [1..n]} ∪ {q′cj

| j ∈ [1..m]}

(it is not difficult to modify the construction such that there is only one initial state – see
Corollary 4.7).

76 The Complexity of the Distributed Implementability Test

An example is provided in Figure 4.1 (the initial states are not marked).
The ‘choice gadget’ is provided by the three states for each variable xi and their

associated transitions. The Boolean ‘value’ of each choice (this will correspond to a local
equivalence relation: either qxi

≡pxi
q′xi

or qxi
≡pxi

q′xi
) is then propagated further to the

clauses using the transitions labeled axicj
and axicj

, respectively. More precisely, to each
clause we forward only the information that a variable was set to False in such a way
that the clause cj is not satisfied if and only if qcj

and q′cj
are equivalent on all processes

in the domain of acj
. Thus, a clause cj will have all its literals evaluated to False if and

only if the condition SP3 will be violated for a := acj
, q := q′cj

, and qp := qcj
, q′p := q0

cj
.

The above construction is polynomial in the size of the initial formula φ and we claim
that φ is satisfiable if and only if TS is isomorphic to a synchronous product of transition
systems over ∆ (given by dom).

First Implication. We prove first the easier part: φ is not satisfiable implies that TS
is not isomorphic to a synchronous product of transition systems over ∆. If φ is not
satisfiable, then for any assignment of the variables x1, . . . , xn there exists a clause that
is evaluated to False. We must show that in this case, there are no local equivalences
(≡p)p∈Proc satisfying all SP1–SP3.

By contradiction, assume that there exist (≡p)p∈Proc satisfying all SP1–SP3.
For each i ∈ [1..n], we use first the condition SP3 which we have assumed to hold. Let

a := axi
and q := q0

xi
. We choose qp

a−→ q′p from SP3 for each p ∈ dom(axi
) = {pxi

, pxi
} as

follows: q0
xi

axi−→ qxi
for p = pxi

and q0
xi

axi−→ q′xi
for p = pxi

. Since q ≡pxi
q0
xi

and q ≡pxi
q0
xi

(recall that q = q0
xi

), the hypothesis of SP3 is satisfied, so there must exist a state q′ such

that q0
xi

axi−→ q′, and also q′ ≡pxi
qxi

and q′ ≡pxi
q′xi

.
There are only two possible cases for the choice of q′:

1. q′ = qxi
. In this case, we have qxi

≡pxi
qxi

and qxi
≡pxi

q′xi
.

2. q′ = q′xi
. In this case, we have q′xi

≡pxi
qxi

and q′xi
≡pxi

q′xi
.

So, we have that either qxi
≡pxi

q′xi
(case 1) or qxi

≡pxi
q′xi

(case 2), but not both at the
same time (otherwise, on one hand we have that qxi

≡dom(axi
) q′xi

and on the other hand,

by SP1 applied to the transitions qxi

axi←− q0
xi

axi−→ q′xi
, we have qxi

≡Proc\dom(axi
) q′xi

, so
qxi
≡Proc q′xi

which contradicts SP2).
Let us choose an assignment of the variables given by the equivalences in the following

way. For each i ∈ [1..n],

xi is evaluated to False if and only if qxi
≡pxi

q′xi
.

Since φ is not satisfiable, there exists a clause, say ck, that has all its literals evaluated
to False. Let xi be a positive literal in ck (if any). Since the positive literal xi is
evaluated to False, we have that the variable xi is False, so qxi

≡pxi
q′xi

. In addition, we

have qck

axick−→ qxi
and q′ck

a′

xick−→ q′xi
(see the construction of TS) and, using SP1, we deduce

that qck
≡pxi

qxi
and q′ck

≡pxi
q′xi

. By the transitivity of ≡pxi
, we obtain that qck

≡pxi
q′ck

.

4.2. Implementability modulo Isomorphism 77

Algorithm 4.1: Construction of local equivalences for the second part of the proof of
Theorem 4.3

Input a satisfiable formula φ with the associated distribution (Σ,Proc, ∆),
transition system TS , and an assignment of x1, . . . , xn validating φ

Step 0 For each p ∈ Proc, initialize the binary relation ≡p⊆ Q×Q to ∅.
Step 1 For each q

a−→ q′ in TS , set q ≡p q′ for every p ∈ Proc \ dom(a).
Step 2 For each i ∈ [1..n], if variable xi is evaluated to False, then set

qxi
≡pxi

q′xi
, otherwise set qxi

≡pxi
q′xi

.
Step 3 For each p ∈ Proc, close ≡p under reflexivity, symmetry, and tran-

sitivity.

Output a set of local equivalences (≡p)p∈Proc satisfying the SP1–SP3 condi-
tions

A similar argument for the negative literals xi in ck (if any) proves that qck
≡pxi

q′ck

(qxi
≡pxi

q′xi
is used). Moreover, using SP1 for q′ck

a′

ck−→ qck
, we have that qck

≡pck
q′ck

.
Summing up, we proved that q′ck

≡p qck
, for each p ∈ dom(ack

) (recall the definition

of dom(ack
)). But this contradicts SP3, because qck

ack−→ q0
ck

and there is no state q′ such

that q′ck

ack−→ q′.

Second Implication. The second part of the proof is a bit technical. Assume that φ
is satisfiable. Then, there exists an assignment to the variables x1, . . . , xn such that each
clause is True. Given this assignment, we construct a family of equivalences (≡p)p∈Proc

following Algorithm 4.1 and prove that the generated equivalences satisfy the conditions
SP1–SP3 of Theorem 4.2, and therefore the transition system TS is isomorphic to a
synchronous product of transition systems over (Σ,Proc, ∆).

Table 4.3 describes the equivalence classes of the equivalences generated by Algo-
rithm 4.1. Each cell gives the partition of the state space Q into the equivalence classes
for each type of process (rows) depending on the value of the associated variable (columns).
Each equivalence class is given as a set in curly brackets. It is tedious, but not hard to
check the correctness of Table 4.3 (i.e., the equivalence classes presented there are indeed
the equivalence classes of the local equivalences generated by Algorithm 4.1).

Using Table 4.3, we prove that the constructed (≡p)p∈Proc satisfy SP1, SP3, and SP2

(in this order):

SP1 satisfaction : Condition SP1 is fulfilled by construction (cf. Step 1 of Algorithm 4.1).

SP3 satisfaction : To benefit the presentation, we make a couple of remarks.

Remark 4.4 SP3 holds for action a := axi
, for each i ∈ [1..n].

Proof. Let i ∈ [1..n] and q ∈ Q. Following SP3, for each p ∈ dom(axi
) = {pxi

, pxi
},

we try to choose qp and q′p such that qp

axi−→ q′p and q ≡p qp. Since the only transitions

Table 4.3: The equivalence classes constructed by Algorithm 4.1

xi = False xi = True

≡pxi

{q0
xi
}, {q0

xi′
, qxi′

, q′xi′
} for each i′ 6= i,

{qxi
, q′xi
} ∪ {qcj

, q′cj
| xi ∈ cj},

{q0
cj
} for each cj containing lit. xi,

and {qcj′
, q0

cj′
}, {q′cj′

} for each cj′

not containing the positive literal xi

{q0
xi
}, {q0

xi′
, qxi′

, q′xi′
} for each i′ 6= i,

{qxi
} ∪ {qcj

| xi ∈ cj},
{q′xi
} ∪ {q′cj

| xi ∈ cj},
{q0

cj
} for each cj containing lit. xi,

and {qcj′
, q0

cj′
}, {q′cj′

} for each cj′

not containing the positive literal xi

≡pxi

{q0
xi
}, {q0

xi′
, qxi′

, q′xi′
} for each i′ 6= i,

{qxi
} ∪ {qcj

| xi ∈ cj},
{q′xi
} ∪ {q′cj

| xi ∈ cj},
{q0

cj
} for each cj containing lit. xi,

and {qcj′
, q0

cj′
}, {q′cj′

} for each cj′

not containing the negative literal xi

{q0
xi
}, {q0

xi′
, qxi′

, q′xi′
} for each i′ 6= i,

{qxi
, q′xi
} ∪ {qcj

, q′cj
| xi ∈ cj},

{q0
cj
} for each cj containing lit. xi,

and {qcj′
, q0

cj′
}, {q′cj′

} for each cj′

not containing the negative literal xi

≡pcj
{q0

xi
, qxi

, q′xi
} for i ∈ [1..n], {qcj

, q′cj
}, {q0

cj
}, and {qcj′

, q0
cj′
}, {q′cj′

} for j′ 6= j

Table 4.4: Details for the satisfaction of the SP3 property

a q Why SP3 holds (a process p from dom(a) is given)

axi
See Remark 4.4.

axicj
{q0

cj
} p := pcj

. Indeed, qcj
6≡pcj

q0
cj

.

(for xi ∈ cj) Q \ {qcj
, q0

cj
} p := pxi

. Indeed, xi ∈ cj implies xi 6∈ cj (see assump-
tions on φ), so qcj

6≡pxi
q, ∀q ∈ Q \ {qcj

, q0
cj
}.

a′
xicj

Q \ {q′cj
} p := pxi

. Same as above, xi ∈ cj implies xi 6∈ cj and

(for xi ∈ cj) in this case q′cj
6≡pxi

q, ∀q ∈ Q \ {q′cj
}.

axicj
, a′

xicj
Similar to the cases axicj

, a′
xicj

above.

(for xi ∈ cj)

acj
{q′cj
} Since cj evaluates to True, there exists a literal ℓ of cj

evaluated to True. Assume ℓ = xi, such that xi ∈ cj and
xi = True (a similar analysis is made if ℓ is negative).
Then, for p := pxi

we have that pxi
∈ dom(acj

) and
qcj
6≡pxi

q′cj
.

Q \ {qcj
, q′cj
} p := pcj

. Indeed, qcj
6≡pcj

q, ∀q ∈ Q \ {qcj
, q′cj
}.

a′
cj

Q \ {q′cj
} For a given variable xi, the literals xi and xi cannot

appear both in cj. If xi 6∈ cj, then p := pxi
(and indeed,

q′cj
6≡pxi

q, ∀q ∈ Q \ {q′cj
}). If xi 6∈ cj, then p := pxi

.

78

4.2. Implementability modulo Isomorphism 79

labeled with axi
are q0

xi

axi−→ qxi
and q0

xi

axi−→ q′xi
, qp must be equal to q0

xi
and q′p must

belong to {qxi
, q′xi
}, for each p ∈ dom(axi

). Moreover, if in q ≡p qp = q0
xi

we
instantiate p with pxi

(which belongs to dom(axi
)), then we obtain q ≡pxi

q0
xi

. Since
the ≡pxi

-equivalence class of q0
xi

is {q0
xi
} (see Table 4.3), we deduce that q = q0

xi
. We

have now that the hypotheses of SP3 are satisfied.

For the various choices for q′p ∈ {qxi
, q′xi
} with p ∈ {pxi

, pxi
}, we will find a state q′

such that q = q0
xi

axi−→ q′ and q′ ≡p q′p for each p ∈ {pxi
, pxi
}: If q′pxi

= q′pxi
:= qxi

,

take q′ := qxi
. If q′pxi

= q′pxi
:= q′xi

, take q′ := q′xi
. If q′pxi

:= qxi
and q′pxi

:= q′xi
, we

have two subcases: If xi is False, take q′ := q′xi
. This is correct, because we have

q′xi
≡pxi

qxi
(by Step 2 of Algorithm 4.1) and q′xi

≡pxi
q′xi

(by reflexivity). If xi is
True, take q′ := qxi

. This is correct for similar reasons as above. The last case,
q′pxi

:= q′xi
and q′pxi

:= qxi
, is dual to the one above. �

Next, we note that each action a ∈ Σ \ {axi
| i ∈ [1..n]} has the property that there

exists exactly one transition labeled with a in the transition system TS . In this
case, the condition SP3 allows a simplified version:

Remark 4.5 Let a ∈ Σ such that there is only one transition, denoted q(a)
a−→

q′(a), labeled with a in TS . Then, SP3 holds for the chosen a if and only if for each
state q 6= q(a), there exists a process p ∈ dom(a) such that q 6≡p q(a).

Proof. (⇒) Assume that SP3 holds for the given action a. By contradiction, assume
that there exists q 6= q(a) such that q ≡dom(a) q(a). The hypothesis of SP3 holds for
the above a, q, and qp, q

′
p chosen to be q(a), q′(a), respectively. Then, there must

exist a state q′ such that q
a−→ q′ (and also q′ ≡p q′(a), ∀p ∈ dom(a)). But this is a

contradiction, because q
a−→ q′ would be an a-labeled transition different than the

supposedly unique transition q(a)
a−→ q′(a).

(⇐) Assume now that ∀q 6= q(a) ∃p ∈ dom(a) : q 6≡p q(a). We must prove that

SP3 holds for the given a. Let q, qp, q
′
p ∈ Q such that qp

a−→ q′p and q ≡p qp, for

each p ∈ dom(a). Since q(a)
a−→ q′(a) is the only a-labeled transition, we have that

qp = q(a) and q′p = q′(a), ∀p ∈ dom(a). This implies q ≡dom(a) q(a) (because q ≡p qp,
∀p ∈ dom(a)). Using the assumption that ∀q 6= q(a) ∃p ∈ dom(a) : q 6≡p q(a), we

necessarily have that q = q(a). Now, it is easy to find a state q′ satisfying q
a−→ q′

and q′ ≡p q′p = q′(a), ∀p ∈ dom(a): We simply choose q′ := q′(a). �

Since Remark 4.4 shows that SP3 holds for a ∈ {axi
| i ∈ [1..n]}, the remaining

cases are solved in Table 4.4 using Remark 4.5. The first column of Table 4.4 picks
a value for a, while the second one gives a range to the state q ∈ Q \ {q(a)}, for
the q(a) from the formulation of Remark 4.5. In the last column, we give a process
p ∈ dom(a) with the property that q(a) 6≡p q, for all the states q in the range given
in the second column.

The correctness of the solutions provided is verified using the equivalence classes
given in Table 4.3. For example, let us look at the second row of Table 4.4, where

80 The Complexity of the Distributed Implementability Test

a = axicj
and q = q0

cj
. Then, according to Remark 4.5, we must find a process

p ∈ dom(axicj
) = Proc \ {pxi

} such that q 6≡p q(axicj
) (in our case q = q0

cj
and

q(axicj
) = qcj

because qcj
is the only state with an outgoing transition labeled by

axicj
). Table 4.4 (row 2, column 3) gives pcj

as possible choice for p. Indeed,
q0
cj
6≡pcj

qcj
. This can be verified looking at the last row of Table 4.3, where we see

that q0
cj

and qcj
belong to different equivalence classes.

SP2 satisfaction : An immediate restatement of SP2 is given below:

Remark 4.6 SP2 holds if and only if for each q1 6= q2, there exists p ∈ Proc with
q1 6≡p q2.

According to the above remark, for each pair of distinct states, we must find a process
p where they are not ≡p-equivalent. Table 4.4 provides already such processes that
‘distinguish’ some pairs of different states. In Table 4.5 we give the rest of the
cases: For q1 (column 1) and q2 (in the range given by column 2), we find a process
p ∈ Proc such that q1 6≡p q2 (column 3). More precisely, we only have to consider
pairs of states from the subset:

Q′ := {q0
xi

, qxi
, q′xi
| i ∈ [1..n]} ∪ {q0

cj
| j ∈ [1..m]}.

We mention that an alternative presentation for the second part of the proof may be
given, and namely: instead of constructing local equivalence classes (≡p)p∈Proc (and prove
SP1–SP3), to construct directly local transition systems whose synchronous product is
isomorphic to the transition system TS . We think that this approach would not be more
intuitive and according to (the proof of) Theorem 4.2 we would still have to consider all
the cases in the current proof when proving the isomorphism between the synchronous
product and TS . �

Looking at Theorem 4.2, we realize that the set of initial states does not really play a
rôle in the implementability modulo isomorphism (where the structure is important), and
therefore the result of Theorem 4.3 holds also for the synchronous products with only one
initial state:

Corollary 4.7 The implementability problem modulo isomorphism for synchronous prod-
ucts with only one initial state is NP-complete, even for acyclic specifications.

Proof. It is easy to modify the reduction in the proof of Theorem 4.3 such that the
constructed transition system TS has only one initial state (and thus also the distributed
implementation has only one initial state). The idea is to add a new state qin , a set of

new actions, one for each state of I, {aq | q ∈ I}, and transitions qin aq−→ q from qin to
each state of I (thus all the states will be reachable from the new state). We choose the
domains of the new actions to be the set of all processes, i.e., dom(aq) := Proc for each
q ∈ I (we do not modify the set of processes Proc). Finally, we update the set of initial
states as I := {qin}.

It is not difficult to see that the arguments used for the proof of Theorem 4.3 still
apply for the above additions. (For the first implication, the contradiction is obtained

4.2. Implementability modulo Isomorphism 81

similarly, whereas for the second implication, since the domain of each new action aq is
Proc, by Algorithm 4.1 (see Step 1), qin 6≡p q for any p ∈ Proc and q 6= qin which easily
implies that SP1–SP3 hold for the added part.) �

Going into the proof details of Theorem 4.2 given in [CMT99], we can show that if
there exists a set of equivalences (≡p)p∈Proc satisfying only conditions SP1 and SP3 (but
not necessarily SP2), then we can synthesize a synchronous product of transition systems
accepting the same language as the initial transition system.1 This simple trick widens
the class of ‘implementable’ transition systems, while preserving the behavior. Yet, the
new problem is as hard as the implementability modulo isomorphism for synchronous
products (Theorem 4.3), from which we do the reduction:

Corollary 4.8 Let (Σ,Proc, ∆) be a distribution and TS a transition system. The prob-
lem of finding a set of equivalences (≡p)p∈Proc satisfying only conditions SP1 and SP3 of
Theorem 4.2, is NP-complete.

Proof. The problem is in NP for the same reasons given in the proof of Theorem 4.3.
To prove that the problem is NP-hard, we use a reduction from the implementabi-

lity problem for synchronous products modulo isomorphism (Theorem 4.3): For each
(Σ,Proc, ∆) and TS = (Q, Σ,→, I), we construct a distribution (Σ′,Proc ′, ∆′) and a
transition system TS ′ = (Q′, Σ′,→′, I ′) in the following way:

Σ′ := Σ ∪ {aq | q ∈ Q}, i.e., we add one new action aq for each state of q ∈ Q.

Proc′ := Proc, i.e., we do not modify the set of processes Proc.

∆′ := ∆∪ {(aq, p) | q ∈ Q, p ∈ Proc}, i.e., we have dom ′(a) := dom(a) for all a ∈ Σ
and dom ′(aq) := Proc for all q ∈ Q.

Q′ := Q ∪ {q0} where q0 is a new state and I ′ := I.

→′ :=→ ∪{q aq−→ q0 | q ∈ Q}, i.e., we add one transition from each state of TS to
the new state q0. For simplicity, we denote →′ also by →.

We prove that: There exist (≡p)p∈Proc on the states of TS satisfying SP1-SP2-SP3 of
Theorem 4.2 (i.e., TS is isomorphic to a synchronous product over ∆) if and only if there
exist (≡′

p)p∈Proc on the states of TS ′ satisfying SP1 and SP3 for the new (Σ′,Proc, ∆′).
For the direct implication, let us assume that there exist (≡p)p∈Proc on the states of

TS satisfying SP1-SP2-SP3. We extend each ≡p⊆ Q × Q to ≡′
p⊆ Q′ × Q′, simply by

choosing

≡′
p := ≡p ∪{(q0, q0)}

(i.e., the new state q0 is equivalent only to itself). We prove that SP1 and SP3 hold for
(≡′

p)p∈Proc:

1In fact, the synthesized synchronous product is even bisimilar (Definition 2.12) to the initial transi-
tion system.

82 The Complexity of the Distributed Implementability Test

SP1 : Because SP1 holds for the transitions in TS and dom ′(a) := dom(a) for all a ∈ Σ,

we only have to prove that SP1 holds for the newly added transitions q
aq−→ q0, but

this is trivial given the fact that dom ′(aq) := Proc.

SP3 : We prove that SP3 holds for each a ∈ Σ′ = Σ ∪ {aq | q ∈ Q} distinguishing two
cases:

For a ∈ Σ, SP3 holds in TS ′ because SP3 holds for TS (this is easy).

For a = aq with q ∈ Q, by construction, we have dom(a) = Proc and q
a−→ q0.

Since the transition q
a−→ q0 is the only one labeled with a = aq in TS ′, we

prove that SP3 holds for a in TS ′ using Remark 4.5. Thus, we have to show
that for each r ∈ Q′ with r 6= q, there exists a process p ∈ dom(a) = Proc such
that r 6≡′

p q. We have two subcases:

– For r ∈ Q, we have that r and q belong to Q and r 6= q. From the
hypothesis, (≡p)p∈Proc satisfies SP2. In this case, we can apply Remark 4.6
for r 6= q and obtain that there exists a process p ∈ Proc such that r 6≡p q,
so also r 6≡′

p q.

– For r = q0, by construction, r = q0 6≡′
p q for any q ∈ Q and p ∈ Proc.

For the reverse implication, assume that there exist (≡′
p)p∈Proc on the states of TS ′

satisfying SP1 and SP3. Let us choose (≡p)p∈Proc as the projection of (≡′
p)p∈Proc on Q×Q.

It is easy to see that SP1 and SP3 are satisfied for TS and (≡p)p∈Proc because the same
properties hold for TS ′ and (≡′

p)p∈Proc. To prove SP2, we use the equivalent condition given
by Remark 4.6: SP2 holds for TS and (≡p)p∈Proc if and only if for each pair of states q 6= r

from Q, there exists a process p ∈ Proc such that q 6≡p r. Let q 6= r in Q. Since q
aq−→ q0

is the only transition labeled with aq from TS ′ and SP3 holds for TS ′ and (≡′
p)p∈Proc, we

can apply Remark 4.5 and obtain that there exists a process p ∈ dom ′(aq) = Proc such
that q 6≡′

p r. But this implies also that q 6≡p r (because q, r ∈ Q). �

Efficient decision procedures for the implementability problem modulo isomorphism
are available in case the specification is deterministic (see column 2 of the overview Ta-
ble 4.1) as the following result shows:

Proposition 4.9 [Mor98] The implementability problem for synchronous products mod-
ulo isomorphism is decidable in polynomial time, if the input transition system is deter-
ministic.

Proof. See Theorem 3.29 and the accompanying comments.

4.2.2 Asynchronous Automata

Same complexity results for implementability modulo isomorphism to those for synchro-
nous products of transition systems (Section 4.2.1) apply to asynchronous automata (see
column 2 of the overview Table 4.2). The proofs will follow more or less the same pattern,
but since the synchronization mechanism is different, so will be the proof details.

4.2. Implementability modulo Isomorphism 83

In Section 3.3.3 we presented a characterization result for the global transition systems
of asynchronous automata (Theorem 3.30). For convenience, we recall below the text of
the theorem and refer the reader to Section 3.3.3 for additional explanations.

Theorem 4.10 [Mor99b, Muk02] Let (Σ,Proc, ∆) be a distribution and TS = (Q, Σ,→
, I) be a transition system. Then, the following are equivalent:

(i) TS is isomorphic to an asynchronous automaton over ∆

(ii) For each p ∈ Proc, there exists an equivalence relation ≡p⊆ Q × Q such that the
following conditions hold (for any q1, q2 ∈ Q and a ∈ Σ):

AA1 : If q1
a−→ q2, then q1 ≡Proc\dom(a) q2.

AA2 : If q1 ≡Proc q2, then q1 = q2.

AA3 : If q1
a−→ q′1 and q1 ≡dom(a) q2, then there exists q′2 ∈ Q such that q2

a−→ q′2
and q′2 ≡dom(a) q′1.

This result is used below to show that the implementability problem for asynchro-
nous automata is hard even for acyclic specifications (see column 2 of Table 4.1). The
result holds for nondeterministic synchronous products with multiple initial states (The-
orem 4.11), but also for the case of only one initial state (Corollary 4.13).

Theorem 4.11 The implementability problem for asynchronous automata modulo iso-
morphism is NP-complete, even for acyclic specifications.

Proof. First, it is easy to see that the problem is in NP: Given a distribution (Σ,Proc, ∆)
and a transition system TS , a nondeterministic machine can ‘guess’ a family of equiva-
lences (≡k)k∈Proc and then verify in polynomial time (in the size of the distribution and of
the transition system) whether the properties AA1–AA3 from Theorem 4.10 are satisfied
or not.

For the NP-hardness part, we use a polynomial reduction from the classical Boolean
satisfiability problem (SAT). Before going into details, we present an overview of the
translation (from a Boolean formula to a transition system together with a distribution):
Given a formula in conjunctive normal form, we associate to each variable and each
clause, a group of states and transitions (see Figure 4.2). The nondeterminism is used
in the transition system to implement a choice gadget between the Boolean values True

and False for each variable. We connect further with edges the group of states according
to the occurrence of variables as literals in the clauses (these edges will be the wires that
will transmit the ‘values’ of the variables to the clauses). The distribution is chosen such
that a clause will evaluate to False if and only if the condition AA3 will be violated for
the triple associated to the given clause. The use of Theorem 4.10 finishes the job.

Let φ be a formula in conjunctive normal form with variables x1, . . . , xn appearing
in the clauses c1, . . . , cm. For technical reasons, we construct first a new formula φ′ that
satisfy the following properties:

1. each variable appears in at least two different clauses,

2. each clause contains at least two different literals, and

84 The Complexity of the Distributed Implementability Test

3. φ′ is satisfiable if and only if φ is satisfiable.

The formula φ′ is constructed from φ as follows. We start with φ′ being equal to a new
clause c0 := x0∨x0∨x1∨x2∨ . . .∨xn, where x0 is a fresh variable. Then we add to φ′ the
clauses of φ that contain at least two different literals. Finally, if cj := xi (respectively,
cj := xi) is a clause of φ, we add to φ′ two new clauses xi ∨ x0 and xi ∨ x0 (respectively,
xi ∨ x0 and xi ∨ x0). It is easy to see that φ′ satisfies the three properties above. For
convenience, we denote φ′ also by φ in the following.

We will construct a distribution (Σφ,Procφ, ∆φ) and a (nondeterministic) transition
system TSφ = (Qφ, Σφ,→φ, Iφ) such that:

φ is satisfiable if and only if TSφ is isomorphic to an asynchronous automaton
over ∆φ.

To relieve a bit the notation, we will drop all the φ-indices.
First, the set of processes Proc consists of one process for each (positive or negative)

literal from each clause:

Proc := {pxicj
| j ∈ [0..m], xi ∈ cj} ∪ {pxicj

| j ∈ [0..m], xi ∈ cj}.

Then, the set Σ of actions and their domains (which determine ∆) consist of:

one action for each positive literal from each clause:
{axicj

| j ∈ [0..m], xi ∈ cj} with dom(axicj
) := Proc \ {pxicj

}.

one action for each negative literal from each clause:
{axicj

| j ∈ [0..m], xi ∈ cj} with dom(axicj
) := Proc \ {pxicj

}.

one action for each variable:
{axi

| i ∈ [0..n]} with the domain of each axi
consisting of the processes associated

to the literals where xi appears:
dom(axi

) :=
⋃

j : xi∈cj
{pxicj

} ∪⋃j : xi∈cj
{pxicj

}.

one action for each clause:
{acj
| j ∈ [0..m]} with the domain of each acj

consisting of the processes associated
to the literals of cj:

dom(acj
) :=

⋃

i : xi∈cj
{pxicj

} ∪⋃i : xi∈cj
{pxicj

}.

Finally, we construct the transition system TS = (Q, Σ,→, I). The state space Q consist
of:

six states for each variable:
{q0

xi
, q1

xi
, q′xi

, qxi
, qF

xi
, qT

xi
| i ∈ [0..n]} and

three states for each clause:
{qcj

, q′cj
, q0

cj
| j ∈ [0..m]}.

The transition relation →⊆ Q× Σ×Q is defined below:

4.2. Implementability modulo Isomorphism 85

q0
x1

q1
x1

q′x1
qx1 qF

x1
qT
x1

ax1c0

ax1c1

ax1
ax1

ax1
ax1

Choice gadget for x2

Choice gadget for x2

q0
x2

q1
x2

q′x2
qx2 qF

x2
qT
x2

ax2c0

ax2c1 , ax2c2

ax2
ax2

ax2
ax2

q0
x3

q1
x3

q′x3
qx3 qF

x3
qT
x3

ax3c0

ax3c2

ax3
ax3

ax3
ax3

qc1 q′c1

q0
c1

ax1c1 ax1c1 ax2c1 ax2c1

ac1

Clause c2

Clause c2

qc2 q′c2

q0
c2

ax2c2 ax2c2 ax3c2 ax3c2

ac2

Figure 4.2: The transition system TS associated to φ = (x1 ∨x2)∧ (x2 ∨x3) (without the
states and transitions associated to clause c0)

for each i ∈ [0..n]:

q0
xi

axi−→ q′xi
, q0

xi

axi−→ qxi
, and

q0
xi

a−→ q1
xi

for each action a ∈ {axicj
| xi ∈ cj} ∪ {axicj

| xi ∈ cj}.

for each i ∈ [0..n]:

q1
xi

axi−→ qF
xi

and q1
xi

axi−→ qT
xi

.

for each j ∈ [0..m]:

qcj

axicj−→ qxi
for xi ∈ cj, qcj

axicj−→ qxi
for xi ∈ cj, and qcj

acj−→ q0
cj

.

for each j ∈ [0..m]:

q′cj

axicj−→ qF
xi

for xi ∈ cj and q′cj

axicj−→ qT
xi

for xi ∈ cj.

The set of initial states I is chosen such that all states of Q are reachable from I using the
above transition relation (remember that we work with reachable (distributed) transition
systems). For instance, we can take

I := {q0
xi
| i ∈ [0..n]} ∪ {qcj

, q′cj
| j ∈ [0..m]}

(it is not difficult to modify the construction such that there is only one initial state – see
Corollary 4.13).

An example is provided in Figure 4.2. We omitted, for legibility, the states qc0 , q′c0 ,
and q0

c0
and their associated transitions (these states were introduced by the clause c0 for

some consistency reasons – see the assumptions on φ at the beginning of the proof). Also,
we did not mark the initial states, because they do not play any important rôle here.

The ‘choice gadget’ is provided by the six states for each variable xi and their associated
transitions. The Boolean ‘value’ of each choice (this will be reflected by local equivalence
relations as: either qxi

≡dom(axi
) qF

xi
or qxi

≡dom(axi
) qT

xi
) is then propagated further to the

86 The Complexity of the Distributed Implementability Test

clauses using the transitions labeled axicj
and axicj

, respectively. More precisely, to each
clause we forward only the information that a variable was set to False in such a way
that the clause cj is not satisfied if and only if qcj

and q′cj
are equivalent on all processes

in the domain of acj
. Thus, a clause cj will have all its literals evaluated to False if and

only if the condition AA3 will be violated for q1 := qcj
, q′1 := q0

cj
, q2 := q′cj

.
The above construction is polynomial in the size of the initial formula φ and we claim

that φ is satisfiable if and only if TS is isomorphic to an asynchronous automaton over
∆ (given by dom).

First Implication. We first prove the easier part: φ is not satisfiable implies that TS
is not isomorphic to an asynchronous automaton over ∆. If φ is not satisfiable, then for
any assignment of the variables x0, . . . , xn there exists a clause that evaluates to False.
We must show that in this case, there are no local equivalences (≡p)p∈Proc satisfying all
AA1–AA3.

By contradiction, assume that there exist (≡p)p∈Proc satisfying all AA1–AA3.

For each i ∈ [0..n], from q0
xi

a−→ q1
xi

for all a ∈ {axicj
| xi ∈ cj} ∪ {axicj

| xi ∈ cj},
using AA1, we have that q0

xi
≡p q1

xi
for all p ∈ {pxicj

| xi ∈ cj} ∪ {pxicj
| xi ∈ cj}, and so

q0
xi
≡dom(axi

) q1
xi

. Next, from q0
xi
≡dom(axi

) q1
xi

and q0
xi

axi−→ qxi
, using AA3, we have that

either qxi
≡dom(axi

) qF
xi

, or qxi
≡dom(axi

) qT
xi

, but not both in the same time (otherwise,

by transitivity we have qF
xi
≡dom(axi

) qT
xi

and also qF
xi
≡Proc\dom(axi

) qT
xi

by AA1 applied

to qF
xi

axi←− q1
xi

axi−→ qT
xi

, so qF
xi
≡Proc qT

xi
and this would contradict AA2). Let us choose

an assignment of the variables given by the equivalences in the following way. For each
i ∈ [0..n],

xi is evaluated to False if and only if qxi
≡dom(axi

) qF
xi

.

Since φ is not satisfiable, there exists a clause, say ck, that has all its literals evaluated
to False. Let xi be a positive literal in ck (if any). Since the literal xi is evaluated to False,
we have that the variable xi is False, so qxi

≡dom(axi
) qF

xi
and this implies qxi

≡pxick
qF
xi

(because pxick
∈ dom(axi

)). In addition, we have qck

axick−→ qxi
and q′ck

axick−→ qF
xi

(see the
construction of TS) and, using AA1, we deduce that qck

≡pxick
qxi

and q′ck
≡pxick

qF
xi

. By
transitivity of ≡pxick

, we obtain that qck
≡pxick

q′ck
. A similar argument for the negative

literals xi in ck (if any), proves that qck
≡pxick

q′ck
.

Summing up, qck
and q′ck

are equivalent on all the processes associated to the literals
in ck, and so, by the definition of dom(ack

), we obtain that qck
≡dom(ack

) q′ck
. But this

contradicts AA3 because qck

ack−→ q0
ck

and there is no state q′ such that q′ck

ack−→ q′.

Second Implication. We move now to the second part of the proof (which will be a bit
technical). Assume that φ is satisfiable. Then, there exists an assignment to the variables
x0, . . . , xn such that each clause is True. Given this assignment, we construct a family of
equivalences (≡p)p∈Proc following Algorithm 4.2 and prove that the generated equivalences
satisfy the conditions AA1–AA3 of Theorem 4.10, and therefore the transition system TS
is isomorphic to an asynchronous automaton over (Σ,Proc, ∆).

Let us start making some remarks regarding Algorithm 4.2:

Table 4.5: Details for the satisfaction of the SP2 property (only the cases not solved
already by Table 4.4)

q1 q2 Why SP2 holds (a process p from Proc is given)

q0
xi

Q′ \ {q0
xi
} p := pxi

. Indeed, q0
xi
6≡pxi

q, ∀q ∈ Q′ \ {q0
xi
}.

qxi
{q0

xi
, q′xi
} If xi is True, then p := pxi

, else p := pxi
.

Q′ \ {q0
xi

, qxi
, q′xi
} p := pcj

for an arbitrary j ∈ [1..m].

q′xi
Similar to the case qxi

above.

q0
cj

Q′ \ {q0
cj
} p := pcj

.

Algorithm 4.2: Construction of local equivalences for the second part of the proof of
Theorem 4.11

Input a satisfiable formula φ with the associated distribution (Σ,Proc, ∆),
transition system TS , and an assignment of x1, . . . , xn validating φ

Step 0 For each p ∈ Proc, initialize the binary relation ≡p⊆ Q×Q to ∅.
Step 1 For each q

a−→ q′ in TS , set q ≡p q′ for every p ∈ Proc \ dom(a).
Step 2 For each i ∈ [1..n], if variable xi is evaluated to False, then set

qxi
≡p qF

xi
and q′xi

≡p qT
xi

, for every p ∈ dom(axi
),

otherwise set
qxi
≡p qT

xi
and q′xi

≡p qF
xi

, for every p ∈ dom(axi
).

Step 3 For each p ∈ Proc, close ≡p under reflexivity, symmetry, and transitivity.

Output a set of local equivalences (≡p)p∈Proc satisfying the AA1–AA3 conditions

87

88 The Complexity of the Distributed Implementability Test

Table 4.6: The equivalence classes constructed by Algorithm 4.2

xi = False xi = True

≡pxicj

(for xi ∈ cj)

{q0
xi

, q1
xi
}, {q′xi

, qT
xi
},

{qxi
, qF

xi
, qcj

, q′cj
}, {q0

cj
},

for each i′ 6= i, {q0
xi′

, q′xi′
, qxi′
},

{q1
xi′

, qF
xi′

, qT
xi′
}, and

for each j′ 6= j, {qcj′
, q0

cj′
}, {q′cj′

}

{q0
xi

, q1
xi
}, {q′xi

, qF
xi

, q′cj
},

{qxi
, qT

xi
, qcj
}, {q0

cj
}

for each i′ 6= i, {q0
xi′

, q′xi′
, qxi′
},

{q1
xi′

, qF
xi′

, qT
xi′
}, and

for each j′ 6= j, {qcj′
, q0

cj′
}, {q′cj′

}

≡pxicj

(for xi ∈ cj)

{q0
xi

, q1
xi
}, {q′xi

, qT
xi

, q′cj
},

{qxi
, qF

xi
, qcj
}, {q0

cj
}

for each i′ 6= i, {q0
xi′

, q′xi′
, qxi′
},

{q1
xi′

, qF
xi′

, qT
xi′
}, and

for each j′ 6= j, {qcj′
, q0

cj′
}, {q′cj′

}

{q0
xi

, q1
xi
}, {q′xi

, qF
xi
},

{qxi
, qT

xi
, qcj

, q′cj
}, {q0

cj
},

for each i′ 6= i, {q0
xi′

, q′xi′
, qxi′
},

{q1
xi′

, qF
xi′

, qT
xi′
}, and

for each j′ 6= j, {qcj′
, q0

cj′
}, {q′cj′

}

Step 1 directly imposes AA1 to be satisfied.

Step 2 implements the choice gadget for the variables: For each i ∈ [0..n], from
q0
xi

a−→ q1
xi

for all a ∈ {axicj
| xi ∈ cj} ∪ {axicj

| xi ∈ cj}, using Step 1 (i.e., AA1), we
have that q0

xi
≡dom(axi

) q1
xi

. It is not difficult to check that AA3 holds for the states
q0
xi

, q1
xi

and each of the axi
-labeled edges coming out of them. For example, let us

take q0
xi

, q1
xi

, for which we have q0
xi

axi−→ qxi
and q0

xi
≡dom(axi

) q1
xi

. The first part of AA3

is satisfied, so there must exist a state q′ such that q1
xi

axi−→ q′ and qxi
≡dom(axi

) q′. If

xi is False, we take q′ := qF
xi

, otherwise q′ := qT
xi

. Loosely speaking, we can tell the
value of xi checking which of the states qF

xi
and qT

xi
is equivalent on dom(axi

) with
qxi

.

Step 3 ensures that (≡p)p∈Proc are equivalences.

Moreover, Step 3 transmits further the information from the variables to the literals
in the clauses. In the example in Figure 4.2, x2 appears in c1. If x2 is evaluated to
False, then we know that qx2

≡dom(ax2
) qF

x2
(by Step 2) and this implies qx2

≡px2c1

qF
x2

. We also have qc1

ax2c1−→ qx2
and q′c1

ax2c1−→ qF
x2

and, using Step 1, we deduce that
qc1 ≡px2c1

qx2
and q′c1 ≡px2c1

qF
x2

. By Step 3 (i.e., transitivity of ≡px2c1
), we obtain

that qc1 ≡px2c1
q′c1 . Therefore, we have that x2 = False (at the logical level) implies

qc1 ≡px2c1
q′c1 (at the level of equivalences).

Table 4.6 describes the equivalence classes of the equivalences generated by Algo-
rithm 4.2. Each cell gives the partition of the state space Q into the equivalence classes
for each type of process (rows) depending on the value of the associated variable (columns).
Each equivalence class is given as a set in curly brackets. It is tedious, but not hard to
check the correctness of Table 4.6 (i.e., the equivalence classes presented there are indeed
the equivalence classes of the local equivalences generated by Algorithm 4.2).

Using Table 4.6, we prove that the constructed (≡p)p∈Proc satisfy AA1, AA3, and AA2

(in this order):

Table 4.7: Details for the satisfaction of the AA3 property

q1 q1
a−→ q′1 q2 Why AA3 holds (either a state q′2 or a process

p ∈ dom(a) are given)

q0
xi

q0
xi

axi−→ q′xi
{q1

xi
} We have q0

xi
≡dom(axi

) q1
xi

(because of Step
1; see also Table 4.6). If xi is True, choose
q′2 := qF

xi
, otherwise choose q′2 := qT

xi
.

Q \ {q0
xi

, q1
xi
} p := pxic0 .

q0
xi

axi−→ qxi
Similar to the case q0

xi

axi−→ q′xi
above.

q0
xi

axicj−→ q1
xi

{q1
xi
} p := pxi′c0

, where i′ 6= i (by constr. xi′ ∈ c0).
(for xi ∈ cj) Q \ {q0

xi
, q1

xi
} p can be any process from dom(axi

)\{pxicj
}.

Such p exists, because |dom(axi
)| ≥ 2 (re-

member that we forced each variable of φ to
appear in at least two clauses).

q0
xi

axicj−→ q1
xi

(for xi ∈ cj)
Similar to the case q0

xi

axicj−→ q1
xi

above.

q1
xi

Similar to the case q0
xi

above.

qcj

qcj

axicj−→ qxi

(for xi ∈ cj)
{q0

cj
} We choose p to be the process associated to

a literal ℓ of cj differenta from xi.
So, p := pℓcj

for ℓ ∈ cj and ℓ 6= xi.
Q \ {qcj

, q0
cj
} p := pℓcj′

, for cj′ differentb from cj and ℓ ∈ cj′

qcj

axicj−→ qxi

(for xi ∈ cj)
Similar to the case qcj

axicj−→ qxi
above.

qcj

acj−→ q0
cj

Since cj evaluates to True, there exists a literal ℓ of cj evalu-
ated to True. Assume ℓ = xi, such that xi ∈ cj and xi = True

(a similar analysis is made if ℓ is negative). Then:
{qxi

, qT
xi
} p := pℓcj

for ℓ ∈ cj and ℓ 6= xi
a.

Q\{qcj
, qxi

, qT
xi
} p := pxicj

.

q′cj
Similar to the case qcj

above.

aSuch literal ℓ 6= xi exists because we forced each clause to contain at least two different literals.
bOur formula φ contains at least two clauses.

89

90 The Complexity of the Distributed Implementability Test

AA1 satisfaction : Condition AA1 is fulfilled by construction (Step 1 of Algorithm 4.2).

AA3 satisfaction : We start with an observation regarding AA3:

Remark 4.12 A sufficient condition for AA3 to hold for q1 6= q2 and q1
a−→ q′1 is

that there exists p ∈ dom(a) such that q1 6≡p q2.

Proof. Immediate: If there exists p ∈ dom(a) such that q1 6≡p q2, then q1 6≡dom(a) q2,
so the hypothesis of AA3 does not hold, which gives that the implication of AA3 holds
(‘false implies everything’). �

Table 4.7 shows why AA3 holds by systematically considering instantiations for the
elements present in the formulation of AA3. Thus, the first column picks a value
for q1, the second one gives the transition q1

a−→ q′1, while the third column gives
a range to q2. In the last column we either find a state q′2 as in the formulation of
AA3 (in case q1 ≡dom(a) q2) or we give a process p ∈ dom(a) such that q1 6≡p q2 as in
Remark 4.12.

The correctness of the solutions provided is verified using the equivalence classes
from Table 4.6.

AA2 satisfaction : Since AA2 has the same formulation as SP2, we can reuse the restate-
ment of SP2 from Remark 4.6, which is:

AA2 holds if and only if for each q1 6= q2, there exists p ∈ Proc with
q1 6≡p q2.

According to the above remark, for each pair of distinct states, we must find a
process where they are not equivalent. Table 4.7 provides already such processes
that ‘distinguish’ some pairs of different states: The columns 1 and 3 give the pairs
q1 6= q2, whereas column 4 gives a process p such that q1 6≡p q2 (except for the
column 1, row 1 (q1 := q0

xi
, q2 := q1

xi
) which gives a state q′2 as in the formulation of

AA3; nevertheless, row 4 gives the process p := pxi′c0
with i′ 6= i to distinguish the

states q0
xi

and q1
xi

). In Table 4.8 we solve the rest of the cases: For q1 (column 1 of
Table 4.8) and q2 (in the range given by column 2 of Table 4.8), we give a process
p ∈ Proc such that q1 6≡p q2 (column 3 of Table 4.8). More precisely, we only have
to consider pairs of states from the subset:

Q′ := {q′xi
, qxi

, qF
xi

, qT
xi
| i ∈ [0..n]} ∪ {q0

cj
| j ∈ [0..m]}.

�

The result of Theorem 4.11 holds also for the asynchronous automata with only one
initial state:

Corollary 4.13 The implementability problem modulo isomorphism for asynchronous
automata with only one initial state is NP-complete, even for acyclic specifications.

Proof. Similar to the proof of Corollary 4.7. �

4.2. Implementability modulo Isomorphism 91

Similar to Corollary 4.8 (and with a similar proof) we have:

Corollary 4.14 Let (Σ,Proc, ∆) be a distribution and TS a transition system. The
problem of finding a set of equivalences (≡p)p∈Proc satisfying only conditions AA1 and AA3

of Theorem 4.10, is NP-complete.

Efficient decision procedures for the implementability problem modulo isomorphism
are available in case the specification is deterministic (see column 2 of the overview Ta-
ble 4.2) as the following result shows:

Proposition 4.15 [Mor98] The implementability problem for asynchronous automata
modulo isomorphism is decidable in polynomial time, if the input transition system is
deterministic.

Proof. See Theorem 3.32 and the accompanying comments.

4.2.3 Implementability for Concurrent Alphabets

A small variation to the implementability problem (Problem 4.1) is obtained by giving
in the initial specification a concurrent alphabet (Σ, ‖) (cf. Definition 3.1) instead of a
distribution:

Problem 4.16 Given a concurrent alphabet (Σ, ‖) and a transition system TS over Σ,
does there exist a distributed transition system over a distribution (Σ,Proc, ∆) equivalent
to TS and such that the independence relation generated by ∆ is equal to ‖?

The problem was considered in several papers: [Mor98, CMT99, Mor99a, Mor99b, Muk02].
Since, according to Section 3.2.1, there exist several possible distributions generating the
same independence relation, we expect Problem 4.16 to be ‘harder’ than Problem 4.1.

We will only take a look at one specific case which requires a small clarification (in
our opinion). More precisely, Morin [Mor98, Section 3] shows that Problem 4.16 modulo
isomorphism with the extra requirement that the number of processes of the distribution
is minimal, is NP-complete, even for deterministic specifications (i.e., TS is determin-
istic). Moreover, he mentions that Problem 4.16 modulo isomorphism for deterministic
specifications is in NP and a lower bound was left open. We tried our luck in finding
a lower bound to the problem, but the attempt was unsuccessful. Nevertheless, we will
provide a proof for the NP upper bound for asynchronous automata (as we will see later
the hint for the proof given in [Mor99b] is not complete).

According to Propositions 4.9 and 4.15, the distributed implementability (Problem 4.1)
modulo isomorphism can be solved in polynomial time for deterministic specifications
and the test is given by Theorems 3.29 and 3.32. A näıve NP algorithm for solving
Problem 4.16 would then be: Guess a distribution generating the concurrent alphabet
and test in polynomial time whether the transition system is distributable. This does not
work because, for a fixed concurrent alphabet (Σ, ‖) there might exist several distributions
generating it (cf. Section 3.2.1) and, more importantly, the size of these distributions may
be exponential in the size of the (in)dependence relation between actions: The set of the
local alphabets must be a covering by cliques of the dependence graph (Σ, 6 ‖) and the

92 The Complexity of the Distributed Implementability Test

number of all maximal cliques of a graph may be exponential in the size of the graph
(cf. Section 2.1.4). A solution to this issue is given in [Mor98, Mor99a] for synchronous
products by the following lemma:

Lemma 4.17 If there exists a solution to Problem 4.16 for deterministic specifications
over a distribution ∆, then there exists also a solution over a distribution ∆′ such that the
size of ∆′ is smaller than a polynomial in the size of the specification (i.e., ‖ and TS).

For synchronous products, the smaller distribution ∆′ is constructed by selecting some
of the processes of ∆ using Theorem 3.29. We do not insist further, but provide more
details in the same direction for the case of asynchronous automata.

In [Mor99b], the same idea of finding a solution with less processes from one with
more processes (Lemma 4.17) is used to prove that:

Proposition 4.18 Problem 4.16 modulo isomorphism for asynchronous automata and
deterministic specifications is in NP.

The NP algorithm runs as follows: Guess a distribution ∆ generating (Σ, ‖) with the
number of processes bounded by a certain polynomial in the size of ‖ and TS and then
test in polynomial time using Theorem 3.32 whether TS is isomorphic to an asynchronous
automaton over ∆. By Lemma 4.17 we know that considering only a certain subclass of
(polynomially bounded) distributions it is enough to cover the problem for all possible
distributions generating (Σ, ‖). So the only duty now is to make sure that Lemma 4.17
holds for asynchronous automata. As a preliminary, we recall below for convenience the
characterization theorem modulo isomorphism for asynchronous automata in case the
specification is deterministic:

Theorem 4.19 [Mor98] Let (Σ,Proc, ∆) be a distribution and TS = (Q, Σ,→, {qin}) be
a deterministic transition system. Then, we have:

1. There exists the least family of equivalences (≡p)p∈Proc over the states of Q such that
the following conditions hold (for any q1, q

′
1, q2, q

′
2 ∈ Q, a ∈ Σ, and p ∈ Proc):

DAA1 : If q1
a−→ q2, then q1 ≡Proc\dom(a) q2.

DAA2 : If q1
a−→ q′1, q2

a−→ q′2, and q1 ≡dom(a) q2, then q′1 ≡dom(a) q′2.

2. The following are equivalent:

(i) TS is isomorphic to an asynchronous automaton over ∆.

(ii) For the equivalences (≡k)k∈Proc from 1. the following conditions hold:

DAA3 : If q1 ≡Proc q2, then q1 = q2.

DAA4 : If q1
a−→ q′1 and q1 ≡dom(a) q2, then there exists q′2 ∈ Q such that

q2
a−→ q′2.

The construction for the proof of Lemma 4.17 proposed in [Mor99b] makes use of
the above theorem in the following way. The hypothesis of Lemma 4.17 says that there
exists an asynchronous automata AA over a distribution (Σ,Proc, ∆) such that AA is

4.2. Implementability modulo Isomorphism 93

isomorphic to TS and (Σ,Proc, ∆) generates the given ‖. According to Theorem 4.19,
the least family of equivalences (≡p)p∈Proc satisfying DAA1 and DAA2, must necessarily
also satisfy DAA3 and DAA4. Using (≡p)p∈Proc, from (Σ,Proc, ∆) one constructs a new
distribution (Σ,Proc ′, ∆′) such that Proc′ is obtained from Proc selecting only those
processes involved in the satisfaction of DAA3 and DAA4 as follows. For each pair of
distinct states (q, r), there must exist a process p such that q 6≡p r in order to fulfill DAA3

(cf. Remark 4.6). Furthermore, for each pair of states (q, r) and each action a ∈ Σ such
that q

a−→ q′ and ¬(r
a−→ r′), there must exist a process p ∈ dom(a) such that q 6≡p r

in order to fulfill DAA4. Thus, Proc′ consists of the processes p previously mentioned, in
all at most |Q|2 + |Q|2|Σ| processes, and additionally another at most |Σ|2 processes to
make sure that for each pair of dependent actions a 6 ‖b there exists a process p such that
p ∈ dom(a) ∩ dom(b). (For each selected process p ∈ Proc ′ ⊆ Proc, we preserve the local
alphabet, i.e., Σloc

′(p) := Σloc(p), or to put it in another way, ∆′ := ∆ ∩ (Σ× Proc ′).)
The above idea for the construction of a smaller distribution ∆′ works fine for syn-

chronous products (using the DSP conditions of Theorem 3.29 instead of DAA), because
everything ‘happens’ locally (not much interaction), but it does not really work for
asynchronous automata, where a more complex interaction is involved. The following
(counter)example tries to make this point. Consider the distribution (Σ,Proc, ∆) and the
transition system TS from Figure 4.3. It is easy to verify using Theorem 4.19 that there
exists an asynchronous automaton over ∆ isomorphic to TS . Selecting processes from
Proc to construct Proc′ as described above, we can obtain for instance

Proc′ := {1, 2, 3}
which gives the following new domains for the actions (by intersecting dom with Proc ′):

dom ′(a) = {1, 2}, dom ′(b) = {2, 3}, and dom ′(c) = {1, 3}.
However, using Theorem 4.19, we can show that for the new distribution, TS is not
isomorphic to an asynchronous automaton over (Σ,Proc ′, ∆′). Let us denote the least
family of equivalences satisfying DAA1 and DAA2 for the new distribution by (≡′

p)p∈Proc.

By DAA1 applied to 1
b−→ 2, respectively 2

c−→ 1, we have 1 ≡′
1 2, respectively 1 ≡′

2 2,
so 1 ≡′

dom′(a) 2. From the last fact together with 1
a−→ 3 and 2

a−→ 4, by DAA2, we have

3 ≡′
dom′(a) 4 and we obtain a contradiction with DAA4, because 3

a−→ 5, but ¬(4
a−→).

This contradiction cannot be obtained for the original distribution because DAA2 cannot
be applied in the first place to the transitions 1

a−→ 3 and 2
a−→ 4 (the domain of a,

dom(a) = {1, 2, 4}, contains also the process 4 and we have 1 6≡4 2). The point is that
considering processes involved in the fulfillment of DAA3 and DAA4 is not enough and we
must adapt the construction to take also DAA2 into account. This will be done in the
new proof for Lemma 4.17 proposed below.

Proof. (of Lemma 4.17)
Let (Σ, ‖) a fixed concurrent alphabet and TS = (Q, Σ,→, {qin}) a deterministic tran-
sition system. Let also (Σ,Proc, ∆) be a distribution generating (Σ, ‖) such that the
least family of equivalences (≡p)p∈Proc satisfying DAA1 and DAA2, also satisfies DAA3 and
DAA4. We construct a new distribution (Σ,Proc ′, ∆′) in the following way (note that the
alphabet of actions remains the same):

94 The Complexity of the Distributed Implementability Test

The distribution Transition system

Σ := {a, b, c},
Proc := {1, 2, 3, 4}

dom
a {1, 2, 4}
b {2, 3, 4}
c {1, 3, 4}

1 2

3 4

5

b

ca a

a

Figure 4.3: Example related to the construction for Lemma 4.17

The new set of processes Proc′ is a subset of Proc and is obtained by

Proc′ :=
⋃

q1,q2∈Q, a∈Σ

θ(q1, q2, a) ∪
⋃

a,b∈Σ

η(a, b),

where the elements involved in the above formula are:

θ(q1, q2, a) :=

{
∅, if q1 ≡dom(a) q2

{p}, for a p ∈ dom(a) such that q1 6≡p q2 (so, q1 6≡dom(a) q2)
and

η(a, b) :=

{
∅, if a‖b
{p}, for a p ∈ dom(a) ∩ dom(b) (so, a 6 ‖b).

The domains dom ′ of the actions for the new distributions are obtained by intersecting
the original domains with the new set of processes, i.e., for all a ∈ Σ,

dom ′(a) := dom(a) ∩ Proc ′.

Since the size of Proc′ is at most |Q|2|Σ|+|Σ|2, the size of the new distribution is polynomi-
ally bounded by the size of the specification. Also, it is easy to see that the independence
relation generated by the new distribution is exactly ‖: The processes introduced by
η(a, b) serve precisely this purpose.

We show that the deterministic transition system TS is isomorphic to an asynchronous
automaton over the new distribution using of course Theorem 4.19. That is, we show that
the least family of equivalences (≡′

p)p∈Proc′ satisfying DAA1 and DAA2, also satisfies DAA3

and DAA4. The turning point of the proof is based on the following implication holding
for all q1, q2 ∈ Σ, a ∈ Σ:

if q1 ≡′
dom′(a) q2, then q1 ≡dom(a) q2. (*)

Assuming for the moment that the above implication (*) is true, let us prove that DAA3

and DAA4 hold for (≡′
p)p∈Proc′ :

DAA3 satisfaction : Let q1, q2 be two states such that q1 ≡′
Proc′

q2. Then, we have that
q1 ≡′

dom′(a) q2 for all a ∈ Σ. Applying (*), we have that q1 ≡dom(a) q2 for all a ∈ Σ

4.2. Implementability modulo Isomorphism 95

Algorithm 4.3: Construction of the least family of equivalences satisfying the DAA1 and
DAA2 rules (of Theorem 4.19)

Input a distribution (Σ,Proc ′, ∆′) and
a deterministic transition system TS = (Q, Σ,→, {qin})

Step 0 For each p ∈ Proc′, initialize the binary relation ≡0
p⊆ Q×Q to ∅ and i to 0.

Step 1 For each q
a−→ q′ in TS , set q ≡0

p q′ for every p ∈ Proc′ \ dom ′(a). (DAA1)
Then, close each ≡0

p under reflexivity, symmetry, and transitivity for
p ∈ Proc′.

Step 2 Initialize (≡i+1
p)p∈Proc′ to (≡i

p)p∈Proc′ .

Step 3 If there exist q1
a−→ q′1 and q2

a−→ q′2 such that q1 ≡i
dom′(a) q2, but not

q′1 ≡i
dom′(a) q′2, then

3.1 for each p ∈ dom ′(a), set q′1 ≡i+1
p q′2,

3.2 close each ≡i+1
p under symmetry and transitivity for p ∈ dom ′(a),

3.3 increment i by 1, and go back to Step 2.
Otherwise, output (≡i

p)p∈Proc′ .

Output the least set of local equivalences satisfying DAA1 and DAA2

and, since Proc =
⋃

a∈Σ dom(a) (we supposed that each process can execute at least
one action), we have that q1 ≡Proc q2. Applying DAA3 to (≡p)p∈Proc, we obtain that
q1 = q2.

DAA4 satisfaction : Let q1, q
′
1, q2 be three states and a an action such that q1 ≡′

dom′(a) q2

and q1
a−→ q′1. Using (*), we have that q1 ≡dom(a) q2, which together with q1

a−→ q′1
and the application of DAA4 to (≡p)p∈Proc, implies that there exists a state q′2 such

that q2
a−→ q′2.

Our only duty now is to prove that the implication (*) is indeed true, and we do this
by induction on the number of times the condition DAA2 is used in the construction of
(≡′

p)p∈Proc′ . The processes selected by θ(q1, q2, a) will make this possible.
By construction, (≡′

p)p∈Proc′ is the least family of equivalences satisfying DAA1 and
DAA2 and can be computed as the fixed point of an increasing sequence of sets of equiv-
alences

(≡0
p)p∈Proc′ ⊆ (≡1

p)p∈Proc′ ⊆ . . . ⊆ (≡i
p)p∈Proc′ = (≡i+1

p)p∈Proc′ =: (≡′
p)p∈Proc′ ,

where, by definition (≡i
p)p∈Proc′ ⊆ (≡j

p)p∈Proc′ if ≡i
p ⊆ ≡j

p for all p ∈ Proc′. The first
(≡0

p)p∈Proc′ is obtained using DAA1 for all the transitions of TS and then, iteratively,
(≡i+1

p)p∈Proc′ is obtained from (≡i
p)p∈Proc′ by applying once the DAA2 rule. The details

are given by Algorithm 4.3. It is immediate to see that the algorithm terminates and is
correct (i.e., the set of equivalences at the output is the least set of equivalences to satisfy
DAA1 and DAA2).

96 The Complexity of the Distributed Implementability Test

In order to prove that implication (*) holds, we will prove by induction on i ≥ 0 that
for all q1, q2 ∈ Q and p ∈ Proc′,

if q1 ≡i
p q2, then q1 ≡p q2. (**)

and for all a ∈ Σ,

if q1 ≡i
dom′(a) q2, then q1 ≡dom(a) q2. (***)

(Note that (**) and (***) are independent.)
Finally, (***) implies (*), because after reaching a fixed point in Algorithm 4.3, the

sets (≡i
p)p∈Proc′ and (≡′

p)p∈Proc′ are equal.
We provide now the proof by simultaneous induction for (**) and (***).

Base case :

Proof for (**) : We suppose that q1 ≡0
p q2 and show that q1 ≡p q2 (for p ∈ Proc′).

Looking at the construction of ≡0
p done in Steps 0 and 1 of Algorithm 4.3, if

q1 ≡0
p q2 holds, there must exist the states s0, s1, . . . , sm with m ≥ 0 together

with the actions b1, . . . , bm such that q1 = s0, q2 = sm, and for all k ∈ [1..m],

p ∈ Proc′ \ dom ′(bk) and either sk−1
bk−→ sk or sk−1

bk←− sk (such that we can
get by Step 1 that sk−1 ≡0

p sk and further by transitivity that q1 = s0 ≡0
p

. . . ≡0
p sm = q2). Now, since p ∈ Proc′ \ dom ′(bk) and Proc′ \ dom ′(bk) =

Proc′ \ (dom(bk) ∩ Proc′) = Proc′ \ dom(bk) ⊆ Proc \ dom(bk), we have that
p ∈ Proc\dom(bk) for each k ∈ [1..m]. Moreover, since by hypothesis (≡p)p∈Proc

satisfies DAA1, we have that p ∈ Proc\dom(bk) and sk−1
bk−→ sk (or sk−1

bk←− sk)
implies that sk−1 ≡p sk, again for all k ∈ [1..m]. Finally, this gives (by the
transitivity of ≡p) that q1 = s0 ≡p . . . ≡p sm = q2, so q1 ≡p q2.

Proof for (***) : We suppose that q1 ≡0
dom′(a) q2 and show that q1 ≡dom(a) q2.

By contradiction, assume that q1 6≡dom(a) q2. Then, by the construction of
θ(q1, q2, a), there exists a process p ∈ dom(a) such that θ(q1, q2, a) = {p} and

q1 6≡p q2. (4.1)

Since p ∈ θ(q1, q2, a) ⊆ Proc′, we have that p ∈ dom ′(a) (because by definition
dom ′(a) = dom(a) ∩ Proc′). Thus, from p ∈ dom ′(a) and q1 ≡0

dom′(a) q2, we

have that q1 ≡0
p q2. This implies, using (**) proved above, that q1 ≡p q2 and

we end up contradicting (4.1).

Induction step : We suppose that (**) and (***) hold for i ≥ 0 and show that (**) and
(***) hold also for i + 1.

Proof for (**) : We must show that q1 ≡i+1
p q2 implies q1 ≡p q2.

First, if q1 ≡i
p q2, then by the induction hypothesis we have indeed that q1 ≡p q2.

Otherwise, if q1 6≡i
p q2, then Step 3.1 of Algorithm 4.3 was necessarily involved

4.2. Implementability modulo Isomorphism 97

q1 . . .

s1

s′1

. . . s2

s′2 . . . q2

b b

Figure 4.4: Visual aid for the inductive proof of Lemma 4.17

in the computation of ≡i+1
p (in order to obtain that q1 ≡i+1

p q2). This implies

the existence of two transitions s1
b−→ s′1 and s2

b−→ s′2 such that

s1 ≡i
dom′(b) s2, (4.2)

s′1 6≡i
dom′(b) s′2, and p ∈ dom ′(b). Moreover, we have that

q1 ≡i+1
p s′1 ≡i+1

p s′2 ≡i+1
p q2 and q1 ≡i

p s′1 6≡i
p s′2 ≡i

p q2

(see also Figure 4.4). Using (**) for i (induction hypothesis), from the equiv-
alences q1 ≡i

p s′1, respectively s′2 ≡i
p q2 above, we obtain that q1 ≡p s′1, respec-

tively s′2 ≡p q2. Once we prove that also s′1 ≡p s′2, we are done (we apply the
transitivity of ≡p and obtain indeed that q1 ≡p q2).

But s′1 ≡p s′2 is now easy to prove: From (4.2), applying the induction hy-
pothesis for i and (***), we have that s1 ≡dom(b) s2, which together with the

existence of s1
b−→ s′1 and s2

b−→ s′2, and the fact that (≡p)p∈Proc satisfies
DAA2, further implies that s′1 ≡dom(b) s′2. Since p ∈ dom ′(b) ⊆ dom(b), we
obtain that s′1 ≡p s′2.

Proof for (***) : We assume that q1 ≡i+1
dom′(a)

q2 and show that q1 ≡dom(a) q2.

First, if q1 ≡i
dom′(a) q2, then by the induction hypothesis we have indeed that

q1 ≡dom(a) q2. Otherwise, if q1 6≡i
dom′(a) q2, then Step 3.1 of Algorithm 4.3

was necessarily involved in the computation of (≡i+1
p)p∈Proc′ (in order to obtain

that q1 ≡i+1
dom′(a)

q2). This means that there exist two transitions s1
b−→ s′1 and

s2
b−→ s′2 such that

s1 ≡i
dom′(b) s2 (4.3)

and s′1 6≡i
dom′(b) s′2. Moreover, we necessarily have that

q1 ≡i+1
dom′(a)

s′1 ≡i+1
dom′(a) s′2 ≡i+1

dom′(a)
q2 (4.4)

and
q1 ≡i

dom′(a) s′1 6≡i
dom′(a) s′2 ≡i

dom′(a) q2 (4.5)

(see also Figure 4.4). Using (***) for i (induction hypothesis), from the equiv-
alences q1 ≡i

dom′(a) s′1, respectively s′2 ≡i
dom′(a) q2, of (4.5), we obtain that

q1 ≡dom(a) s′1, respectively s′2 ≡dom(a) q2. Once we prove that also s′1 ≡dom(a) s′2,

98 The Complexity of the Distributed Implementability Test

we are done (we apply the transitivity of (≡p)p∈Proc and obtain indeed that
q1 ≡dom(a) q2).

By contradiction, assume that s′1 6≡dom(a) s′2. Then, by the construction of
θ(s′1, s

′
2, a), there exists a process p ∈ dom(a) such that θ(s′1, s

′
2, a) = {p} and

s′1 6≡p s′2. (4.6)

Since p ∈ θ(s′1, s
′
2, a) ⊆ Proc′, we have that p ∈ dom ′(a) (because by definition

dom ′(a) = dom(a) ∩ Proc′). From (4.6), applying the induction hypothesis
for i and (**), we have that s′1 6≡i

p s′2 (otherwise, s′1 ≡i
p s′2 implies s′1 ≡p

s′2). On the other hand, s′1 ≡i+1
p s′2 (because s′1 ≡i+1

dom′(a)
s′2 – cf. (4.4) – and

p ∈ dom ′(a)). Hence, we have that s′1 6≡i
p s′2 and s′1 ≡i+1

p s′2, so necessarily

s′1 ≡i+1
p s′2 was obtained by Step 3.1 (applied to the transitions s1

b−→ s′1

and s2
b−→ s′2), which means that p ∈ dom ′(b). Thus, from p ∈ dom ′(b) and

dom ′(b) = dom(b) ∩ Proc′ ⊆ dom(b), we have that

p ∈ dom(b). (4.7)

Finally, from (4.3) and the induction hypothesis saying that (***) holds for i,
we obtain that s1 ≡dom(b) s2, which together with the existence of the transi-

tions s1
b−→ s′1 and s2

b−→ s′2, and the fact that the family (≡p)p∈Proc satisfies
the DAA2 condition, implies that s′1 ≡dom(b) s′2. This last fact together with
(4.7), shows that s′1 ≡p s′2 and we end up contradicting (4.6). �

4.3 Implementability modulo Language Equivalence

This section presents complexity results for the test whether there exists a distributed
transition system exhibiting the same behavior as a given transition system.

4.3.1 Synchronous Products of Transition Systems

Section 3.4.3 provides characterizations for the languages accepted by various classes of
synchronous products of transition systems (see also Figures 3.13–3.16). The central
ingredient there is the notion of product language (Definition 3.40), which is a language
with the property that it is equal to the synchronization of its projections on the sets of
local alphabets (Proposition 3.43). Thus, by Theorem 3.50, the class of the languages of
deterministic synchronous products, denoted by L(DSP), is equal to the class of prefix-
closed regular product languages, whereas for nondeterministic synchronous products,
L(NSP) is the closure under finite unions of the class L(DSP). However, according to
Proposition 3.52, the class of nondeterministic synchronous products with local initial
states (i.e., the set of global initial states is the cartesian product of local sets of initial
states) is equal to L(DSP). In particular, the class of nondeterministic synchronous
products with only one initial state is also equal to L(DSP) (cf. Corollary 3.53).

4.3. Implementability modulo Language Equivalence 99

In this section we study the implementability problem modulo language equivalence
for synchronous products with one initial state (i.e., |I| = 1 in Definition 3.15) and we
will consider the general case (i.e., multiple global initial states) at the end of the next
section in order to profit from some of the proof techniques introduced there. Therefore
we consider first the following problem:

Problem 4.20 Given a distribution (Σ,Proc, ∆) and a transition system TS over Σ,
does there exist a synchronous product of transition systems over ∆ with only one initial
state1 that is language equivalent to TS?

According to Corollary 3.53, a language L ⊆ Σ∗ is accepted by a synchronous product
with one initial state if and only if L is accepted by a deterministic synchronous product,
and this happens (according to Theorem 3.50) if and only if L is a prefix-closed regular
product language. If we assume L to be the language of a transition system, then L is a
prefix-closed regular language (Corollary 2.15), therefore solving Problem 4.20 boils down
to checking whether L is a product language. Thus, according to Proposition 3.43, we
have to check whether L is equal to the synchronization of its projections L ↾Σloc(p) on
the local alphabets Σloc(p) associated with the processes. Since it is easy to see that L is
always included in the synchronization of its projections, we only have to check the other
inclusion.

Given a distribution (Σ,Proc, ∆) and a transition system TS , Algorithm 4.4 presents,
following [Muk02], a decision procedure for the test whether L(TS) is a product language.
According to the above discussion, Algorithm 4.4 also decides Problem 4.20.

We are now ready to present the results advertised in column 3 of Table 4.1. For this,
we need to introduce first the reachability problem for synchronous products, that will be
used in a subsequent reduction:

Problem 4.21 (Reachability in synchronous products)

Instance: Given a distribution (Σ,Proc, ∆), a set of local transition systems
(TS p)p∈Proc with TS p = (Qp,Σloc(p),→p, {qin

p }), and a global state
q ∈∏p∈Proc Qp,

Question: is the global state q reachable from the global initial state (qin
p)p∈Proc

via the global synchronization on common actions of the →p’s as in
Definition 3.15?

The complement of the reachability problem for synchronous products (that is, checking
whether the global state q above is not reachable) is called the non-reachability problem
for synchronous products.

Lemma 4.22 The non-reachability problem for synchronous products can be in polyno-
mial time reduced to Problem 4.20.

1Since the class of synchronous products with one initial state shares the characterization of the
accepted languages with the deterministic synchronous products and the synchronous products with local
initial states, we could have pose the problem with either of the models, but we chose the synchronous
products with one initial state for simplicity. Nonetheless, the complexity results for synchronous products
with one initial state obtained in this section apply equally to deterministic synchronous products,
respectively synchronous products with local initial states.

Table 4.8: Details for the satisfaction of the AA2 property (only cases not solved already
by Table 4.7)

q1 q2 Why AA2 holds (a process p ∈ Proc is given)

q′xi
{qxi
} p := pxic0 (by construction xi ∈ c0).

Q′ \ {q′xi
, qxi
} p := pxi′c0

, where i′ 6= i (by construction xi′ ∈ c0).
qxi

Q′ \ {qxi
, q′xi
} p := pxi′c0

, where i′ 6= i (by construction xi′ ∈ c0).

qF
xi
{qT

xi
} p := pxic0 (by construction xi ∈ c0).

Q′ \ {qF
xi

, qT
xi
} p := pxi′c0

, where i′ 6= i (by construction xi′ ∈ c0).
qT
xi

Q′ \ {qT
xi

, qF
xi
} p := pxi′c0

, where i′ 6= i (by construction xi′ ∈ c0).

q0
cj

Q′ \ {q0
cj
} p := pℓcj

, where ℓ is a literal of cj.

Algorithm 4.4: A test whether the language of a transition system is a product language

Instance A distribution (Σ,Proc, ∆) and a transition system TS = (Q, Σ,→, I)
Question Is L(TS) a product language over ∆?

Step 0 W.l.o.g. suppose that TS has only one initial state. Otherwise,

add a new state qin and ε-transitions from qin to the initial states
of I,

apply an ε-closurea to the new transition system, and

set qin as the only initial state, i.e., I := {qin}.

Step 1 Let TS = (Q, Σ,→, {qin}). For each process p ∈ Proc, construct a
projection TS p := (Q,Σloc(p),→p, {qin}) obtained from a copy of TS
in which the labels from Σ \ Σloc(p) are replaced by ε and →p is the
ε-closurea of →.

Step 2 If the language of the synchronous product over ∆ of the transition sys-
tems (TS p)p∈Proc with one global initial state (qin , . . . , qin) is included
in the language of TS , then answer “yes”, otherwise answer “no”.

aA polynomial-time algorithm for ε-closure (i.e., the elimination of the transitions labeled by ε such
that the obtained transition system is language equivalent to the original one) can be found in [HU79,
Chapter 2.4].

100

4.3. Implementability modulo Language Equivalence 101

Proof. According to Problem 4.21, we are given a distribution (Σ,Proc, ∆), a local
transition system TS p = (Qp,Σloc(p),→p, {qin

p }) for each p ∈ Proc and a global state
q ∈∏p∈Proc Qp. Moreover, we suppose for convenience that Proc := {1, . . . , n}.

We construct a distribution (Σ′,Proc ′, ∆′) and a transition system R over Σ′ such that:

Problem 4.20 has a solution for ∆′ and R if and only if the global state
q := (q1, . . . , qn) is not reachable from the global initial state (qin

1 , . . . , qin
n).

The new distribution (Σ′,Proc′, ∆′) is chosen as follows:

Σ′ := Σ ∪ {ap | p ∈ [1..n]} ∪ {√}.
I.e., we add a new action for each process p plus an extra one. (Note that Σ =
⋃

p∈[1..n] Σloc(p).)

Proc′ := Proc ∪ {p0}, and

∆′ ⊆ Σ′ × Proc′ is given by the local alphabets Σ ′
loc(p) as follows:

– Σ ′
loc(p) := Σloc(p) ∪ {ap′ | p′ ∈ [1..n] ∧ p′ 6= p} ∪ {√} for every p ∈ [1..n] and

– Σ ′
loc(p0) := Σ′ \ {√}.

This gives the following domains dom ′ for the actions of Σ′:

– dom ′(a) = dom(a) ∪ {p0}, for all a ∈ Σ
(where dom(a) is given by ∆),

– dom ′(ap) = Proc′ \ {p}, for all p ∈ [1..n], and

– dom ′(
√

) = Proc′ \ {p0} = Proc.

The transition system R := (Q′, Σ′,→, {q0}) is sketched in Figure 4.5 and defined as:

Q′ := {q0, q
′
0} ∪

⋃

p∈[1..n] Qp ∪ {q′p | p ∈ [1..n]}
(w.l.o.g., we assume that Qp ∩Qp′ = ∅ for p 6= p′),

→ := {q0
a−→ q′0 | a ∈ Σ} ∪ {q′0

a−→ q′0 | a ∈ Σ} ∪
⋃

p∈[1..n]

(

{q0
ap−→ qin

p } ∪ →p ∪ {qp

√
−→ q′p}

)

.

Remark 4.23 As previously mentioned, Problem 4.20 is decided by Algorithm 4.4. Thus,
following Step 1 of the procedure, we construct the projections Rp of R onto the local
alphabets Σ ′

loc(p) as follows:

For p ∈ [1..n], Rp is obtained from R replacing the labels from Σ′ \Σ ′
loc(p) by ε and

applying an ε-closure. Since ap 6∈ Σ ′
loc(p) and Σloc(p)∪ {√} ⊆ Σ ′

loc(p), we have that
all the states reachable by a run v from qin

p in TS p (with v ∈ (Σloc(p))∗) can also be
reached by the same run v from q0 in Rp.

For p := p0, since Σ ′
loc(p0) = Σ′ \ {√}, the projection Rp0

is just R without the√
-labeled transitions.

102 The Complexity of the Distributed Implementability Test

q0

q′0

Σ

Σ
TS 1

qin
1

q1

q′1

a1

√

. . . TSn

qin
n

qn

q′n

an

√

Figure 4.5: A schematic representation of the reduction in the proof of Lemma 4.22

First Implication. We assume that L(R) is a product language over ∆′ and we prove
that the global state q := (q1, . . . , qn) is not reachable from qin := (qin

1 , . . . , qin
n) in the

synchronous product of the TS p’s over ∆.

By contradiction, assume that there exists a run w ∈ Σ∗ such that q is reachable
from qin after executing the sequence w of actions. Then, we show that the language of
the synchronous product over ∆′ of the projections Rp is not included in the language
of R. Thus, according to Step 2 of Algorithm 4.4, we obtain a negative answer and this
contradicts the assumption that L(R) is a product language.

On one hand, the run w
√ 6∈ L(R) because w ∈ Σ∗ and all the runs of R containing

√
start with an ap action and ap 6∈ Σ, for any p ∈ [1..n].

On the other hand, we can show that w
√

is a run of the synchronization of the
Rp’s. Informally, we will simulate the synchronizations of the TS p’s on w ∈ Σ∗ by
synchronizations of Rp’s and at the end we will also have a synchronization of the local

transitions qp

√
−→ q′p:

In the synchronous product of the TS p’s, we can execute w from qin and we reach q
(we assumed so by contradiction). According to Definition 3.15, the synchronization on
each a ∈ Σ involves only the processes of dom(a). When synchronizing the projections Rp

on a ∈ Σ, we must observe dom ′(a) = dom(a)∪ {p0}. For p := p0, we can always execute
a ∈ Σ from q0

a−→ q′0
a−→ q′0 which is part of Rp0

. For p ∈ dom(a), we can move in Rp

(starting in q0) similarly to moving in TS p (starting in qin
p) according to Remark 4.23.

In this way, we are able to execute w in the synchronous product of the Rp’s starting
from the global state (q0, . . . , q0) and to reach the state qp in Rp for each p ∈ [1..n]. Since

dom ′(
√

) = Proc = [1..n] and we have qp

√
−→ q′p in each p ∈ [1..n], we can finally have

a
√

-synchronization. Therefore, the run w
√

belongs to the synchronization of the Rp’s
over ∆′.

Second Implication. We assume that q is not reachable from qin in the synchronization
of the TS p’s, and we prove that the language of the synchronous product over ∆′ of the
projections Rp is included in the language of R. Therefore, for each run v ∈ (Σ′)∗ of the
synchronization of the Rp’s, we show that v ∈ L(R) as well.

4.3. Implementability modulo Language Equivalence 103

Let v be a run of the synchronization of the Rp’s. Then, depending whether
√

appears
or not in the run v, it is easy to see that v can only have two forms and in both cases, v
will also belong to L(R):

v ∈ (Σ′ \ {√})∗ : From Σ ′
loc(p0) = Σ′ \ {√}, we necessarily have that v ∈ L(Rp0

). Then,
with the help of Remark 4.23, L(Rp0

) ⊆ L(R), so v ∈ L(R).

v = w
√

with w ∈ (Σ′ \{√})∗ : Again, from Σ ′
loc(p0) = Σ′ \{√}, we necessarily have that

w ∈ L(Rp0
). Looking at Rp0

, w can only have two forms (depending on the first
action of w):

w ∈ Σ∗ : We show that this is not possible, given the fact that w
√

is a run of the
synchronization of the Rp’s. Since the action

√
can be executed only if all Rp’s

with p ∈ dom ′(
√

) = [1..n] will execute a
√

-labeled transition, we have that
no Rp with p ∈ [1..n] will ever synchronize on a q0

a−→ q′0 transition for a ∈ Σ,
because no run from q′0 can contain

√
. This means that the synchronization

of the Rp’s on w ∈ Σ∗ simulates a synchronization of the TS p’s on w. From
the hypothesis, q = (q1, . . . , qn) is not reachable, so no

√
-synchronization will

be possible after executing w.

w = aiu with i ∈ [1..n] and u ∈ L(TS i) : Since the first action of w (and v) is
ai and dom ′(ai) = Proc′ \ {i}, all Rp’s except Ri must execute their local

q0
ai−→ qin

p transition (this transition belongs to Rp for p 6= i, because in this
case ai ∈ Σ ′

loc(p)). Then, the Rp’s must synchronize on u such that at the
end also a

√
-synchronization is possible. Since u ∈ L(TS i), we have that

u ∈ (Σ ′
loc(i))

∗ and also u
√ ∈ (Σ ′

loc(i))
∗. That means that Ri will take part in

all synchronizations on u
√

starting from q0 and the only possibility for Ri to

do this is by q0
u−→ qi

√
−→ q′i. This necessarily implies a run qin

i
u−→i qi in TS i

(because Σloc(i) ⊆ Σ ′
loc(i)), which further implies a run q0

ai−→ qin
i

u−→ qi

√
−→ q′i

in R, so v = aiu
√

belongs indeed to L(R). �

Based on Lemma 4.22, we are now able to prove the complexity results we are after.
In this process, we will also use complexity results from [SHRS96] for checking non-
reachability and language inclusion for synchronous products.

Theorem 4.24 The implementability problem modulo language equivalence for synchro-
nous products of transition systems with |I| = 1 is PSPACE-complete.

Proof. In Lemma 4.22 we have shown how the non-reachability problem for synchronous
products can be in polynomial time reduced to the problem of deciding the implementa-
bility of a single transition system as a language equivalent synchronous product of tran-
sition systems. Since the non-reachability problem for synchronous products is proved
in [SHRS96, Theorem 3.10] to be PSPACE-hard, we immediately deduce the PSPACE-
hardness of our problem.

Furthermore, according to Step 2 of Algorithm 4.4, in order to decide our problem,
it is enough to check whether the language of the input transition system TS includes
the language of the synchronization of its projections TS p. But this test can be done in
PSPACE as proved by [SHRS96, Theorem 3.12], so our problem is in PSPACE. �

104 The Complexity of the Distributed Implementability Test

Proposition 4.25 The implementability problem for synchronous products with |I| = 1
modulo language equivalence remains PSPACE-complete, when the input transition system
TS is deterministic.

For acyclic specifications (i.e., TS is acyclic) the problem is coNP-complete, and it
remains so even for deterministic specifications.

Proof. The PSPACE-hardness proof of [SHRS96, Theorem 3.10] works in fact for deter-
ministic TS p’s. Moreover, the reduction of Lemma 4.22 constructs a deterministic input
transition system R if the components TS p’s are all deterministic (see Figure 4.5). There-
fore, our problem is PSPACE-hard also for deterministic specifications. The PSPACE-
completeness follows directly from the PSPACE-completeness of Theorem 4.24.

Let us consider now the second part of the proposition, supposing that the input
TS is acyclic. Then, we want to use the coNP-hardness of the non-reachability problem
for synchronous products of acyclic and deterministic transition systems from [SHRS96,
Theorem 3.16]. For this, we modify the construction of R in the proof of Lemma 4.22 by
replacing the loops {q′0

a−→ q′0 | a ∈ Σ} by a set of new transitions
⋃

j∈[0..M]

{sj
a−→ sj+1 | a ∈ Σ},

where M := max{|w| | w ∈ L(TS p), p ∈ [1..n]}1 (this maximum exists because all the
TS p’s are acyclic when TS is assumed acyclic), s0 = q′0, and each sj is a new state (for
j ∈ [1..M +1]). In this way R is acyclic if all the TS p’s are acyclic and it is easy to see that
the reduction is still correct. Therefore, our problem for deterministic and acyclic spec-
ifications is coNP-hard. The coNP-completeness follows from [SHRS96, Theorem 3.17],
which easily proves that checking language inclusion for synchronous products of acyclic
transition systems can be solved in coNP. �

4.3.2 Asynchronous Automata

Section 3.4.4 provides characterizations for the languages accepted by various classes of
asynchronous automata (see also Figures 3.13–3.16). The central ingredient there is the
notion of independence of actions and the trace, respectively forward, closure of a language
(cf. Section 3.4.2). Thus, by Theorem 3.62, the class of the languages of (deterministic)
asynchronous automata is equal to the class of prefix-closed regular (forward-closed) trace-
closed languages.

Using the above mentioned characterizations, we obtain complexity bounds for the im-
plementability problem for asynchronous automata modulo languages equivalence similar
to the bounds for synchronous products:

Theorem 4.26 The implementability problem modulo language equivalence for asynchro-
nous automata is PSPACE-complete.

Proof. According to Theorem 3.62, a language L is accepted by an asynchronous autom-
aton if and only if L is a prefix-closed regular trace-closed language. In the implementa-
bility problem modulo language equivalence, the specification is given as the language of

1M is the maximum on all the lengths of the runs of the (acyclic) local transition systems TSp.

4.3. Implementability modulo Language Equivalence 105

a

Σ

b

c

A
qin

F

a

c

b

with b‖c

Figure 4.6: A schematic representation of the reduction in the proof of Theorem 4.26

a transition system, which is already a prefix-closed regular language, so we only have to
check whether the given language is trace-closed. But this test can be done in PSPACE,
as shown by [PWW98, Theorem 8 with Corollary 10] which proved that checking whether
the language of a finite automaton (seen, according to Definition 2.13, as a transition
system with final states) is a trace language can be done in PSPACE. Hence, our problem
is in PSPACE.

To show PSPACE-hardness, we use a simple reduction from the totality problem ‘=
Σ∗?’ for nondeterministic finite automata, known to be PSPACE-hard [GJ79], which
is defined as: ‘Given a nondeterministic finite automaton A = (Q, Σ,→, I, F) over the
alphabet Σ, is L(A, F) = Σ∗?’ In fact, we can assume w.l.o.g. that A has only one initial
state, I := {qin} (just follow Step 0 of Algorithm 4.4, with the extra care to make qin also
final if any of the original initial states were final, i.e., ε ∈ L(A, F)).

We reduce the above totality problem to the implementability problem for asynchro-
nous automata modulo language equivalence. Thus, for each nondeterministic finite au-
tomaton A = (Q, Σ,→, {qin}, F), we build a distribution (Σ′,Proc, ∆) and a transition
system TS over Σ′ such that: L(A, F) = Σ∗ if and only if there exists an asynchronous
automaton AA over ∆ such that L(AA) = L(TS). According to Theorem 3.62 and the
fact that L(TS) is a prefix-closed regular language, the AA above exists if and only if
L(TS) is trace-closed, so it is enough to prove the following equivalence:

L(A, F) = Σ∗ if and only if L(TS) is trace-closed. (♯)

We choose Σ′ := Σ ∪ {a, b, c} with a, b, c 6∈ Σ, Proc := {1, 2}, and ∆ such that
Σloc(1) := Σ∪{a, b} and Σloc(2) := Σ∪{a, c}. We can see that b‖c is the only independence
generated by ∆.

Then, we choose the transition system TS := (Q′, Σ′,→′, {q0}) as in Figure 4.6. More
precisely, we have:

Q′ := Q ∪ {q0, q1, q2, q3, q
′
2, q

′
3} and

→′ := {q0
a−→ q1} ∪ {q1

α−→ q1 | α ∈ Σ} ∪ {q1
b−→ q2

c−→ q3}∪
{q0

a−→ qin} ∪ (→) ∪ {qfin c−→ q′2
b−→ q′3 | qfin ∈ F}.

106 The Complexity of the Distributed Implementability Test

Then, it is easy to see that

L(TS) = Prefix(aΣ∗bc + a L(A, F) cb).

Now we can prove (♯): If we assume that L(A, F) = Σ∗, then L(TS) = Prefix(aΣ∗(bc+
cb)), which is obviously a trace-closed language (the only independence is b‖c). On the
other hand, if L(A, F) 6= Σ∗, then there exists w ∈ Σ∗ \ L(A, F), which implies that
L(TS) is not a trace-closed language because awbc ∈ L(TS) and b‖c, but awcb 6∈ L(TS).

In the end, we mention that the above proof is reminiscent of the PSPACE-hardness
proof for checking the trace closure of the language of a nondeterministic I-diamond Büchi
automaton [Mus94, Theorem 7.2.3].

Alternative proof (for the PSPACE-hardness part). An alternative proof for the
PSPACE-hardness of the implementability problem can obtained modifying the PSPACE-
hardness proof of checking the trace closure of the language of a nondeterministic autom-
aton [PWW98, Theorem 11]. The difference is that the language of a transition system
is always prefix-closed, so the constructions must accommodate this detail and this is not
immediate. We give this alternative proof below. (In fact, we hoped that the proof pre-
sented below could be modified to provide a lower bound for the implementability problem
modulo bisimulation in the general case (i.e., when the distributed implementation is not
required to be deterministic) which is an open problem [CMT99, Muk02], but until now
we have not managed to do so.)

We will use a reduction from the ‘Linear Space Acceptance’ problem, known to be
PSPACE-hard [GJ79], which is: ‘Given a deterministic linear bounded Turing machine
M and a finite word x over the (input) alphabet of M , does M accept x?’

For each deterministic linear bounded Turing machine M and finite word x, we build
a distribution (Σ,Proc, ∆) and a transition system TS over Σ such that: x 6∈ L(M) if and
only if L(TS) is a prefix-closed regular trace-closed language. The PSPACE-hardness of
our problem is then obtained from the PSPACE-hardness of the ‘Linear Space Acceptance’
problem [GJ79], the fact that PSPACE=coPSPACE [Pap94], and Theorem 3.62.

In fact, instead of giving a transition system TS , we will give a regular expression
RM,x such that

x 6∈ L(M) if and only if L(RM,x) is a prefix-closed regular trace-closed language (♮)

(this is enough according to Corollary 2.15 and using the fact that translating a regular
expression into a transition system accepting the same language can be done in polynomial
time [HMU01, Section 3.2.3]). More precisely, we construct RM,x such that

if x 6∈ L(M), then L(RM,x) = Σ∗, and

if x ∈ L(M), then L(RM,x) = Σ∗ \ (uΣ∗),
where u := u1 . . . uk is the accepting computation of M on x having its first two
letters u1, u2 independent, u1‖u2.

1

1A similar idea was used in the proof of [PWW98, Theorem 9] (showing that it is PSPACE-hard to
check whether the language of a nondeterministic finite automaton is trace-closed). In our case though
we must take extra care that the language LM,x is prefix-closed (cf. the Σ∗ after u in the second item)
and this detail adds difficulty to the proof.

4.3. Implementability modulo Language Equivalence 107

For RM,x satisfying the above properties it is easy to see that the equivalence (♮) holds:
If x 6∈ L(M), then L(RM,x) = Σ∗, which is obviously a prefix-closed regular trace-closed
language, whereas if x ∈ L(M), then L(RM,x) = Σ∗ \ (u1u2u3 . . . ukΣ

∗), which is not
trace-closed because u1‖u2 and u2u1u3 . . . uk ∈ L(RM,x), but u1u2u3 . . . uk 6∈ L(RM,x).

We give now the construction for RM,x: Let us fix an n space-bounded Turing machine
M := 〈Q, Γ, Γ0, q0, qF , δ〉, where Q is the finite state space, Γ the tape alphabet, Γ0 ⊆ Γ
the input alphabet, q0 the initial state, qF the final state such that qF 6= q0, and δ the
transition function. We also fix an input word of length n, x := x1 . . . xn ∈ Γ∗

0.
We write configurations of M in the usual way as strings over (Q × Γ) ∪ Γ; e.g., the

initial configuration is [q0x1]x2 . . . xn. Since M is n-bounded, any configuration will have
length n. A computation of M on x will be represented as a string over the alphabet
Σ := (Q × Γ) ∪ Γ ∪ {$} of the form $c0$c1$. . . $cr . . ., where the ci’s are successive
configurations of M , and c0 := [q0x1]x2 . . . xn is the initial configuration. An accepting
computation of M is a computation of the form $c0$c1$. . . $cr−1$cr which contains the
final state qF (inside a tuple [qF y] ∈ {qF}×Γ) and the final state qF occurs only in the last
configuration cr. For technical reasons, we also define a truncated accepting computation
as the prefix u of an accepting computation, in which qF appears in the last letter (i.e., a
[qF y] is on the last position).

Now, we choose the distribution (Σ,Proc, ∆) where Σ := (Q× Γ) ∪ Γ ∪ {$}, Proc :=
{1, 2}, and dom($) := {1}, dom([q0x1]) := {2}, and dom(c) := {1, 2}, for all c ∈ Σ \
{$, [q0x1]}. We see that the only independent letters are the first two letters of any
computation, i.e., $ ‖ [q0x1]. The language L(RM,x) that we are looking for will contain
all the strings that are not of the form: a truncated accepting computation u followed by
any sequence from Σ∗. (To do this, we will modify the classical PSPACE-hardness proof
for the totality problem for regular expressions (see for instance, [HU79, Theorem 13.15]
and [MS72]) in order to accommodate the prefix and trace closure properties required in
(♮).)

We choose RM,x to be the regular expression of the form

RM,x := Rwrong start + Rwrong end + Rwrong move ,

whose three constituent parts are defined below. (For S := {s1, . . . , sm} ⊆ Σ a subset of
actions, we also denote by S the regular expression s1 + . . . + sm.)

1. Since all the computations of M on x start with $[q0x1]x2 . . . xn$, we choose

Rwrong start := (Σ− $)Σ∗ + $(Σ− [q0x1])Σ
∗ + $[q0x1](Σ− x2)Σ

∗ + . . .
+$[q0x1]x2 . . . xn(Σ− $)Σ∗.

2. Let ΩqF
:= Σ \ {[qF y] | y ∈ Γ} be the set of actions not containing qF . Then,

Rwrong end := Ω∗
qF

.

3. Rwrong move is expressed in terms of a function which describes local correctness
of moves of M . Each sequence of three adjacent letters a1a2a3 ∈ Σ3 in a valid

108 The Complexity of the Distributed Implementability Test

computation, uniquely determines the letter, call it f(a1a2a3), appearing n + 1
symbols to the right of a2. Then, we choose

Rwrong move :=
∑

a1a2a3∈Ω3
qF

(
Ω∗

qF
a1a2a3 Ωn

qF
(Σ− f(a1a2a3)) Σ∗) .

We draw the attention to the use of ΩqF
in the above formula, which generates

incorrect moves only until the final state occurs (this should unveil the reason why
we worked with truncated accepting computations).

It is not difficult to show that: If x 6∈ L(M), then L(RM,x) = Σ∗, otherwise L(RM,x) =
Σ∗ \ uΣ∗ where u is the truncated accepted computation of M on input x. �

We provide now complexity bounds for specifications of special form. Interesting
enough, for deterministic specifications, the implementability problem for asynchronous
automata is much cheaper that for synchronous products:

Proposition 4.27 The implementability problem for asynchronous automata modulo lan-
guage equivalence for deterministic specifications is decidable in polynomial time.

For nondeterministic acyclic specifications, the problem is coNP-complete.

Proof. The first part follows directly from Theorem 3.62 and [PWW98, Theorem 7]
proving that it is decidable in polynomial time whether the language of a deterministic
finite automaton is a trace-closed language. (Note that the restriction regarding the
determinism applies only to the specification, while the distributed implementation may
as well be nondeterministic.) The fact that it is decidable in polynomial time whether
the language of a deterministic transition system is trace-closed can be explained without
appealing to the literature: We simply minimize in polynomial time the deterministic
input transition system (cf. Corollary 2.19) and check locally (in polynomial time) if the
ID rule holds. This is correct according to Proposition 3.39.

For the second part dealing with acyclic specifications (i.e., TS is acyclic), we show
first that the problem is in coNP. Using Corollary 3.64, in order to decide the implemen-
tability problem for acyclic specification, it is enough to verify whether the language of
the acyclic input transition system TS is trace-closed. To prove that the problem can
be solved in coNP, we show that its negation can be solved in NP. But the fact that the
language of an acyclic transition system is not trace-closed can be decided by the follow-
ing nondeterministic algorithm in polynomial time: Given a distribution and a transition
system TS , a machine can guess a pair of independent actions a‖b and two strings w,w′

and check in polynomial time whether wabw′ ∈ L(TS) and wbaw′ 6∈ L(TS) (notice that,
since TS is acyclic, the lengths of w and w′ are bounded by the size of TS).

For the coNP-hardness part, we use a reduction from the problem of ‘language in-
equivalence for acyclic finite nondeterministic automata’, which is: ‘Given two acyclic
nondeterministic finite automata A1 and A2 over the same alphabet Σ, do they accept
different languages?’ This problem is known to be NP-complete [GJ79].

The proof will be similar to the (PSPACE-hardness) proof of Theorem 4.26. Given
A1 = (Q1, Σ,→1, {qin

1 }, F1) and A2 = (Q2, Σ,→2, {qin
2 }, F2) two acyclic nondeterministic

4.3. Implementability modulo Language Equivalence 109

A1

qin
1

F1

a

b

c

A2

qin
2

F2

a

c

b

with b‖c

Figure 4.7: A schematic representation of the reduction in the proof of Proposition 4.27

finite automata assumed w.l.o.g. to have only one initial state, we construct a (nondeter-
ministic acyclic) transition system TS as in Figure 4.7 and a distribution such that b‖c.
We have then:

L(TS) = Prefix(a L(A1, F1) bc + a L(A2, F2) cb),

which easily implies that L(TS) is a not a trace language if and only if the languages
L(A1, F1) and L(A2, F2) are different. �

Synchronous products with multiple global initial states Based on the observa-
tion that the language accepted by a synchronous product is necessarily a trace-closed
language (Corollary 3.35), we can recycle the constructions in Figures 4.6 and 4.7 to de-
rive complexity bounds for synchronous products with multiple global initial states (this
is a debt from Section 4.3.2).

Theorem 4.28 The implementability problem for synchronous products of transition sys-
tems (with |I| ≥ 1) modulo language equivalence is PSPACE-hard.

For nondeterministic acyclic specifications, the problem is coNP-complete, whereas for
the deterministic acyclic ones is in P.

Proof. To prove the PSPACE-hardness of the implementability problem for synchronous
products of transition systems with |I| ≥ 1 modulo language equivalence, we use the
construction of TS and the distribution (Σ′,Proc, ∆) from the (first) PSPACE-hardness
proof of Theorem 4.26 (see Figure 4.6). More precisely, we show that L(A, F) = Σ∗ if
and only if L(TS) is the language of a synchronous product over ∆: If L(A, F) = Σ∗,
then L(TS) = Prefix(aΣ∗(bc+cb)) and we can easily construct a synchronous product ac-
cepting L(TS) (we simply choose two local transition systems accepting the projections
Prefix(aΣ∗b), respectively Prefix(aΣ∗c)). If L(A, F) 6= Σ∗, then L(TS) is not a trace-
closed language and therefore cannot be the language of a synchronous product (because
the language of a synchronous product of transition systems is always trace-closed ac-
cording to Corollary 3.35).

Let us consider now the case of acyclic specifications (accepting finite languages). We
know that class of finite languages accepted by synchronous products is equal to the class

110 The Complexity of the Distributed Implementability Test

Table 4.9: Complexity results for the implementability of synchronous products of tran-
sition systems with multiple initial states (|I| ≥ 1)

Specification (TS) Isomorphism Language Equivalence

Nondeterministic NP-complete PSPACE-hard
Deterministic P [Mor98] ?
Acyclic & Nondet. NP-complete coNP-complete
Acyclic & Determ. P [Mor98] P

of finite languages accepted by asynchronous automata, viz. the class of prefix-closed
trace-closed finite languages [Zie87, Theorem 5.1] (see also Figure 3.14 and the footnote
of Proposition 3.58). Therefore, the complexity of the implementability problem for non-
deterministic (respectively, deterministic) acyclic specifications for synchronous products
is settled by the coNP-completeness (respectively, in P) result of the same problem for
asynchronous automata (Proposition 4.27).

As a remark, the above construction cannot be used for the proof of Proposition 4.25
treating the case of deterministic specifications1, because the constructions of Figures 4.6
and 4.7 are fundamentally nondeterministic. �

We gather the results for synchronous products with multiple initial states in Table 4.9
(complementing thus Table 4.1). The complexity for the implementability modulo iso-
morphism is already solved by Theorem 4.3 (column 2 of Table 4.9), while the implemen-
tability for bisimulation is open in the general case (we do not extend the table for it;
for deterministic synchronous products results are given in column 4 of Table 4.1). The
results for implementability problem modulo language equivalence from Theorem 4.28
above are given in column 3 of Table 4.9. In the general case we have only a lower bound,
while an upper bound is still to be found. Moreover, we do not know anything about its
complexity when the specification is deterministic.

Remark 4.29 In fact, we suspect that in the general case (i.e., nondeterministic specifi-
cations) the synthesis problem for synchronous product with multiple initial state may be
even undecidable. The difficulty of the problem can be guessed from the characterization
of the class of languages accepted by synchronous products as the class of finite unions
of prefix-closed regular product languages (cf. Theorem 3.50). Thus, given a transition
system TS , one should test whether there exists a set of prefix-closed regular languages
L1, . . . , Lm such that L = L1 ∪ . . .∪Lm and each Li is a product language, for i ∈ [1..m].
Since L may be infinite, there may be an infinite number of ‘decompositions’ of L as
L1 ∪ . . . ∪ Lm for which we should test whether each Li is a product language.

Recent results [BBL05] confirm indeed that the problem at hand is difficult to tackle.
More precisely, [BBL05] is dedicated to the decidability of the question if a regular lan-
guage is a finite union of product languages. Using non-trivial techniques it was shown
that in the particular case where the distribution has only two processes, given a fixed

1As we will see in Section 4.4, this deterministic case is important to settle the implementability
problem modulo bisimulation for deterministic implementations.

4.3. Implementability modulo Language Equivalence 111

Algorithm 4.5: A test whether the language of a regular expression is prefix-closed

Instance A regular expression E over a set of actions Σ
Question Is L(E) prefix-closed?

Step 1 Construct in polynomial time a nondeterministic finite au-
tomaton A = (Q, Σ,→, I, F) such that L(A, F) = L(E)
(see [HMU01, Section 3.2.3] for details).

Step 2 Define a new set of final states F ′ as the set of all states
that are on a path from an initial state qin ∈ I to a final
one qfin ∈ F .

Step 3 If L(A, F) = L(A, F ′), then answer “yes”, otherwise an-
swer “no”.

number k, it is decidable whether a regular language L is equal to the union of k product
languages. The problem is still open for general distributions as well as for unrestricted
number of product languages in the union.

Regular expressions as specifications When defining synthesis/implementability
problem modulo language equivalence, one can give the regular specification as a reg-
ular expression (cf. page 15) instead of a transition system. Unlike the language of a
transition system, the language of a regular expression is not necessarily prefix-closed.
However the prefix-closure property can be verified in PSPACE:

Lemma 4.30 Given a regular expression E, checking whether the language L(E) is
prefix-closed can be done in PSPACE.

Proof. A PSPACE test for prefix-closure is given by Algorithm 4.5. The algorithm
obviously terminates and belongs to PSPACE because Steps 1 and 2 need only polynomial
time, while checking the language equivalence of two nondeterministic finite automata
(Step 3) can be determined in PSPACE [GJ79]. The proof of correctness of the algorithm
(i.e., L(E) is prefix-closed if and only if L(A, F) = L(A, F ′)) is the same as the second
part of the proof of Corollary 2.15. �

We will show now that the complexity bounds from Theorems 4.26 and 4.24 are
preserved for specifications given as regular expressions:

Theorem 4.31 The implementability problem modulo language equivalence for asynchro-
nous automata (respectively, for synchronous products with |I| = 1) with regular expres-
sions as specifications is PSPACE-complete.

Proof. Given a distribution (Σ,Proc, ∆) and a regular expression E over Σ, we check
whether there exists an asynchronous automaton (respectively, synchronous product with
one initial state) over ∆ accepting L(E). According to the characterizations of Section 3.4,

112 The Complexity of the Distributed Implementability Test

we have to check whether L(E) is a prefix-closed regular trace-closed (respectively, prod-
uct) language.

Following Steps 1 and 2 of Algorithm 4.5, we can construct A, F and F ′ and test
L(A, F) = L(A, F ′) to check if L(E) is prefix-closed. If L(E) is not prefix-closed, we
know that the implementability problem has no solutions. Otherwise, we can construct
a transition system TS obtained from A preserving only the states of F ′, so L(TS) =
L(A, F ′) = L(A) = L(E). Then, we can check in polynomial space starting with TS
as specification if L(TS) is a trace-closed (respectively, product) language as done in the
proofs of Theorem 4.26 (respectively, 4.24). From all the above we have that our problem
is in PSPACE.

For the PSPACE-hardness part we use a reduction from the ‘totality problem for
regular expressions’, i.e., ‘Given a regular expression E over a set Σ of actions, does L(E) =
Σ∗ hold?’. This problem is known to be PSPACE-complete [GJ79]. The reduction is an
adaptation of the (first) PSPACE-hardness proof of Theorem 4.26 (see also Figure 4.6)1:
Given a regular expression E over Σ, we construct a new regular expression E ′ over
Σ′ := Σ ∪ {a, b, c} with b‖c as follows:

E ′ := ε + a + aΣ∗ + aΣ∗b + aΣ∗bc + aE + aEc + aEcb.

Mimicking the proof of Theorem 4.26 (respectively, 4.28), one can easily show that L(E) =
Σ∗ if and only if L(E ′) is a prefix-closed regular trace-closed (respectively, product2)
language. �

4.3.3 Non-regular specifications

In this section we make a short detour and examine what happens when the specifica-
tions are not regular. The following result suggests that there is no hope to test the
implementability once we move higher in Chomsky’s hierarchy:

Theorem 4.32 Checking that a context-free language is trace-closed is undecidable.

Proof. The proof uses the fact that the set of invalid computations of a Turing machine
is a context-free language [HU79, Lemma 8.7], together with the trick of making the first
two letters of an accepting computation independent (see the technique in the alternative
proof of Theorem 4.26).

We use a reduction from the ‘emptiness problem for Turing machines’, i.e., ‘Given a
Turing machine M , is L(M) empty?’, which is a classical undecidable problem [Pap94].
Thus, given an arbitrary Turing machine M = (Q, Γ, Γ0, δ, q0, B, F), we construct a dis-
tribution and a context-free grammar G such that

L(M) = ∅ if and only if L(G) is a trace-closed language.

1We cannot directly reduce (in polynomial time) the implementability problem modulo language
equivalence with transition systems as specifications to the corresponding problem with regular expressions

as specifications, because of the potential exponential blowup in the general translation from a transition
system to a regular expression accepting the same language [HMU01, Section 3.2.1].

2For this part, we use the fact that every product language is trace-closed (Proposition 3.41).

4.4. Implementability modulo Bisimulation 113

We give first the definition of a valid computation of M , which is a string

$ w1 $ wR
2 $ w3 $ wR

4 $...

over the alphabet Q ∪ Γ ∪ {$} (with Q and Γ disjoint and $ belonging to none of them)
such that:

1. each wi is an instantaneous description (ID) of M , that is, a string in Γ∗QΓ∗ not
ending with B (where B is the blank symbol),

2. w1 is an initial ID, that is, one of the form q0x for x ∈ Γ∗
0,

3. wn is a final ID, that is, one in Γ∗FΓ∗, and

4. wi ⊢M wi+1 for 1 ≤ i < n, that is, wi and wi+1 are consecutive IDs.

Let Σ := Q ∪ Γ ∪ {$}. We choose a context-free grammar G over Σ able to compute
exactly all the invalid computations of M . Such a grammar G exists according to the
construction of [HU79, Lemma 8.7]. Then, we have then that:

if L(M) = ∅, then L(G) = Σ∗ and

if L(M) 6= ∅, then L(G) = Σ∗ \ {the set of all valid computations of M}.

The trick now is to choose a distribution over Σ such that $ and q0 are independent
($‖q0). We show that L(M) = ∅ if and only if L(G) is a trace-closed language. If
L(M) = ∅, it is obvious that L(G) = Σ∗ is trace-closed. If L(M) 6= ∅, then there is a valid
computation of M , say w, which will not belong to L(G). On one hand, by definition,
w has the form $q0w

′. On the other hand, q0$w
′ is an invalid computation (any valid

computation starts with $) and therefore belongs to L(G). So, we have that q0 and $
are independent and q0$w

′ ∈ L(G), but $q0w
′ 6∈ L(G), which means that L(G) is not a

trace-closed language. �

Since the context-free grammars (and the language equivalent model of pushdown au-
tomata) are used to describe programs with procedures (which need stacks for their call-
ings), a possible interpretation of the above result in a programming language setting can
be: It is undecidable to decide if a global program with procedures (given as specification)
admits a behaviorally equivalent distributed implementation.

4.4 Implementability modulo Bisimulation

In this section we present complexity bounds for the test whether there exists a dis-
tributed transition system bisimilar to a given transition system. The results will cover
the implementability modulo bisimulation only for deterministic distributed implementa-
tions (nevertheless, the specification is still allowed to be nondeterministic). The general
problem for nondeterministic implementations is still open.

114 The Complexity of the Distributed Implementability Test

Based on the observation that bisimulation (Definition 2.12) and language equiva-
lence coincide for the class of deterministic transition systems [vG90]1, Mukund et al.
[CMT99, Muk02] provide characterizations modulo bisimulation for the global transition
systems of the deterministic distributed transition systems. More precisely, for a given
transition system TS and a distribution ∆, there exists a deterministic distributed tran-
sition system over ∆ bisimilar to TS if and only if the quotient TS/∼TS

(with ∼TS the
largest bisimulation on TS , see page 20) is deterministic and L(TS) is the language of a
deterministic distributed transition system.

We will combine the characterizations for the classes of languages of deterministic
distributed transition systems (see Figure 3.13) with the above characterization for im-
plementability modulo bisimulation and we will basically infer the same complexity results
as for implementability with deterministic specifications from Propositions 4.25 and 4.27
(see column 4 of Tables 4.1 and 4.2).

4.4.1 Synchronous Products of Transition Systems

The implementability problem modulo bisimulation is solved in the literature for deter-
ministic synchronous products by:

Theorem 4.33 [CMT99, Muk02] Let (Σ,Proc, ∆) be a distribution and TS a transition
system over Σ. Then, the following are equivalent:

(i) TS is bisimilar to a deterministic synchronous product of transition systems over ∆

(ii) the bisimulation quotient TS/∼TS
is deterministic and TS is language equivalent to

a deterministic synchronous product over ∆.

The above theorem and some of our proofs make use of the following easy remarks
regarding bisimulation:

Lemma 4.34 [Folklore] The following properties hold for two arbitrary transition sys-
tems TS, TS ′ over the same alphabet Σ:

1. If TS is deterministic, then TS/∼TS
is also deterministic.

2. If L(TS) = L(TS ′) and TS and TS ′ are both deterministic, then TS and TS ′ are
bisimilar.

3. If TS and TS ′ are bisimilar, then TS/∼TS
and TS ′/∼

TS ′
are isomorphic, therefore

L(TS) = L(TS ′).

We show now that the implementability problem modulo bisimulation is computation-
ally intractable for deterministic synchronous products:

Theorem 4.35 The implementation problem for deterministic synchronous products of
transition systems modulo bisimulation is PSPACE-complete.

1In fact, all the equivalences between bisimulation and language equivalence (called trace equivalence

in the context of [vG90]) coincide for the class of deterministic transition systems.

4.4. Implementability modulo Bisimulation 115

Proof. To show that the problem is in PSPACE, it is enough to check (ii) of Theo-
rem 4.33. First, checking that TS/∼TS

is deterministic takes polynomial time because
constructing the largest bisimulation ∼TS takes polynomial time [MS03]. Second, check-
ing that TS is language equivalent to a deterministic synchronous product boils down to
checking whether L(TS) is a product language (see Theorem 3.50). But checking that
the language of a transition system is a product language can be done in PSPACE as
testified by Algorithm 4.4 (cf. proof of Theorem 4.24).

The PSPACE-hardness proof is the same as the (PSPACE-hardness) proof of Proposi-
tion 4.25, that is, we use the reduction from the non-reachability problem for synchronous
products of deterministic transition systems proved to be PSPACE-complete in [SHRS96,
Theorem 3.10]. The reduction of Lemma 4.22 constructs a deterministic input transition
system R if the components TS p’s are all deterministic (see Figure 4.5). According to (ii)
of Theorem 4.33, the only extra condition to be considered is that TS/∼TS

is deterministic
for the input transition system. But in our reduction, the input transition system is R,
which is deterministic by construction, so, using 1. of Lemma 4.34, we have that R/∼R

is
indeed deterministic. �

Proposition 4.36 The implementability problem for deterministic synchronous products
modulo bisimulation remains PSPACE-complete, when the input transition system TS is
deterministic.

For acyclic specifications (i.e., TS is acyclic) the problem is coNP-complete, and it
remains so even for deterministic specifications.

Proof. The proof for the first part is the same as the proof of Theorem 4.35 because the
transition system R of the reduction there is already deterministic.

For acyclic specification, the proof is similar to the (coNP-completeness) proof of
Proposition 4.25, again using 1. of Lemma 4.34 as used in the proof of Theorem 4.35. �

4.4.2 Asynchronous Automata

The characterization of deterministic asynchronous automata modulo bisimulation follows
a similar pattern to Theorem 4.33 characterizing the deterministic synchronous products
modulo bisimulation:

Theorem 4.37 [Muk02] Let (Σ,Proc, ∆) be a distribution and TS a transition system
over Σ. Then, the following are equivalent:

(i) TS is bisimilar to a deterministic asynchronous automaton over ∆

(ii) the bisimulation quotient TS/∼TS
is deterministic and TS is language equivalent to

a deterministic asynchronous automaton over ∆.

Opposed to synchronous products, we show now that the implementability problem
modulo bisimulation is tractable for deterministic synchronous products:

Theorem 4.38 The implementation problem for deterministic asynchronous automata
modulo bisimulation can be decided in polynomial time.

116 The Complexity of the Distributed Implementability Test

Algorithm 4.6: A polynomial test if a transition system is bisimilar to a deterministic
asynchronous automaton

Instance A distribution (Σ,Proc, ∆) and a transition system TS
Question Is TS bisimilar to a deterministic asynchronous automaton

over ∆?

1: construct TS/∼TS

2: if TS/∼TS
is deterministic then

3: if L(TS/∼TS
) is a forward-closed trace-closed lan-

guage then
4: answer “yes”
5: else answer “no”
6: else answer “no”.

Proof. A polynomial test for our problem is given by Algorithm 4.6.

The algorithm is polynomial because the construction of TS/∼TS
in line 1 is polyno-

mial [MS03], the test in line 2 is obviously polynomial, and the test in line 3 is polynomial
for transition systems that are deterministic, which is the case for TS/∼TS

, because of
the if-nesting. More precisely, testing if the language of a deterministic transition sys-
tem TS is forward- and trace-closed can be done in polynomial time in the following
way: We compute from TS in polynomial time the minimal transition system TS 0 such
that L(TS 0) = L(TS) (see Corollary 2.19 and [HU79, Section 3.4]) and test (locally –
in polynomial time) if TS 0 satisfies the ID and FD rules (this is enough according to
Proposition 3.36).

The algorithm is correct according to Theorem 4.37, Theorem 3.62, and the language
equality L(TS/∼TS

) = L(TS) (obtained from the fact TS/∼TS
is bisimilar to TS in

conjunction with 3. of Lemma 4.34). �

4.5 Relaxed Implementability

In most cases the implementability problem (Problem 4.1) modulo isomorphism has no
solutions (the constraints that the specification must satisfy in order to be distributable
are very strong, cf. Theorems 4.2 and 4.10), therefore in practice we usually consider
the implementability problem modulo language equivalence. But what can we do when
even in the case of language equivalence we have no solutions? One possibility that we
consider in this section is to relax the problem to allow (under-)approximated solutions,
that is, the language of the distribution implementation is included in (rather than equal
to) the language of the specification. We preferred the under-approximations to the over-
approximations (i.e., the language of the implementation includes that of the specification)
because in most of our cases studies (Sections 6.1.4 and 6.1.5), the specification is given
using (regular) sets of forbidden sequences of actions (i.e., we specify safety properties) and

4.5. Relaxed Implementability 117

an implementation behaviorally richer than the specification may hit one of the forbidden
sequences, which is of course undesirable.

In this section we focus on asynchronous automata, but we show that some results
apply to synchronous products as well1. Thus, in Section 4.5.1 we show that the relaxed
implementability problem is unfortunately undecidable for asynchronous automata and
the proof can be adapted to show that a similar result holds for synchronous products. As
partial solution to the undecidability issue, we propose in Section 4.5.2 a structural-based
heuristic that is shown to be ‘only’ NP-complete. The application of this approach will
be presented in the next chapter.

4.5.1 Language Inclusion

The relaxed implementability problem (for asynchronous automata) that we consider in
this section is:

Problem 4.39 (Relaxed implementability)

Instance: Given a distribution (Σ,Proc, ∆) and a transition system TS
over Σ with Σ(TS) = Σ,

Question: does there exist an asynchronous automaton AA over ∆ such
that L(AA) ⊆ L(TS) and Σ(AA) = Σ?

In the relaxed version above, the implementability problem allows the distributed imple-
mentability to be behaviorally included in the specification. Since we want the implemen-
tations to be interesting, we additionally require that all the actions in the alphabet Σ
appear also in the implementation, i.e., Σ(AA) = Σ (the definition of the alphabet Σ(TS)
of a transition system is given on page 19, and by definition, the alphabet Σ(AA) of an
asynchronous automaton AA is the alphabet of its global transition system). We impose
this (natural and not very strong) restriction in order to prevent the occurrence of trivial
solutions like L(AA) = ∅ or partial solutions in which only some of the processes are
executing actions.

Before proving the main result, we give a short lemma relating language inclusion and
the trace-closure of a language (denoted by [L], see definition on page 29).

Lemma 4.40 Let (Σ, ‖) be a concurrent alphabet and S,B, F ⊆ Σ∗ three languages. If
S ⊆ B \ F and S is a trace-closed language, then S ⊆ B \ [F].

Proof. By contradiction, suppose there exists w ∈ S such that w ∈ [F]. Since w ∈ [F],
there exists w′ ∈ F such that w ∼ w′. On the other hand, w ∈ S and S is a trace-closed
language, so w′ ∈ S. We have then shown that w′ ∈ S ⊆ B \ F and w′ ∈ F , which is a
contradiction. �

Theorem 4.41 The relaxed implementability problem for asynchronous automata is un-
decidable.

1It seems that the characterizations of the languages of asynchronous automata involving trace-closed
languages are easier to deal with theoretically than the product languages that the class of synchronous
products generates.

118 The Complexity of the Distributed Implementability Test

Proof. 1 According to the characterization from Theorem 3.62, the class of the languages
of asynchronous automata is equal to the class of prefix-closed regular trace-closed lan-
guages. Therefore, it is enough to prove that the following problem is undecidable (below
we use the notion of alphabet of a language L, denoted by Σ(L), as defined on page 13):

Problem 4.42 Given a concurrent alphabet (Σ, ‖) and a prefix-closed regular language
L such that Σ(L) = Σ, does there exists a prefix-closed regular trace-closed language L′

such that L′ ⊆ L and Σ(L′) = Σ?

We prove that Problem 4.42 is undecidable using a reduction from Post’s Correspondence
Problem (PCP) which is known to be undecidable [Pap94]. (The difficulty of Problem 4.42
lies in the fact that the class of ‘sub-languages’ L′ of a prefix-closed regular (infinite)
language L may be infinite and we should in principle find a trace-closed one in this class.
The undecidability result says that there is no finite classification of the sub-languages of L
complying with our conditions and one should enumerate all in order to find a trace-closed
one.)

Let A and B be two disjoints alphabets. An instance of Post’s correspondence problem
is encoded by two homomorphisms f, g : A∗ → B∗. A solution for the instance (f, g) is
a word w ∈ A+ such that f(w) = g(w). For technical reasons, we use two letters a and
b to encode the sets A = {a1, . . . , a|A|} as {ab, aab, . . . , a|A|b} and B = {b1, . . . , b|B|} as
{a|A|+1b, a|A|+2b, . . . , a|A|+|B|b}.

We choose the alphabet Σ = {a, b, c, d}. Also, we choose the following independence
over Σ:

a‖c and b‖c.
Consider now the following languages Wf and Wg (which has been used in the reduc-

tion given in [Sak92], see also [MP96]):

Wf = {wf(w)c|f(w)| | w ∈ A+} and Wg = {wg(w)c|g(w)| | w ∈ A+}.

Let us also denote for convenience {a, b, c} by Σ0. Then, it can be proved (see the
construction in [MP96]) that there exist the regular languages Lf and Lg such that their
(trace-)closures with respect to ‖ are exactly the complements w.r.t. Σ0 of the closures of
Wf and Wg respectively, i.e.,

[Lf] = Σ∗
0 \ [Wf] and [Lg] = Σ∗

0 \ [Wg].

Now, given an instance (f, g) of the PCP, we choose the regular language

Lfg := Prefix((Σ∗
0 \ (Lf ∪ Lg))d)

and we prove that

the PCP instance (f, g) has a solution iff p Problem 4.42 with L := Lfg has a solution.

1This proof is the result of joint work with Javier Esparza and profited from discussions with Volker
Diekert and Holger Petersen.

4.5. Relaxed Implementability 119

First of all, we prove that Σ(Lfg) = Σ (this is required in the formulation of Prob-
lem 4.42), showing that Σ(Σ∗

0 \ (Lf ∪ Lg)) = Σ0. Since ba corresponds to no encoding,
[bac] = {bac, bca, cba} ⊆ Σ∗

0 \ [Wf]. From [Lf] = Σ∗
0 \ [Wf], we have that [bac] ⊆ [Lf].

We can choose Lf such that bac ∈ Lf , but cba ∈ [Lf] \ Lf . Similarly, we can choose Lg

such that cba ∈ [Lg] \ Lg. Then, we can deduce that cba ∈ ([Lf] \ Lf) ∩ ([Lg] \ Lg) ⊆
(Σ∗

0 \ Lf) ∩ (Σ∗
0 \ Lg) = Σ∗

0 \ (Lf ∪ Lg). Therefore Σ(Σ∗
0 \ (Lf ∪ Lg)) = Σ0 because

Σ(cba) = {a, b, c} = Σ0.
Suppose now that the PCP instance (f, g) has a solution, say w0. Then, f(w0) = g(w0).

We prove that Problem 4.42 with L := Lfg has also a solution. More precisely, if we denote
u0 := w0f(w0)c

|f(w0)|, then L′ := Prefix([u0]d) is a solution, i.e., L′ is a prefix-closed regular
trace-closed language such that L′ ⊆ Lfg and Σ(L′) = Σ.

First, L′ is a prefix-closed language by construction and is regular because L′ is finite.
L′ is a trace-closed language because [u0] is a trace-closed language and both the concate-
nation with letter d (dependent of all the other actions!) and the prefix-closure operator
preserve the closure under the independence relation (Proposition 3.7). Then, L′ ⊆ Lfg

because [u0] ⊆ [Wf]∩[Wg] = (Σ∗
0\[Lf])∩(Σ∗

0\[Lg]) ⊆ (Σ∗
0\Lf)∩(Σ∗

0\Lg) = Σ∗
0\(Lf∪Lg).

Finally, Σ(L′) = Σ because a and b appear in the encoding of any element of A and B, c
appears in u0, and d appears in the construction of L′.

For the inverse implication, if Problem 4.42 with L := Lfg has a solution, we prove
that also the PCP instance (f, g) has a solution: Suppose L′ is a solution of Problem 4.42,
i.e., L′ is a prefix-closed regular trace-closed language such that L′ ⊆ Lfg and Σ(L′) = Σ.
Since d ∈ Σ(L′), there exists w ∈ L′ such that d appears in w. From L′ ⊆ Lfg and
the definition of Lfg , necessarily w = vd, with v ∈ Σ∗

0 \ (Lf ∪ Lg). Because L′ is trace-
closed, [w] = [v]d ⊆ L′ ⊆ Lfg and we can deduce that [v] ⊆ Σ∗

0 \ (Lf ∪ Lg). Now
we can apply Lemma 4.40 (because [v] represents a trace-closed language) and obtain
that [v] ⊆ Σ∗

c \ [Lf ∪ Lg]. It is easy to see that Σ∗
0 \ [Lf ∪ Lg] = [Wf ∩ Wg], and so

[v] ⊆ [Wf ∩Wg]. This implies Wf ∩Wg 6= ∅, which is equivalent to the PCP instance
(f, g) having a solution. �

Corollary 4.43 The undecidability result of Theorem 4.41 holds also for the class of
deterministic asynchronous automata. Moreover, it holds also for deterministic specifica-
tions.

Proof. For the first part, according to the characterization from Theorem 3.62, the class
of the languages of deterministic asynchronous automata is equal to the class of prefix-
closed regular forward-closed trace-closed languages. The construction given in the proof
of Theorem 4.41 can be reused with the only extra duty of showing that L′ from the direct
implication is a forward-closed language. (L′ := Prefix([u0]d), where u0 := w0f(w0)c

|f(w0)|

and f(w0) = g(w0).) We prove that wy,wz ∈ L′ and y‖z implies wyz ∈ L′. Since the
only independence relations are a‖c and b‖c, we necessarily have that one of y and z is c
while the other belongs to {a, b}. Assume w.l.o.g. that z = c and y ∈ {a, b}. From the
structure of L′, wy and wc are two prefixes of elements of [u0]d (note that all elements of
this set have the same number of c’s, namely |f(w0)|). Therefore there exist w1, w2 ∈ Σ∗

such that wyw1, wcw2 ∈ [u0]d. Since wyw1 and wcw2 have the same number of c’s, we
have that yw1 and cw2 have the same number of c’s, so w1 contains at least one c (because

120 The Complexity of the Distributed Implementability Test

y 6= c). Since c commutes with {a, b} and d appears only on the last position, there exists
w′

1 such that wycw′
1 belongs to [u0]d, so wyc ∈ L′.

The second assertion of the corollary is immediate, following from the fact that the
class of languages of nondeterministic transition systems and of the deterministic ones
coincide (Corollary 2.17). �

Remark 4.44 In case the specification is acyclic, i.e., TS is acyclic, Problem 4.39 be-
comes easily decidable: If TS is acyclic, then L(TS) is finite and we simply enumerate all
the languages L′ included in L(TS) and test whether L′ is prefix-closed, trace-closed, and
Σ(L′) = Σ.

Synchronous products The undecidability result of Theorem 4.41 holds also when
we replace the model of asynchronous automata with that of synchronous products in
Problem 4.39:

Corollary 4.45 The relaxed implementability problem for (deterministic) synchronous
products is undecidable.

Proof. The construction given in the proof of Theorem 4.41 can be reused for synchronous
products using the observation that the language of (deterministic) synchronous product is
a (forward-closed) trace-closed language (Corollary 3.35). Then, the only extra duty for us
is to show that L′ from the direct implication is accepted by a (deterministic) synchronous
product. Using the characterization of Theorem 3.50, this reduces to show that L′ :=
Prefix([u0]d), where u0 := w0f(w0)c

|f(w0)| is a product language (Definition 3.40). It is
easy to see that L′ is indeed the product of the (local) languages

L1 = Prefix(w0f(w0)d) and L2 = Prefix(c|f(w0)|d).

(Note that w0 ∈ A+ ⊆ {a, b}+, f(w0) ∈ B+ ⊆ {a, b}+, so L1 ⊆ {a, b, d}∗ and L2 ⊆ {c, d}∗,
and therefore the local alphabets {a, b, d} and {c, d} comply with the given independent
relation {a‖c, b‖c}.) �

4.5.2 Isomorphic Embedding Heuristic

The reason why the relaxed implementability as formulated in Problem 4.39 is undecidable
is the potential infinite number of sub-languages of a regular language. There are several
possibilities of bounding the search for solutions within a finite domain (and thus to obtain
an incomplete, but decidable result). In this section we choose to restrict our search only
to the languages of isomorphic embeddings into the specification TS . More precisely,
we will look for transition systems E satisfying ID obtained by cutting out some of the
transitions of TS (thus there is an injective embedding of the state space of E into TS
preserving the edges). On one hand, L(E) is included in TS (because of the embedding).
On the other hand, the language of E is a trace-closed language using Proposition 3.34
in conjunction with the fact that E satisfies ID. Therefore, using Theorem 3.62, finding a
solution to the isomorphic embedding problem implies the existence of a solution to the
relaxed implementability problem for asynchronous automata. After giving the formal
details, we will show that the new problem in NP-complete.

4.5. Relaxed Implementability 121

Definition 4.46 (Isomorphic embedding)
We say that the transition system E = (Q′, Σ′,→′, I ′) is an isomorphic embedding of the
transition TS = (Q, Σ,→, I), denoted by E ⊏TS , if

Q′ ⊆ Q, Σ′ ⊆ Σ, →′⊆→, and ∅ 6= I ′ ⊆ I.

An important observation is that E is supposed to be reachable! (One convention of this
thesis is that ‘transition system’ means in fact ‘reachable finite labeled transition system’.)
Therefore, the set of transitions →′ cannot be an arbitrary subset of →. Also, it is clear
that E ⊏TS implies L(E) ⊆ L(TS).

Problem 4.47 (Isomorphic ID embedding)

Instance: Given a concurrent alphabet (Σ, ‖) and a transition system
TS over Σ with Σ(TS) = Σ,

Question: does there exist a reachable transition system E over Σ such
that E ⊏TS, E satisfies ID, and Σ(E) = Σ?

Remark 4.48 The isomorphic ID embedding problem provides a heuristic for the relaxed
implementability problem. That is, a solution of the former provides a solution for the
latter. The easy proof is sketched in the discussion opening the current section.

We settle now the computational complexity of the above heuristic:

Theorem 4.49 The isomorphic ID embedding problem is NP-complete.

Proof. First, it is easy to see that the problem is in NP: Given a concurrent alphabet and
a transition system TS , a nondeterministic machine can ‘guess’ a subset→′ of transitions
of TS and test in polynomial time if the transition system E generated by→′ is reachable,
satisfies ID, and Σ(E) = Σ.

For the NP-hardness part, we use a polynomial reduction from the classical Boolean
satisfiability problem (SAT). We give an overview of the construction: Given a formula in
conjunctive normal form, we associate to each variable and each clause a group of states
and transitions as exemplified in Figure 4.8. We choose the independence in such a way
that the ID condition ‘implements’ a choice gadget between the Boolean values True and
False for each variable (i.e., either pos i or neg i, but not both, appear in an isomorphic ID
embedding). We connect the states associated to the variables with the states associated
to the clauses according to the occurrence of the variables as literals in the clauses. A
clause cj will then evaluate to True if and only if the state qcj

associated to the clause is
reachable in an isomorphic ID embedding.

Let φ be a formula in conjunctive normal form with variables x1, . . . , xn and clauses
c1, . . . , cm. We construct a transition system TSφ = (Qφ, Σφ,→φ, Iφ) together with an
independence relation ‖φ on Σφ such that φ is satisfiable if and only if TSφ admits an
embedding E ⊏TSφ as in Problem 4.47. To relieve the notation, we will drop all φ-indices.

The detailed construction is given below.

122 The Complexity of the Distributed Implementability Test

Variable x3

Variable x3

Clause c1

Clause c1

q0

qx1
qx2

qx3

pos1 neg1 pos2 neg2 pos3 neg3

qc1 qc2

c

a1 a2
a3

x1

c

x1

x2

c

x2

x3

c

x3

c1
c1

c1

a0

c2 c2

Σ \ {c1, c2, c} Σ \ {c1, c2, c}

Figure 4.8: The transition system TS associated to φ = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3)

The alphabet Σ contains an action for each variable xi, each positive and negative
literal xi and xi, and each clause cj, plus two extra actions c and a0 introduced for
technical reasons. Thus,

Σ := {ai | i ∈ [1..n]} ∪ {xi | i ∈ [1..n]}∪{xi | i ∈ [1..n]} ∪ {cj | j ∈ [1..m]} ∪ {c, a0}

and the independence relations on Σ are:

xi ‖ xi for i ∈ [1..n] and c ‖ cj for j ∈ [1..m].

the transition system TS consists of:

– one initial state {q0} = I with q0
c−→ q0,

– one state {qxi
} for each variable xi such that q0

ai−→ qxi
,

– two states {pos i, neg i} for the positive, respectively negative, literal associated

to each variable xi, such that qxi

xi−→ pos i, qxi

c−→ pos i, and pos i
xi−→ neg i.

For the literals neg i appearing in none of the clauses, we introduce a self-loop:
neg i

a0−→ neg i.
1

– one state {qcj
} for each clause cj such that pos i

cj−→ qcj
for each positive literal

xi of cj and neg i

cj−→ qcj
for each negative literal xi in cj.

Moreover, we introduce a self-loop qcj

a−→ qcj
for each a ∈ Σ \ ({cj | j ∈

[1..m]} ∪ {c}).
1These self-loops are not really necessary for the proof, but we add them in order to have at least

one outgoing transition from each state. This will be later helpful when proving Corollary 4.52.

4.5. Relaxed Implementability 123

It is easy to see that the above construction is polynomial in the size of the input
formula and that TS is reachable and Σ(TS) = Σ. Moreover, TS does not satisfy ID on
the following spots:

qxi

xi−→ pos i
xi−→ neg i, because xi ‖ xi and there is no state q such that qxi

xi−→ q
xi−→

neg i, and

qxi

c−→ pos i

cj−→ qcj
if the positive literal xi appears in the clause cj, because c ‖ cj

and there is no state q such that qxi

cj−→ q
c−→ qcj

.

Therefore, no isomorphic embedding E ⊏ TS satisfying ID can contain the above pairs
of transitions. In fact, this observation is the core of the choice gadget modeling the
variables.

We are ready now to show that: φ is satisfiable if and only if TS admits an isomorphic
embedding E ⊏TS such that E is reachable, satisfies ID, and Σ(E) = Σ.

For the direct implication, if φ is satisfiable, then there exists an assignment for the
variables evaluating φ to True, i.e., all the clauses are True. We can choose an isomorphic
embedding E ⊏TS obtained from TS by the following systematic removal of transitions
for each i ∈ [1..n]:

if xi=True, remove all the incoming and outgoing transitions of neg i and the tran-
sitions qxi

c−→ pos i

if xi=False, remove all the incoming and outgoing transitions of pos i except qxi

c−→
pos i and pos i

xi−→ neg i.

Figure 4.8 depicts using bold lines the isomorphic embedding obtained from the given
TS (by removing transitions) for the assignment:

〈x1 = True, x2 = True, x3 = False〉.

First, since each clause cj is validated, so we have two possibilities:

xi ∈ cj and xi = True: According to the construction of E, the path q0
ai−→ qxi

xi−→
pos i

cj−→ qcj
belongs to E.

xi ∈ cj and xi = False: According to the construction of E, the path q0
ai−→ qxi

c−→
pos i

xi−→ neg i

cj−→ qcj
belongs to E.

In either case, qcj
is reachable from q0 in E and cj ∈ Σ(E). Moreover, Σ \ ({cj | j ∈

[1..m]} ∪ {c}) ⊆ Σ(E) because the self-loops on qcj
belong to E, and c ∈ Σ(E) because

q0
c−→ q0 ∈ E. Hence, Σ(E) = Σ.
Then, it is easy to see that E is reachable (there are no isolated transitions). Finally,

E satisfies ID because the proposed removal of transitions aimed to solve precisely the ID
‘conflicts’ of TS mentioned above. Moreover, ID holds also for xi‖xi and each of the loops

qcj

xi−→ qcj

xi−→ qcj
, because qcj

xi−→ qcj

xi−→ qcj
.

124 The Complexity of the Distributed Implementability Test

For the converse implication, we assume there exists E ⊏TS an isomorphic embedding
of TS that is reachable, satisfies ID, and Σ(E) = Σ, and we show that φ is satisfiable.

Since E satisfies ID, E cannot contain both transitions qxi

xi−→ pos i and pos i
xi−→ neg i

for any i ∈ [1..n] (because xi‖xi). We prove then that the following assignment validates
φ. For each i ∈ [1..n],

xi :=

{

True, if qxi

xi−→ pos i belongs to E
False, otherwise

(4.8)

Now let cj be a clause of φ. Since action cj should belong to Σ(E) (because Σ(E) = Σ),
there must exist a path from q0 to qcj

necessarily involving a transition labeled by cj.
There are two possibilities:

pos i

cj−→ qcj
∈ E : In this case, on one hand, since cj‖c and E satisfies ID, qxi

c−→
pos i should not belong to E (otherwise ID is violated for qxi

c−→ pos i

cj−→ qcj
).

Then, since pos i must be reachable in E and qxi

c−→ pos i 6∈ E, qxi

xi−→ pos i must
belong to E and this implies by (4.8) that xi is evaluated to True. On the other

hand, by the construction of TS , pos i

cj−→ qcj
∈ TS if and only if the positive literal

xi appears in the clause cj. Thus, we proved that xi is evaluated to True and xi

appears in the clause cj, so cj is validated.

neg i

cj−→ qcj
∈ E : In this case, on one hand, since neg i must be reachable in E,

we have that pos i
xi−→ neg i ∈ E. Since xi‖xi and E satisfies ID, qxi

xi−→ pos i should

not belong to E (otherwise ID is violated for qxi

xi−→ pos i
xi−→ neg i). This implies

by (4.8) that xi is evaluated to False. On the other hand, by the construction of

TS , neg i

cj−→ qcj
∈ TS if only if the negative literal xi appears in the clause cj.

Thus, we proved that xi is evaluated to False and xi appears in the clause cj, so
cj is validated. (Note that since neg i must be reachable in E, we also have that

qxi

c−→ pos i ∈ E.)

Since in either case cj is validated and this holds for every j ∈ [1..m], φ is validated for
the chosen assignment. �

The above reduction is versatile enough to be used in the proof of several variations of
the problem.

Corollary 4.50 Problem 4.47 remains NP-complete even when we require that the spec-
ification TS is acyclic and deterministic.

Also, Problem 4.47 remains NP-complete when we require that the isomorphic embed-
ding satisfies also FD.1

1For a deterministic specification, an ID and FD isomorphic embedding gives a trace-closed forward-
closed sub-language (Proposition 3.34). Thus we can solve the relaxed implementability problem for
deterministic asynchronous automata (cf. Theorem 3.62).

4.5. Relaxed Implementability 125

Proof. It is clear that the transition system TS in the proof of Theorem 4.49 is already
deterministic. Moreover, TS can be modified to be also acyclic by ‘stretching’ the self-
loops (i.e., the only sources of cyclicity in TS). For this, we add three new (distinct)
states s1, s2, s3 replacing the self-loops as follows: q0

c−→ q0 by q0
c−→ s1, neg i

a0−→ neg i by

neg i
a0−→ s1, and qcj

ak−→ qcj
by qcj

ak−→ s1 for k ∈ [0..n]. Moreover, we replace qcj

xi−→ qcj

by qcj

xi−→ s1, qcj

xi−→ qcj
by qcj

xi−→ s2, and we add s1
xi−→ s3 and s2

xi−→ s3 for all
j ∈ [1..m] and i ∈ [1..n] (in this way we construct ‘diamonds’ for the independent actions
xi‖xi). The new transition system is acyclic, satisfies ID, and the proof of Theorem 4.49
still works.

For the second part of the corollary, we simply notice that the transition system TS
in the proof of Theorem 4.49 already satisfies FD. �

In practice, we usually want to have deadlock-free implementations, that is, any run
of the system can be further extended.

Definition 4.51 (Deadlock-freeness)
A transition system TS = (Q, Σ,→, I) is deadlock-free, if for any q ∈ Q, there exist a ∈ Σ
and q′ ∈ Q such that q

a−→ q′. Moreover, a distributed transition system is deadlock-free,
if the its global transition system is deadlock-free.

Corollary 4.52 Starting with a deadlock-free specification TS, Problem 4.47 with the
extra requirement that the isomorphic embedding E ⊏ TS is also deadlock-free is NP-
complete.

Proof. The TS and E constructed in the proof of Theorem 4.49 are both already
deadlock-free. �

Remark 4.53 It is not difficult to show that another heuristic for the relaxed implemen-
tability problem can be to look for isomorphic embeddings that are already isomorphic to
an asynchronous automaton, respectively a synchronous product (theoretically, the new
heuristic should be less successful than the isomorphic ID embedding one because the
constraints are stronger). Using the same reduction used in the proof of Theorem 4.49
one can show also the NP-hardness of the new heuristic.

One needs only to prove that the isomorphic embedding E constructed in the direct im-
plication satisfies not only ID and FD, but is in fact isomorphic to an asynchronous autom-
aton, respectively a synchronous product. To prove this we can use the (polynomial-time
expensive) characterizations for deterministic specifications from Theorem 3.32, respec-
tively 3.29.

Discussion

From this chapter, we learn that the models of synchronous products of transition systems
and asynchronous automata have similar complexities for the implementability test.

126 The Complexity of the Distributed Implementability Test

For both models, deciding the implementability modulo isomorphism is NP-complete
(with an encouraging polynomial-time test for deterministic specifications). More-
over, a positive answer provides us already with a distributed implementation for
free (the local equivalence classes involved in the test are used to build a distributed
implementation – cf. Remark 3.28).

The implementability modulo language equivalence is PSPACE-complete in the gen-
eral case (i.e., nondeterministic specifications), with an advantage (polynomial-time
test) for asynchronous automata in case the specification is deterministic. On the
other hand, we have a distributed implementation for free for synchronous products
with one initial state (the local components are the projections on local alphabets
of the specification – recall Algorithm 4.4). This is not the case for asynchronous
automata for which the computationally expensive construction of Zielonka [Zie87]
is the best known approach to be used after we have decided that the specification
is implementable. There is though a trade-off, since the asynchronous automata are
strictly more expressive than the synchronous products, there will exist specifica-
tions distributable over the former model, but not over the latter (this will be the
case for some of the examples we consider in the next chapters).

For deterministic implementations, the computational complexity of implementabi-
lity modulo bisimulation is similar to the case of implementability modulo language
equivalence for deterministic specifications.

While preparing the final version of this thesis, we found an (yet) unpublished
manuscript [Tab06] providing a characterization for the implementability problem
modulo bisimulation for nondeterministic implementations (for both synchronous
products and asynchronous automata). Interesting enough, the characterization is
similar to the characterization for implementability modulo isomorphism. As possi-
ble future research, we can study the computational complexity of implementability
modulo bisimulation for nondeterministic implementations of the decision procedure
derived from [Tab06].

Finally, we showed that for non-regular specifications, as well as for relaxed im-
plementability (language inclusion) the problem becomes undecidable. An NP-
complete heuristic (isomorphism embedding) to relaxed implementability is pro-
vided.

As related work, we mention also that the complexity bounds of this chapter are similar
for instance to checking the equivalence of distributed transition systems [Rab97, SHRS96,
HKV02, VK02]. In that case, one checks if a sequential (respectively, distributed) transi-
tion system is equivalent to a given distributed transition system, while in our case we test
if a sequential transition system is equivalent to some (i.e., ‘there exists one’) distributed
transition system. A couple of other works touching on the complexity of the distributed
implementability problem for related models of distributed systems are: [BBD95, BBD97]
(Petri nets), [Roh04] (discrete-event systems), and [AEY01, BM03, Loh03] (message se-
quence charts).

4.5. Relaxed Implementability 127

Our motivation for exploring the complexity issues surrounding distributed implemen-
tability was based on the need to select the most appropriate implementation methods for
synthesis tools. When we know the exact complexity of the subproblems of synthesis at
hand we can use general rules of thumb for selecting suitable implementation techniques.
For example, in the next chapters, we map the implementability problem modulo isomor-
phism for asynchronous automata (shown to be NP-complete) to the problem of finding
a stable model of a logic program (another NP-complete problem) by using the Smod-

els logic programming system [SNS02]. Same approach is adopted for the NP-complete
problem of isomorphic ID embedding. Furthermore, the PSPACE-hardness of the imple-
mentability modulo language equivalence for synchronous products combined with the
construction in Algorithm 4.4 suggests that using model checking algorithms can be fully
appropriate. The above directions will be followed and exemplified in the next chapters.

⋄

It’s kind of fun to do the impossible.

Walt Disney

Chapter 5

Synthesis of Distributed

Transition Systems

I
n the previous chapter we have studied the problem of distributed implementability,
that is, given a sequential specification, we test whether there exists a distributed

transition system equivalent to it. In this chapter, we proceed further and show how to
effectively construct a distributed transition system from a specification that passes the
implementability test.

We consider first the synthesis of synchronous products (Section 5.1) and then the syn-
thesis of asynchronous automata (Section 5.2). Assuming the specification is distributable,
the synthesis of synchronous products is easy, but not the same holds for asynchronous
automata, whose synthesis proved over the years to be a hard nut to crack (Section 5.2.2).
In an attempt to tackle this, we look for alternatives in special cases (Section 5.2.3).1

5.1 Synchronous Products of Transition Systems

Synthesizing synchronous products is easy once we have decided that the specification is
equivalent to a synchronous product. The loose communication between the processes in
the synchronous product model makes the distributivity test hard (see Chapter 4), but a
positive answer will provide an implementation for free. We sketch below the constructions
generated by the implementability tests.

5.1.1 Synthesis modulo Isomorphism

For the synthesis modulo isomorphism, we have a transition system TS = (Q, Σ,→
, I) together with a distribution (Σ,Proc, ∆) as specification and we want to construct
a synchronous product SP over ∆ that is isomorphic to TS . The test whether such
synchronous product exists is NP-complete (Theorem 4.3) and the decision procedure is
based on Theorem 3.26. In the particular case of deterministic specifications, the test can
be performed in polynomial time (Proposition 4.9) relying on Theorem 3.29.

1Some of the results of this chapter were published in [ŞEM03].

128

5.1. Synchronous Products of Transition Systems 129

The cornerstone of the above results is a family of local equivalences (≡p)p∈Proc over
Q satisfying the properties in Theorem 3.26, respectively Theorem 3.29. For nondeter-
ministic specifications, we can ‘guess’ the local equivalences (the ways of partitioning a
finite state space using equivalence relations is bounded) and then test them against the
conditions SP1–SP3 in Theorem 3.26. For deterministic specifications, we construct the
least family of local equivalences meeting the criteria DSP1–DSP2 (using a fixed point
procedure similar to Algorithm 4.3) and check if DSP3–DSP4 are also satisfied.

The local equivalences testifying the distributed implementability of TS immediately
generate a synchronous product SP (isomorphic to TS) as the synchronization of the
following local transition systems [CMT99]:

for each p ∈ Proc, the local state set Qp is the set of equivalence classes of ≡p, i.e.,

Qp := Q/≡p
,

for each p ∈ Proc, the local transition relation →p⊆ Qp×Σloc(p)×Qp is defined as

[q]p
a−→p [q′]p if and only if there exists s

a−→ s′ in TS with a ∈ Σloc(p),
s ∈ [q]p and s′ ∈ [q′]p, and

the set of global initial states of SP is given by the set of initial states of TS :

{ ([q]p)p∈Proc | q ∈ I}.

Since SP is isomorphic to TS , the size of the synthesized synchronous product is linear
in the size of the specification.

5.1.2 Synthesis modulo Language Equivalence

In Section 4.3.1, we showed that the implementability problem for synchronous prod-
ucts with one initial state is PSPACE-complete, even for deterministic specifications. In
Section 4.3.2, we showed that the same problem for synchronous products with multiple
initial states is PSPACE-hard (Theorem 4.28), but unfortunately we do not have yet an
upper bound and thus we do not even know if the problem is after all decidable. In this
context, we consider only the synthesis of synchronous products with one initial state (in
particular, the approach also works for deterministic synchronous products).

The synthesis of synchronous products modulo language equivalence is based on Algo-
rithm 4.4 that decides whether the language of transition system is a product language.
According to Algorithm 4.4, we start with a distribution ∆ and a transition system
TS (supposed w.l.o.g. to have only one initial state – see Step 0). Then, for each process
p ∈ Proc, we construct the projections TS p of TS on the local alphabets Σloc(p) (such that
L(TS p) = L(TS) ↾Σloc(p) – see Step 1). Putting the local transition systems (TS p)p∈Proc

in parallel, we obtain a synchronous product SP taking as unique global initial state
the tuple of the local initial states (if TS is assumed to have only one initial state, its
projections TS p will also have only one initial state each). Finally, according to Step 3 of
Algorithm 4.4, if L(SP) ⊆ L(TS) then SP is a synchronous product with one initial state
that is language equivalent to TS (otherwise the specification is not implementable).

130 Synthesis of Distributed Transition Systems

Hence, the synchronous product SP constructed by Algorithm 4.4 is a solution of
the synthesis problem and its size (i.e., the sum of the sizes of the local components)
is linear in the size of the specification. Moreover, if we want to obtain a deterministic
synchronous product, we simply determinize the local transition systems TS p (in this
case, an exponential blowup of the state space according to the powerset construction
may occur).

Synthesis modulo bisimulation The approach above can be also used to obtain a
deterministic synchronous product bisimilar to the implementation (for nondeterminis-
tic synchronous products the implementability problem is still open – although very
recently [Tab06] claims to tackle this case). According to the proof of Theorem 4.33
[CMT99, Muk02], we construct the quotient transition system TS/∼TS

(where ∼TS is
the largest bisimulation on TS) and in case this quotient is deterministic we follow the
above algorithm with TS/∼TS

as specification. If the implementability test is positive, a
deterministic synchronous product that is bisimilar to TS is obtained by projecting the
quotient TS/∼TS

on each local alphabets Σloc(p), then determinizing (and optionally min-
imizing) each projection1, and finally taking their synchronous product. The synthesized
synchronous product may be exponentially larger than the specification because of the
powerset construction involved in the determinization of the local transition systems.

5.2 Asynchronous Automata

For the synthesis modulo isomorphism, the constructions of asynchronous automata are
similar to those of synchronous products. On the other hand, for language equivalence,
the synthesis problem for asynchronous automata becomes much more difficult compared
to the case of synchronous products.

5.2.1 Synthesis modulo Isomorphism

Given the similar characterization results, all the remarks in Section 5.1.1 regarding the
synchronous products apply also to asynchronous automata. The only difference is that
instead of constructing local transition relations →p for each p ∈ Proc, we construct
local transition relations →a⊆

∏

p∈dom(a) Qp ×
∏

p∈dom(a) Qp for each action a ∈ Σ (cf.

Definition 3.18) in the following way:

([q]p)p∈dom(a) →a ([q′]p)p∈dom(a) if and only if there exists s
a−→ s′ in TS with

s ∈ [q]p and s′ ∈ [q′]p for all p ∈ dom(a).

Again, the size of the synthesized asynchronous automaton is linear in the size of the
specification.

For deterministic specifications, the synthesis problem modulo isomorphism is solved
by Theorem 3.32. Furthermore, we can relax the synthesis problem by dropping condition
DAA3 of Theorem 3.32 as follows:

1Even if the original transition system TS/∼TS
is deterministic, its projection on a local alphabet

of actions may be nondeterministic, so a determinization procedure is required in order to obtain a
deterministic implementation.

5.2. Asynchronous Automata 131

Remark 5.1 Let TS be a deterministic transition system and (Σ,Proc, ∆) be a distri-
bution. According to Theorem 3.32, there is the least family of equivalences (≡k)k∈Proc

satisfying DAA1 and DAA2. If (≡k)k∈Proc satisfies DAA4 (but not necessarily DAA3!), then
there exists an asynchronous automaton AA over ∆ accepting the same language as TS
(in fact AA is bisimilar to TS). The asynchronous automaton AA is constructed from
the family of local equivalences (≡k)k∈Proc by quotients as showed at the beginning of this
section and it can be easily proved that L(AA) = L(TS).

Hence, dropping DAA3 we obtain a sufficient test for the implementability modulo lan-
guage equivalence that produces asynchronous automata that are linear in the size of the
specification. Moreover, the test can be performed in polynomial time (Proposition 4.9).1

However, the above relaxation does not hold for finite automata, i.e., when the transi-
tion system is equipped with a set of accepting states, as the following (counter)example
shows:

Example 5.2 Take the transition system TS in Example 3.23 (Figure 3.6) with 1 as the
only accepting state.

On one hand, we have L(TS , {1}) = {w ∈ {a, b}∗ | |w| is odd}. On the other hand,
using DAA1, the states 0 and 1 are equivalent on all processes of the distribution (see
proof of Example 3.23), so the generated asynchronous automaton AA will accept the
whole language {a, b}∗, which means that the synthesized implementation is not language-
equivalent to the specification.

5.2.2 Synthesis modulo Language Equivalence

The ‘backbone’ of synthesis of asynchronous automata is a result by Zielonka [Zie87]
showing that for any regular trace-closed language T there exists a deterministic asyn-
chronous automaton with global final states accepting T (Theorem 3.60). Since in our
study we consider global final states inappropriate for distributed systems, the definition
of the language of an asynchronous automaton implicitly assumes all states as final (Def-
inition 3.20), with the consequence that the languages we work with are prefix-closed. In
Chapter 3 we stated characterizations of the classes of languages accepted by determin-
istic, respectively nondeterministic, asynchronous automata (Theorem 3.62). We gave at
that point only the proof for nondeterministic asynchronous automata (we used for that
Theorem 3.61 from [Zie89]), while the deterministic case was postponed to this chapter.
Based on Zielonka’s original construction [Zie87], we present below the proof for the de-
terministic case, in fact solving the synthesis problem modulo language equivalence for
deterministic asynchronous automata.

Using Corollary 3.35, the language accepted by a deterministic asynchronous automa-
ton is a prefix-closed regular forward-closed trace-closed language. We will show that the
reverse also holds, that is, for any prefix-closed regular forward-closed trace-closed lan-
guage T , there exists a deterministic asynchronous automaton AA such that L(AA) = T .
To show this, we slightly modify Zielonka’s proof, that builds for any regular trace-closed

1For nondeterministic specifications, the similar test obtained by dropping AA2 in Theorem 3.30 is
NP-complete (Corollary 4.14).

A very similar remark holds for synchronous products as well.

132 Synthesis of Distributed Transition Systems

a1

b1
c1

a2

Figure 5.1: The partial order of a trace

language T , a deterministic asynchronous automaton with a set F of global final states
such that L(AA, F) = T .

We will present first the ingredients of Zielonka’s approach together with some prop-
erties, then we modify the construction to have all states are final (for prefix-closed spec-
ifications), and finally prove that the modified asynchronous automaton is consistent and
accepts the language of the specification.

Fixing a distribution (Σ,Proc, ∆) that generates an independence relation ‖, we can
define the following notions [Zie87]:

Partial order on the events of a trace For t ∈ Σ∗ we define the set of events of t or
occurrences of actions of t as

O(t) = {ai | a ∈ Σ and 1 ≤ i ≤ #at}.

We denote by ≤t the total order on O(t) given by the order in which the actions
occur in t.

Using now the independence relation ‖ (that associates to each t ∈ Σ∗, a trace [t]),
we can define on O(t) also a partial order � such that for any ai, bj ∈ O(t):

ai � bj if and only if for all w ∈ Σ∗ with w ∈ [t], we have ai ≤w bj.

Equivalently, � =
⋂

w∈[t] ≤w (note that if w ∈ [t], i.e., w ∼ t, then O(w) = O(t)).
The partial order � defines the causality relation between events and is used in
the following to generate the prefixes and suffixes of t associated with a subset of
processes.

Example 5.3 Consider, for instance, the distribution of the actions Σ := {a, b, c}
over two processes Proc := {1, 2}, with dom(a) := {1}, dom(b) := {2}, and
dom(c) := {1, 2} (so a‖b). Choosing the word

t := abca,

we have:

O(t) := {a1, a2, b1, c1} with the total order a1 ≤t b1 ≤t c1 ≤t a2.

the trace associated to t is [t] := {abca, baca} (we have a‖b), generating the
partial order a1 � c1, b1 � c1, and c1 � a2. Figure 5.1 depicts the partial order
(O(t),�) using arrows x→ y to represent x � y.

5.2. Asynchronous Automata 133

Prefixes and suffixes of a trace For t ∈ Σ∗ and K ⊆ Proc we define the prefix of t
with respect to K as

PrefK(t) := {x ∈ O(t) | ∃y ∈ O(t), x � y and dom(y) ∩K 6= ∅}.

Informally, PrefK(t) contains the events ‘visible’ (in the past) from the processes of
K.

The suffix of t with respect to K is obtained by complementation:

SuffK(t) := O(t) \ PrefK(t).

Concatenating the events of PrefK(t), respectively SuffK(t), according to the total
order ≤t, we obtain two words denoted by

PK(t), respectively SK(t).

According to [Zie87, Fact 4.11] we have that for any t ∈ Σ∗ and K ⊆ Proc:

t ∼ PK(t)SK(t) (5.1)

Finally, for the singleton K := {k} with k ∈ Proc, we denote P{k}(t) by Pk(t).

Example 5.3 (continued) For t = abca (see also Figure 5.1), we have Pref{1} =
Pref{1,2} = {a1, a2, b1, c1} and Pref{2} = {a1, b1, c1}, which implies Suff{1} = ∅,
Suff{1,2} = ∅, and Suff{2} = {a2}. Therefore, P1 = P{1,2} = abca and P2 = abc,
while S1 = S{1,2} = ε and S2 = a.

Zielonka’s equivalence For each regular trace-closed language T ⊆ Σ∗, Zielonka con-
structs an equivalence ≈ ⊆ Σ∗ × Σ∗ including information regarding the syntactic
congruence ∼T as well as time-stamping [Zie87]. The equivalence ≈ is the funda-
mental element in the construction of a deterministic asynchronous automaton with
final states accepting T . We will not present the details behind ≈, because they are
rather non-intuitive and for our purposes in this chapter, it is enough to know that
≈ has finite index (for a regular trace-closed language T) and that the following
properties hold1.

(For more details regarding Zielonka’s construction [Zie87], we point the reader to
the monograph [DR95], Pighizzini’s PhD thesis [Pig93a], and the technical report
[MS94].)

First, Zielonka’s equivalence is coarser than the trace equivalence, but finer than the
syntactic congruence:

Proposition 5.4 If t ∼ t′, then t ≈ t′, for any t, t′ ∈ Σ∗.

1In fact, the difficulty of the synthesis problem consists of finding an equivalence of finite index
satisfying Propositions 5.4–5.7. Zielonka [Zie87] came up with such an equivalence and it is still an open
problem whether a ‘simpler’ such equivalence exists.

134 Synthesis of Distributed Transition Systems

Proposition 5.5 If t ≈ t′, then t ∼T t′, for any t, t′ ∈ Σ∗ (where ∼T is the syntactic
congruence of T on Σ∗).

Then, Zielonka’s equivalence is preserved when partial views are combined:

Proposition 5.6 If PK(t) ≈ PK(t′) and PL(t) ≈ PL(t′), then PK∪L(t) ≈ PK∪L(t′), for
any t, t′ ∈ Σ∗ and K,L ⊆ Proc.

Finally, Zielonka’s equivalence is preserved when partial views are extended by an event:

Proposition 5.7 If ∀k ∈ dom(a) : Pk(t) ≈ Pk(t
′), then ∀k ∈ dom(a) : Pk(ta) ≈ Pk(t

′a),
for any t, t′ ∈ Σ∗ and a ∈ Σ.

Zielonka’s asynchronous automaton Let (Σ,Proc, ∆) be a distribution and T a
regular trace-closed language over Σ∗. For t ∈ Σ∗, we denote by JtK the equivalence
class of t with respect to ≈ (i.e., Zielonka’s equivalence generated by T on Σ∗). Also, we
suppose that Proc = {1, . . . , n}.

Following (the first part of) Definition 3.18, we construct:

for each k ∈ Proc, a local state space

Qk := {JPk(t)K | t ∈ Σ∗}

(Qk is finite because ≈ is of finite index) and

for each action a ∈ Σ, a local transition relation →a such that for t ∈ Σ∗ and
dom(a) = {k1, . . . , km},

(JPk1
(t)K, . . . , JPkm

(t)K)→a (JPk1
(ta)K, . . . , JPkm

(ta)K).

Using Proposition 5.7 we have that →a is deterministic (i.e., any tuple has via →a

at most one successor).

Zielonka’s asynchronous automaton AA = (Q, Σ,→, {s0}, F) is based on the above local
elements:

the initial global state is s0 := (JεK, . . . , JεK).

the global transition relation → is generated by the local relations →a as in Defini-
tion 3.18. It can easily be proved that for any t ∈ Σ∗,

(JεK, . . . , JεK)
t−→ (JP1(t)K, . . . , JPn(t)K). (5.2)

Since all the →as are deterministic, → is also deterministic by Proposition 3.25.

the global state space Q ⊆ ∏

k∈Proc Qk is obtained as the part of the cartesian
product reachable (via→) from the initial global state s0. Using (5.2) we have that

Q = {(JP1(t)K, . . . , JPn(t)K) | t ∈ Σ∗}.

the set of final global states is F := {(JP1(t)K, . . . , JPn(t)K) | t ∈ T}.
Using (5.2) together with Propositions 5.6 and 5.5 we have that indeed L(AA, F) = T .

5.2. Asynchronous Automata 135

A modification of Zielonka’s asynchronous automaton We give now the proof for
Theorem 3.62, i.e., we show how to construct a deterministic asynchronous automaton
AA′ (with all states final) accepting a prefix-closed regular forward-closed trace-closed
language T , i.e., L(AA′) = T . To do this, we slightly change Zielonka’s asynchronous
automaton above by restricting the set of global states Q to those reachable by executing
only sequences of actions from T .

Let (Σ,Proc, ∆) be a distribution with Proc = {1, . . . , n} and T ⊆ Σ∗ a prefix-closed
regular forward-closed trace-closed language over Σ∗. Since T is a regular trace-closed
language, we can construct Zielonka’s equivalence ≈ for T satisfying Propositions 5.4–
5.7. We build an asynchronous automaton AA′ = (Q′, Σ,→′, s′0) similar to Zielonka’s
asynchronous automaton above with the difference that every occurrence of t ∈ Σ∗ is
restricted to t ∈ T . More precisely:

for each k ∈ Proc, the local state space is Q′
k := {JPk(t)K | t ∈ T },

for each action a ∈ Σ, the local transition relation →′
a is defined for dom(a) =

{k1, . . . , km} and t ∈ T such that ta ∈ T as

(JPk1
(t)K, . . . , JPkm

(t)K)→′
a (JPk1

(ta)K, . . . , JPkm
(ta)K).

Using Proposition 5.7 we have that →a is deterministic. Moreover, the given defi-
nition is proved to be sound by Proposition 5.8 below (we want the definition to be
consistent given the extra condition ta ∈ T – see also Remark 5.9).

As before, the global state space Q′ of AA′ is constructed using the synchronization
→′ of the relations →′

a starting in the initial state s′0 := (JεK, . . . , JεK). Under the new
circumstances, (5.2) holds again (note that all the intermediary states during the execution
of t are indeed in Q′ because T is prefix-closed) and this implies that

Q′ := {(JP1(t)K, . . . , JPn(t)K) | t ∈ T }. (5.3)

It is not hard to show now that indeed L(AA′) = T .
The only thing to prove is the soundness of the definition of the local transition

relations→′
a which is implied by the following result (where the forward closure property

is used):

Proposition 5.8 Let T ⊆ Σ∗ be a prefix-closed regular forward-closed trace-closed lan-
guage, t, t′ ∈ T , and a ∈ Σ. If ta ∈ T and ∀k ∈ dom(a) : Pk(t) ≈ Pk(t

′), then t′a ∈ T .

Proof. First, from (5.1) we have ta ∼ Pdom(a)(ta)Sdom(a)(ta), which together with the
hypothesis ta ∈ T and T being trace-closed, implies that Pdom(a)(ta)Sdom(a)(ta) ∈ T .
Since T is also prefix-closed, we further obtain:

Pdom(a)(ta) ∈ T. (5.4)

Next, from the hypothesis Pk(t) ≈ Pk(t
′) for all k ∈ dom(a), by Proposition 5.7, we have

that Pk(ta) ≈ Pk(t
′a), for all k ∈ dom(a). Then, repeatedly applying Proposition 5.6,

we get Pdom(a)(ta) ≈ Pdom(a)(t
′a). Using Proposition 5.5, we deduce that Pdom(a)(ta) ∼T

136 Synthesis of Distributed Transition Systems

Pdom(a)(t
′a). This (syntactic) equivalence and (5.4) give Pdom(a)(t

′a) ∈ T . From this
and the simple observation (see definition of the prefix of a trace) that Pdom(a)(t

′a) =
Pdom(a)(t

′)a we deduce that

Pdom(a)(t
′)a ∈ T. (5.5)

In the last part, we prove that (5.5) implies t′a ∈ T using the forward closure of T .

First, according to (5.1) we have that

t′ ∼ Pdom(a)(t
′)Sdom(a)(t

′) (5.6)

Moreover, if Sdom(a)(t
′) = b1 . . . bm, then dom(bi) ∩ dom(a) = ∅ for each i ∈ [1..m] (other-

wise bi would belong to Pdom(a)(t
′)). Therefore,

bi‖a, for all i ∈ [1..m]. (5.7)

From (5.6) and the hypothesis t′ ∈ T , we have (by the trace closure of T) that

Pdom(a)(t
′)b1 . . . bm ∈ T.

Furthermore, Pdom(a)(t
′)b1 . . . bi ∈ T for all i ∈ [1..m] because T is prefix-closed.

Therefore, since Pdom(a)(t
′)b1 . . . bi ∈ T for all i ∈ [1..m] and Pdom(a)(t

′)a ∈ T (5.5) and
bi‖a for all i ∈ [1..m] (5.7), we can apply the forward closure property iteratively for i
from 1 to m and finally obtain that Pdom(a)(t

′)b1 . . . bma ∈ T . That is,

Pdom(a)(t
′)Sdom(a)(t

′)a ∈ T. (5.8)

Finally, concatenating a to the terms of (5.6) we have that t′a ∼ Pdom(a)(t
′)Sdom(a)(t

′)a.
From this, (5.8) and the trace closure of T , we obtain that t′a ∈ T . �

Remark 5.9 The global state space Q′ is obtained from the global state space of Zie-
lonka’s automaton Q by selecting only the states reachable by words from T . Proposi-
tion 5.8 confirms in fact that the restricted state space is indeed isomorphic to a (de-
terministic) asynchronous automaton. More precisely, it shows that the condition DAA4

from the implementability test for asynchronous automata given in Theorem 3.32 holds.

Synthesis modulo bisimulation According to Algorithm 4.6, one can decide in poly-
nomial time if a transition system TS is bisimilar to a deterministic asynchronous autom-
aton (for nondeterministic asynchronous automata the implementability problem is still
open – although very recently [Tab06] claims to tackle this case). If the test is positive,
TS/∼TS

is deterministic and L(TS/∼TS
) is a forward-closed trace-closed (prefix-closed

regular) language. In this case, the deterministic asynchronous automaton bisimilar to
the specification TS is simply given by the above modification of Zielonka’s automaton
for the language L(TS/∼TS

).

5.2. Asynchronous Automata 137

Size of the distributed implementation The synthesized asynchronous automaton
following Zielonka’s approach is unfortunately very large. For a regular trace-closed lan-
guage T over the concurrent alphabet (Σ, ‖), a careful analysis conducted by Pighizzini
in his PhD thesis [Pig93a, page 89] gives the following set as hint for the size of (a local
component of) Zielonka’s asynchronous automaton for T :

QQ×P (Σ) × (P(Σ× {1, . . . , |Σ|}))P (Σ) × (P(Σ)×P(Σ))P (Σ) × (Σ× {1, . . . , |Σ|})Σ×Σ,

where Q is the state space of the minimal deterministic finite automaton accepting T .
Subsequent endeavors [CMZ93, MS94] only presented slight improvements over the orig-
inal proposal by Zielonka, the achievements being mainly a better presentation of the
construction, respectively proof of correctness (but the core ideas remaining the same).

A different approach was followed by Pighizzini [Pig93b, Pig93a] who gave a con-
struction of nondeterministic asynchronous automata accepting the same language as a
concurrent regular expression1 (the construction is double exponential, but only in the
number of nested ∗-iterations). Nevertheless, when the specification is given as a tran-
sition system TS , there may be an exponential blowup involved in the translation to a
concurrent regular expression accepting the language of TS . Moreover, as far as we can
judge, the nondeterministic asynchronous automata synthesized in [Pig93b] are not safe
in the sense of [Zie89] such that we can use the construction in our setting where all global
states are final (see the proof of Theorem 3.62 where the safety property is essential).2

Pighizzini’s approach is complemented by determinization procedures for asynchronous
automata [KMS94, Mus96] (showing also that a blowup of the state space is unavoidable
by determinization).

In an attempt to fight the state space explosion problem for (deterministic) asynchro-
nous automata, we propose a heuristic based on unfoldings in Section 6.3.3. Yet another
possibility is to try to give alternative (more efficient) constructions in special cases. We
study this in the next section.

5.2.3 Alternative Constructions for Special Cases

Since the construction of asynchronous automata proved to be ‘a hard nut to crack’
in the general case, some research effort was directed to special cases. Thus, Duboc
[Dub86] constructed asynchronous automata for a finite trace or the star closure of a
connected trace3. Then, Métivier [Mét87] gave a polynomial4 construction for acyclic
dependence graphs of actions. His construction was generalized in [DM96] to the case

1I.e., a regular expression taking concurrency into account when defining the iteration – see [Pig93b].
2Just recently, an alternative construction to Pighizzini’s construction was proposed in [BM06]. The

authors construct a nondeterministic asynchronous automaton that is polynomial in the size of the
original transition system (and double exponential in the size of the distribution). However, the generated
asynchronous automaton is not safe (in the sense of [Zie87]), so it cannot be really used in our setting
where all states are final.

3A trace [t] with t ∈ Σ is called connected if the subgraph of the dependence graph (Σ, 6 ‖) generated
by the actions appearing in t (i.e., Σ(t)) is connected.

4The construction is polynomial when starting with a monoid homomorphism; when starting with a
transition system instead of a monoid homomorphism, the construction is exponential.

138 Synthesis of Distributed Transition Systems

BD

2 3

4
b a

=⇒ a‖b and

1

2 3

4

a b

b a

Figure 5.2: The backward diamond property

of triangulated1 dependence graphs. A possible problem with last approach is that it
is not flexible regarding the distribution. The input to the procedure is a transition
system together with a concurrent alphabet (Σ, ‖), from which a very specific distribution
complying with (Σ, ‖) is constructed. This distribution seems not very useful in practice
(e.g., we could not use it with our examples).

The constructions given in this subsection will make use of the characterizations mod-
ulo isomorphism of the global states of asynchronous automata, i.e., Theorems 3.30 and
3.32. We will show that in particular cases (i.e., finite specifications, conflict-free speci-
fications, or transitive dependence graphs) the tests provided by the above theorems are
positive and we can immediately construct equivalent asynchronous automata.

Asynchronous automata for finite languages

The finite specifications (given by acyclic transition systems) are the first special cases
for which we give an alternative construction to Zielonka’s method.

The main ingredient is the following backward diamond rule2 defined as:

BD: q2
b−→ q4 ∧ q3

a−→ q4 ⇒ a‖b ∧ q2 6= q3 ∧ ∃q1 ∈ Q : q1
a−→ q2 ∧ q1

b−→ q3.

(The presence of condition q2 6= q3 in BD is informally justified by the similar inequality
in the second part of Remark 3.31.)

The technical result supporting the construction for acyclic specifications is the fol-
lowing:

Theorem 5.10 Let ∆ = (Σ,Proc, ∆) be a distribution. Then, any acyclic determinis-
tic transition system TS satisfying ID, FD, and BD is isomorphic to an asynchronous
automaton over ∆.

Proof. Let TS be a deterministic transition system satisfying the hypothesis. We show
using Theorem 3.32 (which is the specialization of the general Theorem 3.30 to deter-
ministic transition systems) that TS is indeed isomorphic to an asynchronous automaton
over ∆.

Let (≡k)k∈Proc be the least family of equivalences satisfying DAA1 and DAA2 from
Theorem 3.32. We denote

1A graph is triangulated if and only if all the chord-less cycles are of length three.
2This was suggested by Javier Esparza in one of the discussions we had.

5.2. Asynchronous Automata 139

equiv(q1, q2) := {p ∈ Proc | q ≡p q′},
i.e., the maximal subset of K ⊆ Proc such that q1 ≡K q2, and

dom(a) := Proc \ dom(a),
i.e., the complement of the domain.

For a transition system TS satisfying the hypothesis hold:

There could be at most one transition between q1 and q2:

We cannot have q1
a−→ q2 and q1

b−→ q2 because of BD, and we cannot have q1
a−→ q2

and q2
b−→ q1 because of acyclicity.

If from a state q1 we find two directed paths to another state q2, then the set of
actions appearing on the two paths are equal:

Proof by induction on the sum of lengths of the two paths (again using BD and the
acyclicity condition).

Using the above remarks we can show that for any two distinct states q1, q2 ∈ Q there
exists a set of actions A(q1, q2) := {a1, . . . , an} ⊆ Σ such that

equiv(q1, q2) =
n⋂

i=1

dom(ai) (5.9)

The set A(q1, q2) = {a1, . . . , an} above consists of the actions on the shortest undirected
path (i.e., a path in TS where we ignore the direction of transitions) connecting q1 and
q2. The equation (5.9) follows from the following observations:

1. Using DAA1 applied to the actions ai and the transitivity property of the equiva-
lences (≡k)k∈Proc we have that q1 ≡⋂n

i=1
dom(ai)

q2, so we obtain ‘⊇’ of (5.9).

2. Using the hypotheses and the previous remarks, one can prove that any undirected
path connecting q1 and q2 will contain all the actions A(q1, q2) = {a1, . . . , an}. Thus,
using only DAA1, we cannot have q1 ≡p q2 with p 6∈ ⋂n

i=1 dom(ai) (*).

3. Moreover, using DAA2 we cannot find any p ∈ Proc such that q1 ≡p q2 and p 6∈
⋂n

i=1 dom(ai): Let q1
a−→ q′1 and q2

a−→ q′2 such that q1 ≡dom(a) q2. From (*), we have

that dom(a) ⊆ ⋂n
i=1 dom(ai) for {a1, . . . , an} = A(q1, q2), so dom(a) ∩ dom(ai) = ∅

for every ai ∈ A(q1, q2), which implies a‖ai, for all i ∈ [1..n]. Applying ID and FD
for the path connecting q1 and q2 with the actions of A(q1, q2), we have that there
exists also an undirected path containing all actions of A(q1, q2) between q′1 and q′2,
so q′1 ≡⋂n

i=1
dom(ai)

q′2 by applying DAA1 (and transitivity). This means that indeed
the application of DAA2 does not provide any new equivalence between q′1 and q′2
that was not already present after exhausting the application of DAA1.

4. From the last two items, we obtain also ‘⊆’ of (5.9).

Having now (5.9), it is easy to prove that DAA3 and DAA4 from Theorem 3.32 hold (and
thus finishing the proof).

140 Synthesis of Distributed Transition Systems

0

1 2

a
b

a

b

a
b

Figure 5.3: A cyclic transition system satisfying ID, FD, and BD that is not isomorphic
to an asynchronous automaton

DAA3 : By contradiction, assume that there exist q1 6= q2 such that equiv(q1, q2) =
Proc. Then, from (5.9), there exists {a1, . . . , an} ⊆ Σ such that

⋂n
i=1 dom(ai) =

equiv(q1, q2) = Proc, which implies that dom(ai) = Proc for any ai. This is a
contradiction with the fact that for any a ∈ Σ, dom(a) 6= ∅.

DAA4 : Proof similar to the item 3. above (i.e., ID and FD are applied). �

Example 5.11 The acyclicity condition is essential in Theorem 5.10 as showed by the
following (counter)example. We choose Σ = {a, b}, a distribution such that a‖b, and the
transition system with three states {0, 1, 2} and transitions:

0
a−→ 1

a−→ 2
a−→ 0

b−→ 2
b−→ 1

b−→ 0

(see Figure 5.3). Then, the transition system is cyclic, deterministic, and fulfills the
diamond properties ID, FD and BD, but there is no asynchronous automaton isomorphic
to it (proof similar to the one for Example 3.23 – see also Remark 3.31).

We can use now Theorem 5.10 to construct a deterministic asynchronous automaton
accepting a given finite prefix-closed forward-closed trace-closed language L (cf. Corol-
lary 3.64). To do this, we easily construct a transition system TS accepting L such that
TS satisfies ID, FD, and BD. This is realized by starting in an initial state and construct-
ing a tree according to the words in L and identifying nodes of the tree only for reasons
of determinism or diamond rules. More formally, TS will have as states the elements of
[L] = {[u] | u ∈ L} with [ε] as initial state and [u]

a−→ [ua] as transitions (for u ∈ L and
a ∈ Σ such that u, ua ∈ L) – cf. [DR95].

According to Theorem 5.10, TS is isomorphic to an asynchronous automaton which
can be then constructed as mentioned in Section 5.2.1.

Since the new diamond rule BD is a sufficient condition, but not a necessary one, the
size of the constructed TS is not necessarily optimal. An unfavorable situation is when
there is not much independence in the system (BD does not allow transitions labeled by
dependent actions to have the same outgoing state). So the method in this section is
suitable for systems with a higher degree of concurrency.

Asynchronous automata for conflict-free specifications

Another special case that we consider are the conflict-free specifications, i.e., transition
systems in which the enabled actions in each state are pairwise independent:

5.2. Asynchronous Automata 141

Definition 5.12 (Conflict-freeness)
Given a distribution (Σ,Proc, ∆), a transition system TS = (Q, Σ,→, I) is said to be
conflict-free if, for all q ∈ Q, a, b ∈ Σ:

q′
a←− q

b−→ q′′ ∧ a 6= b ⇒ a‖b.

Assuming conflict-freeness, FD allows the following generalization:

Lemma 5.13 Let TS be a conflict-free deterministic transition system satisfying FD.
Then, if q1, q2, q3 are three states of TS, b ∈ Σ an action, and w ∈ Σ∗ a word such that

q2
w←− q1

b−→ q3 and b 6∈ Σ(w), then there exists a state q4 such that q2
b−→ q4

w←− q3 and
∀a ∈ Σ(w) : a‖b.

Proof. Easy by induction on the length of w using the conflict-freeness together with the
FD property. �

Using Remark 5.1, we can show that from conflict-free deterministic specification we
can synthesize (modulo language equivalence) asynchronous automata that are linear in
the size of the specification:

Theorem 5.14 For a distribution (Σ,Proc, ∆), any transition system TS that is deter-
ministic, conflict-free, and satisfies ID and FD is language-equivalent to an asynchronous
automaton over ∆ linear in the size of the specification.

Proof. Let TS = (Q, Σ,→, {q0}) be a transition system satisfying the hypothesis. We
show that the least family of equivalences (≡k)k∈Proc over the states of TS satisfying
DAA1 and DAA2, also satisfies DAA4. Then, according to Remark 5.1, there exists an
asynchronous automaton AA linear in the size of TS and ∆ such that L(AA) = L(TS).

Let (≡k)k∈Proc be the least family of equivalences over Q satisfying only DAA1. We
will show that:

a) the family (≡k)k∈Proc is equal to the least family of equivalences satisfying both DAA1

and DAA2, and

b) DAA4 also holds.

The proof is split over several steps, fixing two states q 6= q′ and an action a ∈ Σ.
To ease presentation, we denote (← ∪ →)∗ by !. More precisely, for two states q, q′

and a word w = b1b2 . . . bn ∈ Σ∗ with bi ∈ Σ for i ∈ [1..n], we have

q
w

! q′ iff there exist the states q1, . . . , qn such that q = q1, qn = q′, and for

each i ∈ [1..n− 1], either qi
bi−→ qi+1 or qi

bi←− qi+1.

Step 1 : Since (≡k)k∈Proc was generated using DAA1 (and transitivity), it is easy to see
that the set of processes on which q and q′ are equivalent is obtained by accumulating
the processes on the paths connecting q and q′ in the following way:

equiv(q, q′) =
⋃

q
w

!q′

⋂

b∈Σ(w)

dom(b) (5.10)

142 Synthesis of Distributed Transition Systems

q q′2

qi1 qi1+1

q′
bi1

u

bi1

u
v

Figure 5.4: Details for Step 2 of the proof of Theorem 5.14

Consequently, if q ≡dom(a) q′, then for each k ∈ dom(a), there exists a word wk ∈ Σ∗

such that q
wk! q′ and k ∈ ⋂b∈Σ(wk) dom(b).

We choose each wk to be a word w of minimal length with the property q
w

! q′ and
k ∈ ⋂b∈Σ(w) dom(b). We remark that none of letters of wk is equal to a, because

k 6∈ dom(a). Moreover, the intermediary states in the sequence q
wk! q′ are pairwise

distinct, otherwise wk would not be of minimal length.

Step 2 : For each k ∈ dom(a), we prove that there exists a state pk such that q
wkr−→

pk
wkl←− q′ where wkr = bki1 . . . bkinr

and wkl = bkj1 . . . bkjnl
are the words composed

of the letters labeling the ‘right’→, respectively ‘left’← transitions in the sequence

q
wk! q′ (preserving the ordering on letters). (For example, if q

wk! q′ is q = q1
b1−→

q2
b2←− q3

b3−→ q4
b4−→ q5

b5←− q6 = q′, then we can prove that there exists a state pk

such that q
wkr−→ pk

wkl←− q′ where wkr = b1b3b4 and wkl = b2b5.)

The proof goes by induction on the length of wkr:

Base case : If |wkr| = 0, we just take pk := q and wkl := wk and we have q = pk
wk←−

q′.

Induction step : We assume that the property holds for all q
wk! q′ with |wkr| = n

and prove that it holds also for |wkr| = n + 1.

Let bi1 be the first letter of wk that is the label of a ‘right’ → transition. That
means that there exist two words u, v ∈ Σ∗ and a state qi1 such that wk = ubi1v

and q = q1
u←− qi1

bi1−→ qii+1

v
! q′. Then, we use Lemma 5.13 to show that

there exists a state q′2 such that q
bi1−→ q′2

u←− qi1+1
v

! q′ (see Figure 5.4).

In order to use Lemma 5.13, we must have that bi1 6∈ Σ(u). By contradiction,
suppose there exist u′, u′′ ∈ Σ∗ and two states s, s′ such that u = u′bi1u

′′

with bi1 6∈ Σ(u′) and q
u′′

←− s′
bi1←− s

u′

←− qi1 . (Since TS is deterministic,

necessarily |u′| 6= 0!) Applying Lemma 5.13 to s
u′

←− qi1

bi1−→ qi1+1, there exists

a state s′′ such that s
bi1−→ s′′

u′

←− qi1+1. Since TS is deterministic and we have

s
bi1−→ s′, we deduce that s′′ = s′ and therefore s′

u′

←− qi1+1. So we obtain a

sequence of transitions connecting q and q′ as q
u′′

←− s′
u′

←− qi1+1
v

! q′ with
|u′′u′v| < |u′′bi1u

′bi1v| = |wk| and this is a contradiction with the minimality of
wk.

5.2. Asynchronous Automata 143

We also remark that set of states in the sequences q′2
u←− qi1+1 and qi1+1

v
! q′

have only qi1+1 in common, otherwise the minimality of wk is not fulfilled.

Finally, we apply the induction hypothesis to the states q′2, q′ and the word

w′
k := uv as a word of minimal length with the property that q′2

w′

k! q′ and

k ∈ ⋂b∈Σ(w′

k) dom(b). So there exists a state p′k such that q′2
w′

kr−→ p′k
w′

kl←− q′. We

finish the induction step by choosing pk := p′k, wkr := bi1w
′
kr, and wkl := w′

kl.

Step 3 : Suppose now we have a situation where for a state p and each k ∈ dom(a),

there is a path p
uk−→ pk

a−→ p′k such that k ∈ ⋂b∈Σ(uk) dom(b). We prove that there

exists one process k ∈ dom(a) such that ∀b ∈ Σ(uk) : a‖b.
The proof will by induction on the measure M :=

∑

k∈dom(a) |uk|.

Base case : If M = 0, there is nothing to prove.

Induction step : Supposing that the property holds for all M ≤ n (with n a natural
number), we want to prove that it holds also for M = n + 1.

First, if there exists k0 ∈ dom(a) such that |uk0
| = 0, then obviously ∀b ∈

Σ(uk0
) : a‖b is true, so k0 is the k needed. Hence, from now on we assume that

|uk| > 0, for all k ∈ dom(a).

Let us fix k0 ∈ dom(a) and let b be the first letter of uk0
, so there exist u′

k0
∈ Σ∗

and a state p′ such that uk0
= bu′

k0
and p

b−→ p′
u′

k0−→ pk
a−→ p′k.

We will prove that b‖a and then we prove that we can apply the induction
hypothesis for the node p′. First, for each k ∈ dom(a) \ {k0}, we have that
either b ∈ Σ(uk) or b 6∈ Σ(uk) (see Figure 5.5):

If b ∈ Σ(uk), there exist the states qk, q
′
k and u′

k, u
′′
k ∈ Σ∗ such that uk =

u′
kbu

′′
k with b 6∈ Σ(u′

k) and p
u′

k−→ qk
b−→ q′k

u′′

k−→ pk
a−→ p′k. We can then

apply Lemma 5.13 to p′
b←− p

u′

k−→ qk and we obtain that there exists a

state s such that p′
u′

k−→ s
b←− qk. Since TS is deterministic and we have

both qk
b−→ q′k and qk

b−→ s, then s = q′k, so p′
u′

k−→ q′k and we have a path

p′
u′

k−→ q′k
u′′

k−→ pk.

If b 6∈ Σ(uk), then we can apply Lemma 5.13 to p′
b←− p

uk−→ pk and we have

that there exists a state qk such that p′
uk−→ qk

b←− pk. From b ∈ Σ(uk0
),

we have k0 ∈ dom(b), so a 6= b (otherwise k0 ∈ dom(b) = dom(a) and

also k0 ∈ dom(a), which is a contradiction). Then, from qk
b←− pk

a−→ p′k
and a 6= b, applying the conflict-freeness of TS , we have that a‖b. Next,

applying the FD rule, there exists a state q′k such that qk
a−→ q′k

b←− p′k.

We can show now that b‖a: If there exists k ∈ dom(a) such that b 6∈ Σ(uk),
then we already showed in the corresponding case above that b‖a. Otherwise,
we have that ∀k ∈ dom(a) : b ∈ Σ(uk). That implies that ∀k ∈ dom(a) :
k ∈ dom(b), so dom(a) ⊆ dom(b) and this is equivalent to a‖b (by definition,
because dom(a) ∩ dom(b) = ∅). In any case, b‖a.

144 Synthesis of Distributed Transition Systems

The case b ∈ Σ(uk) The case b 6∈ Σ(uk)

p

p′

pk0

p′k0

qk

q′k

pk

p′k

b

u′
k0

a

u′
k

b

u′′
k

a

u′
k

p

p′

pk0

p′k0

pk

p′kqk

q′k

b

u′
k0

a

uk

uk

ab

a
b

Figure 5.5: Details for Step 3 of the proof of Theorem 5.14

We prove now that we can apply the induction hypothesis to p′: First, the state
p′ has the property that for each k ∈ dom(a), there exists a path of the form

p′
vk−→ sk

a−→ s′k such that k ∈ ⋂b∈Σ(vk) dom(b). If k = k0, we choose sk := pk0
,

s′k := p′k0
, and vk := u′

k0
. If k 6= k0, we have the two cases (see again Figure 5.5):

If b ∈ Σ(uk), we choose sk := pk, s′k := p′k, and vk := u′
ku

′′
k, otherwise we choose

sk := qk, s′k := q′k, and vk := uk. We notice that |vk0
| = |u′

k0
| < |uk0

| and for

k 6= k0, |vk| ≤ |uk| and also that k ∈ ⋂b∈vk
dom(b) (by construction).

So we can apply the induction hypothesis to the state p′ and deduce that there
exists k ∈ dom(a) such that ∀b ∈ Σ(vk) : a‖b. Using also the fact that b‖a
proved above, we see that indeed ∀b ∈ Σ(uk) : a‖b.

Step 4 : We are able now to prove that:

(*) if q ≡dom(a) q′ and q
a−→ q′′, then there exists a sequence of transitions

→ or ← connecting q and q′ labeled with actions independent to a.

Formally, (*) says that there exists w ∈ Σ∗ such that q
w

! q′ and ∀b ∈ Σ(w) : a‖b.
First, Step 1 chose a minimal wk for each k ∈ dom(a) such that q

wk! q′ and
k ∈ ⋂b∈Σ(wk) dom(b). Step 2 proved then that for each k ∈ dom(a) there exists a

state pk such that q
wkr−→ pk

wkl←− q′ and k ∈ ⋂b∈wkr
dom(b) ∩⋂b∈wkl

dom(b). Using

Lemma 5.13 (this is possible, since it can be easily shown that a 6∈ Σ(wkr)), we have

that there exists p′k such that q′′
wkr−→ p′k

a←− pk and ∀b ∈ Σ(wkr) : a‖b. We are then
able to apply Step 3, with p := q′ and pk := pk, p′k := p′k, and uk := wkl, so we have
that there exists a process k0 ∈ dom(a) such that ∀b ∈ Σ(wk0l) : a‖b. Thus there

exists w ∈ Σ∗, namely w := wk0rwk0l, such that q
w

! q′ and ∀b ∈ Σ(w) : a‖b.

Furthermore, since p′k0

a←− pk0

wk0l←− q′ and ∀b ∈ Σ(wk0l) : a‖b, it is easy to show by

induction using property ID that there exists q′′′ such that p′k0

wk0l←− q′′′
a←− q′.

Step 5 : Let (≡k)k∈Proc be the least family of equivalences over the states of TS satisfying

5.2. Asynchronous Automata 145

DAA1. We prove that (≡k)k∈Proc is equal to the least family of equivalences satisfying
both DAA1 and DAA2.

Let q, q′ be two states and a ∈ Σ an action such that q ≡dom(a) q′ and there exist

q′′, q′′′ such that q
a−→ q′′ and q′

a−→ q′′′ (as in DAA2). Using the result of Step 4 for

q ≡dom(a) q′ and q
a−→ q′′, there exists w ∈ Σ∗ such that q

w
! q′ and ∀b ∈ Σ(w) : a‖b.

In fact, we proved something more at Step 4, namely that there exists also a state
p such that q′

a−→ p and q′′
w

! p. Because TS is deterministic, we have that
p = q′′′, so q′′

w
! q′′′. Now since q′′

w
! q′′′ and ∀b ∈ Σ(w) : a‖b, we have that

dom(a) ⊆ ⋂b∈Σ(w) dom(b) which implies q′′ ≡dom(a) q′′′, so DAA2 is satisfied.

Step 6 : Finally we prove that (≡k)k∈Proc satisfies also DAA4. Let q, q′ be two states
and a ∈ Σ an action such that q ≡dom(a) q′ and there exists q′′ with q

a−→ q′′. Just

similar to the proof in the previous step, there exists p such that q′
a−→ p and this

means exactly that DAA4 is satisfied. �

The conflict-freeness can be translated into formal languages terms and use the above
theorem in the following way. We say that a language L is conflict-free if: wa ∈ L
and wb ∈ L and a 6= b implies a‖b. It is clear then that the minimal deterministic
transition system TS accepting a conflict-free language L is conflict-free. Then, applying
Theorem 5.14 to the minimal deterministic transition system TS accepting a conflict-
free prefix-, forward-, and trace-closed language L, we can construct an asynchronous
automaton AA (linear in the size of TS) such that L(AA) = L.

In fact, we stumbled upon the conflict-free case in one of our attempts of finding
alternatives to Zielonka’s construction. The conflict-free case was supposedly one of the
basic steps involved in the construction. Unfortunately, we failed in the general case. A
somehow similar ‘story’ appears in [NT02], where the authors present a conjecture (in
concurrency theory) that they were able to prove it only in the conflict-free case, which
(similar to Theorem 5.14) does involve rather complicated proofs.

An idea based on graph unfoldings

We make a short digression to present one attempt we had for an alternative to Zielonka’s
construction. The idea was to use Morin’s characterization result for deterministic case,
i.e., Theorem 3.32, to ‘guide’ a transformation of the initial (global) specification into a
distributable one. At the end of our endeavor, we were only able to use this idea for the
case of distributions that generate transitive dependence graph for actions (presented in
the next subsection). Even if we were not successful, we give below a few hints on our
attempt. We note that this idea inspired the heuristic presented in Section 6.3.3.

We sketch below how the intended algorithm looked like:

1. Given a distribution and a prefix-, forward-, and trace-closed regular specification L,
construct the minimal deterministic transition system TS accepting L. According
to Proposition 3.36, TS satisfies ID and FD.

2. Apply the test provided by Theorem 3.32 whether TS is isomorphic to an asynchro-
nous automaton.

146 Synthesis of Distributed Transition Systems

The distribution The transition system A distributable unfolding

Σ = {a, b, c}
Proc = {1, 2, 3}
dom(a) = {1, 2}
dom(b) = {1, 3}
dom(c) = {2, 3}

0

1 2

a
b

c
0

1 2

0′

1′2′

a
b

c
a

b

c

Σ = {a, b}
Proc = {1, 2}
dom(a) = {1}
dom(b) = {2}

(so, a‖b)

0

1

a a bb

0

1 0′

1′

a aa a
b

b

b

b

Figure 5.6: Exemplifying unfolding using copies

3. If the result is positive, synthesize the asynchronous automaton and stop.

4. Otherwise, identify transitions involved in violations of the conditions of the char-
acterization test and unfold some of them1 in such a way that going back to step 2,
the number of violations have strictly decreased (thus forcing the termination of the
algorithm).

The correctness of the above algorithm is given by step 3 (and the fact that an unfold-
ing preserves the accepted language), whereas the termination is given by the decreasing
number of violations envisaged in the unfolding from the last step. As you may have
guessed, the problem is to find a systematic unfolding that ‘solves’ violations eventually
leading to a transition system that can be decomposed as an asynchronous automaton.

If a transition system does not pass the test of Theorem 3.32 (i.e., is not isomorphic to
an asynchronous automaton), a list of pairs of states violating DAA3 or DAA4 is provided.
Intuitively, the reason a transition system is not distributable is that there are too many
connections or paths between the nodes and that implies that the equivalence classes w.r.t.
(≡k)k∈Proc constructed by DAA1 and DAA2 are too large (causing the failure of DAA3 or
DAA4). The idea of unfoldings is intended to decrease the number of states that are ’too
connected’ by making copies (two or more if necessary) of the states as showed by the two
following examples.

The first example in Figure 5.6 (top), the initial transition system is not isomorphic to

an asynchronous automaton: From DAA1 applied to the transitions 0
b−→ 2 and 2

c−→ 0,
we have that 0 ≡1,2 2, so 0 ≡dom(a) 2. This together with the existence of transition

0
a−→ 1 violates DAA4, because there is no state q such that 2

a−→ q. The cause of
problem is that the states 0 and 2 are linked by two transitions labelled b, respectively
c. A possible solution arises by unfolding the transition 2

c−→ 0 as follows: We make a

1In a similar way that a graph is unfolded into a tree.

5.2. Asynchronous Automata 147

copy of all states and transitions and we ‘cross’ the copies of the transitions 2
c−→ 0 and

2′
c−→ 0′ as in Figure 5.6. The new transition system obtained by ‘unfolding’ the original

transition 0
a−→ 2 is now isomorphic to an asynchronous automaton. (Now the states

0 and 2 – as well as their twins 0′ and 2′ – are equivalent on process 2 because of the
b-labeled transitions, but not on process 1, thus avoiding the violation of DAA4).

In the second example in Figure 5.6 (bottom), the initial transition system is not iso-
morphic to an asynchronous automaton because DAA3 is violated: The states 0 and 1 are
equivalent on both available processes, using DAA1 (see also Remark 3.31). Since (the
global state space of) any asynchronous automaton satisfies ID and FD, we must consis-
tently apply the unfolding (implemented by making copies) such that the diamond rules
are preserved. Since a and b are independent, we simultaneously ‘cross’ all the b-labeled
in the process of duplication. The result, which will be isomorphic to an asynchronous
automaton, is showed in Figure 5.6.

Unfortunately, we were not able to make the above idea (or a modification of it)
feasible in practice (the main problems were created by the attempt to systematically
preserve the diamonds). The intended correctness proof of such construction would have
been of course by induction on the number of duplications/unfoldings involved together
with the observation that at each step the language is preserved. A sanity check shows
that the size of the transition system obtained by the method is not too small1: The
size is proportional to |Q| · 2|T | where |Q| the number of states of the initial transition
system and |T | the number of transitions to be unfolded (every unfolding step doubles
the number of states).

However, we managed to work out a proof in the special case that we present next.

Asynchronous automata for transitive dependence relations

We give a new construction for the synthesis of asynchronous automata in case the distri-
bution from the specification generates a transitive dependence relation between actions
(i.e., ∀a, b, c ∈ Σ : a 6 ‖b ∧ b 6 ‖c ⇒ a 6 ‖c). First we give a construction for the case where
all actions are dependent (i.e., ∀a, b ∈ Σ : a 6 ‖b) and use this in the more general case of
transitive dependence relations.

Complete unfolding As the main ingredient of this subsection, we define the ‘complete
unfolding’ of a transition system TS := (Q, Σ,→, I) as the transition system obtained by
iteratively duplicating the state space of TS for each of its (non self-loop) transitions.

Formally, let Td be the set of transition with distinct ‘in’ and ‘out’ states, i.e.,

Td := {q1
a−→ q2 | q1 6= q2}.

Then, we construct a new transition system Unf (TS) = (Qunf , Σ,→unf , Iunf), called the
complete unfolding of TS , as follows:

Qunf :=
{
q(loc) | q ∈ Q ∧ loc ∈ {0, 1}Td

}

(The states of Unf (TS) are obtained indexing the states of Q by location functions,
generating two copies (0/1) of a state q for each transition of Td.)

1See a worst-case analysis on the size of a deterministic asynchronous automaton in [KMS94].

148 Synthesis of Distributed Transition Systems

→unf :=

q
(loc1)
1

a−→ q
(loc2)
2

∣
∣
∣
∣
∣
∣

q1
a−→ q2 ∈ Td ∧

loc2(t) =

{
loc1(t), if t ∈ Td \ {q1

a−→ q2}
1− loc1(t), if t = q1

a−→ q2

⋃
{

q(loc) a−→ q(loc)
∣
∣
∣ q

a−→ q ∈ T \ Td ∧ loc ∈ {0, 1}Td

}

(Each transition of Td will generate copies in→unf such that the locations of the ‘in’
and ‘out’ states will differ only on the position corresponding to the given transition.)

Iunf :=
{
q(loc0) | q ∈ I ∧ ∀t ∈ Td : loc0(t) = 0

}

(The initial states of the unfolding are the initial states in the ‘copy’ of the state
space corresponding to the nil location function loc0.)

The state space of Unf (TS) is linear in the state space of TS and exponential in the
number of non self-loop transitions of TS , i.e., |Qunf | = |Q| · 2|Td|. Note also that if TS is
deterministic, then Unf (TS) is deterministic too.

The main result is that the complete unfolding Unf (TS) is isomorphic to an asyn-
chronous automaton over distributions generating empty independence relations between
actions. The proof is based on the characterization of Theorem 3.30.

Theorem 5.15 Given a finite transition system TS, we have that Unf (TS) is bisimilar
to TS and therefore accepting the same language.

Moreover, for any distribution (Σ,Proc, ∆) generating an empty independence relation
(i.e., ‖ = ∅), Unf (TS) is isomorphic to an asynchronous automaton over ∆.

Proof. First, it is easy to check that R ⊆ Qunf ×Q defined by

R :=
{ (

q(loc), q
) ∣
∣ q ∈ Q ∧ loc ∈ {0, 1}Td

}

is a bisimulation between Unf (TS) and TS . From bisimilarity, we deduce that Unf (TS)
and TS accept the same language (cf. Lemma 4.34).

We use now Theorem 3.30 to prove that Unf (TS) is isomorphic to an asynchronous
automaton over ∆. For that, it is enough to construct a family of equivalences satisfying
AA1–AA3 from Theorem 3.30.

We choose a family of binary relations (≡k)k∈Proc with ≡k⊆ Qunf × Qunf as follows.
First, let

≡k :=
{ (

q
(loc1)
1 , q

(loc2)
2

) ∣
∣
∣ ∃a ∈ Σ : q

(loc1)
1

a−→ q
(loc2)
2 ∈→unf ∧ k ∈ dom(a)

}

,

where (similar to the previous subsections), dom(a) := Proc \ dom(a). We take the
reflexive and transitive closures of (≡k)k∈Proc and we denote them, without danger of
confusion, also by (≡k)k∈Proc. We prove that the family of equivalences (≡k)k∈Proc satisfies
AA1–AA3.

For q, q′ ∈ Qunf we denote by equiv(q, q′) the maximal subset K ⊆ Proc such that
q ≡K q′, i.e.,

equiv(q, q′) := {k ∈ Proc | q ≡k q′}.
We start making some observations on equiv :

5.2. Asynchronous Automata 149

First, for any q, q′ ∈ Qunf it is not hard to prove that:

equiv(q, q′) =
⋃

q
w

!q′

⋂

a∈Σ(w)

dom(a) (5.11)

where the notation q
w

! q′ is given on page 141.

For two states in different locations, i.e., q
(loc1)
1 , q

(loc2)
2 ∈ Qunf with loc1 6= loc2, let

t := q
a−→ q′ ∈ Td such that loc1(t) 6= loc2(t). Using (5.11) and the construction

of →unf (more precisely, the fact that a transition labeled by a will appear on any

path from q
(loc1)
1 to q

(loc2)
2) we have that:

equiv(q
(loc1)
1 , q

(loc2)
2) ⊆ dom(a) (5.12)

For two distinct states in the same location, i.e., q
(loc)
1 , q

(loc)
2 ∈ Qunf with q1 6= q2, it

is not difficult to see that there is no path connecting them. Then, using (5.11), we
have that:

equiv(q
(loc)
1 , q

(loc)
2) = ∅ (5.13)

Using the above observations, we are now able to prove that indeed the equivalences
(≡k)k∈Proc satisfy the three conditions of Theorem 3.30:

AA1 : Directly from the way (≡k)k∈Proc were defined.

AA2 : It is enough to show that ∀q1, q2 ∈ Qunf : q1 6= q2 ⇒ equiv(q1, q2) 6= Proc (cf.
Remark 4.6). We have two cases. First, if q1 and q2 have the same location, then
by (5.13) we have that equiv(q1, q2) = ∅ 6= Proc. Second, if q1 and q2 have different
locations, then by (5.12) there exists an action a ∈ Σ such that equiv(q1, q2) ⊆
dom(a). Because dom(a) 6= ∅ (by definition), then dom(a) 6= Proc and hence
equiv(q1, q2) 6= Proc.

AA3 : For q1 = q2 there is nothing to prove. If q1 6= q2, as before, we have two cases. First,
if q1 and q2 have the same location, then by (5.13) we have that equiv(q1, q2) = ∅
and therefore the hypothesis that q1 ≡dom(a) q2 is false (because dom(a) 6= ∅), so
AA3 is true. Second, if q1 and q2 have different locations, then by (5.12) there exists
an action b ∈ Σ such that equiv(q1, q2) ⊆ dom(b). The hypothesis that q1 ≡dom(a) q2

is false again, otherwise dom(a) ⊆ equiv(q1, q2) ⊆ dom(b), so dom(a) ∩ dom(b) = ∅
which implies a‖b, but this is not possible since ‖ = ∅. Since in either case the
hypothesis is false, the implication of AA3 is true. �

Corollary 5.16 Given a distribution (Σ,Proc, ∆) generating a transitive dependence re-
lation and a prefix-closed trace-closed language L ⊆ Σ∗, we can construct using the ‘com-
plete unfolding’ idea an asynchronous automaton over ∆ accepting L.

Proof. If the dependence relation 6 ‖ ⊆ Σ × Σ generated by ∆ is transitive, then the
maximally connected components (Σi)i∈I of the dependence graph (Σ, 6 ‖) form a partition
of Σ with the property that

150 Synthesis of Distributed Transition Systems

∀i ∈ I, a, a′ ∈ Σi : a 6 ‖a′ (i.e., each Σi is a clique) and

∀i 6= j ∈ I, ai ∈ Σi aj ∈ Σj : ai‖aj (there are no ‘connections’ in (Σ, 6 ‖) between
the components Σi because of the transitivity property).

The first step in our construction is to take the projections (Li)i∈I of L on the partition
(Σi)i∈I . I.e., for each i ∈ I, Li := L ↾Si

. Using Propositions 2.1 and 3.7, the projections
Li are also prefix-closed trace-closed languages and we can construct a family of finite
transition systems (TS i)i∈I such that ∀i ∈ I : L(TS i) = Li.

Further, we construct the ‘complete unfoldings’ Unf (TS i) for each TS i. According
to the first part of Theorem 5.15, L(Unf (TS i)) = L(TS i) = Li. Moreover, since ∀i ∈
I, a, a′ ∈ Σi : a 6 ‖a′, we have that the projection of the distribution ∆ on Σi, denoted by ∆i,
generates an empty independence relation between actions, so we can apply Theorem 5.15
and show that for each i ∈ I, Unf (TS i) is isomorphic to an asynchronous automaton AAi

over the projection ∆i. The asynchronous automaton AAi is constructed as mentioned in
Section 5.2.1.

Finally, we combine all the asynchronous automata (AAi)i∈I over ∆i into a single one,
denoted AA, over the distribution ∆, putting them in parallel. This is possible (and
correct) because the dependence graph (Σ, 6 ‖) is transitive, so according to an observation
at the beginning of the proof, actions belonging to different partitions Σi and Σj are
independent, which implies that there is no common process for any pair of distinct
projection distributions ∆i and ∆j. It is easy to see that L(AA) = L.

We remark that the above approach can also be used to synthesize deterministic asyn-
chronous automata. The transition systems (TS i)i∈I can be the minimal deterministic
transition systems accepting the languages (Li)i∈I . Since the Unf -transformation pre-
serves the determinism, we have that all AAi constructed are deterministic, and this
further implies that the final AA is also deterministic. �

The construction we presented is not necessarily an optimal one. It was rather used
to exemplify a possible implementation. Alternatives to Zielonka’s construction for tran-
sitive dependence relations can be obtained by combining approaches from the literature.
For instance, since a transitive dependence relation is a particular case of triangulated
dependence relation, [DM96] (generalizing [Mét87]) provides a simpler (more precisely,
polynomial-time) solution than Zielonka’s construction. Moreover, minimum determin-
istic asynchronous automata were synthesized in [BPS94] for transitive dependence re-
lations. However, in the above approaches only a specific distribution generating the
given transitive dependence relation is considered (recall that, to a given relation of
(in)dependence between actions, one can associate usually more than one compatible
distribution – see Section 2.1.4): The distribution is given in [DM96] by a ‘perfect vertex
elimination scheme’, while in [BPS94] by the maximal cliques of the dependence relation.
In our construction, we obtain in a rather neat way an asynchronous automaton over any
distribution compatible with the dependence graph.1

1The approaches of [DM96] and [BPS94] can be complemented by the construction from [CSLR88]
that transform an asynchronous automaton over a given distribution ∆ to an asynchronous automaton
over any other distribution ∆′ generating the same independence relation. The translation of [CSLR88]
may involve an exponential (in the number of processes of ∆′) blowup.

5.2. Asynchronous Automata 151

Discussion

In this chapter we presented synthesis algorithms of distributed transition system from
implementable specifications. Whereas the synthesis of synchronous products poses no
difficulties [CMT99, Muk02], a lot of effort have been put over the last almost twenty
years in the synthesis of (deterministic) asynchronous automata [Dub86, Zie87, CSLR88,
Pig93a, Pig93b, BPS94, KMS94, MS94, DR95, DM96, Mor98, ŞEM03]. Unfortunately,
Zielonka’s expensive (and intricate) approach is the only available method at present in the
general case. In Section 5.2.2, we present the ingredients of the construction together with
a modification to accommodate the prefix-closed case (i.e., all states of the implementation
are accepting). In Section 5.2.3, we give alternatives to Zielonka’s construction for special
cases (finite specifications, conflict-free specifications, distributions generating transitive
dependence relations).

In the next chapter, we present implementations for some of the algorithms of this
chapter together with a couple of case studies and heuristics against the state space
explosion problem.

During the preparation of the final version of this thesis, we found out about the (yet)
unpublished manuscript [GM06] showing an improvement of Zielonka’s construction for
deterministic asynchronous automata reducing the double-exponential in the number of
processes to a single exponential (more precisely, the size of the synthesized deterministic

asynchronous automaton is 2O(|A|2×|Proc|3), where A is the automaton describing the global
specification and Proc the set of processes in the distribution). The authors of [GM06]
construct asynchronous automata equipped with global final states, but they mention
that their idea can be modified to work also in the framework of this thesis where no final
states are considered. Although we have not experimented yet with this new approach,
we note that the heuristics to obtain smaller asynchronous automata that we propose in
the next chapter (namely, Section 6.3.3) can be used in conjuction with [GM06].

⋄

Beware of bugs in the above code;
I have only proved it correct, not
tried it.

Donald Knuth

Beware of bugs in my implementation
code; I have only tried it, not proved
it correct.

The author of this thesisChapter 6

Implementations and Case Studies

I
n this chapter we reach the final destination on the path from theory to practice, going
in the direction pointed at the end of [KV01]: “we believe that the real challenge that

synthesis algorithms and tools face in the coming years is mostly not that dealing with
computational complexity, but rather that of making automatically synthesized systems
more practically useful”. Although Zielonka’s asynchronous automata [Zie87] will soon
celebrate a venerable age of twenty years and a large body of literature, we are not aware
of any implementations for them (this must be due to the complexity of their synthesis
procedure). In this chapter we report on a couple of (heuristic) implementations that
synthesize asynchronous automata for specifications larger than Zielonka’s algorithm could
tackle.

In our thesis, we address the problem of automatically synthesizing a finite state,
closed distributed system from a given specification. Seminal papers in this area are
[CE82, MW84], where synthesis algorithms from temporal logic specifications are devel-
oped. The algorithms are based on tableau procedures for the satisfiability problem of
CTL (respectively LTL). These approaches suffer from the limitation that the synthesis
algorithms produce a sequential process P , and not a distributed implementation. The
solution suggested in these works is to first synthesize the sequential solution, and then
decompose it. However, since distribution aspects like concurrency and independency of
actions are not part of the CTL or LTL specification, the solution may be impossible to
distribute while keeping the intended concurrency. As showed in Section 6.1.1, this is in
fact what happens with the solution of [CE82] to the mutual exclusion problem, the first
problem considered in this chapter.1 A couple of (theoretical) improvements to [CE82]
were reported by Attie and Emerson [AE98, AE01], but the specification still does not
incorporate concurrency, and no implementations are available for the moment.

A better approach to the problem consists of formally specifying not only the proper-
ties the system should satisfy, but also its architecture (how many components, and how
they communicate). This approach was studied in [PR89] for open systems, in which the
environment is an adversary of the system components, and the question is whether the
system has a strategy that guarantees the specification against all possible behaviors of the
environment. The realization problem (given the properties and the architecture, decide if

1The solution of [MW84] is even less satisfactory.

152

153

Specification

Global behavior and distribution

TEST

Is the specification distributable?

Heuristics

Try to refine the specification

so as to become distributable

Synthesis

Core algorithms + heuristics

Distributed implementation

Desired format

yes

no

if possible

Figure 6.1: The synthesis flow followed in this thesis

there exists an implementation) was shown to be undecidable for arbitrary architectures,
and decidable but non-elementary for hierarchical architectures vs. LTL specifications.
Recent work [KV01] extends the decidability result (and the upper bound) to CTL∗ spec-
ifications and linear architectures. To the best of our knowledge the synthesis procedures
have not been implemented or tested on small examples. The introduction of [PR89]
already pointed out the limitation of [CE82, MW84] mentioned above, namely the fact
that the solution may be impossible to distribute with the intended concurrency, and
stated that this was “particularly embarrassing when the problem is meaningful only in
a distributed context, such as the mutual exclusion problem”. Unfortunately, the re-
sults of [PR89], being for open systems and very generally applicable, did not provide
any better automatically generated solutions to the mutual exclusion problem. Recent
papers on automatic synthesis of distributed controllers might also be applicable to this
problem [MT02], but we are not aware of any paper claiming to have done so.

In this thesis we study the synthesis problem for the simpler case of closed systems,
the original class of systems considered in [CE82, MW84] using synchronous products and
asynchronous automata as implementation models. In our approach, a specification con-
sists of two parts: (1) a distribution (Σ,Proc, ∆) and (2) a regular specification Spec over
the alphabet Σ of actions, containing all the finite executions that the synthesized system
should be able to execute. The synthesis problem consists of constructing a distributed
transition system over ∆ accepting Spec. In the introduction of this thesis (Chapter 1),
we have seen a small example of synthesis (Section 1.2). In this chapter we show how to

154 Implementations and Case Studies

automatize the procedure. Our approach is sketched in Figure 6.1 and can be summarized
as follows:

1. We start with a global specification given as a transition system (respectively, a
regular expression) and a distribution.

2. We choose the implementation model (i.e., either (deterministic) synchronous prod-
ucts or asynchronous automata) and the equivalence used to govern the ‘correctness’
of the distributed implementation (i.e., graph isomorphism, language equivalence,
or bisimulation) – cf. Section 3.5.

3. We test whether the global specification is ‘distributable’ modulo the chosen equiv-
alence (the computational complexity of this test was studied in Chapter 4).

4. If the implementability test is negative, we may relax the problem and heuristically
look for a ‘smaller’ specification that can be distributed (recall Section 4.5).

5. If the implementability test is positive, we apply the synthesis procedures described
in Chapter 5 to obtain a distributed transition system.

6. The synthesized distributed transition system may be further implemented at a
lower level (e.g. as a distributed algorithm).

We implemented the synthesis procedure as described above except the last mentioned
step and in this chapter we present a couple of algorithms and heuristics.1 Since usually in
practice deterministic systems are required, our implementations focused on the synthesis
of deterministic synchronous products and asynchronous automata. Moreover, we will
focus on synthesis modulo language equivalence (more specifications are distributable
modulo language equivalence than modulo isomorphism). Nevertheless, tests of imple-
mentability modulo isomorphism can help the synthesis modulo language equivalence and
were also considered.

We automatically synthesize several (maybe not ‘elegant’ but) new and far more re-
alistic solutions to the Mutex problem than those of [CE82, MW84]2. We also apply our
approach to the dining philosophers problem, where we are able to automatically synthe-
size variants of the left-handed/right-handed strategy for guaranteeing deadlock-freedom
and absence of starvation.

The chapter is structured as follows: We introduce the benchmarks (mutual exclu-
sion and dining philosophers problems) in Section 6.1, starting with the solutions in the
literature, followed by our solutions with details for the simple case of two processes.
Section 6.2 presents the implementation for the synthesis of deterministic synchronous
products (modulo language equivalence). Then, Section 6.3 gives implementations of
(heuristic) algorithms for the synthesis of asynchronous automata. Each implementation
description is followed by experimental results (for the benchmarks of Section 6.1). We
close the chapter with a discussion.

1Some of the results of this chapter were published in [ŞEM03, HŞ04].
2What is a ‘real’ solution to the mutual exclusion problem is a matter of discussion, and so we do

not dare to claim that our solutions are ‘real’.

6.1. Motivating Example: Mutual Exclusion 155

Noncritical Section

Try

Critical Section

request

enter

exit

Figure 6.2: The life-cycle of a local process involved in mutual exclusion

The prototype implementations (together with the benchmarks) described in this chap-
ter are available online at:

http://www.fmi.uni-stuttgart.de/szs/people/stefanescu/thesis/

The experimental results reported in this chapter were performed on a Linux machine
with a 3 GHz dual Intel Pentium 4 processor and 1 GB of RAM. (The reported times are
given in seconds.)

6.1 Motivating Example: Mutual Exclusion

In this section we describe the mutual exclusion, a basic problem for distributed systems.
After a short excursion in the literature, we show how we can synthesize a solution to the
problem using techniques introduced in this thesis.

The mutual exclusion problem was first presented by Dijkstra in [Dij65]. Given its
importance, many mutual exclusion algorithms have been published (see for instance the
surveys [Ray86, AKH03]).

A mutual exclusion (or Mutex for short) situation appears when two or more processes
(a.k.a. agents)1 are trying to access for ‘private’ use a common resource. Each concurrent
process competing for the resource exhibits a general cyclic behavior as sketched in Fig-
ure 6.2: After being in a noncritical section, a process tries to enter the critical section
(i.e., tries to have exclusive access to a shared resource). After getting permission, the
process enters the critical section, which is eventually exited to go back to a noncritical
state.

A ‘good’ distributed solution to the Mutex problem is a collection of programs, one
for each process, such that their concurrent execution satisfies the properties:

mutual exclusion: It is never the case that two (or more) processes have simultaneous
access to the resource (i.e., they are not simultaneously in their critical sections).

1The name ‘process’ in the context of mutual exclusion algorithms should not be confounded with
the processes from the set Proc from distributions.

http://www.fmi.uni-stuttgart.de/szs/people/stefanescu/thesis/

156 Implementations and Case Studies

absence of starvation: If a process requests access to the resource, the request is
eventually granted (i.e., a pending process is not put on hold forever).

deadlock freedom: There is always progress possible in the system.

For exposition purposes, in this section we will consider the problem for only two
processes. The actions of the system will be:

Σ := {req1, enter 1, exit1, req2, enter 2, exit2}

with the intended meanings of ‘requesting access to’, ‘entering’, respectively ‘exiting the
critical section’. The indices 1 and 2 specify the process that executes the action.

6.1.1 A Classical Solution for Mutual Exclusion

In a seminal paper [CE82], Clarke and Emerson proposed two formal approaches using
temporal logic for specification. The first one was a verification procedure to check the
transition system semantics of a system against a temporal logic specification, this idea
later breeding the prolific area of ‘model checking’. The second novel approach of [CE82]
was a procedure to automatically synthesize a transition system from a temporal formula
written in the branching-time temporal logic CTL. A similar approach was adopted by
Manna and Wolper in [MW84] using linear temporal logic. Both papers exemplify their
method synthesizing a mutual exclusion algorithm. We give below the idea presented
in [CE82] followed by a short discussion.

The specification of [CE82] is given as a conjunction of CTL formulae for the three
properties of a mutual exclusion algorithm (mutual exclusion, absence of starvation, dead-
lock freedom) plus a number of properties for local behavior. Using a tableau technique,
the global transition system on top-left of Figure 6.3 is automatically derived1. In a
second step, the solution is distributed to yield two ‘synchronization skeletons’, one for
each process. Figure 6.3 shows at top-right the local behavior of the first process, the
second process being dually constructed (the extraction of the local processes uses the
information from the tableaux construction). Boolean conditions followed by question
marks denote guards on the transitions. (We see that process 1 always needs to inspect
the control state of the second process.)

A possible implementation generated by the synthesized ‘synchronization skeletons’ is
given at the bottom of Figure 6.3. The communication is realized by shared variables: si

is the control-state variable taking the values {N,T,S} with the meaning ‘process i is in
its noncritical, try, respectively critical section’. The variable turn (in the range {1,2}) is
used to schedule the access to the shared resource. The given pseudo-code uses the bracket
notation 〈set of commands〉 to describe that the set of commands must be executed in
one single atomic step.

As possible problematic issues for the solution from [CE82] (Figure 6.3) we can enu-
merate:

1In fact, in [CE82] a Kripke structure is derived, but the translation to a transition system is imme-
diate. (A Kripke structure is a transition system with labels attached to states rather than transitions.)

6.1. Motivating Example: Mutual Exclusion 157

The synthesized transition system The ‘skeleton’ of process 1

req1 req2

req2
req1

enter2enter1

req2 req1
enter1 enter2

exit1 exit2

exit1 exit2

NCS1

TRY1

CS1

NCS2 ∨ CS2?TRY2?→turn:= 2

NCS2 ∨ (TRY2 ∧ turn=1)? NCS2 ∨ TRY2?

A distributed implementation using shared variables

Initialization (of shared variables): s1:=N, s2:=N, turn := 1

Process 1 Process 2

repeat forever repeat forever
[NCS1]; [NCS2];
〈 if (s2=T) then (turn:=2 and s1:=T) 〈 if (s1=T) then (turn:=1 and s2:=T)

else s1:=T 〉; else s2:=T 〉;
〈 await ((s2=N) or (s2=T and turn=1)) 〈 await ((s1=N) or (s1=T and turn=2))

then s1:=C 〉; then s2:=C 〉;
[CS1]; [CS2];
s1 := N s2 := N

end repeat end repeat

Figure 6.3: A classical synthesized solution to mutual exclusion problem [CE82]

(a) The test-and-set atomic operations are complicated, e.g., to move from the noncriti-
cal section to a trying state, process 1 must in one atomic instruction to: (a) test if
the other process tries to enter the critical section, (b) update the value of variable
turn (if process 2 is in its ‘trying’ state), and (c) move to the next state (i.e., ‘trying’
state). Thus, the grain of atomicity is rather course in [CE82]. Moreover, at every
moment each process must be knowledgeable about the control state of the other
processes.

To tackle these issues, Attie and Emerson propose in [AE01] a systematic way to
decrease a high atomicity to a lower one. The idea is to refine each large atomic
instruction into smaller ones. Since this step may introduce unwanted behavior, a
second step is needed to delete refinements that do not comply with the original
specification. This procedure involves particular heuristics that turn the approach
incomplete. Moreover, a state space explosion is susceptible for this approach.

(b) The synthesis procedure explicitly constructs the global state space of the distrib-

158 Implementations and Case Studies

uted algorithm, which can lead to the ‘classic’ state space explosion problem in a
parametrized version of mutual exclusion.

This will be also a disadvantage in our approach where we start with a transition
system specifying the global behavior. In fact most of the synthesis approaches
in the literature face this problem (e.g., [MW84, PR89, AM94, CMT99, KV01,
BCD02]). As a possible solution, [AE98, Att99] directly synthesize local pairwise-
communication between processes, which are afterwards consistently composed to
generate the final distributed algorithm. This proposal suffers unfortunately from
the high-atomicity problem mentioned in the previous item: Each process needs to
atomically inspect the state of all its neighbors (i.e., all processes with which it is
composed in some pair-program) in a single transition.

(c) The two actions request actions req1 and req2 cannot be independent following the
description of Section 3.1. The reason is that the diamond properties (ID and
FD) are violated for the transition system in Figure 6.3: The executions req1 req2

and req2 req1 lead to two different states. Therefore, the specification cannot be
implementable over any distribution having req1 and req2 independent. On the
other hand, it seems natural to ask that the two processes freely request access to
enter their critical section without any coordination with the other process.

This ‘anomaly’ present in the global transition system synthesized in [CE82] can
be best explained by the fact that the (CTL) temporal logic specification does not
take concurrency into account in the first place. So, the classical temporal logics
are not really adequate to specify distributed systems. Recently, local temporal
logics (interpreted over Mazurkiewicz traces) were developed [TH98, Wal98, AS02,
GM02, Wal02] but, although their complexity is at most PSPACE, the current
proposals seem not very suited to be used in practice and a good candidate able to
easily express natural properties of distributed systems and allowing a neat synthesis
procedure is still to be discovered.

In the rest of the section, we explore the possibility of synthesizing a mutual exclu-
sion algorithm from a global transition system using synchronous products, respectively
asynchronous automata.

6.1.2 Mutual Exclusion Modeled in Our Framework

We work out now a solution for the mutual exclusion problem within the setting of this
thesis. More precisely, we start with a distribution and a global regular specification (i.e.,
a transition system), and try to synthesize a synchronous product or an asynchronous
automaton that is language-equivalent1 to the specification.

The techniques used in this section may seem a bit ad-hoc, but we will see how to
perform them automatically in the following sections (this section giving then a quick
glimpse of the ideas used by the implementations).

1We use language equivalence rather then graph isomorphism as consistency relation between specifi-
cation and distributed implementation, in order to have more specifications that are implementable (note
though that the implementability test is theoretically harder for language equivalence, cf. Chapter 4).

6.1. Motivating Example: Mutual Exclusion 159

Distribution According to Section 3.5, we will define first a distribution (Σ,Proc, ∆).
Since we already have the alphabet,

Σ := {req1, enter 1, exit1, req2, enter 2, exit2},

we have to choose the set of processes Proc, and the local alphabets for each process
p ∈ Proc. One way to come up with a distribution is to directly construct it or to decide on
a concurrency relation (Σ, ‖) and then to construct a compliant distribution as described
in Section 3.2.1. As mentioned at the end of the previous subsection, it is desirable to
have req1‖req2 (both processes independently choose when to request access to the critical
section). On the other hand, it is clear that req1 and enter 1 should be dependent (because
req1 always precedes enter1), so a natural choice is to have the following independences:

{req1‖req2, exit1‖exit2, req1‖exit2, req2‖exit1}.

The dependence graph generated by the above independence relation is depicted in the
top-left corner of Figure 6.4. We distribute then the actions over a number of processes
such that independent actions are executed by disjoint sets of processes. The distribution
is constructed from a covering by cliques of the dependence graph. A covering by maximal
cliques is given by the following two sets

{req1, enter 1, exit1, enter 2} and {req2, enter 2, exit2, enter 1}.

So, we choose two processes, say V1 and V2, with the above as local alphabets of ac-
tions. To ease the translation of the synthesized distributed transition system into a
distributed algorithm, we choose also the following cliques for the local control of the two
processes/agents involved in the mutual exclusion problem:

{req1, enter 1, exit1} and {req2, enter 2, exit2}.

Thus, we have two more processes P1 and P2 having the above sets as local alphabets.
Hence, the set of processes is

Proc := {P1, V1, V2, P2},

with the corresponding local alphabets given in Figure 6.4.
Note that from the information on the local alphabets we can extract also the domains

of the actions of Σ:

dom(req1) = {P1, V1}, dom(enter 1) = {P1, V1, V2}, dom(exit1) = {P1, V1},
dom(req2) = {V2, P2}, dom(enter 2) = {V1, V2, P2}, dom(exit2) = {V2, P2}.

Global specification Once we have a distribution, we give the second part of the
specification by defining the desired behavior of the mutual exclusion algorithm. For
that, we define a regular language, Mutex 1 ⊆ Σ∗ capturing the properties mentioned at
the beginning of Section 6.1. More precisely, we want Mutex 1 to be a prefix-closed regular
language satisfying the following conditions:

Distribution ∆1 Global transition system for Mutex 1

Dependence graph:

req1

enter1

exit1

req2

enter2

exit2

Distribution:

Proc Σloc

P1 req1, enter 1, exit1

V1 req1, enter 1, enter2, exit1

V2 req2, enter 1, enter2, exit2

P2 req2, enter 2, exit2

req1 req2

req2 req1

enter2enter1

req2 req1

enter1 enter2

enter1 enter2exit1 exit2

req1req2

enter1 enter2

exit1

exit1

exit2

exit2

Synthesized local components

Process P1 Process V1 Process V2 Process P2

0

1

2

req1

enter1

exit1

0

1

2

3

req1

enter2

enter1

enter1

enter2exit1

0

1

2

3

req2

enter1

enter2

enter2

enter1 exit2

0

1

2

req2

enter2

exit2

Generated mutual exclusion algorithm using (two) shared variables

Initialization (of shared variables): v1:=0, v2:=0

Process 1 Process 2

repeat forever repeat forever
[NCS1]; [NCS2];
v1 := 1; v2 := 1;
〈 await (v1 ∈ {1, 3} and v2 ∈ {0, 1}) then 〈 await (v1 ∈ {0, 1} and v2 ∈ {1, 3}) then

(v1 := 2 and (if v2 = 1 then v2 := 3)) 〉; ((if v1 = 1 then v1 := 3) and v2 := 2) 〉;
[CS1]; [CS2];
v1 := 0 v2 := 0

end repeat end repeat

Figure 6.4: Synthesis cascade for the mutual exclusion problem Mutex 1

160

6.1. Motivating Example: Mutual Exclusion 161

1. Mutex 1 is included in the shuffle of the prefix-closures of (req1enter1exit1)
∗ and

(req2enter 2exit2)
∗:

Mutex 1 ⊆ Shuffle(Prefix((req1enter 1exit1)
∗), Prefix((req2enter2exit2)

∗)).

I.e., each of the two processes executes req ienter iexit i in cyclic order (see Figure 6.2).

2. Mutex 1 ⊆ Σ∗ \ (Σ∗enter 1(Σ \ exit1)
∗enter 2Σ

∗) and its dual version.

I.e., a process must exit before the other one can enter (we model this by forbidding
runs that have two different enters without a corresponding exit in-between). This
guarantees mutual exclusion.

3. Mutex 1 ⊆ Σ∗ \ (Σ∗req1(Σ \ enter 1)
∗enter 2(Σ \ enter1)

∗enter 2Σ
∗) and its dual ver-

sion.

I.e., after a request by one process, the other process can enter the critical section at
most once (we model this by forbidding runs that after a request of one process, the
other one enters twice without any entering of the first process). This is a sufficient
condition to guarantee absence of starvation.

4. For any w ∈ Mutex 1, there exists an action a ∈ Σ such that wa ∈ Mutex 1.

I.e., each run has a possible continuation. This guarantees deadlock freedom.

Condition 3 needs to be discussed. In our current framework we cannot deal with ‘proper’
liveness properties, like: ‘if a process requests access to the critical section, then the access
will eventually be granted’. This is certainly a shortcoming of our current framework. In
this example, we enforce absence of starvation by putting a concrete bound on the number
of times a process can enter the critical section after a request by the other process (here
we take the bound equal to one).

Since we want our specification to be as rich as possible, we try to construct the
‘largest’ possible language Mutex 1 satisfying conditions 1–4. Since last condition is not
constructive, we take first into account only the first three conditions, i.e., we intersect
the languages given in 1–3. First, this intersection is a regular language, using the clo-
sure properties of regular languages (cf. Proposition 2.5). Second, the intersection is a
prefix-closed language, using the closure properties of prefix-closed languages (cf. Propo-
sition 2.1) and the fact that the languages from 1–3 are prefix-closed (the language from
constraint 1 is a shuffle of prefix-closed languages, so a prefix-closed language, while the
languages of constraints 2 and 3 are also prefix-closed because any language of the form
Σ∗ \ (EΣ∗) is prefix-closed, for any regular expression E over Σ).

Since the intersection of languages of 1–3 is a prefix-closed regular language, we can
construct according to Corollary 2.19, a minimal deterministic transition system TS ac-
cepting this intersection. The result is depicted in Figure 6.4 (top-right). Coming back to
the last constraint regarding the deadlock freedom, we notice that TS is already deadlock-
free (cf. Definition 4.51), so the accepted language is also deadlock-free. (If the transition
system had been not deadlock-free, we would have had to iteratively remove all deadlock
states from TS .)

In conclusion, the transition system in Figure 6.4 (top-right) accepts the ‘largest’
language satisfying conditions 1–4, and thus specifies a mutual exclusion scenario. (Note
that our specification is ‘richer’ than that from Figure 6.3.)

162 Implementations and Case Studies

At this point we have a distribution and a transition system, and we want to check
whether there exists a (deterministic) distributed transition system accepting the same
language.

Synthesis of synchronous products First, we try to synthesize a deterministic syn-
chronous product of transition systems. The procedure is described in Section 5.1.2, and
is based on the projections on local alphabets from Algorithm 4.4 (that decides whether
the language of a transition system is a product language). The algorithm is simple: We
project the transition system on each of the local alphabets (of the processes) and test
whether the language of the transition system includes the language of the synchronization
of the projections.

For our specification in Figure 6.4, we projected the transition system TS at the top-
right on the local alphabets of the four processes {P1, V1, V2, P2} and the result is displayed
in the middle of Figure 6.4. It is easy to verify that the language of the synchronization
of the local projections (having (0, 0, 0, 0) as global initial state) is indeed included in the
language of TS . Hence, the specification is distributable and the projections are exactly
the local components of the synthesized synchronous product.

The constructed synchronous product can be further translated into a distributed
algorithm as shown in Figure 6.4 (bottom)1. The synchronizations on common actions are
‘implemented’ using two shared variables corresponding to processes V1 and V2. According
to the local transition systems associated with the variables, they both have their range
given by the local state space, that is: {0, 1, 2, 3}. The local transition systems associated
with the processes P1 and P2 are isomorphic to the generic cycle from Figure 6.2. The
actions req , enter , respectively exit will change the values of the variables accordingly:
E.g., req1 changes the value of v1 from 0 to 1, while enter 2 simultaneously changes the
values of v1 and v2 for certain pairs ((v1, v2) ∈ {0, 1} × {1, 3}).

By construction, the synthesized algorithm will have the characteristics of the mutual
exclusion paradigm described at the beginning of Section 6.1. Comparing it with the so-
lution in the literature presented in Section 6.1.1, we can make the following observations
with respect to the problems mentioned at the end of that section (items (a)–(c)). First,
our solution still suffers from complicated atomic test-and-set commands (cf. the imple-
mentation of the enter actions). Moreover, the global transition system of the specification
is explicitly constructed. On the other hand, in our case the requests are independent
of each other (this requirement is present in the distribution we choose). While there is
nothing we can do about the explicit construction in the specification, we try to reduce
the atomicity of the commands in the following subsection by refining the distribution.2

Synthesis of asynchronous automata Since a synchronous product is a particular
case of asynchronous automaton over a fixed distribution (Remark 3.19), once we syn-
thesize a synchronous product, we have also an isomorphic asynchronous automaton, so
we obtain the same distributed algorithm. However, to practice a bit the synthesis of

1The pseudo-code was derived by hand, but the procedure can be automatized.
2Alternatively, one could try to reduce the high atomicity of our synthesized solution using the method

proposed in [AE01] or another refinement techniques from the literature (see references in [AE01]).

6.1. Motivating Example: Mutual Exclusion 163

asynchronous automata, we assume that we have not tested the implementability as a
synchronous product and we try to directly synthesize an asynchronous automaton for
our problem. (The synthesis modulo language equivalence for deterministic asynchronous
automata is covered by Section 5.2.2.)

According to Theorem 3.62, the class of languages accepted by deterministic asynchro-
nous automata coincides with the class of prefix-, forward-, trace-closed regular languages.
Using Proposition 3.36, the implementability test for the language of a deterministic tran-
sition system TS can be done in polynomial time as follows:

minimize the deterministic transition system TS (if necessary) and

test the minimized TS if it satisfies the ID and FD rules.

If the ID and FD rules hold, we know that there exists an asynchronous automaton AA
language equivalent to TS . In general, AA will be constructed using Zielonka’s procedure
(see Section 5.2.2).

In our case, the global transition system TS from Figure 6.4 is minimal and satisfies
ID and FD. This allows us to apply Zielonka’s construction, that yields a (reachable deter-
ministic) asynchronous automaton with 34 global states. Yet, using the implementability
test modulo isomorphism from Section 5.2.1 (based on Theorem 3.32), we see that TS ,
having only 14 global states, is already isomorphic to an asynchronous automaton! The
families of local states and transitions can be constructed as in Section 5.2.1 and we obtain
3 local states for each of the processes P1 and P2, and 7 local states for each of V1 and V2.

We can now ask if the solution can be simplified, i.e., if there is a smaller family of
local states making the transition system of Figure 6.4 asynchronous. This amounts to
finding a larger family (≡k)k∈Proc of equivalences satisfying the properties of Theorem 3.32.
This can be done by heuristically trying to merge equivalence classes, and checking if the
resulting equivalences still satisfy conditions DAA3 and DAA4 from Theorem 3.32. It turns
out that in the end we are able to obtain an optimal solution in which V1 and V2 have
only 4 local states each and this solution is the same as the one obtained for synchronous
products presented in Figure 6.4 (this is no surprise, given the fact that the class of
asynchronous automata subsumes one of the synchronous products).

We also remark that the above specification is not implementable in the setting of
unlabeled Petri nets [BCD02]. (Asynchronous automata are more expressive than unla-
beled Petri nets: The latter can be seen as subclasses of the former with the additional
condition that, for each action a, the relation →a contains at most one element.)

6.1.3 Mutual Exclusion Revisited

One of the disadvantages of the solution synthesized in the previous subsection is that of
high atomicity: The enter actions should simultaneously update the variables v1 and v2

and this is difficult to implement. We observe that the problem lies in the distribution
we have chosen. More precisely, there is no way we can cover the dependence graph of
Figure 6.4 by cliques such that the domains of the enter actions contain at most one
variable (there are too many dependence relations to be covered). As a possible solution,
we remove the dependence enter 1 6 ‖enter 2 (equivalently, we add enter1‖enter 2 to the

164 Implementations and Case Studies

independence relation). The new dependence graph is depicted at top-left of Figure 6.5
and a covering by maximal cliques gives the distribution depicted below the dependence
graph. Moreover, the new domains of the actions extracted from the new distribution
are:

dom(req1) = {P1, V1}, dom(enter 1) = {P1, V2}, dom(exit1) = {P1, V1},
dom(req2) = {V2, P2}, dom(enter 2) = {V1, P2}, dom(exit2) = {V2, P2}.

Looking at the above domains we see that the enter actions will involve now only one of
the variables, and not both.

Unfortunately, the specification Mutex 1 is not implementable anymore under the new
distribution. The reason is that all languages accepted by deterministic distributed tran-
sition systems are necessarily forward-closed (Corollary 3.35), while the language of TS
from Figure 6.4 is not forward-closed: req1req2enter 1, req1req2enter 2 belong to L(TS) and
enter 1‖enter 2, but req1req2enter 1enter 2 does not belong to L(TS). In fact, the problem
is that TS does not satisfy FD : In the state reached by executing the sequence req1req2,
we can execute both (independent actions) enter1 and enter 2, but there is no converging
state to ‘close’ a diamond as required by the forward diamond rule FD (Figure 3.5).

Since the specification in this form is not implementable, we try to change the tran-
sition system in order to obtain an implementable one. For that, we observe that the
specification has been obtained by complementing undesirable behaviors. In other words,
we are requesting the system to execute ‘all behaviors which are not bad’. We can try to
synthesize another, more modest solution, which executes less behaviors (cf. Section 4.5).
A simple way to do so is to ‘solve’ the FD violation by removing either of the enter 1 or
enter 2 labeled transition involved in the problematic FD (cf. Section 4.5.2). Without loss
of generality, suppose we delete the enter 2 transition. Doing so, we are intuitively requir-
ing that, if the two processes make a request independently of each other, then process
1 has priority over process 2. The new transition system TS ′ is depicted at top of Fig-
ure 6.5. If we denote the language accepted by TS ′ by Mutex 2, then Mutex 2 ⊂ Mutex 1,
so Mutex 2 is still compliant with the formal requirements from the previous subsection
(the new transition system is also deadlock-free). Moreover, the new transition system
satisfies ID and FD, so we can try to apply the synthesis procedure.

Synthesis of synchronous products As mentioned in the previous subsection, we
have to check that Mutex 2 is a product language (cf. Definition 3.40) using projections
on the local alphabets (Proposition 3.43). Unfortunately, this is not the case, i.e., the
synchronization of languages of the projections of Mutex 2 on local alphabets strictly
includes Mutex 2. Take for instance the following execution1:

w := req2 enter 2 req1 enter 1.

On one hand, it is easy to see that w 6∈ Mutex 2 (simulate w in TS ′ or notice that w
violates the mutual exclusion property). On the other hand, we show that w belongs to
the synchronization of the projections of Mutex 2, showing that w ↾Σloc(p)∈ Mutex 2 ↾Σloc(p)

for each p ∈ Proc:

1In Section 6.2, we give implementation details on how to automatically find such counterexamples.

Distribution ∆2 Global transition system for Mutex 2

Dependence graph:

req1

enter1

exit1

req2

enter2

exit2

Distribution:

Proc Σloc

P1 req1, enter 1, exit1

V1 req1, enter 2, exit1

V2 req2, enter 1, exit2

P2 req2, enter 2, exit2

req1 req2

req2 req1

enter2enter1

req2 req1

enter1

enter1 enter2exit1 exit2

req1req2enter1 enter2

exit1

exit1

exit2

exit2

Zoom in the top-right area Minimized global transition system for Mutex 2

0

1 2

3 4

5

6

req1 req2

req2

req1
enter2

req1

enter1

exit2

exit2

req1 req2

req2 req1

enter2
enter1

req2 req1

enter1

enter2
exit1

req1

enter2

exit1

exit1

exit2

exit2

Unfolding of the minimized transition system above

req1 req2

req2 req1

enter2

enter1

req2

req1

enter1

enter2
exit1

req1

enter2

exit1

exit1
exit2

exit2
req2

req2

req1

req1

enter2

req1

enter1

enter1

exit2
exit2

Figure 6.5: Synthesis cascade for the revisited mutual exclusion problem Mutex 2

165

166 Implementations and Case Studies

Initialization (of shared variables): v1:=0, v2:=0

Process 1 Process 2

ncs1: [NCS1]; ncs2: [NCS2];
〈 case (v1 = 0): v1 := 1; goto e1 〈 case (v2 = 0): v2 := 1; goto e2

case (v1 = 2): v1 := 1; goto e′1 case (v2 = 2): v2 := 3; goto e2 〉
case (v1 = 3): v1 := 4; goto e′1 〉 e2: 〈 await v1 ∈ {0, 2, 3, 4} then

e1: 〈 await v2 ∈ {0, 1} then case (v1 = 0): v1 := 2; goto cs2

case (v2 = 0): goto cs1 case (v1 = 2): v1 := 0; goto cs2

case (v2 = 1): goto cs′1 〉 case (v1 = 3): v1 := 2; goto cs2

e′1: 〈 await v2 ∈ {2, 3} then case (v1 = 4): v1 := 1; goto cs2 〉
case (v2 = 2): v2 := 0; goto cs1 cs2: [CS2];
case (v2 = 3): v2 := 1; goto cs′1 〉 〈 case (v2 = 1): v2 := 2; goto ncs2

cs1: [CS1]; v1 := 0; goto ncs1 case (v2 = 3): v2 := 0; goto ncs2 〉
cs′1: [CS1]; v1 := 3; goto ncs1

Figure 6.6: Synthesized mutual exclusion algorithm for Mutex 2 using (two) shared vari-
ables

For p := P1, we have Σloc(P1) = {req1, enter 1, exit1}, so w ↾Σloc(P1)= req1 enter 1.
Choosing u := req1 enter1 ∈ Mutex 2, we have that indeed w ↾Σloc(P1)= u ↾Σloc(P1)∈
Mutex 2 ↾Σloc(P1).

For p := V1, we have Σloc(V1) = {req1, enter 2, exit1}, so w ↾Σloc(V1)= enter 2 req1.
Choosing u := req2 enter 2 req1 ∈ Mutex 2, we have that indeed w ↾Σloc(V1)= u↾Σloc(V1)∈
Mutex 2 ↾Σloc(V1).

For p := V2, we have Σloc(V2) = {req2, enter 1, exit2}, so w ↾Σloc(V2)= req2 enter 1.
Choosing u := req2 req1 enter1 ∈ Mutex 2, we have that indeed w ↾Σloc(V2)= u↾Σloc(V2)∈
Mutex 2 ↾Σloc(V2).

For p := P2, we have Σloc(P2) = {req2, enter 2, exit2}, so w ↾Σloc(P2)= req2 enter 2.
Choosing u := req2 enter2 ∈ Mutex 2, we have that indeed w ↾Σloc(P2)= u ↾Σloc(P2)∈
Mutex 2 ↾Σloc(P2).

Therefore, according to Proposition 3.43, Mutex 2 is not a product language, so there
exists no deterministic synchronous product accepting Mutex 2 (Corollary 3.45).

Of course one could try further to remove further behaviors and test if we can obtain
eventually a non-trivial product language, but there is no systematic way to successfully
perform this operation (the relaxed implementability problem for synchronous products
is proved undecidable in Corollary 4.45).

Moreover, the given specification is not implementable as an unlabeled Petri net either
(following [BCD02]).

Synthesis of asynchronous automata Even we cannot synthesize a solution for
Mutex 2 as a synchronous product, we can construct a solution as an asynchronous au-

6.1. Motivating Example: Mutual Exclusion 167

tomaton, because Mutex 2 is a prefix-, forward-, trace-closed regular language (TS ′ at top
of Figure 6.5 satisfies ID and FD). Thus, following Section 5.2.2, we apply Zielonka’s con-
struction and generate a (reachable deterministic) asynchronous automaton with 4799
global states (the implementation used will be described in Section 6.3.3). Since this
is unacceptable for a mutual exclusion algorithm with only two parties, the question is
whether we can synthesize something smaller.

Similar to the previous case, we can check if the given transition system is already
isomorphic to an asynchronous automaton. Unfortunately, this is not the case. We use
for that the test given by Theorem 3.32 (see also Section 4.2.2). We explain in detail why
the transition system is not distributable.

We emphasized in Figure 6.5 (middle-left) the ‘problematic’ area of the transition sys-
tem that leads to the failure of implementability modulo isomorphism via Theorem 3.32.
Let (≡p)p∈Proc be the least family of equivalences satisfying DAA1 and DAA2 (from Theo-
rem 3.32). The transitions emphasized in Figure 6.5 contribute to the violation of DAA4

for the states 3 and 5, and transition 3−enter1→6 as explained below:

technically : Using DAA1 (and transitivity) for the transitions 3←req2−1 and 1←exit2−5,
we have that 3 ≡P1,V1

5. Similarly, Using DAA1 (and transitivity) for the transitions
3←req1−2, 2−enter2→4, and 4−req1→5 we have that 3 ≡V2

5. So, 3 ≡P1,V1,V2
5.

Since dom(enter1) = {P1, V2} is included in {P1, V1, V2}, the states 3 and 5 are
equivalent on the domain of enter1. The violation of DAA4 follows now from the
fact that although 3 ≡dom(enter1) 5, state 3 can execute an enter 1 transition (reaching
state 6), while 5 cannot.

intuitively : In the state 3, both processes already requested access to the critical section
and it is possible for the first process P1 to proceed with enter 1. In the state 5, P2

requested and entered the critical section and after that P1 made the request, but
it cannot go further with enter1 because of mutual exclusion. Roughly, this global
scenario cannot be distributed because in case both processes make a request, the
first process P1 is not able to ‘notice’ if P2 enters the critical section (this possibly
leading to a violation of mutual exclusion), the main reason being that enter 1 and
enter2 are independent (i.e., they are not ’aware’ of each other). The situation is
even more subtle because the transition exit2 from 5 to 1 contributes to the troubles,
obstructing req1 to let P1 in state 5 know whether enter 2 had happened or not.

The problem persists after minimizing TS ′ (we minimize TS ′ to have a ‘canonical’
representation of the language accepted by TS ′). The reasons are the same as above,
because the ‘problematic’ zone showed in Figure 6.5 is not modified during minimization,
as one can see looking at the minimization of TS ′ that is also depicted in Figure 6.5
(middle-right).

A possible solution to this situation is to modify the transition system such that DAA4

is not violated anymore, while preserving the language. This can be done for instance by
unfolding the exit2-labeled transitions from 5 to 1 and 4 to 01.

1The idea is to unfold 5−exit2→ 1 involved in the failure of DAA4, but since exit2‖req1, we unfold
also 4−exit2→0 in order to preserve the diamond formed by states {5, 4, 0, 1}.

168 Implementations and Case Studies

Unfolding a transition q1
a−→ q2 is done by creating a new state qnew , replacing tran-

sition q1
a−→ q2 by a new one q1

a−→ qnew , and adding new transitions starting in qnew

such that the behavior of the new transition system is the same. The preservation of the
language of the transition system after the unfolding can be obtained by choosing the new
transitions from qnew to have the same labels as the transitions from q2 and such that the
destination states have respectively the same behavior1 as the corresponding destination
states reached from q2. There are several ways of performing the unfolding depending on
the choice for the destinations of the new edges going out of qnew .

After unfolding the two exit2 transitions, we test again if the new transition system is
isomorphic to an asynchronous automaton. As this is not the case, we take a look again
where ‘problematic’ areas could be and try to solve the violations again by unfolding.
Such procedure is worth only in case it terminates. In Section 6.3.3 we show how to use
Zielonka’s equivalence to force termination. The hope is that this approach will construct
smaller asynchronous automata compared with Zielonka’s approach.

Fortunately, applying the above heuristic to our problem, we obtain a transition system
isomorphic to an asynchronous automaton with 17 states (compare this with the 4799
global states for Zielonka’s construction!). The transition system is depicted at the bottom
of Figure 6.5, where the new states are distinguished by a gray tint.

Once distributed over the four processes of the specification (and merging local states
if possible), we obtain the distributed algorithm shown in Figure 6.6. The variables v1

and v2 range over [0, 1, 2, 3, 4], respectively [0, 1, 2, 3]. The labels associated with the
commands are rather suggestive. The command in brackets 〈. . .〉 is executed atomically
and the program pointers for the two components advance only as a result of a goto
command.

Entering the critical section is guarded by the values of the variables. However, the
request and the exit actions are not hindered in any way. This fact may not be so obvi-
ous, so we elaborate a bit. The request action req1 (first component after executing the
noncritical section NCS1) seems to be incomplete: v1 has only can only choose from 0,
2, and 3. It can be proved that indeed v1 can have only these three values when first
process reaches that point. To sketch a proof, we know that v1 can only be updated by
exit1, enter 2, or req1 itself. The action exit1 (i.e., the assignment after the critical section
CS1) will change v1 to 0 or 3, which is fine. On the other hand, enter2 (i.e., the atomic
command labeled by e2 in the second component) may change v1 to 0, 1 or 2. The only
debatable case is when enter 2 changes v1 from 4 to 1. But v1 is changed to 4 only by req1

itself, so enter2 will not block req1 because the next action to update v1 is exit1 (if v1 is 1,
enter 1 cannot change it), which changes it from 1 to 0 or 2 which is safe for req1. A similar
analysis can be carried out for req2 and exit2. We mention that the above properties can
be informally verified using the global transition system at bottom of Figure 6.5 noting
that, for example, a req1 action is really enabled everywhere after the occurrence of exit1.

To conclude, both components can independently request to enter, respectively exit
their critical sections. Moreover, each command will change only one variable. However,

1Two states have ‘the same behavior’ if the languages of the possible runs starting in the two states
are equal. Pairs of states with the same behavior can be identified with a procedure similar to the
minimization of a deterministic transition system (Corollary 2.19). For efficiency, after each unfolding
step, we can tag the new state qnew as having the same behavior as q2.

6.1. Motivating Example: Mutual Exclusion 169

the two generated components are now asymmetric, due to the fact that removing the
enter 2 transition in the initial transition system broke the symmetry of Mutex 1 giving
priority to first process in case there are requests from both parties. Yet, according to the
specification, the algorithm is starvation-free, i.e., if the second process request access to
the critical section, it will receive it as soon as possible.

6.1.4 Parametrized Mutual Exclusion

The mutual exclusion problem description can be parametrized to allow more than only
two processes and will be used as benchmark for our implementations. We try to generalize
the two specifications for mutual exclusion from Sections 6.1.2 and 6.1.3.

First, it is natural for n ≥ 2 processes to have the alphabet:

Σ :=
⋃

i∈[1..n]

{req i, enter i, exit i}.

There are several possible distributions of the above actions such that the request actions
are independent (this requirement is a natural one). We choose two similar to the ones
chosen in Sections 6.1.2 and 6.1.3, but now over 2n processes:

Proc := {P1, . . . , Pn, V1, . . . , Vn},

with local alphabets as below:

first distribution ∆1:
Σloc(Vi) := {req i, exit i, enter 1, . . . , entern} and
Σloc(Pi) := {req i, enter i, exit i}.

second distribution ∆2:
Σloc(Vi) := {req i, exit i, enter 1, . . . , enter i−1, enter i+1, . . . , entern} and
Σloc(Pi) := {req i, enter i, exit i}.

(The difference between ∆1 and ∆2 is that enter i 6∈ Σloc(Vi).)

The above distribution will generate (if possible) distributed implementations that share
n variables1.

We also generalize the regular specification from Section 6.1.2 to n processes as follows:

1. Mutex ⊆ Shufflei∈[1..n] Prefix((req ienter iexit i)
∗)

(any global run is a shuffle of local runs)

2. Mutex ⊆ Σ∗ \⋃i6=j(Σ
∗enter i(Σ \ exit i)

∗enter jΣ
∗)

(mutual exclusion)

1If one wants to have variables that are ‘more local’ (i.e., shared by a smaller number of processes),
we could have chosen a distribution like: Proc := {Pi | i ∈ [1..n]} ∪ {Vij | i 6= j} and Σloc(Pi) :=
{req i, enter i, exit i}, Σloc(Vij) = {req i, exit i, enter j}, for i 6= j. However, the distributed algorithm over
such distribution would not have a lower atomicity than for the previous distributions and the number
of variables will increase by a factor.

170 Implementations and Case Studies

Table 6.1: The (sizes of the) benchmarks used in this chapter

Problem ∆ TS
|Σ| |Proc| |Q| |→|

Mutex (2) 6 4 14 22
Mutex (3) 9 6 107 210
Mutex (4) 12 8 1340 3040
Mutex (5) 15 10 25537 63990

Phil(2) 6 4 7 10
Phil(3) 9 6 25 57
Phil(4) 12 8 79 244
Phil(5) 15 10 241 935

3. Mutex ⊆ Σ∗ \⋃i6=j(Σ
∗req i(Σ \ enter i)

∗enter j(Σ \ enter i)
∗enter jΣ

∗)

(strong absence of starvation)

4. For any w ∈ Mutex , there exists an action a ∈ Σ such that wa ∈ Mutex .

(deadlock freedom)

We choose Mutex as the intersection of the prefix-closed regular languages from 1–3 above.
Using AMoRE [MMP+95], a tool for manipulating finite automata and regular expres-

sions, we are able to generate transition systems for up to n = 5 processes (for n = 6,
AMoRE runs out of resources). The generated transition systems were determinized (in
fact, since the specifications involved many complementation operation, the output of
AMoRE was already deterministic) and minimized. Moreover, the generated transition
systems do not contain any deadlock state, i.e., a state where no action is enabled, so
condition 4 above holds as well.

The sizes of the parametrized specification for mutual exclusion (including the distri-
butions) is given in the first half of Table 6.1. (Since the format of representing finite
transition system in AMoRE was different from the format used in our implementations,
we had to write scripts to translate the former format into the latter.)

6.1.5 Dining Philosophers

Another classic example of resource-allocation paradigm for distributed systems is the
dining philosophers problem: There are n philosophers (users) seated around a table. Be-
tween each pair of neighbor philosophers there is a single fork (resource). They are usually
thinking, but from time to time they are getting hungry (request resources). Therefore
they are trying to make exclusive use of the (two) forks next to them, if possible, then
take them, eat and finally release them. The problem is to find an algorithm describing
how the philosophers may use and release the forks such that they all have a pleasant
dinner. The usual requirements for this problem are: The eating process does not stop
(deadlock freedom), every fork is owned by at most one philosopher at any time (mutual
exclusion), and if a philosopher gets hungry, then her/his neighbors will eat at most once

6.1. Motivating Example: Mutual Exclusion 171

before the philosopher get the chance to eat (strong absence of starvation). Since the
specification for dining philosophers resembles somehow the mutual exclusion case study,
we will not provide as many details for it.

The actions for n dining philosophers are:

Σ :=
⋃

i∈[1..n]

{hi, li, ri, rel i}

with the intended meaning that each philosopher is getting hungry (hi), takes her/his left
fork (li), take her/his right fork (ri), and release both forks (rel i). The set of processes
will consist of one process for each philosopher and one process for each fork1:

Proc := {Pi | i ∈ [1..n]} ∪ {Fi | i ∈ [1..n]},

with the local alphabets:

Σloc(Pi) = {hi, li, ri, rel i} and Σloc(Fi) = {ri, li+1, rel i, hi, hi+1, rel i+1},

where we assume that fork i is shared by philosophers i and i + 1 (in fact i has its range
in the ring Z/nZ, so the successor of n is 1).

The global behavior Phil is a prefix-closed regular language such that:

1. Phil ⊆ Shufflei∈[1..n] Prefix((hilirirel i + hirilirel i)
∗)

(any global run is a shuffle of local runs)

2. Phil ⊆ Σ∗ \⋃i∈[1..n](Σ
∗(ri(Σ \ rel i)

∗li+1 + li+1(Σ \ rel i+1)
∗ri)Σ

∗)

(no fork can be simultaneously used by two philosophers)

3. Phil ⊆ Σ∗ \ ⋃i∈[1..n](Σ
∗(hi(Σ \ rel i)

∗rel i−1(Σ \ rel i)
∗rel i−1 + hi(Σ \ rel i)

∗rel i+1(Σ \
rel i)

∗rel i+1)Σ
∗)

(strong absence of starvation)

4. For any word w ∈ Phil , there exists an action a ∈ Σ such that wa ∈ Phil .

(deadlock freedom)

We sketch below the experience with two philosophers (i.e., n = 2). As for mu-
tual exclusion case study, we construct a transition system accepting the intersection of
the languages from 1–3). In this case the (minimal deterministic) transition system has
24 states, of which 3 are deadlock states. To conform with requirement 4 above, we
remove all deadlock states . We verify then the ID and FD and see that FD are violated
in the state where both philosophers are hungry. We solve the conflicts by cutting two
transitions2 (and removing states that become unreachable because of that). Zielonka’s
construction can be now applied and outputs a (reachable) deterministic asynchronous

1Thus, each fork will have associated an internal variable used to represent e.g., the status of the fork.
2In fact, by cutting these transitions we enforce in fact a strategy for the philosophers of choosing

one hand before the other (so, we automatically rediscover a classic strategy used to solve the dining
philosophers problem).

172 Implementations and Case Studies

automaton with 2169 global states. However, testing implementability modulo isomor-
phism and unfolding where needed, we construct a much smaller asynchronous automaton
with only 28 global states. Once more, the solution has the problem that h1, h2, rel1,
and rel1 are implemented as rather complicated atomic actions. Again, the specification
is not distributable using synchronous products or unlabeled Petri nets.

Trying to work with a greater number of philosophers, we have a scalability problem:
The proposed specification seems rather complex, as we were not able to construct a
(minimal deterministic) transition system accepting the regular specification for a number
of processes greater than three using the finite automata tool AMoRE [MMP+95]. Thus,
we do not even have the chance to apply the synthesis procedure. In order to simplify
the specification, we leave out the strong absence of starvation property (requirement 3).
Therefore, we consider a simpler version of the problem without the ‘getting hungry’
action. The new specification will be obtained by removing condition the hi actions all
over the place. We still have the property of exclusive access to the forks and deadlock
freedom, so the problem remain interesting, while we can generate a transition system
from the specification (using AMoRE) for up to 5 philosophers.

After generating (using AMoRE) the transition systems accepting the new parame-
trized specifications (i.e., the intersection of the regular expressions from 1–3 without hi

actions), we can easily check also the deadlock freedom property (given by condition 4).
We see that each of the generated transition systems will contain a deadlock state from
which no action is executable. The paths leading the deadlock state gives the scenarios for
the deadlock: A deadlock occurs when each philosopher takes her/his left fork (dually, the
same happens when each philosophers takes her/his right fork). In order to construct im-
plementations that are deadlock-free, we proceed to delete the deadlock state (together
with the transitions leading to it). We check again for deadlock states, but in our case
there is none found anymore. Also, we minimize the transition system after we remove
the deadlock state.

The benchmarks based on the dining philosophers problem in the rest of the chapter
will use this deadlock-free version without the strong absence of starvation condition.
The sizes of the parametrized specifications for dining philosophers (including the distri-
butions) are given in the second half of Table 6.1.

6.2 Implementation for Synchronous Products of

Transition Systems

In this section we describe our implementation for the synthesis of deterministic synchro-
nous products of transition systems (modulo language equivalence).

The procedure is described in Section 5.1.2, and is based on the projections on local
alphabets from Algorithm 4.4 (that decides whether the language of a transition system
is a product language [CMT99]). The algorithm is sketched below:

1. Project the transition system on each of the local alphabets (of the processes).

2. Test whether the language of the transition system includes the language of the
synchronization of the projections. (The other inclusion always holds.)

6.2. Implementation for Synchronous Products of Transition Systems 173

3. If the inclusion holds, the synthesis problem has a solution, i.e., there exists a
deterministic synchronous product accepting the same language as the specification.
The components of the synchronous product are given by the determinization (and
optionally minimization) of the projections.

4. If the inclusion does not hold, the synthesis problem does not have a solution.
In this case the algorithm should return a counterexample in form of a run that
is executable by the synchronization of the projections, but is not present in the
original specification.1

We implement the above test using a reduction to the (non)reachability problem for
1-safe Petri nets2. The difficult part of the above algorithm is the language inclusion
test. Following a classic pattern in model checking theory, testing the inclusion of the
behavior of the implementation into that of a specification, i.e., L(Impl) ⊆ L(Spec),
is reduced to checking the emptiness of the intersection of the implementation and the
complement of the specification, i.e., testing L(Impl) ∩ ∁L(Spec) = ∅. In a similar vein,
we will test the emptiness of the intersection of the synchronization of projections and the
complement of the original specification. Since the intersection of two languages relies on
the product construction, this fits well with our framework based on synchronizations on
common actions. The idea is to synchronize the projections and a transition system for the
complement, to describe the result of the synchronization as a 1-safe Petri net, and to test
the reachability of certain markings. If any of these markings is reachable, we conclude
that the intersection is not empty, which further implies that the synthesis problem does
not have a solution. The details of this procedure are provided in Algorithm 6.1.

Proposition 6.1 The reduction given by Algorithm 6.1 is correct (in the sense specified
at the bottom of the algorithm).3

Proof. (Sketch) The synthesis problem does not have a solution if and only if L(TS) is
not a product language (Proposition 3.43) if and only if there exists a run executable by
the synchronization of the projections of TS , but not by TS if and only if there exists a
run executable by the synchronization of the projections of TS and a transition system
accepting the complement of L(TS) if and only if there exists a path executable in the
net N constructed by Algorithm 6.1 starting in M and reaching a marking having a token
in the place corresponding to ⊥. �

To verify the reachability for the generated 1-safe Petri net, we use already available
reachability tests4 implemented in tools like Prod [VHL97], PEP [PEP], Mcsmodels [Hel99],
Spin [Hol04], or LoLa [Sch00]. A very convenient way to access all the reachability checkers

1In principle, this counterexample may be used to guide the refinement of the specification until it
becomes distributable, but this is a topic of future research.

2This reduction was suggested by Keijo Heljanko.
3Algorithm 6.1 obviously terminates since it involves no loops.
4Another possibility would be to use the net unfolder specialized to nets obtained from synchronous

products described in [ER99] and modify it to exit in case a special transition associated with ⊥ is en-
countered. Unfortunately, an implementation for this procedure is not available at the moment (however,
it is currently proposed as a small student project).

Algorithm 6.1: The reduction of the synthesis problem for deterministic synchronous
products to the non-reachability of 1-safe Petri nets

Input a distribution (Σ,Proc, ∆) and a transition system TS

1: Compute the projections of TS on Σloc(p), p ∈ Proc.
2: Complement the language of transition system TS : To do

this, we apply the determinization procedure for transition
systems described in (the proof of) Corollary 2.19 and do not
delete the sink state ⊥ (as proposed at that point). The com-
plement of L(TS) is accepted by the constructed deterministic
transition system (minimized, as optimization) with a single
final state given by ⊥.a

3: Construct a 1-safe Petri net 〈N,M0〉 from the projections from
step 1 and the finite automaton (with ⊥ as unique final state)
from step 2 as follows:

The places of the net N are the all states of the local
transition systems constructed at steps 1 and 2.

The transitions of N are obtained by the synchroniza-
tion on common labels of the local transitions of the
constructed components.

The initial marking M0 is obtained placing one token
on each of the places corresponding to the initial states
of the transition systems.

4: Choose a set of ‘goal’ markings, denoted by M⊥, consisting
of all the markings (of the net constructed at step 3), having
one token on the place corresponding to the sink state ⊥.

Output a 1-safe Petri net 〈N,M0〉 and a set of markings M⊥, such
that:
The synthesis problem (via deterministic synchronous prod-
ucts) for ∆ and TS has a solution if and only if none of the
markings from M⊥ is reachable from the initial marking M0

in N .

aSince the class of prefix-closed languages is not closed under complementation (Proposi-
tion 2.1), we move from the class of transition systems to that of finite automata that allow
also final states (Definition 2.13).

174

6.2. Implementation for Synchronous Products of Transition Systems 175

distribution ∆ transition system TS

Reduction given in Algorithm 6.1
Candidate
synchronous
product SP

net 〈N,M0〉 markingsM⊥

Model Checking Kit
reachability
checkers

SP is a solution SP is not a solution
+ counterexample run

yes no

Figure 6.7: Implementation for the synthesis of deterministic synchronous products

mentioned before is to use the interface offered by the Model Checking Kit1 (version 1.4)
[SSE03]. We implemented2 a compiler that takes as input a distribution and a transition
system and constructs according to Algorithm 6.1 a net and a set of markings in one of the
input formats recognized by the Model Checking Kit. Then, the Model Checking Kit calls
the integrated reachability checkers (taking care of the particularities of each of them) and
returns (if feasible) a positive answer or a negative one together with a counterexample.
The above implementation flow is depicted in Figure 6.7.

We end with a couple of remarks (regarding possible optimizations):

Remark 6.2 In the translation of Algorithm 6.1 (step 3), we construct the transitions
of the net as all possible synchronizations on common labels of the local transitions. A
way to reduce the number of local transitions (and therefore the number of their synchro-
nizations) can be obtained by determinizing and then minimizing the local components
(i.e., projections) before synchronizing their transitions. The overload of this procedure
will be not very high in practice and it leads to very substantial reductions (of a couple
of orders of magnitude) in the generated net.

Remark 6.3 Another optimization is based on Corollary 3.35 showing that a necessary
condition for a language L to be implementable as a deterministic synchronous product
is to be forward- and trace-closed. According to Proposition 3.36, a prefix-closed regular

1A short description of the Model Checking Kit from its own (online) documentation: ‘The Model-
Checking Kit is a collection of programs which allow to model a finite-state system using a variety of
modeling languages, and verify it using a variety of checkers, including deadlock-checkers, reachability-

checkers, and model-checkers for the temporal logics CTL and LTL. The most interesting feature of the
Kit is that: Independently of the description language chosen by the user, (almost) all checkers can be
applied to the same model. The counterexamples produced by the checker are presented to the user in
terms of the description language used to model the system.’

2The programming of the reduction was done in C.

176 Implementations and Case Studies

Table 6.2: Synthesis of deterministic synchronous products (modulo language equivalence)

Problem Reduction to a 1-safe net Solution
|places| |transitions| time answer time

Mutex (2, ∆1) 23 180 <0.01s YES <0.01s
Mutex (2, ∆2) FD violated <0.01s NO –
Mutex (3, ∆1) 135 12312 0.15s YES 1.36s
Mutex (3, ∆2) 132 4536 0.06s NO 0.19s
Mutex (4, ∆1) out of memory ? –
Mutex (4, ∆2) 1389 718776 37.34s ? timeout

Mutex (5, ∆1) out of memory ? –
Mutex (5, ∆2) out of memory ? –

Phil(2) FD violated <0.01s NO –
Phil(3) FD violated <0.01s NO –
Phil(4) FD violated <0.01s NO –
Phil(5) FD violated <0.01s NO –

language L is forward- and trace-closed if and only if the minimal deterministic transition
system accepting L satisfies ID and FD. Since in step 2 of Algorithm 6.1, we already
construct the minimal deterministic transition system accepting L(TS), we can test in
linear time if the local properties ID and FD hold. If this is not the case, we simply stop
with a negative answer, i.e., the given specification is not distributable as a deterministic
synchronous product (and similarly, also not distributable as a deterministic asynchronous
automaton). The above test may provide a fast negative answer (modulo of course the
determinization procedure).

Remark 6.4 Since synchronous products admit a description as asynchronous automata
(Remark 3.19), in case of a positive answer, we obtain also an asynchronous automa-
ton implementing the specification, so one does not have to go through the expensive
Zielonka’s construction.

Experimental Results

We apply the previous approach to the mutual exclusion and dining philosophers bench-
marks. The experimental results are presented in Table 6.2. The first column gives the
problem under consideration (see the dimensions of specifications in Table 6.1). In the
following columns, we provide the results of the implementation of the reduction from
Algorithm 6.1 (including the optimizations mentioned in Remarks 6.2 and 6.3). I.e., we
give the number of places and transitions of the generated 1-safe Petri net and the time
needed by the translation procedure. In the last two columns we report the output of the
implementability test using the Model Checking Kit according to Figure 6.7. The given
times (if available) where obtained using the reachability checker of Mcsmodels [Hel99],
which proved to perform best on our examples (compared with the other reachability
checkers offered by Model Checking Kit).

6.3. Implementations for Asynchronous Automata 177

A YES entry in the answer column means that the synthesis for the given specification
has a solution. As we can see this is the case only for Mutex with n = 2, 3 and the first
distribution ∆1. The synthesized deterministic synchronous product for n = 2 was already
described in Section 6.1.2 (see the local components in Figure 6.4). For n = 3, the local
components will have at most 6 states each. According to Remark 6.4, the generated
synchronous product can also be described as asynchronous automata.

A NO entry in the answer column means that the synthesis for the given specification
has no solutions. In most cases, this was decided by the cheap test for the diamond
rules ID and FD following Remark 6.3. We see that all benchmarks for philosophers fail
the FD test, so we conclude with a negative answer (and we do not need to generate
the 1-safe net). The only different case (when we have a negative answer) is Mutex for
n = 3 and the second distribution ∆2. In this case, the reachability checker returns also a
counterexample (i.e., a sequence of actions executed by the synchronization of projections,
that is not in the original specification, see the beginning of the section) of length 4:

counterexample := req1 enter 1 req2 enter2. (6.1)

The counterexample is similar to the one explained in detail in Section 6.1.3 (page 164).

A ‘?’ entry in the answer column means that state space explosion prevented us to have
a definite answer to the problem (either running out of memory during translation part or
‘running out’ of time during the reachability test). This is the case for Mutex with n = 4, 5.
However, the above counterexample for Mutex (3, ∆2) (6.1) is still a counterexample for
Mutex (4, ∆2) and Mutex (5, ∆2). This can be easily verified by hand (given the very
short length of the counterexample). So, we should have NO entries also in the rows
for Mutex (4, ∆2) and Mutex (5, ∆2) (however, we do not add them to Table 6.2, because
these NO answers were not automatically computed).

6.3 Implementations for Asynchronous Automata

In this section we discuss a couple of (heuristic) implementations for asynchronous au-
tomata, first for the synthesis modulo isomorphism, then modulo language equivalence.

6.3.1 Synthesis modulo Isomorphism

The synthesis modulo isomorphism (Section 5.2) has its roots in the theory of regions and
is solved using Theorems 3.30 (for the general, i.e., nondeterministic, specifications) and
3.32 (for deterministic ones). We describe our implementations for both cases, starting
with the deterministic case.1

1For synthesis modulo isomorphism, we have no implementations yet for synchronous products. (Note
that the implementability test modulo isomorphism for asynchronous automata has a lower complexity
compared to synchronous products (compare condition SP3 of Theorem 3.26 to condition AA3 of Theo-
rem 3.30) and the test will be positive for more specifications (asynchronous automata are more expressive,
cf. Remark 3.19.)

178 Implementations and Case Studies

Deterministic case

The synthesis modulo isomorphism for deterministic asynchronous automata is based on
Theorem 3.32. The input transition system must be deterministic, otherwise the problem
has no solution, so a preliminary (linear time) test checks whether the input specifica-
tion is indeed deterministic. If this is the case, we follow Algorithm 4.3 to construct (in
polynomial time) the least set of local equivalences satisfying DAA1 and DAA2 (see Theo-
rem 3.32). Then, we can synthesize an asynchronous automaton isomorphic to the given
input if and only if conditions DAA3 and DAA4 hold (the test is performed again in poly-
nomial time). The asynchronous automaton is constructed from the local equivalences as
described in Section 5.2.1.

Our implementation of the above procedure was done in C and the experimental results
are described at the end of the subsection (second and third column of Table 6.3).

Nondeterministic case

Comparing the deterministic and nondeterministic cases, dealing with deterministic spec-
ifications or implementations has a computational advantage (P vs. NP, see Table 4.2).
Nevertheless, it is worth considering also the nondeterministic case: In case the origi-
nal specification is given as a regular expression, a nondeterministic transition system
exhibiting the given behavior may be exponentially more succinct than a deterministic
one with the same behavior. Moreover, the nondeterministic asynchronous automata are
more expressive than their deterministic counterparts (see Figure 3.13). This encour-
aged us to consider also the implementability test and synthesis modulo isomorphism for
nondeterministic transition system.1

The existing tools implementing the notion of regions for the synthesis of a distributed
system (Synet [Cai97, BCD02], Petrify [CKK+97], and Synasync [ŞEM03]) do not directly
handle nondeterministic specifications. In this sense, we can say that an implementation
for the nondeterministic case widens the class of systems tackled. Of course, one can
always determinize the specification and the behavior is preserved, but then the tests of
isomorphism to a distributed system are incomparable w.r.t. the two inputs because the
structure is changed in the process of determinization.

Our implementation was done in a constraint-based logic programming framework
called Smodels (http://www.tcs.hut.fi/Software/smodels/). It consists of smodels,
an efficient implementation of the stable model semantics for normal logic programs, and
lparse, a grounder front-end that transforms normal logic programs (with variables) to
ground logic programs (without variables). We translate the synthesis problem into the
problem of finding a stable model of a logic program. The program itself is written in the
input syntax of lparse. The synthesis solutions (if any!) are given as stable models of the
input program. A more detailed description of the Smodels system can be found in the
lparse 1.0 User’s Manual (http://www.tcs.hut.fi/Software/smodels/lparse.ps)
and a general tutorial on the stable model semantics in [SNS02].

We chose to use logic programs with stable model semantics over the more widely
used SAT for the main reason that in the stable model semantics the notion of a least

1This implementation is joint work with Keijo Heljanko and appeared in [HŞ04].

http://www.tcs.hut.fi/Software/smodels/
http://www.tcs.hut.fi/Software/smodels/lparse.ps

6.3. Implementations for Asynchronous Automata 179

fixpoint is trivial to express (we need this e.g., for testing that the specification is indeed
reachable). However, in a SAT encoding we would have to encode the least fixpoint com-
putation procedure itself (e.g., as a series of approximations) which would have resulted in
additional blow-up of the translation not to mention implementation effort. An additional
advantage of using Smodels is that the code is very concise. The actual implementation of
synthesis without any optimizations (and comments) has no more than 20 lines of code
and it is given in the Appendix A.1. A couple of hints regarding the synthesis flow are
given below.

We translate first the specification, i.e., the distribution and the transition, system
into a format accepted by lparse. E.g., a (trivial) specification consisting of one action
a, one process, and a transition system with one transition is translated to the following
set of facts:

dom(a,1). initialstate(0). trans(0,a,1).

The logic program implementing the synthesis is a set of (normal) rules of the form

a :− b1, . . . , bn, not c1, . . . , not cm.

with the intuition that a (stable) model satisfying the rule, either contains a or does
not contain one element from the right of the rule. As a simple example, a reachability
predicate reach(Q) (used to guarantee that the transition system is indeed reachable) is
implemented as follows:

reach(Q) :- initialstate(Q).

reach(Q2) :- reach(Q1), trans(Q1,A,Q2), neq(Q1,Q2).

The first rule in conjunction with the fact initialstate(0) forces reach(0) to appear
in a model. The second rule, as expected, recursively derives reach(Q2) if there exists

another state Q1 that is reachable and Q1
A−→Q2 and (optionally, as optimization) Q16=Q2.

The implementation of the test provided by Theorem 3.30 (that also generates the
local states of the synthesized asynchronous automaton, in case there is one) is given in
Appendix A.1. The implementation starts with the rules capturing the reachability and
deadlock-free properties (that a specification must specify). Then, it guesses a set of local
equivalences and test if they satisfy the AA1–AA3 conditions of Theorem 3.30.

The prototype logic implementation presented here can be used as a starting point
for more optimized synthesis procedures. Namely, the memory overheads involved in the
prototype implementation are (polynomial but still) very significant in larger instances.
A special purpose synthesis procedure (i.e., a special purpose NP-solver) could potentially
eliminate quite a lot of this memory overhead. Also, it would be interesting to see how a
recently introduced new translation of the stable model semantics to SAT [Jan03] performs
on our examples.

Experimental Results

We apply the previous approach to the mutual exclusion and dining philosophers bench-
marks. The experimental results are presented in Table 6.3 that we explain below.

180 Implementations and Case Studies

Table 6.3: Synthesis of asynchronous automata modulo isomorphism

Problem Solution Imperative Logic Impl.
Impl. (Det.) Nondet. Det.

Mutex (2, ∆1) YES <0.01s 0.15s 0.13s
Mutex (2, ∆2) NO <0.01s 0.28s 0.23s
Mutex (3, ∆1) YES 0.02s 528.64s 87.33s
Mutex (3, ∆2) NO 0.01s 25.03s 85.78s
Mutex (4, ∆1) YES 1.37s – –
Mutex (4, ∆2) NO 0.01s – –
Mutex (5, ∆1) YES 800.99s – –
Mutex (5, ∆2) NO 163.33s – –

Phil(2) NO 0.01s 0.08s 0.05s
Phil(3) NO 0.01s 1.34s 2.47s
Phil(4) NO 0.01s 16.49s 102.59s
Phil(5) NO 0.04s 195.88s –

The first column gives the problem under consideration (see the dimensions of speci-
fications in Table 6.1), while the second one provides the results of the implementability
test modulo isomorphism for asynchronous automata. We see that the only positive cases
are for Mutex problem with the first distribution ∆1. (In fact, we know already that the
dining philosophers problem has no solutions from Table 6.2: We showed there that the
input transition system violates FD, so according to Proposition 3.22 it cannot be the
global state space of an asynchronous automaton. Anyway, we give the running times of
the implementability test supposing we do not check ID and FD beforehand.)

The third column presents the running times (in seconds) of the imperative imple-
mentation done in C described at the beginning of the subsection. The test is polynomial
and is based on Theorem 3.32 (which works for deterministic specifications – as it is the
case with our benchmarks).

The forth column presents the running times (in seconds) of the logic implementa-
tion (using Smodels) described before (we optimized the code to accommodate various
symmetry reductions). The implementation is based on the NP-complete (Theorem 4.11)
test of Theorem 3.30 devised for general specifications. Despite our efforts to obtain
smaller nondeterministic1 input transition systems for our benchmarks, we ended up with
deterministic transition systems (mainly due to complementation operations in the spec-
ifications).

Compared with the imperative implementation (column 3), the logic implementation
performs much worse: Mutex 4 and 5 instances are not decided (an ‘–’ entry in the table
stands for an ‘out of memory’ premature termination). However, there is a gain. The syn-
thesis for the imperative implementation based on Theorem 3.32 produces asynchronous
automata with the local state spaces as big as possible (because we construct the least lo-
cal equivalences), which is not desirable. On the other hand, the logic program (based on

1I.e., where nondeterministic choice really occurs.

6.3. Implementations for Asynchronous Automata 181

Theorem 3.30) involves a constant max local state which gives the maximum number of
local states for each process. Tuning this constant, we can limit the logic program to look
for synthesis solutions which are systems composed out of ‘small’ components. Moreover,
we can very easily modify the logic implementation to search for (under)approximated
solutions in case the specification is not distributable (see next section).

In the last column we give experimental results for a logic implementation based
on the Theorem 3.32 (tailored to deterministic specifications). With the exception of
Mutex (3, ∆1), it is slightly slower than the logic implementation for general (nondeter-
ministic) specifications. This is because the rules introduced by Theorem 3.32 will make
lparse to produce larger grounded programs, Smodels having then to deal with a larger
input problem.

6.3.2 Heuristics to Construct Under-Approximations

In this section we provide some heuristics for the unfortunate case when the specification is
not distributable. Experience has shown (e.g., Tables 6.2 and 6.3, see also [Cai97, Yak98])
that most of the time this is indeed the case. Some approaches to tackle this problem
have been proposed in the literature (most of them are at least NP-hard and at the level
of heuristics): label-splitting, introduction of silent events (both not really suitable for our
framework1), changing the distribution, changing the transition system by cutting edges
that create problems. We opt for the last type of heuristic.

A necessary condition for a transition system (that was determinized and minimized)
to be distributable is to satisfy the ID and FD diamond rules (Definition 3.21). The
violation of any of them leads to ‘no solutions’ for the distributed synthesis problem
(cf. Table 6.2). Our idea is to trim problematic transitions such that we end up with
a sub-transition system (i.e., an isomorphic embedding, cf. Definition 4.46) satisfying ID
and FD. We obtain thus an under-approximation of the original specification (we do not
consider also over-approximations, i.e., adding edges, for reasons given at the beginning
of Section 4.5).

In this section, we provide ways to construct isomorphic ID and FD embeddings for
non-implementable specifications. At the end of the section, we also give a heuristic that
looks for isomorphic embeddings that are already asynchronous automata.

Before going into details, we impose two important restrictions on the way we cut the
transitions in order to have reasonable solutions:

First, all actions of Σ should still be present in the under-approximation (i.e., the
transition system obtained after cutting edges). E.g., it makes no sense to come up
with an under-approximation for Phil(5) that has only, say, 3 philosophers speci-
fied, or as an extreme situation, to come up with the empty under-approximation.
Moreover, we want the under-approximation to be reachable and deadlock-free.

Second, for our benchmarks (Table 6.1) it is not advisable to cut any transition:

1The label splitting cannot solve the conflicts without changing the distribution and the silent events
must have the whole set Proc as domain, and so we force a global synchronization, which is not something
that we would like do in a concurrent setting.

182 Implementations and Case Studies

– For the Mutex problem we can cut enter i actions (and thus to prevent at some
point process i to enter its critical section). On the other hand, it is not all
right to cut req i, respectively exit i actions, because the processes competing for
a common resource should not be blocked in ‘showing interest in’, respectively
‘releasing’ a resource.

– For the Phil problem we can cut li, respectively ri actions (and thus preventing
at some point philosopher i to pick up her/his left, respectively right, fork).
On the other hand, there are no reasons to cut rel i actions, thus preventing a
philosopher to release (i.e., put down) the forks s/he has at a certain time.

Isomorphic ID-FD embedding

Below we give a couple of ideas to construct for a transition system TS an isomorphic
embedding E ⊏ TS satisfying ID and FD. Recall that finding an embedding E ⊏ TS
that is reachable, deadlock-free, and satisfies ID and FD, is an NP-complete problem
(Corollaries 4.50 and 4.52). Starting with a deterministic transition system, an isomorphic
ID-FD embedding is also deterministic. Moreover, minimizing a deterministic transition
system satisfying ID and FD, still satisfies the diamond rules.

Logic implementation (complete search) We search for an isomorphic ID-FD em-
bedding of a specification using a logic implementation based on Smodels. The idea is
simple: We ‘guess’ a subset E of edges of the input transition system TS 1, then test if
the transition system generated by E is reachable, deadlock-free, and satisfies ID and FD.
Smodels will perform a complete search in the state space of solutions, returning the first
one (or all of them, if we activate this option).

In the following, we give two heuristics that do not search the whole possible isomorphic
embeddings; however, if lucky, they may find a solution very fast (the algorithms are linear
in the size of the specification).

Heuristic 1 (incomplete search) The first heuristic works in a top-down manner
trying to delete edges until the properties are satisfied. More precisely, starting with the
initial transition system TS , we iteratively remove edges that prevent the properties ID

and FD to hold. E.g., we have a conflict w.r.t. FD (i.e., ∃q1
a−→ q2 and ∃q1

b−→ q3 with a‖b,
but there exists no state q4 such that q2

b−→ q4 and q3
a−→ q4), we (nondeterministically)2

remove one of the edges involved in the conflict (e.g., removing q1
b−→ q3 will solve the

conflict). A similar solution is applied to ID. Since we want also to have reachability and
deadlock-freedom, after each step we remove all unreachable, respectively deadlock states
(i.e., state with no outgoing edges). Moreover, since we also want to preserve the initial

1In the syntax of lparse, ‘guessing’ a subset of edges is simply realized by one line of code:
{subtrans(Q1,A,Q2)} :- trans(Q1,A,Q2), with the semantics that subtrans(Q1,A,Q2) may or may
not be present in a stable model when trans(Q1,A,Q2) holds.

2In the current implementation we choose which of the two edges to be removed using an input file
provided by the user containing pairs of (independent) actions specifying which of the two has priority

over the other.

6.3. Implementations for Asynchronous Automata 183

Table 6.4: Construction of under-approximations satisfying ID and FD

Problem Logic impl. Heuristic 1 Heuristic 2

Mutex (2, ∆1) <0.01s <0.01s <0.01s
Mutex (2, ∆2) <0.01s <0.01s <0.01s
Mutex (3, ∆1) 0.06s <0.01s <0.01s
Mutex (3, ∆2) 0.06s <0.01s <0.01s
Mutex (4, ∆1) 7.80s <0.01s <0.01s
Mutex (4, ∆2) 7.77s <0.01s <0.01s
Mutex (5, ∆1) timeout 0.01s 0.05s
Mutex (5, ∆2) timeout 0.01s 0.05s

Phil(2) <0.01s 0.01s 0.01s
Phil(3) 0.02s no sol. found no sol. found

Phil(4) 21.24s no sol. found no sol. found

Phil(5) timeout no sol. found no sol. found

alphabet of actions Σ, at each step we remove an edge labeled by a only if there exists at
least another edge labeled by a. The algorithm stops either if all conditions are satisfied
(and outputs the current under-approximation) or the conditions are still not satisfied
and removing any other edge (involved in a violation) would lead to the eradication of an
action (against the rule ‘all actions of Σ must be present’). In the latter case we do not
backtrack, but report a failure of the heuristic (e.g., ‘no solution found during a heuristic
incomplete search’).

Heuristic 2 (incomplete search) The second heuristic works in a bottom-up manner
starting from scratch and adding edges until all properties are satisfied (if possible). More
precisely, starting with only one initial state of initial transition system TS , we iteratively
add edges in a (breadth-first) traversal of TS together with a ‘greedy’ strategy of selecting
edges labeled by actions of Σ that were not chosen yet. At the same time, we avoid adding
edges leading to violations of ID and FD rules and we add edges such no state is a deadlock
(we assume TS is deadlock-free). The algorithm stops either if all conditions are satisfied
(and outputs the current under-approximation) or the conditions are still not satisfied and
adding any other edge would lead to a violation. In the latter case we do not backtrack,
but report a failure of the heuristic (e.g., ‘no solution found during a heuristic incomplete
search’).

Experimental results The running times of implementations for the three ideas pre-
sented above applied to our benchmarks are presented in Table 6.4.

The second column of Table 6.4 gives the running times for the logic implementation
using Smodels. There was an ID-FD embedding found in all cases (this is not specifically
mentioned in the table), except for Mutex (5) and Phil(5), when we stopped without any
answer after running the program for one hour. Smodels allows also to compute under-
approximations with maximal, respectively minimal number of states (paying the price

184 Implementations and Case Studies

of an increased complexity), but we have not switched on this option for the results in
Table 6.4.

The last two columns of Table 6.4 give the running times for imperative implementa-
tions in C for the two heuristics. They perform very well for Mutex , obtaining solutions
also for Mutex (5) that is not solved by the logic implementation. In this case, the original
specification already satisfies ID and FD and this helps the heuristics (which do not have
much to do), whereas the logic implementation does not provide any results because it
looks in the full space of solutions, which is huge. On the other hand, we do not obtain
any solution for dining philosophers except for the easy Phil(2). This shows the weakness
of an incomplete search of the space of solutions.

Regarding the size of the generated transition system, the first heuristic will produce
larger solutions than the second one. On the one hand, larger solutions represent more
behaviors, so richer implementations. On the other hand, larger isomorphic embeddings
may be a hassle for Zielonka’s procedure (that takes the embeddings as inputs) leading
to a state space explosion (the experimental results in Table 6.6 witness this fact). That
is why in general the second heuristic is preferred over the first one.

Closure under independence We mention now another attempt to generate specifi-
cations closed under ID and FD in special cases. Examining our benchmarks, we see that
the pattern of the properties is to express forbidden behaviors and take their complement.
At the end, we intersect all these complements and a base language (that is, the shuffle
of local behaviors). An idea to obtain under-approximation that are trace- and forward-
closed is to close the forbidden behaviors under independence. This is sound because if ab
is undesirable and a‖b, then we are forced to consider ba as undesirable too, since the sys-
tem cannot execute the one without the other.1 Thus, adding forbidden runs, we obtain
a smaller specification (by complementation). Moreover, since the class of trace-closed
languages is closed under complementation and intersection (Proposition 3.7), the new
specification will be trace-closed.

Unfortunately, the trace-closure of a regular language is not always regular (Propo-
sition 3.8). There are though a couple of results that might help. In [DR95, Chapter
12], sufficient conditions are given for a regular language to remain regular after closing
it under an independence relation. Yet more practical seems to be [BMT01], where a
specific class of regular languages, called Alphabetic Pattern Constraints, APCs, is proved
to have the property that their closure under any independence relation is still regular,
and can be effectively computed. The APCs have the form

Σ∗
0a1Σ

∗
1a2 . . . anΣ∗

n,

and capture the properties of our case studies. Unfortunately, the closure procedure
in [BMT01] may lead to an exponential blowup in the size of the regular expression of the
specification, which further makes difficult the translation to a transition system. Imple-
menting the closure algorithm, we faced indeed this scalability problem, which rendered
our attempt useless.

1Of course, an alternative would be to make a and b dependent, but we try to leave the distribution
untouched.

6.3. Implementations for Asynchronous Automata 185

Table 6.5: Constructing an under-approximation that is isomorphic to an asynchronous
automaton

Problem Logic Impl.
Nondet. Det.

Mutex (2, ∆1) 0.19s 0.16s
Mutex (2, ∆2) 0.44s 0.28s
Mutex (3, ∆1) 601.65s 126.93s
Mutex (3, ∆2) 674.75s 147.33s

Mutex (4) – –
Mutex (5) – –

Phil(2) 0.06s 0.06s
Phil(3) 15.54s 3.49s
Phil(4) – –
Phil(5) – –

A heuristic to find embedded asynchronous automata

Until now, we looked for isomorphic embeddings satisfying ID and FD. Following Re-
mark 4.53, we could impose even stronger conditions and have a heuristic that looks
for an isomorphic embedding that is already isomorphic to an asynchronous automaton.
With such heuristic, the synthesized asynchronous automata will have the global state
space smaller than the input transition system. Of course, the chances that no solutions
are found increase in this case, but in case of success, we avoid Zielonka’s procedure which
may, theoretically, produce asynchronous automata super-exponentially larger than the
input.

We implemented the above idea again with logic programming using Smodels.1 We
simply ‘guess’ a subset of edges of the input transition system, and tests if the gener-
ated transition system is reachable, deadlock-free, and isomorphic to an asynchronous
automaton. In fact, our implementation is easily obtained by minimally modifying the
logic implementation for the implementability test described in Section 6.3.1 (see also
Appendix A.1 and footnote 1 on page 182). The logic program code was optimized to
include some rudimentary symmetry reductions and the relaxation obtained by dropping
the condition AA2 (see Corollary 4.14 and Remark 5.1). Moreover, following the remarks
at the beginning of this section (page 181), we only allow edges labeled by enter and take
fork actions to be cut.

Experimental results Table 6.5 gives the running times for our logic implementations.
Following the pattern from Section 6.3.1 (see the last two columns of Table 6.3), we
considered two implementations based respectively on Theorem 3.30 (column 2) and 3.32

1We tried also an imperative implementation in C (without spending too much time with optimizations
though), but it performed much worse than the logic implementation, so we do not report any results
here.

186 Implementations and Case Studies

(column 3). We stopped when the first solution was found by Smodels. ‘–’ entries in the
table denote that we ran out of resources before having a definite answer.

As we can see the heuristic scales up only until n = 3. This is not very impressive;
however, it beats at least the original construction of Zielonka which only works for
n = 2 (for Mutex) due to state space explosion (see Table 6.6 from the next section).
Moreover, the gain of this heuristic is that it makes a complete search in the class of ‘small’
asynchronous automata whose global transition system is isomorphically embedded in the
specification (so we are guaranteed solutions not exceeding the size of the specification).

Remark 6.5 There are alternative ways to find stable models of a logic program. The
Cmodels system (http://www.cs.utexas.edu/users/tag/cmodels.html) is a viable al-
ternative to Smodels (neither of the systems is consistently better than the other). Our
logic implementations described in Tables 6.4 and 6.5 were used as benchmarks in papers
describing Cmodels (in comparison with Smodels): [GLM04a, Table 3] and [GLM04b, Ta-
bles 3 and 8]). Cmodels has sometimes better running times. Moreover, it manages to
solve also Phil(4) from Table 6.5 (not solved by Smodels) in about 12 minutes.

6.3.3 A Heuristic using Unfoldings for Zielonka’s Construction

We discuss now the synthesis modulo language equivalence of deterministic asynchronous
automata based on Zielonka’s construction (see Section 5.2.2).

In practice, the distributed implementations are required to be small in order to be
efficient. Moreover, they should usually be deterministic. In this section we present a
method that heuristically tries to synthesize asynchronous automata smaller than the
ones generated by Zielonka’s equivalence. One could think of several ways to achieve this:

One idea is to construct Zielonka’s asynchronous automaton and then try to mini-
mize it. A real danger in doing so is that one runs out of resources before completing
Zielonka’s procedure (due to the state space explosion problem mentioned above).
Moreover, there is no consistent approach of minimizing an asynchronous autom-
aton ([BPS94, Pig93a, Pig94] show for instance that the category of deterministic
asynchronous automata accepting a regular trace language does not admit a unique
minimal element). Since an asynchronous automaton can be seen as a particular
case of labeled 1-safe Petri net, one could try to apply reduction techniques for
Petri nets (e.g., [AS92, SS00]), but they do not fit well with model of asynchronous
automata (so far we have looked into this direction).

For small asynchronous automata, we can use a brute force trail-and-error method
where we heuristically merge two different local states and check if the new asyn-
chronous automaton accepts the same language as the original one.

Another idea to synthesize a small asynchronous automaton for a given specifica-
tion L is to fix a bound k ∈ N, generate all the deterministic transition systems TS
with the size smaller than k such that L(TS) = L, and test each generated tran-
sition system whether it is isomorphic to an asynchronous automaton (using the
polynomial test of Theorem 3.32). The limitation of such approach is that of any
brute force method, namely, it is time/space expensive. (In a similar vein, [BDT03]

http://www.cs.utexas.edu/users/tag/cmodels.html

6.3. Implementations for Asynchronous Automata 187

Initial TS Intermediary TS Zielonka’s automaton

test if asynchronous!

unfold unfold

Figure 6.8: A heuristic using unfoldings and an implementability test

presents a methodology of synthesizing mutual exclusion algorithms by generating
algorithms bounded by several parameters and verifying whether they implement a
mutual exclusion situation.)

The heuristic presented in this section combines in a sense the previous two ideas
using an unfolding technique and an implementability test (see Figure 6.8).

We start with the minimal deterministic transition system (cf. Corollary 2.19) and
unfold1 it stepwise using Zielonka’s equivalence, testing at each step whether the
transition system is isomorphic to an asynchronous automaton (using the polynomial
test of Theorem 3.32).

The above method does not bring any theoretical improvement over Zielonka’s ap-
proach, in worst case the procedure generating (the big) Zielonka’s automaton. The
state space explosion problem is augmented by the risk of working with global tran-
sition systems (rather than local ones), but this is the price to pay for being able to
use the implementability test (of Theorem 3.32) on the intermediary transition sys-
tems2. Nonetheless, by the above heuristic we avoid generating the whole Zielonka’s
automaton in case an intermediary transition system is already isomorphic to an
asynchronous automaton, thus saving the time and space of generating Zielonka’s
automaton and obtaining a smaller automaton. The heuristic behaved indeed well
on the examples we considered so far (see the experimental results at the end of the
section).

The modified construction of Zielonka’s asynchronous automaton in the Section 5.2.2
provides an algorithm to automatically derive an asynchronous automaton from a prefix-
closed forward-closed trace-closed regular language T ⊆ Σ∗. Zielonka defines an effectively
computable equivalence relation ≈ ⊆ Σ∗ × Σ∗ of finite index which generates the global

1In a similar way that a graph is unfolded into a tree.
2One could envisage another heuristic based on unfoldings where one starts with local state spaces

that are stepwise unfolded towards Zielonka’s asynchronous automaton testing at each step whether the
language of the current asynchronous automaton equals the language of the specification. However, the
language equivalence test is too expensive to perform it repeatedly.

188 Implementations and Case Studies

state space given in (5.3) on page 135. Thus, we can define another ‘global’ equivalence
≈Z ⊆ Σ∗ × Σ∗, for t, t′ ∈ Σ∗ as:

t ≈Z t′ if and only if ∀i ∈ Proc : Pi(t) ≈ Pi(t
′).

Now, let T be the transition system having T as set of states, and w
a−→ wa as transitions1.

Then, from (5.3) on page 135, (the global state space of) the synthesized asynchronous
automaton is the quotient of T under ≈Z (note that since ≈ is of finite index, also ≈Z is
of finite index).

We give a version of the synthesis algorithm based on the equivalence ≈Z . The version
is tailored so that we can easily add an implementability test to intermediary transition
systems. Loosely speaking, the algorithm proceeds by unfolding the minimal deterministic
transition system accepting T until an asynchronous automaton is obtained.

Data structure The algorithm maintains a deterministic transition system TS =
(Q, Σ,→, {q0}). The transitions of TS are colored green, red, or black2. The algorithm
keeps the following invariants :

1. The transition system TS accepts the specification language T .

2. Green transitions form a directed spanning tree of TS , i.e., a directed tree with
the initial state q0 as root and containing all states of TS .

We denote by W (q) the unique word w such that there is a path q0
w−→ q in the

spanning-tree.

(From the definition of W (q), it immediately follows that for any green transition
q

a−→ q′, W (q) · a = W (q′).)

3. A transition q
a−→ q′ is red if W (q) · a 6≈Z W (q′).

4. All other transitions are black .

(In particular, all black transitions q
a−→ q′ satisfy W (q) · a ≈Z W (q′).)

Algorithm 6.2 provides an unfolding procedure that constructs Zielonka’s automaton.
Its steps are commented below (we show later on also a sample run of the algorithm in
Figure 6.9):

line 0 TS is initialized to the minimal deterministic transition system TS 0 accepting
T . TS will be gradually unfolded and each of its states q will exhibit the same
behavior (i.e., the set of all possible executions starting in that state) as a certain
state peer(q) from the original transition system TS 0. This correspondence will be
kept by the peer function, also initialized at this step.

line 1 The transitions of TS are colored according to the above data structure.

1Note that T is infinite if and only if T is infinite.
2The presentation of the algorithm using colors was suggested by Javier Esparza.

Algorithm 6.2: An unfolding approach for the synthesis of deterministic asynchronous
automata (based on Zielonka’s equivalence)

Input a distribution (Σ,Proc, ∆) and a prefix-closed forward-closed
trace-closed regular language T ⊆ Σ∗

0: construct TS 0 = (Q0, Σ,→0, {q0}) the minimal deterministic
transition system accepting T ,
initialize TS to TS 0, and
set peer(q) := q, for all q ∈ Q0

1: color the transitions of TS according to the invariants given in
the data structure given on page 188 (The set of green transitions
can be computed by means of a, say, breadth-first traversal of TS
starting from the initial state. The other colors are computed to
satisfy the invariants.)

2: while there are still red transitions in TS do

3: choose a red transition q
a−→ q′,

4: delete the transition q
a−→ q′, and

5: if there is a state r such that W (q) · a ≈Z W (r) then

6: add a black transition q
a−→ r,

7: else
8: create a new state qnew , setting peer(qnew) := peer(q′),

9: add a new green transition q
a−→ qnew , and

10: for every transition peer(qnew)
b−→0 s do

11: add a new transition qnew
b−→ s and

12: if W (qnew) · b 6≈Z W (s) then

13: color qnew
b−→ s red,

14: else

15: color qnew
b−→ s black.

Output a transition system TS that is isomorphic to an asynchronous
automaton accepting T

189

190 Implementations and Case Studies

line 2 We start a cycle that runs as long as there are still red transitions in TS (the body
of the cycle tries to decrease the number of red transitions).

lines 3,4 We pick a red transition q
a−→ q′ and delete it. A red transition is a ‘persona

non grata’ because it cannot appear in Zielonka’s construction (due to its charac-
terization W (q) · a 6≈Z W (q′)). However, in order to preserve the behavior, we need
to have an outgoing transition from q labeled by a, introduced in the next lines.

lines 5,6 We add q
a−→ r if W (q) · a ≈Z W (r), and we mark it as black according to the

invariants of the data structure.

lines 7,8,9 Otherwise, we unfold the red transition q
a−→ q′ into q

a−→ qnew , where qnew

is a fresh state.

The behavior of qnew should be equal to the one of q′. We mark this by the assign-
ment peer(qnew) := peer(q′). This will be realized by the last for-loop.

Moreover, since we turn transition q
a−→ qnew green, we have W (qnew) := W (q) · a

(see definition of W (q) in the data structure).

lines 10,11 In order to preserve the language after each unfolding, we add from qnew

one outgoing transition, for each outgoing transition of its peer (note that all peers
belong to the initial set of states Q0, so it is sound to use also the original transition
→0 together with the peer in the loop condition).

lines 12,13,14,15 Finally, we color the new transitions qnew
b−→ s such that the invari-

ants described in the data structure are satisfied.

The correctness of Algorithm 6.2 is given by the following proposition.

Proposition 6.6 Algorithm 6.2 always terminates and its output is (the global state space
of) a deterministic asynchronous automaton accepting the language T .

Proof. The termination of the algorithm relies on the finite index of ≈Z . On the one
hand, each time the while-loop is executed, the number of red transitions is decremented
by one in lines 3,4. On the other hand, new red transitions may be added only when an
unfolding occurs in the else-branch of the if-conditional on line 5, which implies W (q)·a 6≈Z

W (r) for all current states r. Moreover, W (qnew) for the new state qnew is equal to W (q)·a
(because q

a−→ qnew is a green transition). Since the number of equivalence classes w.r.t.
≈Z is finite, at some point only the first branch of the if-conditional on line 5 will be
followed and from that point on the number of red transitions will strictly decrease with
each while-loop, eventually leaving no red transitions in the system, thus terminating the
algorithm.

Second, the transition system TS preserves at each step the invariants defined in the
in the data structure. The initial minimal transition system satisfies the invariants by
construction (see lines 0,1). Then, L(TS) = T at each step, because at each unfolding
we add only the edges dictated by the minimal transition system (see line 10). The new
transitions are properly colored by construction.1

1Note that TS and the minimal transition system TS 0 not only accept the same language, but they
are even bisimilar under the relation {(q, peer(q)) | q state of TS} (see also Section 4.4).

6.3. Implementations for Asynchronous Automata 191

Finally, at the end of the algorithm, we have only green and black edges in TS . Accord-
ing to the invariants, this means that all q

a−→ q′ of the output satisfy W (q) ·a ≈Z W (q′).
Therefore, the output TS is isomorphic to quotient under ≈Z of the transition system
having T ⊆ Σ∗ as state space and w

a−→ wa as transitions. But this is exactly the
(deterministic) asynchronous automaton constructed in Section 5.2.2. �

Heuristic intermediate testing Unfortunately, as confirmed by experimental results,
the Algorithm 6.2 can produce transition systems with many more states than necessary.
We have implemented a heuristic (see Figure 6.8) that allows to ‘stop earlier’ if the
transition system constructed so far happens to be already a solution. To achieve this,
we insert at the beginning of the body of the while-loop (i.e., between lines 2 and 3) of
Algorithm 6.2 the following:

if TS is isomorphic to an asynchronous automaton then
output TS and stop

For the condition above, we use again Theorem 3.32 as implementability test modulo
isomorphism (for deterministic specifications). In fact, we can even use the relaxation
mentioned in Remark 5.1), i.e., dropping DAA3 condition.

As we will see (Table 6.6), the little trick above works pretty well. Once TS passes
the test, we can derive the local structure of the asynchronous automaton as described
in Section 5.2.1. Moreover, if the test fails, it can provide however guidance to select the
red transition at line 3 as explained below.

Which red transition to unfold at line 3 of Algorithm 6.2? In Algorithm 6.2,
Zielonka’s equivalence ≈Z tells how (and when) to unfold the red transitions (lines 5,12).
In case the isomorphism test (introduced in the previous paragraph) gives a negative
answer, Theorem 3.32 (with DAA3 dropped) can tell us where there is need to unfold. We
sketch how to do this:

Let TS g/b be the transition system obtained after selecting the green and black
edges of TS . For the isomorphic embedding TS g/b we compute the least family of

local equivalences (≡g/b
p)p∈Proc satisfying DAA1 and DAA2 (of Theorem 3.32). Then,

these equivalences also satisfy DAA4. The reason is that all the green and black
transitions appear in the transition system, denoted by TSZ , generated by Zielonka’s
approach, so the equivalences (≡g/b

p)p∈Proc are included in the least local equivalences

satisfying DAA1 and DAA2 for TSZ . If by contradiction (≡g/b
p)p∈Proc violated DAA4,

this violation could be simulated also in TSZ , but this is a contradiction, because
we know that TSZ is isomorphic to an asynchronous automaton.

Starting with TS g/b, we iteratively add red transitions (from TS) and reconstruct the
least family of local equivalences satisfying DAA1 and DAA2, until DAA4 is violated
(this will eventually happen, since TS fails the test).

The last added red transition (that leads to a violation) is selected (as candidate for
unfolding) at line 3 of Algorithm 6.2.

192 Implementations and Case Studies

Distribution Transition system Automaton generated by Zielonka

Σ = {a, b, c}

Proc = {1, 2, 3}

dom(a) = {1, 2}
dom(b) = {2, 3}
dom(c) = {1, 3}

‖ = ∅

0

1 2

a
b

c

a b

c

a b

c

a
b

c

a
b

c

Unfolding steps leading to a smaller automaton

0

1 2

a
b

c

unfold

2
c−→ 0

0

1 2

3

a
b

c
a

b

unfold

3
b−→ 2

0

1 2

3

4

a
b

c
a

b

c

Figure 6.9: Example of the unfolding compared with Zielonka’s construction

Example 6.7 We exemplify the unfolding procedure with the specification given in Fig-
ure 6.9 (top-left). We have a distribution of three actions over three processes, with an
empty independence relation, together with a transition system with three states. Ap-
plying original Zielonka’s procedure implemented by Algorithm 6.2, we obtain the global
transition system at the top-right of Figure 6.9 having 12 states. At the bottom of the
figure, we give the first two unfolding steps:

First we identify 0
a−→ 1 and 0

b−→ 2 as green edges, and 2
c−→ 0 as red edge.

The asynchronicity test from the previous paragraph gives a negative answer (the
reasons are given on page 146 – see Figure 5.6). Therefore, we proceed to unfold
2

c−→ 0. We do this by removing 2
c−→ 0 and adding a green edge 2

c−→ 3 with
peer(3) = 0. Moreover, we construct edges from 3 with same labels and destination

nodes as from 0, i.e., we add 3
a−→ 1 and 3

b−→ 2. According to the algorithm both
of them are colored in red.

We test again if the new transition system is a solution, but it is not the case. Then,

6.3. Implementations for Asynchronous Automata 193

the red edge 3
b−→ 2 is automatically proposed for unfold (we add a new green edge

3
b−→ 4 with peer(4) = 2), leading to the transition system at the bottom right of

Figure 6.9.

The test for the third transition system is now positive, so we stop (and construct
the local components of the asynchronous automaton – not showed in the figure).

Thus, the above heuristic produces a solution with only 5 (global) states, which is less
than half of the state space (12 states) generated by Zielonka’s approach.

Obtaining smaller asynchronous automata Some observations regarding the con-
struction of smaller asynchronous automata accepting a certain language (in case we found
one solution) are given already at the beginning of the subsection (see page 186). We add
a couple of remarks below.

One idea is to use the isomorphism test of Theorem 3.30 whose logic implementa-
tion is described in Section 6.3.1 (see page 178). The trick is to tune the constant
max local states that provides the upper bound for the (size of) local components that
the program will search for. One approach is to start with a small value of constant
max local states and increment it until a solution is found (if max local states is too
small, the logic implementation may return a negative answer, which is correct in the
sense that ‘there exist no asynchronous automata accepting the given language having all
components smaller than the current max local states’).

Another heuristic is to arbitrarily merge local states of the components while the
accepted language is preserved. This is an available option in our current implementation
and showed to decrease the sizes of the local components. However, the procedure is
rather time-expensive and does not really scale up.

Yet another idea is given be the following result:

Proposition 6.8 For a distribution (Σ,Proc, ∆), a transition system TS, and a state q
from TS, we denote by TS (q) the isomorphic embedding TS (q) ⊏TS, having q as initial
state and obtained by selecting from TS all the states and transitions reachable from q.
Then, if TS is isomorphic to an asynchronous automaton over ∆, then for any state q of
TS, TS (q) is also isomorphic to an asynchronous automaton over ∆.1

Proof. Let TS = (Q, Σ,→, I) be a transition system that is isomorphic to an asyn-
chronous automaton over ∆. According to Theorem 3.30, there exists a set of local
equivalences (≡p)p∈Proc satisfying AA1–AA3, where ≡p⊆ Q×Q. We consider a set of local

equivalences for TS (q) = (Qq, Σ,→q, {q}), denoted by (≡(q)
p)p∈Proc, obtained by restricting

each equivalence ≡p to Qq, i.e., ≡(q)
p := ≡p ∩ (Qq ×Qq) for all p ∈ Proc.

Since (≡p)p∈Proc satisfies the conditions AA1–AA3, it is easy to argue that (≡(q)
p)p∈Proc

satisfy the same conditions (the reachability of TS (q) is used for AA3!). Applying The-
orem 3.30, we have that TS (q) is also isomorphic to an asynchronous automaton over
∆. �

1In fact, the result can be generalized to any isomorphic embedding E of TS that is ‘closed’ under
reachability (i.e., for any state q of E, if q

a−→ q′ in TS , then also q
a−→ q′ in E) rather than to only

TS (q). The proof is the same.

194 Implementations and Case Studies

Table 6.6: Synthesis of (deterministic) asynchronous automata

Problem Zielonka(1) Zielonka(2) Heuristic(1) Heuristic(2)
size time size time size time size time

Mutex (2, ∆1) 34 <0.01s 23 <0.01s 14 <0.01s 10 <0.01s
Mutex (2, ∆2) 4799 4.09s 2834 2.00s 17 <0.01s 16 <0.01s
Mutex (3, ∆1) – – 107 <0.01 30 <0.01s
Mutex (3, ∆2) – – – 58 0.07s
Mutex (4, ∆1) – – 1340 0.24s 69 <0.01s
Mutex (4, ∆2) – – – 157 1.87s
Mutex (5, ∆1) – – 25337 152.91s 147 0.01s
Mutex (5, ∆2) – – – 387 55.03s

Phil(2) 71 0.01s 5 <0.01s
Phil(3) – 12 <0.01s
Phil(4) – 49 <0.01s
Phil(5) n/a (no distributable specification to start with)

Corollary 6.9 Let TS be the global state space of an asynchronous automaton such that
L(TS) = T . Then, we may find a smaller asynchronous automata accepting T just looking
for states q of TS whose reachable part TS (q) accepts the same language as TS.

In case the asynchronous automaton TS was generated by Algorithm 6.2, we can use the
available peer information for testing the language equality in the previous corollary. More
precisely, two states q and q′ have the same behavior, i.e., L(TS (q)) = L(TS (q′)), if and
only if peer(q) = peer(q′). Therefore, we can find the states q such that L(TS (q)) = L(TS)
by checking if peer(q) = peer(q0) = q0 (where q0 is the initial state of the deterministic
transition system on which we run the algorithm).

The above idea is exemplified on the transition system generated by Zielonka’s pro-
cedure depicted in Figure 6.9 (top-right). The state reached from the initial state af-
ter executing the sequence bcbc, denoted by qbcbc, has the same behavior as the initial
state (their peers are equal), i.e., L(TSZ(qbcbc)) = L(TSZ). According Proposition 6.8,
TSZ(qbcbc) is isomorphic to an asynchronous automata over the given distribution. More-
over, TSZ(qbcbc) has only 6 states, which is close to the result of the heuristic (depicted at
the bottom of Figure 6.9), which has 5 states. (Compare it also with the ad-hoc solution
at the top of Figure 5.6).

Experimental results

Table 6.6 compares the performances and outputs of Zielonka’s construction and the
heuristic introduced in this section on our benchmarks (see Table 6.1), for our (imperative)
implementations programmed in C.

For each solved instance, we give the number of global states of the synthesized asyn-
chronous automaton together with the time (in seconds) necessary to construct it. We
imposed an upper limit of 32000 of global states, stopping after reaching this limit, and

6.3. Implementations for Asynchronous Automata 195

denoting this by a ‘–’ entry in our table. We imposed this limit given: (a) the high
memory consumption associated with Zielonka’s procedure (that has to keep a lot of in-
formation for further reference, e.g., up to 1 GB of RAM is used for 32000 of generated
global states) and (b) the size of the specifications, i.e., a solution with 32000 global states
for, say, Mutex (3) is impractible.

We take first into discussion the Mutex problem. The second and third columns of Ta-
ble 6.6 give the results after applying Zielonka’s method (implemented by Algorithm 6.2).
The two versions (1) and (2) denote the fact that we used as starting specifications the
output of the two heuristics described in Table 6.4 (remember that we can synthesize
deterministic asynchronous automata only when the original specification satisfies ID and
FD). As we can see, Zielonka’s approach is highly inefficient only working for n = 2.

The last two columns of Table 6.6 give the results of the heuristic presented in this
subsection, that combines Zielonka’s approach with the testing of the intermediate tran-
sition system (see also Figure 6.8). (We start again with the outputs of the two heuristic
described in Table 6.4, so we have two columns of results.) As we can see, the simple
idea of intermediate testing performs extremely well: We solve all the instances of Mutex
(n = 2..5) in the last column using heuristic (2). For heuristic (1) we perform almost as
good, solving all the instances for the first distribution ∆1, but only for n = 2 with ∆2.
The reason behind the lack of success in the latter case is the size of the input transition
system: The first heuristics (1) constructs ID-FD embeddings as large as possible (cutting
only edges that spoil the diamond properties), thus leading to a state space explosion. On
the other hand, we still get solutions for ∆1, because the input specification is already iso-
morphic to an asynchronous automaton (see Table 6.3), so our heuristic will successfully
stop after the first step (without having to unfold any transition).

For the dining philosophers problem, we cannot use the output of the two heuristics
described in (the last two columns of) Table 6.4, because they cannot find any ID-FD
under-approximations. In this case, we use the output of the logic implementation using
Smodels. However, since we do not have any solution for n = 5, we cannot even start the
unfolding procedure for Phil(5). For the other cases (n = 2, 3, 4), we see again that the
heuristic proposed in this section easily outperforms Zielonka’s approach: The latter only
provides a solution for n = 2, while the former scales up for all inputs (n = 2..4).

Discussion

In this chapter we showed the synthesis paradigm applied to a couple of classical problems.
We considered both synchronous products and asynchronous automata, with a focus on
the latter. Below we make a couple of retrospective remarks:

Scalability Unfortunately, synthesis based on Zielonka’s procedure not only has a bad
worst-case complexity, but also behaves bad in practice, as shown for instance by
our experimental results (cf. Table 6.6). We proposed a couple of new heuristics
that use (variants of) an implementability test modulo isomorphism to speed up
the synthesis procedure.

Running time In case an instance is indeed distributable, a solution is usually quickly

196 Implementations and Case Studies

generated (using the heuristics).

Obtaining ‘elegant’ solutions Looking for instance at Figure 6.6, we see that our so-
lutions are not necessarily ‘elegant’: They use variables with larger domains than
those appearing in the literature, and a human finds it difficult to understand why
they are correct. Notice, however, that this is the case with virtually all computer
generated outputs, whether they are HTML text, program code, or a computer gen-
erated proof of a formula in a logic. Our solutions are correct and relatively small.
Notice also that our solution from Figure 6.6 to the Mutex (2) problem is in a sense
‘the’ optimal solution (in that context), i.e., it excludes only those behaviors strictly
forbidden by mutual exclusion and absence of starvation.

Specifying with temporal logic Our approach is compatible with giving the global
specifications as LTL temporal logic formulas over finite strings, since the language
of finite words satisfying a formula is known to be regular, and a transition system
recognizing this language can be effectively computed.

Dealing with liveness properties Currently our approach cannot deal with proper
liveness properties. Loosely speaking, ‘eventually’ properties have to be transformed
into properties of the form ‘before this or that happens’. Dealing with liveness
properties requires to consider the theory of asynchronous automata on infinite
words, for which not much is known yet (see [DR95, Chapter 11]). The approaches
of [BCD02, CMT99] take a transition system as specification, and so do not consider
liveness properties either.

Related work We are not aware of any other implementation for the synthesis of asyn-
chronous automata, so our work is the first one to give support to the well-developed
theory of this class of distributed transition systems.

Regarding the synthesis of distributed algorithms like Mutex , our methods scale up
to 5 processes. Compared with other solutions in the literature we are doing well:
The method of [CE82] implemented in [Ina84] scales up to 4 processes. The heuris-
tic of [BDT03] deals only with 2 processes. [Cai97, BCD02] also exemplify their
method for only 2 processes; moreover, their approach is not fully automatic (man-
ual modification of the specification was needed), and they do not take any liveness
into account. The approach of [MT02] may also be applicable to the problem, but
there are no experimental results (implementations) available.

More promising is the recent work of Attie and Emerson [AE98, Att99, AE01]
(building upon [CE82]). In [AE98, Att99], they advertize avoiding the state space
explosion by constructing local machines for pairwise communication. However,
similar to [CE82], the synthesized models have the disadvantage of high-atomicity
(many actions performed in one atomic step). In [AE01], they offer a solution to
lower the high atomicity, but unfortunately, the method only works with the method
of [CE82], but not with those of [AE98, Att99] (see also the discussion at the end
of Section 6.1.1).

Of course, all the above comparisons should be taken with a grain of salt, given the
fact that we use different specifications, respectively models for distributed systems.

6.3. Implementations for Asynchronous Automata 197

Possible future work Our current conviction is that it is unlikely that synthesis based
on asynchronous automata would ever be successful on other than relatively small exam-
ples, due to the very high inherent complexity. Therefore, more work could be invested
in heuristics generating small distributable specifications (in the line of Section 6.3.2) or
small distributed implementations (in the line of Section 6.3.3).

Regarding the synthesis of synchronous products (modulo language equivalence), fur-
ther optimizations may be explored (note that unfolding techniques as used for asynchro-
nous automata do no work for synchronous products). In case the specification is not
distributable and a counterexample is provided, we could use this counterexample to cut
behaviors and then reiterate (i.e., counterexample-guided refinement of the specification).

Also, other interesting case studies from areas like e.g., asynchronous circuits [Yak98,
CKK+00, CKK+02] or security protocols [Säı02] may be explored.

⋄

If I were a medical man, I should
prescribe a holiday to any patient
who considered his work important.

Bertrand Russell

Chapter 7

Conclusions

T
his thesis is important because it takes theory a few steps closer to practice. The
main outcomes of this work are:

A careful study of the languages and various properties of the classes of synchronous
products and asynchronous automata (Chapter 3).

An almost complete map of computational complexity results for the distributed
implementability problem (Chapter 4). These classifications help in choosing an
appropriate implementation technique for the problem at hand. E.g., since we see
that the deterministic case is usually easier, working with deterministic systems is
more efficient.

A survey of synthesis methods with a couple of new algorithms for special cases
(Chapter 5).

Prototype implementations for most of the algorithms described in the thesis, to-
gether with various heuristics that proved successful on a couple of classic bench-
marks from concurrency theory (Chapter 6). Note e.g., that implementations for
the synthesis of asynchronous automata were not considered in the literature until
now.

However, from the experimental results from the previous chapter, we conclude that
due to the scalability of the core synthesis algorithms, the current method works only with
rather small problems. In this light, we point a couple of possible further investigations:

We could consider systems at a higher level of abstraction (e.g., communication
patterns in security protocols or UML models).

Also, more work could be invested in heuristics generating small distributable spec-
ifications (by removing behaviors, respectively collapsing actions).

Aiming at more ‘concurrency-aware’ specifications, distributed versions of temporal
logics can be considered; more research is needed in this area.

⋄

198

Appendix A

A.1 Implementability Test modulo Isomorphism for

Asynchronous Automata

The logic implementation using Smodels [SNS02] of the implementability test modulo
isomorphism for asynchronous automata based on Theorem 3.30 and described in Sec-
tion 6.3.1 (the comments are preceded by a % symbol).

% Input: a distribution (as a domain) and

% a (possible nondeterministic) transition system TS

% Question: is TS reachable, deadlock-free, and isomorphic

% to an asynchronous automaton?

% Strategy: guess a set of equivalences satisfying AA1-AA2-AA3

%===specify the specification as a database of facts. For instance:

%...the distribution

dom(a,1). dom(b,2). dom(c,1). dom(c,2).

%...the nondeterministic TS

initialstate(1). initialstate(2).

trans(1,a,3). trans(2,b,3). trans(3,c,3).

%...fix an upper bound on the number of local states

const max_local_state = 3.

%=== implementation of the begins here

%...derive the actions and processes of the distributed alphabet

action(A) :- dom(A,K).

process(K):- dom(A,K).

%...derive the states of TS

state(Q1) :- trans(Q1,A,Q2).

state(Q2) :- trans(Q1,A,Q2).

%===reachability (least fixpoint procedure)

reach(Q) :- initialstate(Q).

reach(Q2) :- reach(Q1), trans(Q1,A,Q2), neq(Q1,Q2).

199

200 Appendix

%...rule out solutions which contain unreachable states

:- state(Q), not reach(Q).

%===deadlock-freedom

live(Q1) :- trans(Q1,A,Q2).

%...rule out solutions which contain reachable deadlocks

:- state(Q), reach(Q), not live(Q).

%===choose for each state a local representative from a set of local states.

% Two states are equivalent iff they have the same local representative.

%...derive the set of local states

local_state(1..max_local_state).

%...guess exactly one k-representative lq for the each state q

%...(choice gadget)

1 {local_repr(K,Q,LQ) : local_state(LQ)} 1 :- process(K), state(Q).

%...(q1 equiv_k q2) iff they have the same local representative

equal_local(K,Q1,Q2) :- local_repr(K,Q1,LQ), local_repr(K,Q2,LQ),

process(K), state(Q1), state(Q2), local_state(LQ).

%...equivalence of q1 and q2 on dom(a)

equiv_dom(A,Q1,Q2) :- equal_local(K,Q1,Q2):dom(A,K),

action(A), state(Q1), state(Q2).

%===AA1: q1-a->q2 and k not in dom(a) => local_state_k(q1)=local_state_k(q2)

%...rule out solutions not satisfying AA1

:- trans(Q1,A,Q2), not dom(A,K),

process(K), local_state(LQ1), local_state(LQ2),

local_repr(K,Q1,LQ1), local_repr(K,Q2,LQ2), neq(LQ1,LQ2).

%===AA2: (for all k in Proc: q1 equiv_k q2) => q1 = q2

%...rule out solutions not satisfying AA2

:- neq(Q1,Q2), equal_local(K,Q1,Q2):process(K), state(Q1), state(Q2).

%===AA3: q1-a->q11 and equiv_dom(a)(q1,q2)

% => exists q22 s.t. q2-a->q22 and equiv_dom(q11,q22)

matched(A,Q1,Q11,Q2) :- trans(Q1,A,Q11), trans(Q2,A,Q22),

equiv_dom(A,Q1,Q2), equiv_dom(A,Q11,Q22).

%...rule out solutions not satisfying AA3

:- trans(Q1,A,Q11), state(Q2), equiv_dom(A,Q1,Q2),

not matched(A,Q1,Q11,Q2).

⋄

Bibliography

[AE98] P.C. Attie and E.A. Emerson. Synthesis of concurrent systems with many
similar processes. ACM Transactions on Programming Languages and Systems
(TOPLAS), 20(1):51–115, 1998. (Cited on pages 152, 158 and 196.)

[AE01] P.C. Attie and E.A. Emerson. Synthesis of concurrent systems for an atomic
read/write model of computation. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 23(2):187–242, 2001. (Cited on pages 152,
157, 162 and 196.)

[AEY01] R. Alur, K. Etessami, and M. Yannakakis. Realizability and verification of
MSC graphs. In ICALP 2001, volume 2076 of LNCS, pages 797–808. Springer,
2001. (Cited on page 126.)

[AKH03] J.H. Anderson, Y.-J. Kim, and T. Herman. Shared-memory mutual exclusion:
Major research trends since 1986. Distributed Computing, 16(2–3):75–110,
2003. (Cited on page 155.)

[AM94] A. Anuchitanukul and Zohar Manna. Realizability and synthesis of reactive
modules. In CAV’94, volume 818 of LNCS, pages 156–168. Springer, 1994.
(Cited on page 158.)

[Arn94] A. Arnold. Finite transition systems and semantics of communicating systems.
Prentice Hall, 1994. (Cited on pages 3, 6, 24, 31 and 71.)

[AS92] C. Autant and Ph. Schnoebelen. Place bisimulation in Petri nets. In
ICATPN’92, volume 616 of LNCS, pages 45–61. Springer, 1992. (Cited on
page 186.)

[AS02] B. Adsul and M. Sohoni. Complete and tractable local linear time tempo-
ral logics over traces. In ICALP’02, volume 2380 of LNCS, pages 926–937.
Springer, 2002. (Cited on pages 1 and 158.)

[Att99] P.C. Attie. Synthesis of large concurrent programs via pairwise composition.
In CONCUR’99, volume 1664 of LNCS, pages 130–145. Springer, 1999. (Cited
on pages 158 and 196.)

[BBD95] E. Badouel, L. Bernardinello, and P. Darondeau. Polynomial algorithms for
the synthesis of bounded nets. In TAPSOFT’95, volume 915 of LNCS, pages
364–378. Springer, 1995. (Cited on pages 71 and 126.)

201

202 Bibliography

[BBD97] E. Badouel, L. Bernardinello, and P. Darondeau. The synthesis problem for
elementary net systems is NP-complete. TCS, 186(1–2):107–134, 1997. (Cited
on pages 71 and 126.)

[BBL05] J. Berstel, L. Boasson, and M. Latteux. Mixed languages. TCS, 332(1–3):179–
198, 2005. (Cited on page 110.)

[BCD02] E. Badouel, B. Caillaud, and P. Darondeau. Distributing finite automata
through Petri net synthesis. Formal Aspects of Computing, 13(6):447–470,
2002. (Cited on pages 3, 71, 158, 163, 166, 178 and 196.)

[BCE+03] A. Benveniste, P. Caspi, S.E. Edwards, N. Halbwachs, P. Le Guernic, and
R. de Simone. The synchronous languages 12 years later. Proceedings of the
IEEE, 91(1):64–83, 2003. (Cited on page 54.)

[BD98] E. Badouel and P. Darondeau. Theory of regions. Lecture Notes in Computer
Science: Lectures on Petri Nets I: Basic Models, 1491:529–586, 1998. (Cited
on page 3.)

[BDT03] Y. Bar-David and G. Taubenfeld. Automatic discovery of mutual exclusion
algorithms. In DISC’03, volume 2848 of LNCS, pages 136–150. Springer, 2003.
(Cited on pages 186 and 196.)

[BM03] N. Baudru and R. Morin. Safe implementability of regular message sequence
chart specifications. In Proc. of SNPD’03, pages 210–217. ACIS, 2003. (Cited
on pages 51 and 126.)

[BM06] N. Baudru and R. Morin. Unfolding synthesis of asynchronous automata.
In Proc. of International Computer Science Symposium in Russia (CSR’06),
LNCS. Springer Verlag, 2006. To appear. (Cited on page 137.)

[BMT01] A. Bouajjani, A. Muscholl, and T. Touili. Permutation rewriting and algorith-
mic verification. In LICS’01, pages 399–408. IEEE Computer Society, 2001.
(Cited on page 184.)

[BPS94] D. Bruschi, G. Pighizzini, and N. Sabadini. On the existence of minimum
asynchronous automata and on the equivalence problem for unambiguous
regular trace languages. Information and Computation, 108:262–285, 1994.
(Cited on pages 150, 151 and 186.)

[BPS01] J. Bergstra, A. Ponse, and S. Smolka, editors. Handbook of process algebra.
Elsevier, 2001. (Cited on page 68.)

[Cai97] B. Caillaud. SYNET: un outil de synthèse de réseaux de Petri bornés, ap-
plications. Technical Report 3155, INRIA, 1997. (Cited on pages 178, 181
and 196.)

[CE82] E.M. Clarke and E.A. Emerson. Using branching time temporal logic to syn-
thesize synchronization skeletons. Science of Computer Programming, 2:241–
266, 1982. (Cited on pages 1, 2, 152, 153, 154, 156, 157, 158 and 196.)

Bibliography 203

[CKK+97] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev.
Petrify: A tool for manipulating concurrent specifications and synthesis
of asynchronous controllers. IEICE Trans. Information and Systems, E80-
D(3):315–325, 1997. (Cited on page 178.)

[CKK+00] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev.
Hardware and Petri nets: Application to asynchronous circuit design. In
ICATPN’00, volume 1825 of LNCS, pages 1–15. Springer, 2000. (Cited on
page 197.)

[CKK+02] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev.
Logic synthesis of asynchronous controllers and interfaces. Springer, 2002.
(Cited on pages 3 and 197.)

[CKLY98] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Deriving
Petri nets from finite transition systems. IEEE Transactions on Computers,
47(8):859–882, 1998. (Cited on pages 3 and 71.)

[CMT99] I. Castellani, M. Mukund, and P.S. Thiagarajan. Synthesizing distributed
transition systems from global specifications. In FSTTCS19, volume 1739 of
LNCS, pages 219–231. Springer, 1999. (Cited on pages 3, 43, 44, 46, 54, 55,
56, 71, 72, 73, 81, 91, 106, 114, 129, 130, 151, 158, 172 and 196.)

[CMZ93] R. Cori, Y. Métivier, and W. Zielonka. Asynchronous mappings and asyn-
chronous cellular automata. Information and Computation, 106(2):159–202,
1993. (Cited on page 137.)

[CSLR88] R. Cori, E. Sopena, M. Latteux, and Y. Roos. 2-asynchronous automata.
TCS, 61:93–102, 1988. (Cited on pages 150 and 151.)

[Dij65] E.W. Dijkstra. Solutions of a problem in concurrent programming control.
Communications of the ACM, 8(9):569, 1965. (Cited on page 155.)

[DM96] V. Diekert and A. Muscholl. A note on Métivier’s construction of asynchro-
nous automata for triangulated graphs. Fundamenta Informaticae, 25:241–
246, 1996. (Cited on pages 137, 150 and 151.)

[DR95] V. Diekert and G. Rozenberg, editors. The book of traces. World Scientific,
1995. (Cited on pages 3, 25, 29, 51, 133, 140, 151, 184 and 196.)

[Dub86] C. Duboc. Mixed product and asynchronous automata. TCS, 48:183–199,
1986. (Cited on pages 34, 54, 56, 61, 137 and 151.)

[ER90] A. Ehrenfeucht and G. Rozenberg. Partial (set) 2-structures I and II. Acta
Informatica, 27(4):315–368, 1990. (Cited on pages 2, 48 and 71.)

[ER99] J. Esparza and S. Römer. An unfolding algorithm for synchronous products
of transition systems. In CONCUR’99, volume 1664 of LNCS, pages 2–20.
Springer, 1999. (Cited on page 173.)

204 Bibliography

[GJ79] M. Garey and D. Johnson. Computers and intractability: A guide to the
theory of NP-completeness. Freeman, 1979. (Cited on pages 18, 70, 105, 106,
108, 111 and 112.)

[GLM04a] E. Giunchiglia, Y. Lierler, and M. Maratea. SAT-based answer set program-
ming. In AAAI’04, pages 61–66. AAAI Press, 2004. (Cited on page 186.)

[GLM04b] E. Giunchiglia, Y. Lierler, and M. Maratea. A SAT-based polynomial space
algorithm for answer set programming. In NMR’04, pages 189–196, 2004.
(Cited on page 186.)

[GM02] P. Gastin and M. Mukund. An elementary expressively complete temporal
logic for Mazurkiewicz traces. In ICALP’02, volume 2380 of LNCS, pages
938–949. Springer, 2002. (Cited on pages 1 and 158.)

[GM06] B. Genest and A. Muscholl. Constructing exponential-size deterministic Zie-
lonka automata, 2006. Manuscript. (Cited on page 151.)

[Hel99] K. Heljanko. Using logic programs with stable model semantics to solve dead-
lock and reachability problems for 1-safe Petri nets. Fundamenta Informatica,
37(3):247–268, 1999. (Cited on pages 173 and 176.)

[HKV02] D. Harel, O. Kupferman, and M.Y. Vardi. On the complexity of verifying
concurrent transition systems. Information and Computation, 173(2):143–
161, 2002. (Cited on page 126.)

[HMU01] J. Hopcroft, R. Motwani, and J. Ullman. Introduction to automata theory,
languages, and computation. Addison Wesley, second edition edition, 2001.
(Cited on pages 70, 106, 111 and 112.)

[Hol04] G. Holzmann. The Spin model checker. Addison-Wesley, 2004. (Cited on
page 173.)

[HŞ04] K. Heljanko and A. Ştefănescu. Complexity results for checking distributed
implementability. Technical Report 05/2004, Universität Stuttgart, 2004. 37
pp. (Cited on pages 8, 70, 154 and 178.)

[HŞ05] K. Heljanko and A. Ştefănescu. Complexity results for checking distributed
implementability. In Proceedings of the 5th International Conference on Ap-
plication of Concurrency to System Design, pages 78–87. IEEE Computer
Society, 2005. (Cited on pages 8 and 70.)

[HU79] J. Hopcroft and J. Ullman. Introduction to automata theory, languages, and
computation. Addison Wesley, 1979. (Cited on pages 15, 16, 22, 24, 100, 107,
112, 113 and 116.)

[Ina84] Y. Inaba. An implementation of synthesizing synchronization skeletons us-
ing temporal logic specifications. Master’s thesis, Department of Computer
Science, The University of Texas at Austin, 1984. Completed under the su-
pervision of E.A. Emerson. (Cited on page 196.)

Bibliography 205

[Jan03] T. Janhunen. A counter-based approach to translating logic programs into set
of clauses. In Proceedings of the 2nd International Workshop on Answer Set
Programming (ASP’03), volume 78, pages 166–180. Sun SITE Central Europe
(CEUR), 2003. (Cited on page 179.)

[KMS94] N. Klarlund, M. Mukund, and M. Sohoni. Determinizing asynchronous au-
tomata. In ICALP’94, volume 820 of LNCS, pages 130–141. Springer, 1994.
(Cited on pages 64, 137, 147 and 151.)

[KV01] O. Kupferman and M.Y. Vardi. Synthesizing distributed systems. In LICS’01.
IEEE Computer Society, 2001. (Cited on pages 2, 152, 153 and 158.)

[Lal79] G. Lallement. Semigroups and combinatorial applications. J. Wiley and Sons,
1979. (Cited on page 16.)

[Loh03] M. Lohrey. Realizability of high-level message sequence charts: closing the
gaps. Theoretical Computer Science, 309(1-3):529–554, 2003. (Cited on
page 126.)

[Maz77] A. Mazurkiewicz. Concurrent program schemes and their interpretations.
DAIMI Report PB-78, Aarhus University, 1977. (Cited on pages 1, 3 and 24.)

[Maz87] A. Mazurkiewicz. Trace theory. In Advances in Petri Nets, number 255 in
LNCS, pages 279–324. Springer, 1987. (Cited on pages 25 and 51.)

[Mét87] Y. Métivier. An algorithm for computing asynchronous automata in the case
of acyclic non-commutation graph. In ICALP’87, volume 267 of LNCS, pages
226–236. Springer, 1987. (Cited on pages 137 and 150.)

[Mil89] R. Milner. Communication and concurrency. Prentice-Hall, 1989. (Cited on
page 20.)

[MMP+95] O. Matz, A. Miller, A. Potthoff, W. Thomas, and E. Valkema.
Report on the program AMoRE. Technical Report 9507, Insti-
tut für Informatik und Praktische Mathematik, CAU Kiel, 1995.
http://www-i7.informatik.rwth-aachen.de/d/research/amore.html.
(Cited on pages 170 and 172.)

[Mor98] R. Morin. Decompositions of asynchronous systems. In CONCUR’98, volume
1466 of LNCS, pages 549–564. Springer, 1998. (Cited on pages 3, 41, 43, 46,
48, 71, 72, 82, 91, 92, 110 and 151.)

[Mor99a] R. Morin. Catégories de modèles du parallélisme. PhD thesis, Université Paris
XI, 1999. (Cited on pages 91 and 92.)

[Mor99b] R. Morin. Hierarchy of asynchronous automata. In WDS’99, volume 28 of
Electronic Notes in Theoretical Computer Science, pages 59–75, 1999. (Cited
on pages 43, 46, 71, 72, 83, 91 and 92.)

http://www-i7.informatik.rwth-aachen.de/d/research/amore.html

206 Bibliography

[MP96] A. Muscholl and H. Petersen. A note on the commutative closure of star-
free languages. Information Processing Letters, 57(2):71–74, 1996. (Cited on
page 118.)

[MS72] A.R. Meyer and L. Stockmeyer. The equivalence problem for regular expres-
sions with squaring requires exponential space. In 3th IEEE Symposium on
Switching and Automata Theory, pages 125–129, 1972. (Cited on page 107.)

[MS94] M. Mukund and M. Sohoni. Gossiping, asynchronous automata and Zielonka’s
theorem. Report TCS-94-2, School of Mathematics, SPIC Science Foundation,
Madras, India, 1994. (Cited on pages 133, 137 and 151.)

[MS03] F. Moller and S. Smolka. On the computational complexity of bisimulation,
redux. In PCK50, pages 55–59. ACM, 2003. (Cited on pages 115 and 116.)

[MT02] P. Madhusudan and P.S. Thiagarajan. A decidable class of asynchronous
distributed controllers. In CONCUR’02, volume 2421 of LNCS, pages 145–
160. Springer, 2002. (Cited on pages 2, 153 and 196.)

[Muk02] M. Mukund. From global specifications to distributed implementations. In
B. Caillaud, P. Darondeau, and L. Lavagno, editors, Synthesis and control of
discrete event systems, pages 19–34. Kluwer, 2002. (Cited on pages 3, 34, 43,
44, 46, 51, 54, 64, 71, 72, 73, 83, 91, 99, 106, 114, 115, 130 and 151.)

[Mus94] A. Muscholl. Über die Erkennbarkeit unendlicher Spuren. PhD thesis, Uni-
versität Stuttgart, 1994. Published by Teubner, 1996. (Cited on pages 64
and 106.)

[Mus96] A. Muscholl. On the complementation of Büchi asynchronous cellular au-
tomata. TCS, 169:123–145, 1996. (Cited on page 137.)

[MW84] Z. Manna and P. Wolper. Synthesis of communicating processes from tem-
poral logic. ACM Transactions on Programming Languages and Systems
(TOPLAS), 6(1):68–93, 1984. (Cited on pages 1, 2, 152, 153, 154, 156
and 158.)

[MW03] S. Mohalik and I. Walukiewicz. Distributed games. In FSTTCS 2003, volume
2914 of LNCS, pages 338–351. Springer, 2003. (Cited on page 2.)

[NRT92] M. Nielsen, G. Rozenberg, and P.S. Thiagarajan. Elementary transition sys-
tems. TCS, 96:3–33, 1992. (Cited on pages 3 and 71.)

[NT02] M. Nielsen and P.S. Thiagarajan. Regular event structures and finite Petri
nets: The conflict-free case. In ICATPN’02, volume 2360 of LNCS, pages
335–351. Springer, 2002. (Cited on page 145.)

[Pap94] Ch. H. Papadimitriou. Computational complexity. Addison Wesley, 1994.
(Cited on pages 70, 106, 112 and 118.)

Bibliography 207

[PEP] The PEP tool. Online at http://theoretica.informatik.uni-oldenburg.de/~pep.
(Cited on page 173.)

[Pet62] C.A. Petri. Kommunikation mit Automaten. PhD thesis, Bonn, Institut für
Instrumentelle Mathematik, Schriften des IIM Nr. 2, 1962. (Cited on pages 2
and 24.)

[Pig93a] G. Pighizzini. Recognizable trace languages and asynchronous automata. PhD
thesis, Univerità degli Studi di Milano, 1993. (Cited on pages 18, 50, 133,
137, 151 and 186.)

[Pig93b] G. Pighizzini. Synthesis of nondeterministic asynchronous automata. In Se-
mantics of Programming Languages and Model Theory, Algebra, Logic and
Applications, volume 5, pages 109–126. Gordon and Breach Science Publ.,
1993. (Cited on pages 137 and 151.)

[Pig94] G. Pighizzini. Asynchronous automata and asynchronous cellular automata.
TCS, 132:179–207, 1994. (Cited on page 186.)

[PR89] A. Pnueli and R. Rosner. On the synthesis of an asynchronous reactive mod-
ule. In ICALP’89, volume 372 of LNCS, pages 652–671. Springer, 1989. (Cited
on pages 2, 152, 153 and 158.)

[PWW98] D. Peled, T. Wilke, and P. Wolper. An algorithmic approach for checking
closure properties of temporal logic specifications and ω-regular languages.
TCS, 195(2):183–203, 1998. (Cited on pages 105, 106 and 108.)

[Rab97] A. Rabinovich. Complexity of equivalence problems for concurrent systems
of finite agents. Information and Computation, 139(2):111–129, 1997. (Cited
on page 126.)

[Ray86] M. Raynal. Algorithms for mutual exclusion. North Oxford Academic, 1986.
(Cited on page 155.)

[Roh04] K.R. Rohloff. Computations on distributed discrete-event systems. PhD thesis,
University of Michigan, 2004. (Cited on page 126.)

[Säı02] H. Säıdi. Towards automatic synthesis of security protocols. In In Logic-Based
Program Synthesis Workshop, AAAI 2002 Spring Symposium, pages 45–52.
Stanford University, California, 2002. (Cited on page 197.)

[Sak92] J. Sakarovitch. The “last” decision problem for rational trace languages. In
LATIN 1992, volume 583 of LNCS, pages 460–473. Springer, 1992. (Cited on
page 118.)

[Sch00] K. Schmidt. LoLA – A Low Level Analyser. In ICATPN’00, volume 1825 of
LNCS, pages 465–474. Springer, 2000. (Cited on page 173.)

http://theoretica.informatik.uni-oldenburg.de/~pep

208 Bibliography

[ŞEM03] A. Ştefănescu, J. Esparza, and A. Muscholl. Synthesis of distributed algo-
rithms using asynchronous automata. In R. Amadio and D. Lugiez, editors,
CONCUR’03, volume 2761 of LNCS, pages 27–41. Springer, 2003. (Cited on
pages 8, 51, 64, 70, 73, 128, 151, 154 and 178.)

[SHRS96] S.K. Shukla, H.B. Hunt III, D.J. Rosenkrantz, and R.E. Stearns. On the
complexity of relational problems for finite state processes. In ICALP’96,
volume 1099 of LNCS, pages 466–477. Springer, 1996. (Cited on pages 103,
104, 115 and 126.)

[SNS02] P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the
stable model semantics. Artificial Intelligence, 138(1–2):181–234, 2002. (Cited
on pages 127, 178 and 199.)

[SS00] Ph. Schnoebelen and N. Sidorova. Bisimulation and the reduction of Petri
nets. In ICATPN’00, volume 1825, pages 409–423. Springer, 2000. (Cited on
page 186.)

[SSE03] C. Schröter, S. Schwoon, and J. Esparza. The Model-Checking Kit.
In ICATPN’03, volume 2679 of LNCS, pages 463–472. Springer, 2003.
http://www.informatik.uni-stuttgart.de/fmi/szs/tools/mckit/.
(Cited on page 175.)

[Şte02] A. Ştefănescu. Automatic synthesis of distributed systems. In Proc. of
17th IEEE International Conference on Automated Software Engineering,
page 315. IEEE Computer Society, 2002. Position paper. Long version ap-
pearing in the Proc. of ASE’02 Doctoral Symposium, pages 1–6. (Cited on
page 8.)

[Tab06] P. Tabuada. Distributing specifications and distributed supervisory control,
2006. Manuscript. (Cited on pages 126, 130 and 136.)

[TH98] P.S. Thiagarajan and J.G. Henriksen. Distributed versions of linear time
temporal logic: A trace perspective. In Petri Nets 1996, volume 1491 of
LNCS, pages 643–681. Springer, 1998. (Cited on pages 1, 34 and 158.)

[Thi95] P.S. Thiagarajan. A trace consistent subset of PTL. In Concur’95, volume
962 of LNCS, pages 438–452. Springer, 1995. (Cited on pages 54, 55 and 56.)

[vG90] R.J. van Glabbeek. The linear time – branching time spectrum (extended
abstract). In CONCUR’90, volume 458 of LNCS, pages 278–297. Springer,
1990. (Cited on page 114.)

[VHL97] K. Varpaaniemi, K. Heljanko, and J. Lilius. PROD 3.2 – an advanced tool
for efficient reachability analysis. In CAV’97, volume 1254 of LNCS, pages
472–475. Springer, 1997. (Cited on page 173.)

http://www.informatik.uni-stuttgart.de/fmi/szs/tools/mckit/

Bibliography 209

[VK02] A. Valmari and A. Kervinen. Alphabet-based synchronisation is exponentially
cheaper. In CONCUR’02, volume 2421 of LNCS, pages 161–176. Springer,
2002. (Cited on page 126.)

[Vog99] W. Vogler. Concurrent implementation of asynchronous transition systems.
In ICAPTN’99, volume 1639 of LNCS, pages 284–303. Springer, 1999. (Cited
on page 71.)

[Wal98] I. Walukiewicz. Difficult configurations – on the complexity of LTrL. In
ICALP’98, volume 1443 of LNCS, pages 140–151. Springer, 1998. (Cited on
pages 1 and 158.)

[Wal02] I. Walukiewicz. Local logics for traces. Journal of Automata, Languages and
Combinatorics, 7:259–290, 2002. (Cited on pages 1 and 158.)

[Yak98] A. Yakovlev. Designing control logic for Counterflow Pipeline Processor using
Petri nets. Formal Methods in System Design, 12(1):39–71, 1998. (Cited on
pages 181 and 197.)

[Zie87] W. Zielonka. Notes on finite asynchronous automata. R.A.I.R.O. Inform.
Théor. Appl., 21:99–135, 1987. (Cited on pages 1, 3, 24, 29, 30, 31, 34, 36,
39, 54, 56, 61, 62, 66, 68, 71, 72, 110, 126, 131, 132, 133, 137, 151 and 152.)

[Zie89] W. Zielonka. Safe executions of recognizable trace languages by asynchronous
automata. In Logical Foundations of Computer Science, volume 363 of LNCS,
pages 278–289. Springer, 1989. (Cited on pages 50, 62, 63, 72, 131 and 137.)

Index

L(A, F), see language of an automaton
L(TS), see language of a transition system
[L], see trace-closure of a language
[w], see trace
#a, see number of occurrencesM(Σ, ‖), see trace monoidN, see natural numbers
Prefix(−), see prefix-closure
PrefReg(Σ), see prefix-closed regular languages
Reg(Σ), see regular languagesReg(Σ, ‖), see regular trace languages
Σ(−), see alphabet of
| − |, see cardinality
∁, see complement
dom(a), see domain of an action
lin(T), see linearization
Σloc(p), see local alphabet
P(−), see power set
∏

i∈I , see cartesian product
(, see proper inclusion
↾S, see projection of
ε, see empty word
BD, see backward diamond
FD, see forward diamond
ID, see independent diamond

accepting state, see final state
action, 11
acyclic

asynchronous automaton, 37, 43, 49, 64
finite automata, 23
graph, 17
synchronous product, 34, 42, 49, 57
transition system, 19, 23

alphabet, 11, 18
concurrent, see concurrent alphabet

of a language, 13, 20
of a transition system, 19, 117, 121
of a word, 12

antisymmetry, 11
arc, 17
asynchronous automaton, 31, 36
automaton, see finite automaton

backward diamond, 138
behavior, see language
bisimulation, 20, 68, 71, 113

cardinality, 9
cartesian product, 10, 26, 34, 50, 57, 58
clique, 5, 17

cover, 17
closed distributed system, 30
co-reachable, 19, 21
complement, 10, 13, 16, 27
concatenation, 11, 13, 14, 16, 27
concurrency, 24
concurrency relation, see independence relation
concurrent alphabet, 25, 40, 91, 138
congruence relation, 11, 26
connected

component, 17
graph, 17
nodes, 17

counterexample, 173
cup of coffee, 30
cycle, 17

deadlock-free, 125
dependence

graph, 5, 25
relation, 5, 25

210

Index 211

deterministic
asynchronous automaton, 37
asynchronous automaton, 42, 49, 131
finite automaton, 22
synchronous product, 34, 42, 49, 56
transition system, 19, 22, 46, 48, 91

diamond rules, see ID and FD
disjoint union, 57, 59
distributed alphabet, see distribution
distributed implementability, 68, 70
distributed system, 30
distribution, 5, 31, 33
domain of an action, 32
domain of an action, 33, 34, 37, 44

edge, 17
empty word, 12
equivalence

class, 10
relation, 10, 26, 43

event, 132
execution, 11
expressiveness, 64

final states, 21, 36, 39, 50, 53, 58, 64
finite automaton, 21
finite index, see index of a congruence
finite language, 23, 57, 64
forward diamond, 40
forward-closed language, 51
free partially commutative monoid, 26

game, 2
graph, 17

complete, 17
directed, 17
isomorphism, 17
undirected, 17

identity element, 11
independence

graph, 25
relation, 3, 5, 25, 33, 40, 104

independent diamond, 40, 121
index of a congruence, 11, 16, 30, 133
initial state, 18, 20

initial states, 50, 56, 72
interleaving, 24
intersection, 10, 13, 14, 16, 27
isomorphic embedding, 121
isomorphism, see transition system isomorphism
iteration, 13, 14, 16, 27

Kleene-∗, see iteration
Kripke structure, 156

label, 18
language, 12, 50

of a synchronous product, 36, 54
of a transition system, 20
of an asynchronous automaton, 39, 62
of an automaton, 21

language equivalence, 20, 68, 71, 98, 129, 131
linearization, 26, 30
local

alphabet, 32–34
final states, 58
initial states, 58
state, 34
transition system, 33

local alphabet, 5

minimal

deterministic finite automaton, 22, 54
deterministic transition system, 116
deterministic transition system, 22, 52

monoid, 11
morphism, 11

canonical, 11

natural numbers, 10
node, 17
nondeterminism, 50
number of occurrences, 12

occurrence, 132
open distributed system, 30

partial order, 11, 132
partially order set, see poset
path, 17
Petri net, 2, 31

212 Index

poset, 11, 26
power set, 10
prefix, 12
prefix of a trace, 133
prefix-closed

language, 13, 29, 56
regular language, 16, 21

prefix-closure, 13, 14, 16, 27, 106
process, 5
Producer-Consumer problem, 3
product language, 55, 98, 129
projection

of a language, 13, 14, 16, 27
of a word, 12

proper inclusion, 10, 64

quotient, 11, 19, 46

reachable, 19, 99
recognizable trace languages, 29
reflexivity, 10, 11
regular

expression, 15, 106, 111
language, 15, 21, 29, 30, 56
trace language, 29, 30

run, 20

safe asynchronous automaton, 50, 137
safe Petri net, 186
sequential system, 30
shuffle product

of languages, 6, 13, 14, 16, 27
of words, 12

singleton, 10
sink state, 22, 53
spanning tree, 17, 188
state, 18
state space, 18, 34
state space explosion problem, 36
subgraph, 17

induced, 17
suffix, 12
suffix of a trace, 133
symmetry, 10
synchronization on common actions, 31, 33, 36, 54
synchronous product, see synchronous product of transition systems

synchronous product of transition systems, 31, 33
syntactic congruence

of a language, 16, 133, 134
of a trace language, 30

synthesis, 2, 4, 7, 46, 67, 128

theory of regions, 2, 48, 177
trace, 3, 25, 26, 29, 30, 66

equivalence, 26, 40
language, 3, 26, 27
monoid, 26

trace-closed language, 27, 30, 51
trace-closure of a language, 29, 117
transition relation, 18
transition system, 18, 30

isomorphism, 19, 20, 43, 46, 71, 73, 128, 130
transitive

closure, 10
graph, 18

transitivity, 10, 11
tree, 17, 188

union, 10, 13, 14, 16, 27

vertex, 17

word, 11

	Introduction
	The Synthesis Problem
	A Small Example
	The Contribution of this Thesis

	Preliminaries
	Basic Notions and Notations
	Set Theory
	Algebraic Notions
	Formal Languages
	Graph Theory

	Transition Systems
	Discussion

	Distributed Transition Systems and the Synthesis Problem
	Trace Theory
	Distributed Transition Systems
	Distributions
	Synchronous Products of Transition Systems
	Asynchronous Automata

	Shapes
	Diamonds et al.
	Synchronous Products of Transition Systems
	Asynchronous Automata

	Languages
	Final States
	Traces of Diamonds
	Synchronous Products of Transition Systems
	Asynchronous Automata
	Comparative Expressiveness

	The Synthesis Problem
	Discussion

	The Complexity of the Distributed Implementability Test
	The Distributed Implementability Problem
	Implementability modulo Isomorphism
	Synchronous Products of Transition Systems
	Asynchronous Automata
	Implementability for Concurrent Alphabets

	Implementability modulo Language Equivalence
	Synchronous Products of Transition Systems
	Asynchronous Automata
	Non-regular specifications

	Implementability modulo Bisimulation
	Synchronous Products of Transition Systems
	Asynchronous Automata

	Relaxed Implementability
	Language Inclusion
	Isomorphic Embedding Heuristic

	Discussion

	Synthesis of Distributed Transition Systems
	Synchronous Products of Transition Systems
	Synthesis modulo Isomorphism
	Synthesis modulo Language Equivalence

	Asynchronous Automata
	Synthesis modulo Isomorphism
	Synthesis modulo Language Equivalence
	Alternative Constructions for Special Cases

	Discussion

	Implementations and Case Studies
	Motivating Example: Mutual Exclusion
	A Classical Solution for Mutual Exclusion
	Mutual Exclusion Modeled in Our Framework
	Mutual Exclusion Revisited
	Parametrized Mutual Exclusion
	Dining Philosophers

	Implementation for Synchronous Products of Transition Systems
	Implementations for Asynchronous Automata
	Synthesis modulo Isomorphism
	Heuristics to Construct Under-Approximations
	A Heuristic using Unfoldings for Zielonka's Construction

	Discussion

	Conclusions
	Appendix
	Implementability Test modulo Isomorphism for Asynchronous Automata

	Bibliography
	Index

