
On the Complexity of Reasoning about Dynamic Policies

Stefan Göller⋆

Universität Stuttgart, FMI, Germany
goeller@informatik.uni-stuttgart.de

Abstract. We study the complexity of satisfiability for DLP+dyn , an expressive
logic introduced by Demri that allows to reason about dynamic policies. DLP+dyn

extends the logic DLPdyn of Pucella and Weissman, which in turn extends van der
Meyden’s Dynamic Logic of Permission (DLP). DLP+

dyn generously enhances
DLP and DLPdyn by allowing to update the policy set by adding or removing
policy transitions, which are defined as a direct product of two sets, each spec-
ified by a formula of the logic itself. It is proven that satisfiability for DLP+

dyn

is complete for deterministic exponential time. Our results close the complex-
ity gap of satisfiability for DLP+dyn from 2EXP, and for DLPdyn from NEXP,
to EXP respectively, matching theEXP lower bound both inherit from Proposi-
tional Dynamic Logic (PDL). To prove theEXP upper bound for DLP+dyn, we first
proceed by accurately identifying a suitable generalization of PDL, which allows
to use compressed programs and then find a satisfiability preserving translation
from DLP+

dyn to this extension of PDL. To finally show theEXP upper bound for
DLP+

dyn , we prove that satisfiability of our extension of PDL lies inEXP.

1 Introduction

Numerous applications contain a set of policies that, roughly speaking, describe what
is prohibited and what is permitted. Policies arise in many contexts. For one, they
can comprise control policies, thus specifying which agents are permitted to access
resources. They can as well be legal policies, describing actions that are legally per-
mitted. In the course of time, the policies of an applicationmay change. This dynamic
behaviour originates from the interaction between the application and its user(s). When
changing policies, the system has to guarantee that unintentional side-effects do not oc-
cur. Furthermore, it is often not straightforward to decidewhether to modify the current
policy set or not, not to mention the duty of creating it. Various examples of typical
practical scenarios are given in [10]. In order to allow comparison of different policies
and reasoning about them, a variety of languages have been introduced, an overview is
given in [15]. Van der Meyden’s Dynamic Logic of Permission (DLP) is an example of
an expressive logic that allows to reason about dynamic policies. Formally, it extends
test-free Propositional Dynamic Logic (PDL) and allows to reason about a fixed policy
set that describes the set of all permitted transitions of a system which is in turn modeled
by a Kripke structure. In addition to test-free PDL, the logic DLP allows to ask queries
of the kind ‘does there exist a sequence of solely permitted transitions to some world

⋆ The author is supported by the DFG project GELO.

where the propertyϕ holds’ and ‘does every sequence of transitions to worlds satisfying
ϕ solely consist of permitted transitions’. Extending DLP, the logic DLPdyn of Pucella
and Weissman [10] additionally allows to update the policy set by removing and adding
transitions. These removed or added transitions are definedas the direct product of two
sets of worlds, each specified by boolean combinations of atomic propositions. In [10],
numerous applications are stated that demand for the possibility to update the policy
set within the logic. The even more general logic DLP+

dyn , introduced by Demri [3],
allows to update the policy set by adding (via thegrant-operator) and removing (via
therevoke-operator) a direct product of world sets, but each specifiedby anarbitrary
formula of the logic itself. In this paper, we focus on the computational complexity of
an important algorithmic problem for DLP+dyn , namely satisfiability. For its fragment
DLPdyn , it is pointed out in [10] that the complexity of satisfiability is in NEXP. Focus-
ing on naturalness, Demri gives a satisfiability preservingtranslation from DLP+dyn to
PDL [3]. By the presence of an exponential blowup in formula size in this translation,
a 2EXP upper bound for satisfiability of DLP+dyn was derived. However, if the depth
of appliedgrant andrevoke operators is bounded by some constant, anEXP upper
bound was shown. Since the latter is the case for formulas of DLP, satisfiability for DLP
was shown to be inEXP as a corollary. In this paper, we close the complexity gap for
DLP+

dyn from 2EXP, and for DLPdyn from NEXP, to EXP respectively, matching the
EXP lower bound both inherit from PDL. An approach proposed in [3] to improve the
complexity status of full DLP+dyn is a polynomial time computable reduction to PDL
enhanced with an operator⊕ on programs (we call the resulting logic PDL⊕ from now
on) and then proving that satisfiability of PDL⊕ lies inEXP. A program⊕(π, ϕ1, ϕ2),
whereπ is a program and bothϕ1 andϕ2 are formulas, relates pairs of worlds(x, y) of
a Kripke structure, that are related viaπ such that additionallyϕ1 holds inx orϕ2 holds
in y. As we will remark later, PDL⊕ is definable in PDL, but the size of the programs
of the resulting PDL formula may grow exponentially in the size of the programs of
the original PDL⊕ formula. Alas, it turns out that a translation from DLP+

dyn to PDL⊕

will not lead to an improvement of the complexity of DLP+
dyn – we prove that PDL⊕

is 2EXP-complete. Thus, PDL⊕ identifies a translatable fragment of both PDL with
intersection [2] and of PDL, where programs are representedas dags, that is already
hard for2EXP. Yet to prove anEXP upper bound for DLP+dyn , we accurately identify a

fragment PDL⊕[A] of PDL⊕, into which we translate DLP+dyn and that we prove to lie

in EXP. Our translation from DLP+dyn to PDL⊕[A] consists of a concise examination of
how appliedgrant andrevoke operators influence the truth of subformulas. For prov-
ing that PDL⊕[A] lies in EXP, we translate an input formula of PDL⊕[A] ϕ into an
alternating Büchi tree automaton over infinite treesA(ϕ) and check the tree language
of A(ϕ) for non-emptiness.
Firstly, our main contribution is to prove that DLP+

dyn and thus DLPdyn isEXP-complete,
which solves two open problems stated in [3]. The various applications of DLP and
DLPdyn , as listed in [12, 10], and the technical difficulties of reasoning about dynamic
policies that arise, motivate an exact examination of the complexity of satisfiability of
the more general DLP+dyn. Secondly, we believe that PDL with (restrictions on) the op-
erator⊕ is an interesting logic to study w.r.t. complexity, situated betweenEXP and
2EXP.

The paper is organized as follows. After introducing preliminaries in Section 2, we
formally define DLP+dyn and related logics in Section 3. Known complexity results for

comparable logics and the difficulty of handling DLP+
dyn are summarized and discussed

in Section 4. In Section 5, we give a satisfiability preserving translation from DLP+dyn

to PDL⊕[A]. An EXP upper bound for satisfiability of PDL⊕[A] is proven in Section
6. Finally, in Section 7, we show that satifiability for PDL⊕ is 2EXP-complete.

2 Preliminaries

If A andB are sets andf : A → B is a mapping, then for every subsetC ⊆ A,
we definef(C) = {f(c) | c ∈ C}. If w = a1a2 · · · an is a string over the alphabet
Σ andai ∈ Σ for each1 ≤ i ≤ n, thenw(j) = a1 · · · aj denotes thej-th prefixof
w for every0 ≤ j ≤ n, wherew(0) = ε. For a stringw, let |w| denote thelength
of w. If X is a set,R ⊆ X × X is a binary relation overX andA,B ⊆ X , then
⊕(R,A,B) = R ∩ ((A×X) ∪ (X ×B)) . If X andY are sets withX ∩ Y = ∅,
thenX⊎Y denotes the union ofX andY and recalls the fact thatX andY are disjoint.
For everyl, k ∈ N, define[k] = {1, . . . , k}, and [l, k] = {l, l + 1, . . . , k}. Let us
introduce NFAs. AnNFA is a tupleA = (Q,Σ, q0, δ, F), where (i)Q is a finite set
of states, (ii) Σ is a finitealphabet, (iii) q0 ∈ Q is an initial state, (iv) F ⊆ Q is a
set offinal states, and (v)δ : Q × Σ → 2Q is a transition function. We abbreviate
q′ ∈ δ(q, a) by q

a
⇒A q′. Next, we extend⇒A to words overΣ. For all q ∈ Q we

haveq
ε
⇒A q. If w ∈ Σ∗, a ∈ Σ, q

w
⇒A q′, andq′

a
⇒A q′′, thenq

wa
⇒A q′′. Let

L(A) = {w ∈ Σ∗ | q0
w
⇒A q for someq ∈ F} denote thelanguageof A.

3 Logic

For the rest of the paper, fix some countable set ofatomic propositionsP and some
countable set ofatomic programsA.

3.1 DLP+
dyn and its fragments DLPdyn and DLP

Formulasϕ andprogramsπ of the logic DLP+dyn are given by the following grammar,
wherep ranges overP anda ranges overA:

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | 〈π〉 ϕ | perm(π)ϕ | fperm(π)ϕ |

grant(ϕ1, ϕ2)ϕ3 | revoke(ϕ1, ϕ2)ϕ3

π ::= a | π1 ∪ π2 | π1 ◦ π2 | π
∗ | ϕ?

We introduce the following abbreviations:ϕ1∧ϕ2 = ¬(¬ϕ1∨¬ϕ2), true = p∨¬p for
somep ∈ P, false = ¬true, and[π]ϕ = ¬〈π〉¬ϕ. LetΦ denote the set of all DLP+dyn

formulas and let Test= {ϕ? | ϕ ∈ Φ} denote the set of all DLP+dyn test programs.

The logic DLPdyn is the syntactic fragment of DLP+dyn , where the first two components
of grant andrevoke formulas are restricted to be boolean combinations of atomic

propositions and where test programs do not occur. The logicDLP is the fragment
of DLPdyn , where the operatorsgrant andrevoke do not occur. For every DLP+dyn

programπ letL(π) denote theregular languageof π interpreted as a regular expression
over some finite subset fromA ∪ Test. A Kripke structureis a tuple(X, {→a| a ∈
A}, ̺), whereX is a set ofworlds,→a⊆ X×X is a binary relation for eacha ∈ A, and
̺ : X → 2P assigns to each worldx ∈ X a set of atomic propositions̺(x). An extended
Kripke structure is a tuple(X, {→a| a ∈ A}, ̺, P), where(X, {→a| a ∈ A}, ̺) is
a Kripke structure andP ⊆ X × X is a binary relation that we callpolicy set. If
op ∈ {∪, \}, K = (X, {→a| a ∈ A}, ̺, P) is an extended Kripke structure, and
A,B ⊆ X , thenK ↾ (A,B, op) = (X, {→a| a ∈ A}, ̺, P op (A × B)). Fix some
extended Kripke structureK = (X, {→a| a ∈ A}, ̺, P). Then, for each atomic/test
programπ, we define a binary relation[[π]]K ⊆ X ×X and for each formulaϕ ∈ Φ we
define a subset[[ϕ]]K ⊆ X inductively as follows, wherep ∈ P anda ∈ A:

[[a]]K = →a

[[ϕ?]]K = {(x, x) | x ∈ [[ϕ]]K}

[[p]]K = {x ∈ X | p ∈ ̺(x)}

[[¬ϕ]]K = X \ [[ϕ]]K

[[ϕ1 ∨ ϕ2]]K = [[ϕ1]]K ∪ [[ϕ2]]K

[[〈π〉ϕ]]K = {x ∈ X | there existx0, x1, . . . , xn ∈ X with

x = x0, xn ∈ [[ϕ]]K, and there exist

A1 · · ·An ∈ L(π) s.t. for all1 ≤ i ≤ n

we have(xi−1, xi) ∈ [[Ai]]K}

[[perm(π)ϕ]]K = {x ∈ X | there existx0, x1, . . . , xn ∈ X with

x = x0, xn ∈ [[ϕ]]K, and there exist

A1 · · ·An ∈ L(π) s.t. for all1 ≤ i ≤ n

we have(xi−1, xi) ∈ [[Ai]]K and

Ai ∈ A implies(xi−1, xi) ∈ P}

[[fperm(π)ϕ]]K = {x ∈ X | there does not exist

x0, x1, . . . , xn ∈ X andA1 · · ·An ∈ L(π) with

x = x0, xn ∈ [[ϕ]]K and(xi−1, xi) ∈ [[Ai]]K

for all 1 ≤ i ≤ n such thatAj ∈ A and

(xj−1, xj) 6∈ P for some1 ≤ j ≤ n}

[[grant(ϕ1, ϕ2)ϕ3]]K = [[ϕ3]]K↾([[ϕ1]]K,[[ϕ2]]K,∪)

[[revoke(ϕ1, ϕ2)ϕ3]]K = [[ϕ3]]K↾([[ϕ1]]K,[[ϕ2]]K,\)

We abbreviatex ∈ [[ϕ]]K by (K, x) |= ϕ. If for some statex ∈ X we have(K, x) |= ϕ

thenK is amodelfor ϕ. We say that a formulaϕ is satisfiableif there exists some model
for ϕ. The size|ϕ| of a DLP+

dyn formulaϕ and the size|π| of a DLP+
dyn programπ is

inductively defined as follows:|p| = |a| = 1 for everyp ∈ P and for everya ∈ A,
|ϕ1 ∨ ϕ2| = |ϕ1| + |ϕ2| + 1, |¬ϕ| = |ϕ| + 1, |〈π〉ϕ| = |π| + |ϕ| + 1, |perm(π)ϕ| =
|fperm(π)ϕ| = |π| + |ϕ| + 1, |grant(ϕ1, ϕ2)ϕ3| = |revoke(ϕ1, ϕ2)ϕ3| = |ϕ1| +
|ϕ2|+|ϕ3|+1, |π1∪π2| = |π1◦π2| = |π1|+|π2|+1, |π∗| = |π|+1, and|ϕ?| = |ϕ|+1.
The setsubf(ϕ) of subformulasof a formulaϕ and the set ofsubformulassubf(π)
of a programπ is inductively defined as follows: (i)subf(p) = {p} for all p ∈ P,
(ii) subf(¬ϕ) = {¬ϕ} ∪ subf(ϕ), (iii) subf(ϕ1 ∨ ϕ2) = {ϕ1 ∨ ϕ2} ∪ subf(ϕ1) ∪
subf(ϕ2), (iv) if ϕ = 〈π〉ψ, ϕ = perm(π)ψ, or ϕ = fperm(π)ψ, thensubf(ϕ) =
{ϕ} ∪ subf(π) ∪ subf(ψ), (v) if ϕ = grant(ϕ1, ϕ2)ϕ3 or ϕ = revoke(ϕ1, ϕ2)ϕ3,
thensubf(ϕ) = {ϕ} ∪

⋃3
i=1 subf(ϕi), (vi) subf(a) = ∅ for all a ∈ A, (vii) subf(π1 ∪

π2) = subf(π1 ◦ π2) = subf(π1) ∪ subf(π2), subf(π∗) = subf(π), and finally (viii)
subf(ϕ?) = subf(ϕ).

3.2 PDL and its compressed variants PDL⊕ and PDL⊕[A]

Formulasϕ andprogramsπ of the logic PDL⊕ are given by the following grammar,
wherep ranges overP anda ranges overA:

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | 〈π〉 ϕ

π ::= a | π1 ∪ π2 | π1 ◦ π2 | π
∗ | ϕ? | ⊕(π, ϕ1, ϕ2)

Formulas and programs of PDL⊕ are interpreted in Kripke structures (hence policy
sets do not occur). IfK = (X, {→a| a ∈ A}, ̺) is a Kripke structure, then for each
programπ, we can assign a binary relation[[π]]K ⊆ X × X , which is defined homo-
morphic for∪, ◦, and∗, and where the semantics of the program operator⊕ is defined
as[[⊕(π, ϕ1, ϕ2)]]K = ⊕([[π]]K, [[ϕ1]]K, [[ϕ2]]K). The size of⊕(π, ϕ1, ϕ2) is defined as
|⊕ (π, ϕ1, ϕ2)| = 1 + |π| + |ϕ1| + |ϕ2|. If π = ⊕(π′, ϕ1, ϕ2), then the set of subfor-
mulassubf(π) is defined assubf(π) = subf(π′) ∪ subf(ϕ1) ∪ subf(ϕ2). Similarly as
above, a Kripke structure(X, {→a| a ∈ A}, ̺) is amodelfor a PDL⊕ formulaϕ, if for
some statex ∈ X we have(K, x) |= ϕ. A PDL⊕ formulaϕ is satisfiable, if there exists
some model forϕ. The logic PDL⊕[A] is the syntactic fragment of PDL⊕, where the
program arguments of a⊕ program must either be an atomic program or a⊕ program
itself. More formally,formulasϕ, basic programsα andprogramsπ of PDL⊕[A] are
given by the following grammar, wherep ranges overP anda ranges overA:

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | 〈π〉 ϕ

α ::= a | ⊕(α, ϕ1, ϕ2)

π ::= α | π1 ∪ π2 | π1 ◦ π2 | π
∗ | ϕ?

The logic PDL is the syntactic fragment of PDL⊕ without the⊕ operator.

Remark 1.A PDL⊕ program⊕(π, ϕ1, ϕ2) can be translated into an equivalent PDL
program||⊕ (π, ϕ1, ϕ2)|| as follows, where||π||, ||ϕ1||, and ||ϕ2|| are inductively the
translations forπ, ϕ1, andϕ2 respectively:

||⊕ (π, ϕ1, ϕ2)|| = (||ϕ1||? ◦ ||π|| ∪ ||π|| ◦ ||ϕ2||?)

Hence, the logics PDL⊕, PDL⊕[A], and PDL are equi-expressive. However, by the
presence of⊕ programs, the above translation might cause an exponentialblowup.
Thus, the three logics may differ in succintness. In fact, our 2EXP-completeness result
for PDL⊕ shown in Section 7 implies that there does not exist a satisfiability preserving
translation from PDL⊕ to PDL that is computable in polynomial time.

4 Known results and difficulties of reasoning about DLP+dyn and
related logics

In this section, we state known results and explain some difficulties of determining the
complexity of reasoning about DLP+dyn and logics related to it.

Thesatisfiability problemasks, given a formulaϕ of any of the logics introduced above,
whetherϕ is satisfiable. By Fischer/Ladner and Pratt it is known:

Theorem 1 ([4, 9]). Satisfiability for PDL isEXP-complete.

Focusing on a natural translation from DLP+
dyn to PDL, Demri has recently shown:

Theorem 2 ([3]). There exists a satisfiability preserving reduction from DLP+
dyn to

PDL computable in polynomial time.

Since the size of the resulting PDL formula in the proof of Theorem 2 is exponential in
the size of the original DLP+dyn formula, the following theorem holds.

Theorem 3 ([3]).Satisfiability for DLP+dyn is in 2EXP.

For its fragment DLPdyn , the following upper bound is known.

Theorem 4 ([10]). Satisfiability for DLPdyn is in NEXP .

Let us summarize the difficulties of identifying the exact complexity of DLP+
dyn . By

the presence of the operatorsgrant andrevoke, the truth of a formula may depend on
the truth of a subformula in some modified extended Kripke structure. This behaviour
is very much in the flavor of sabotage modal logic of van Benthem [11]. The latter is
basically modal logic enhanced with a sabotage operator〈−〉. A formula 〈−〉ϕ holds
in a worldx of a Kripke structureK with state setX , if ϕ holds inx in K′, whereK′

is a Kripke structure that emerges fromK by removing some world fromX \ {x}. The
decidability status for sabotage modal logic is unknown so far. Yet, a variant of it, in
which the sabotage operator requires to remove some labeledtransition instead of some
world, has been proven undecidable by Löding and Rohde [7].At first glance, one could
think that the situation for DLP+dyn is even worse, since transitions can be removedand
added and since moreover these transitions can be specified in the logic itself. Interest-
ingly, it turns out, that precisely the fact that the updatedtransitions are specified in the
logic itself, allows translations to other logics that are more manageable w.r.t. satisfia-
bility. So, one promising approch to decide DLP+

dyn in EXP was a translation into PDL
with intersection and negation of atomic programs given in [3]. This translation has the
property that the width of nested intersection of the resulting formulas is bounded by
some constant. Firstly, a precise analysis of [5] yields that satisfiability of PDL with

the intersection on programs, where formulas have bounded intersection width, is in
EXP. Secondly, a result from [8] states that PDL with negation ofatomic programs is
in EXP too. But unfortunately, PDL with intersectionandnegation of atomic programs
has proven to be undecidable recently [5], even when restricting to formulas of con-
stant intersection width. A proposal of Demri [3] to improvethe 2EXP upper bound
for DLP+

dyn is to give a polynomial translation from DLP+dyn to PDL⊕ and to try to
decide satisfiability of PDL⊕ in EXP. However, we will prove in Section 7, that PDL⊕
is complete for2EXP.
Wrapping up, all mentioned translations have the drawback that either the target logic
was too hard w.r.t. complexity or the translations have a blowup in formula size. Nev-
ertheless, our solution to decide DLP+

dyn in deterministic exponential time is to find a
tricky translation into PDL⊕’s adequate fragment PDL⊕[A] and to show that PDL⊕[A]
is in EXP. By combining theEXP-hardness DLP+dyn inherits from PDL [4], we state
the main result of this paper.

Theorem 5. Satisfiability for DLP+dyn is EXP-complete.

As stated above, for proving Theorem 5, we first give a satisfiability preserving transla-
tion from DLP+

dyn to PDL⊕[A], that can be computed in polynomial time in Section 5.
An EXP upper bound for PDL⊕[A] is proven in Section 6.

5 A translation from DLP +
dyn to PDL⊕[A]

In this section, we give a satisfiability preserving translation from DLP+
dyn to PDL⊕[A]

that is computable in polynomial time. In this translation,a precise analysis of how ap-
pliedgrant andrevoke operators influence the truth of subformulas, allows to handle
DLP+

dyn. In parts, it combines some ideas from [3] and [6].
First, we introduce a notion of certain modified Kripke structures. Recall thatΦ de-
notes the set of all DLP+dyn formulas. LetΣ = (Φ× Φ× {∪, \})∗. For eachσ =
(θ1, θ

′
1, op1) · · · (θk, θ

′
k, opk) ∈ Σ, wherek ≥ 0, let Uσ = {m ∈ [k] | opm = ∪}

andMσ = {m ∈ [k] | opm = \}. If K is an extended Kripke structure, then for every
σ ∈ Σ define the extended Kripke structureK ↾ σ, by the length ofσ, inductively as
follows:K ↾ ε = K andK ↾ σ(ψ1, ψ2, op) = (K ↾ σ) ↾ ([[ψ1]]K↾σ, [[ψ2]]K↾σ, op) for all
ψ1, ψ2 ∈ Φ andop ∈ {∪, \}.

Remark 2.If K is an extended Kripke structure andσ ∈ Σ, then the extended Kripke
structuresK andK ↾ σ can only differ in their policy set. Thus, for alla ∈ A we have
[[a]]K = [[a]]K↾σ and for allp ∈ P we have[[p]]K = [[p]]K↾σ.

For a formulaϕ ∈ Φ, let Occ(ϕ) denote the set of all occurrences of subformulas of
ϕ and for eachψ ∈ Occ(ϕ), define the unique sequenceσ(ψ) ∈ Σ that we get by
considering thegrant andrevoke operators that occur along the path fromϕ to ψ in
the syntax tree ofϕ. We define, in a top down manner,σ : Occ(ϕ)→ Σ as follows:

– σ(ϕ) = ε

– If ψ = ¬χ, thenσ(χ) = σ(ψ).
– If ψ = ψ1 ∨ ψ2, thenσ(ψ1) = σ(ψ2) = σ(ψ).

– If ψ = 〈π〉χ, ψ = perm(π)χ, orψ = fperm(π)χ, thenσ(χ) = σ(ψ′) = σ(ψ) for
every test programψ′? of π.

– If ψ = grant(ψ1, ψ2)χ, thenσ(ψ1) = σ(ψ2) = σ(ψ), andσ(χ) = σ(ψ)(ψ1, ψ2,∪).
– If ψ = revoke(ψ1, ψ2)χ, thenσ(ψ1) = σ(ψ2) = σ(ψ), andσ(χ) = σ(ψ)(ψ1, ψ2, \).

Before giving the translation from DLP+dyn to PDL⊕[A], the following lemma charac-
terizes the policy set ofK ↾ σ, for everyσ ∈ Σ. Its proof is by induction onk.

Lemma 1. LetK = (X, {→a| a ∈ A}, ̺, P) be an extended Kripke structure,σ =
(θ1, θ

′
1, op1) · · · (θk, θ

′
k, opk) ∈ Σ (with k ≥ 0), K ↾ σ = (X, {→a| a ∈ A}, ̺, Pσ)

anda ∈ A.
Then, for all (x, y) ∈ X × X , we have(x, y) ∈ [[a]]K↾σ ∩ Pσ if and only if there
exists someu ∈ {0} ⊎ Uσ such that for allm ∈ Mσ ∩ [u, k] we have(x, y) ∈
[[⊕(a,¬θm,¬θ′m)]]K↾σ(m−1) and either (i)u = 0 and(x, y) ∈ P ∩ [[a]]K, or (ii) u ∈ Uσ
and(x, y) ∈ [[a]]K ∩ ([[θu]]K↾σ(u−1) × [[θ′u]]K↾σ(u−1)).
Conversely, for all(x, y) ∈ X × X , we have(x, y) ∈ [[a]]K↾σ \ Pσ if and only
if there exists somem ∈ {0} ⊎ Mσ such that for allu ∈ Uσ ∩ [m, k] we have
(x, y) ∈ [[⊕(a,¬θu,¬θ′u)]]K↾σ(u−1) and either (i)m = 0 and (x, y) ∈ [[a]]K \ P , or
(ii) m ∈Mσ and(x, y) ∈ [[a]]K ∩ ([[θm]]K↾σ(m−1) × [[θ′m]]K↾σ(m−1)).

Let us turn to our translation. For this, fix some DLP+
dyn formulaϕ over atomic pro-

gramsA and over atomic propositionsP for the rest of this section. Let{ψ1, . . . , ψn}
be an enumeration ofOcc(ϕ) and assumeψn = ϕ. Let A

′ = A ⊎ A and P
′ =

P ⊎ {p1, . . . , pn}. Below, we also writep(ψi) for pi wheneverψi ∈ Occ(ϕ). If σ =
(θ1, θ

′
1, op1) · · · (θk, θ

′
k, opk) ∈ σ(Occ(ϕ)), then for every subsetS = {j1, . . . , jl} ⊆

[k], wherej1 < j2 < · · · < jl, and every PDL⊕[A] programζ, define the PDL⊕ pro-
gramζS = ζSl , whereζS0 = ζ andζSh = ⊕(ζSh−1,¬p(θjh),¬p(θ′jh)) for all 1 ≤ h ≤ l.
We will build a PDL⊕[A] formulaϕ′ over the atomic programsA′ and over the atomic
propositionsP′ such thatϕ is satisfiable if and only ifϕ′ is satisfiable. Intuitively, ifK
is a model forϕ with policy setP andK′ is a model ofϕ′, think of the relation[[a]]K′

as[[a]]K ∩ P and of[[a]]K′ as[[a]]K \ P . Let us first, for everyψi ∈ Occ(ϕ), define the
PDL⊕[A] formula ||ψi|| over the atomic propositionsP′ and over the atomic programs
A
′ inductively as follows:

– If ψi = p for somep ∈ P, then||ψi|| = p.
– If ψi = ¬ψj , then||ψi|| = ¬pj .
– If ψi = ψj ∨ ψk, then||ψi|| = pj ∨ pk.
– If ψi = grant(ψj , ψk)ψl orψi = revoke(ψj , ψk)ψl, then||ψi|| = pl.
– If ψi = 〈π〉ψj , then||ψi|| = 〈T (π)〉pj , whereT (π) is homomorphic on∪, ◦, and

on∗, T (ψk?) = pk? for every test programψk?, andT (a) = a∪a for everya ∈ A.
– Assumeψi = perm(π)ψj andσ = σ(ψi) = (θ1, θ

′
1, op1) · · · (θk, θ

′
k, opk). Recall

thatUσ = {u ∈ [k] | opu = ∪} andMσ = {m ∈ [k] | opm = \}. Then,
we define||ψi|| = 〈T ∀(π)〉pj , whereT ∀(π) is homomorphic on∪, ◦, and on∗,
T ∀(ψk?) = pk? for every test programψk?. For everya ∈ A, we define1:

T ∀(a) = aMσ ∪
⋃

u∈Uσ

p(θu)? ◦ (a ∪ a)Mσ∩[u,k] ◦ p(θ′u)?

1 To avoid lengthy notations, the programsT ∀(a) and T ∃(a) for a ∈ A are not PDL⊕[A]
programs (since the⊕ operator is applied to a non-atomic programs of the kinda ∪ a, where

Via application of Lemma 1, the intention behindT ∀(a) is to describe the relation
[[a]]K↾σ ∩ Pσ, wherePσ is the policy set ofK ↾ σ.

– Assumeψi = fperm(π)ψj andσ = σ(ψi) = (θ1, θ
′
1, op1) · · · (θk, θ

′
k, opk). Then,

we define||ψi|| = ¬〈T ∃(π)〉pj , whereT ∃(π) is inductively defined as follows:
• T ∃(π1 ∪ π2) = T ∃(π1) ∪ T ∃(π2)
• T ∃(π1 ◦ π2) = T ∃(π1) ◦ T (π2) ∪ T (π1) ◦ T ∃(π2), whereT is defined as

above.
• T ∃(π∗) = T (π∗) ◦ T ∃(π) ◦ T (π∗), whereT is defined as above.
• T ∃(ψk?) = false?
• For everya ∈ A, we define1:

T ∃(a) = aUσ ∪
⋃

m∈Mσ

p(θm)? ◦ (a ∪ a)Uσ∩[m,k] ◦ p(θ′m)?

Via application of Lemma 1, the intention behindT ∃(a) is to describe the relation
[[a]]K↾σ \ Pσ, wherePσ is the policy set ofK ↾ σ.

Recallϕ = ψn. By identifying, for every subsetX ⊆ A ∪ A the programX with
⋃

x∈X x, we define

ϕ′ = pn ∧ [(A ∪ A)∗]
∧

i∈[n]

(pi ↔ ||ψi||).

Note that expressing↔ with ¬ and∨ only roughly doubles the size of the formula. The
following upper bound on the size ofϕ′ is not difficult to see.

Lemma 2. |ϕ′| ∈ O(|ϕ|3).

The correctness of the above translation follows from the following lemma.

Lemma 3. The formulaϕ is satisfiable if and only ifϕ′ is satisfiable.

By combining Lemma 2 and Lemma 3, we can deduce the following theorem.

Theorem 6. There exists a satisfiability preserving translation from DLP+
dyn to PDL⊕[A],

which is computable in polynomial time.

6 Satisfiability for PDL ⊕[A]

In this section, our goal is to prove that satisfiability of PDL⊕[A] is in EXP. So for the
rest of this section, fix some input PDL⊕[A] formulaϕ over atomic propositionsP and
over atomic programsA. To decide satisfiability ofϕ, we translateϕ into an alternating

a ∈ A). However, the programT ∀(a) can be rewritten as

a
Mσ ∪

[

u∈Uσ

p(θu)? ◦ a
Mσ∩[u,k]

◦ p(θ′

u)? ∪
[

u∈Uσ

p(θu)? ◦ a
Mσ∩[u,k]

◦ p(θ′

u)?

which is a PDL⊕[A] program. We can proceed analogously forT ∃(a).

Büchi tree automatonA(ϕ) that accepts exactly the set of so calledHintikka treesfor
ϕ. Roughly speaking, Hintikka trees forϕ summarize relevant information of models
of ϕ. So the satisfiability ofϕ reduces to non-emptiness of the tree language ofA(ϕ).
We follow a similar approach as in [8]. Although in the following the¬-operator may
occur in front of non-atomic formulas, we implictly assume w.l.o.g. that every occurring
PDL⊕[A] formula is in negation normal form, i.e. negations occur only in front of
atomic propositions. This can be achieved by introducing the operators∧ and[] and by
abbreviating¬(ϕ1 ∨ϕ2) by¬ϕ1 ∧¬ϕ2 and¬〈π〉ψ by [π]¬ψ. Thus, we associate¬¬ψ
with ψ. We call formulas of the kind〈π〉ψ diamond formulasand formulas of the kind
[π]ψ box formulas. The definition ofsubf is straightforward. As for DLP+dyn , for every
programπ that occurs inϕ, we can associate a regular languageL(π) over the alphabet
Σ(π), where the latter consists of the basic programs and the testprograms that occur in
π. Moreover, we assume that the programsπ, that occur inϕ, are given by NFAsA(π)
over the alphabetΣ(π), i.e.L(A(π)) = L(π). Moreover, ifK is a Kripke structure and
w = w1 · · ·wn with wi ∈ Σ(A(π)) for all i ∈ [n], then[[w]]K = [[w1]]K ◦ · · · ◦ [[wn]]K.
If A = (Q,Σ, q0, δ, F) is an NFA andq ∈ Q, thenAq = (Q,Σ, q, δ, F) denotes the
same NFA asA, but with initial stateq. If we do not explicitly defineA, thenQ(A)
denotes the state set ofA, Σ(A) denotes the alphabet ofA, q0(A) denotes the initial
state ofA, andF (A) denotes the set of final states ofA respectively.
We start by introducing theclosureof ϕ analogously as in [8, 14, 4].

Definition 1. Theclosurecl(ϕ) ofϕ is the smallest set such that:

– ϕ ∈ cl(ϕ),
– if χ ∈ subf(ψ) for someψ ∈ cl(ϕ), thenχ ∈ cl(ϕ),
– if ψ ∈ cl(ϕ), then¬ψ ∈ cl(ϕ),
– if 〈A〉ψ ∈ cl(ϕ), thenχ ∈ cl(ϕ) for all χ? ∈ Σ(A),
– if 〈A〉ψ ∈ cl(ϕ), α ∈ Σ(A) is a basic program, andχ ∈ subf(α), thenχ ∈ cl(ϕ),
– if 〈A〉ψ ∈ cl(ϕ), then for allq ∈ Q(A) we have〈Aq〉ψ ∈ cl(ϕ),
– if [A]ψ ∈ cl(ϕ), thenχ ∈ cl(ϕ) for all χ? ∈ Σ(A),
– if [A]ψ ∈ cl(ϕ), α ∈ Σ(A) is a basic program, andχ ∈ subf(α), thenχ ∈ cl(ϕ),

and finally
– if [A]ψ ∈ cl(ϕ), then for allq ∈ Q(A) we have[Aq]ψ ∈ cl(ϕ).

It is straightforward to verify, that the size ofcl(ϕ) is polynomial in the size ofϕ. Let
us now introduce Hintikka sets forϕ. These are subsets ofcl(ϕ), that satisfy certain
closure properties.

Definition 2. A subsetM ⊆ cl(ϕ) is a Hintikka set forϕ, if the following five closure
properties are satisfied:

(C1) if χ1 ∧ χ2 ∈M , thenχ1, χ2 ∈M ,
(C2) if χ1 ∨ χ2 ∈M , thenχ1 ∈M or χ2 ∈M ,
(C3) ψ ∈M if and only if¬ψ 6∈M for all ψ ∈ cl(ϕ),
(C4) if [A]χ ∈M andq0(A) ∈ F (A), thenχ ∈M ,

(C5) if [A]χ ∈ M , then for allq ∈ Q(A) and allχ′? ∈ Σ(A) with q0(A)
χ′?
⇒A q, we

have¬χ′ ∈M or [Aq]χ ∈M .

Recall that in any Hintikka setM for ϕ, by the presence of (C3), for allψ ∈ cl(ϕ),
we either haveψ ∈ M or ¬ψ ∈ M (but not both). LetB denote the set of all basic
programs that occur in some diamond formula or in some box formula fromcl(ϕ). For
eachα ∈ B inductively defineAt(α) = a if α = a ∈ A andAt(α) = At(β) if
α = ⊕(β, ϕ1, ϕ2). For handling nestings of applied⊕-operators in basic programs, we
introduce, for basic programsα ∈ B, an appropriate notion of whetherα holds between
two subsets ofcl(ϕ).

Definition 3. For all α ∈ B and all subsetsS, T ⊆ cl(ϕ) for ϕ, we define the relation
(S, T) |= α inductively by the syntactic structure ofα as follows:

– (S, T) |= a for all subsetsS, T ⊆ cl(ϕ), and alla ∈ A.
– If α = ⊕(β, χ1, χ2), then(S, T) |= α if and only if (χ1 ∈ S or χ2 ∈ T) and

(S, T) |= β.

Let us introduce infinite trees and infinite paths in them. IfΓ andΥ are sets, then a
Γ -labeledΥ -tree is a mappingT : D → Γ for some non-empty prefix-closed subset
D ⊆ Υ ∗. An infinite path ofT is a mappingτ : ω → Υ such thatτ(1) · · · τ(n) ∈ D
for all n ≥ 1. If k ∈ ω, then aΓ -labeledk-treeis aΓ -labeled[k]-treeT : D → Γ such
thatD = [k]∗.
Fix an enumerationψ1, . . . , ψk of all diamond formulas incl(ϕ). Let us now define
a concrete labeling setΓ , that we will comment on below in more detail. Define the
labeling setΓ = 2cl(ϕ)×(B⊎{⊥})× [0, k]. Intuitively, each modelK of ϕ corresponds
to someΓ -labeledk-treeT that contains the necessary information about how diamond
formulas are satisfied inK. We can think of it as assigning eachu ∈ [k]∗ some statex of
K. The first component ofT (u) contains exactly the set of formulas ofcl(ϕ) that hold in
x. The second component ofT (u) either contains the information by which witnessing
basic program the statexwas reached or whether this information is not important (then
it equals⊥). If, on the one hand, the third component ofT (u) contains the information
i ∈ [k], thenu has the obligation, in its subtree, to show that the diamond formulaψi
is true inx. If, on the other hand, the third component ofT (u) equals0, thenu is a
witness that some diamond formulaψj = 〈A〉χ ∈ cl(ϕ) holds in some worldy ∈ X –
more precisely, we have(K, x) |= χ and(y, x) ∈ [[w]]K for somew ∈ L(A). For every
γ ∈ Γ and everyj ∈ {1, 2, 3}, let γj denote thej-th component ofγ.
Before defining what a Hintikka tree is, let us first, forΓ -labeledk-trees, introduce a
notion of local consistency of the labelingT (u) ∈ Γ of worldsu ∈ [k]∗. For a stringw
over some alphabetΣ let Occ(w) ⊆ Σ denote the set of all letters that occur inw.

Definition 4. If T : [k]∗ → Γ is aΓ -labeledk-tree, andu ∈ [k]∗ is some world, we
say thatT is locally consistent inu, if the following two conditions hold:

(L1) Wheneverψi = 〈A〉χ ∈ T (u)1, then for some sequence of test programsw ∈
(Σ(A)\B)∗ and some stateq′ ∈ Q(A) such thatθ? ∈ Occ(w) impliesθ ∈ T (u)1,
q0(A)

w
⇒A q

′, and at least one of the following two conditions holds:
(a) – q′ ∈ F (A),

– χ ∈ T (u)1,
– T (ui)2 = ⊥, and
– T (ui)3 = 0, or

(b) there exists some basic programα ∈ Σ(A) ∩ B and some stateq ∈ Q(A)
such that

– q′
α
⇒A q,

– ψj = 〈Aq〉χ ∈ T (ui)1,
– T (ui)2 = α,
– T (ui)3 = j, and
– (T (u)1, T (ui)1) |= α.

(L2) Whenever[A]χ ∈ T (u)1 andq0(A)
α
⇒A q for some basic programα ∈ Σ(A)∩B

and someq ∈ Q(A), then the following implication holds for allj ∈ [k] with
T (uj)2 = β ∈ B andAt(α) = At(β):

(T (u)1, T (uj)1) |= α ⇒ [Aq]χ ∈ T (uj)1

Let us summarize the intention of local consistency of aΓ -labeledk-tree in a worldu ∈
[k]∗. As indicated above, condition (L1) ensures that wheneveru obliges to prove some
diamond formulaψi, then this proof is provided in the subtree ofu: Either we directly
prove thatψi holds inu ((L1)(a)), or we delay this proof by obliging an appropriate
successor ofu to prove an appropriate diamond formulaψj ((L1)(b)). Conditon (L2),
on the other hand, ensures that ifu obliges to prove some box formula, then all relevant
successors ofu must oblige to prove all relevant box formulas. We call a diamond
formulaψi infinitely delaying in a worldu ∈ [k]∗ of someΓ -labeledk-treeT , if there
exists an infinite pathτ : ω → [k] such thatτ(1) = i andT (uτ(1) · · · τ(n))3 =
τ(n+ 1) for all n ≥ 1.

Definition 5. A Hintikka tree forϕ is aΓ -labeledk-treeT such that

(H1) ϕ ∈ T (ε)1,
(H2) T (u)1 is a Hintikka set forϕ for all u ∈ [k]∗,
(H3) T is locally consistent in allu ∈ [k]∗, and
(H4) for all u ∈ [k]∗ and all i ∈ [k] such thatψi ∈ T (u)1, the diamond formulaψi is

not infinitely delaying inu.

The following lemma can be shown.

Lemma 4. The formulaϕ is satisfiable if and only if there exists a Hintikka tree forϕ.

Let us introduce alternating Büchi tree automata over infinite trees. Our goal is to con-
struct an alternating Büchi tree automatonA(ϕ) which accepts exactly the set of all
Hintikka trees forϕ. Thus, satisfiability ofϕ reduces to non-emptiness of the tree lan-
guage ofA(ϕ). If X is a set, letB+(X) denote the set of allpositive boolean formulas
over the setX . An alternating B̈uchi tree automatonoverΛ-labeledl-trees is a tu-
pleA = (S, s0, δ, F), where (1)S is a finite set ofstates, (2) s0 ∈ S is the initial
state, (3) δ : S × Λ → B+(S × ([l] ∪ {ε})) maps every pair(s, λ) ∈ S × Λ to a
positive boolean formulaδ(s, λ) over (S × ([l] ∪ {ε})), and (4)F ⊆ S is a set of
final states. Let T : [l]∗ → Λ be aΛ-labeledl-tree. A run of A on T is anS × [l]∗-
labeledω-treeR : D → S × [l]∗ (i.e.D is a non-empty prefix-closed subset ofω∗),
which satisfies the following: (1)R(ε) = (s0, ε), and (2) for allu ∈ D such that
R(u) = (s, x) andδ(s, T (x)) = θ there exists some setY = {(s1, i1), . . . , (sn, in)} ⊆

S × ([l] ∪ {ε}) such that (i)Y satisfies the formulaθ, and (ii) for all 1 ≤ j ≤ n,
we haveuj ∈ D andR(uj) = (sj , xij). We call a runR of A on T accepting,
if all infinite paths τ : ω → ω of R satisfy the Büchi acceptance condition, i.e.
{s ∈ S | R(τ(1) · · · τ(n)) ∈ ({s} × [l]∗) for infinitely manyn ∈ ω} ∩ F 6= ∅.
Let L(A) = {T | there exists an accepting run ofA on T } denote thelanguageac-
cepted byA. From [13], the following complexity for non-emptiness of the language
of alternating Büchi automata over infinite trees can be derived .

Theorem 7 ([13]). The language non-emptiness for alternating Büchi tree automata
A = (S, s0, δ, F) overΛ-labeledl-trees is decidable in time exponential in|S| and l,
and in time polynomial in|Λ| and in|δ|.

Note that in several definitions, alternating Büchi tree automata are not allowed to
useε-transitions. It can easily be verified that Theorem 7 still holds, if we allowε-
transitions. By translating Definition 1, 2, 3, 4, and 5 into an alternating Büchi tree
automaton, we can derive the following lemma.

Lemma 5. There exists an alternating Büchi tree automatonA = A(ϕ) = (S, s0, δ, F)
overΓ -labeledk-trees that accepts exactly the set of Hintikka trees forϕ. Moreover,
the size ofS is polynomial in|ϕ| and the size ofδ is exponential in|ϕ|.

Note that the Büchi acceptance condition suffices to check whether some diamond for-
mula is not infinitely delaying in some world. Clearly, we need alternation to check
(S, T) |= α for subsetsS, T ⊆ cl(ϕ) andα ∈ B and thus for checking local consis-
tency (H3). By Theorem 7 and Lemma 5, the existence of a Hintikka tree forϕ can be
decided in time exponential in|ϕ|. Thus, by applying Lemma 4, we get the following
theorem.

Theorem 8. Satisfiability for PDL⊕[A] is in EXP.

7 2EXP-completeness of PDL⊕

In this section, we prove that satisfiability for PDL⊕ is complete for2EXP. Let us first
introduce alternating Turing machines. An alternating Turing machine (ATM) is a tuple
M = (Q,Σ, Γ, q0, δ,�), where (i)Q = Qacc ⊎ Qrej ⊎ Q∃ ⊎ Q∀ is a finite set of
states, which is partitioned intoaccepting(Qacc), rejecting(Qrej), existential(Q∃), and
universal(Q∀) states, (ii)Γ is a finitetape alphabet, (iii) Σ ⊆ Γ is theinput alphabet,
(iv) q0 ∈ Q is theinitial state, (v) � ∈ Γ \Σ is theblank symbol, and (vi) the mapping
δ : (Q∃∪Q∀)×Γ → Moves×Moves with Moves = Q×Γ×{←,→}, assigns to every
pair (q, γ) ∈ (Q∃ ∪ Q∀) × Γ a pair of moves. So we assume that a configuration in a
current state fromQ∃∪Q∀ has exactly two successors. We call a configurationC ofM
in current stateq ∈ Q accepting, if either (i) q ∈ Qacc,(ii) q ∈ Q∃ and there exists an
accepting successor configuration ofC, or (iii) q ∈ Q∀ and all successor configurations
of C are accepting. LetL(M) = {w ∈ Σ∗ | configurationq0w is accepting} denote
the languageofM.

Theorem 9. Satisfiability for PDL⊕ is 2EXP-complete.

Proof (sketch).The upper bound follows easily by a translation from PDL⊕ into PDL
with an exponential blowup in formula size (cf. Remark 1) andby theEXP upper bound
of PDL (cf. Theorem 1). The proof of the lower bound is an adaption of the2EXP lower
bound for PDL with intersection from [6]. Fix some ATMM = (Q,Σ, Γ, q0, δ,�)
with a 2EXP-hard acceptance problem, that, on an inputw = w1 · · ·wn ∈ Σ∗ where
wi ∈ Σ for eachi ∈ [n], uses at most2p(n) space, wherep is some polynomial. By [1],
such a Turing machineM exists. We will give a reduction, computable in polynomial
time in n, that translatesw andM into a PDL⊕ formulaϕ = ϕ(M, w) such that
w ∈ L(M) if and only if ϕ is satisfiable. LetN = p(n) and assume thatQ andΓ are

disjoint. A configurationof M is a word from the language
⋃2N−1
i=0 Γ iQΓ 2N−i. Let

C = γ0 · · · γi−1qγi · · · γ2N−1 be a configuration ofM, where0 ≤ i ≤ 2N − 1, q ∈ Q,
andγj ∈ Γ for each0 ≤ j ≤ 2N − 1. Figure 1 illustrates how we will representC.

•
u0

c0(0)
c1(0)

.

.

.

cN−1(0)
pγ0

u1

•
c0(1)
c1(0)

.

.

.

cN−1(0)
pγ1

· · ·
ui

•
...

...

pγi
pq

ui+1

•
...

...

pγi+1

· · ·
u
2N−2
•

c0(0)
c1(1)

.

.

.

cN−1(1)
pγ

2N−2

u
2N−1

•
c0(1)
c1(1)

.

.

.

cN−1(1)
pγ

2N −1

•

•

s s s

s

s

Fig. 1. Representation of a configuration ofM.

So each worlduj (0 ≤ j ≤ 2N−1) represents the cell on positionj of the configuration
C (starting to count from0) and the symbols below each world are the atomic proposi-
tions that hold inuj . The atomic propositionscl(0) andcl(1), where0 ≤ l ≤ N − 1,
represent the binary encoding ofj. For each0 ≤ j ≤ 2N − 1, there exists exactly one
γ ∈ Γ such that the atomic propositionpγ holds inuj , expressing that the content of
the cell on positionj of C is γ. On the other hand, for exactly one0 ≤ j < 2N − 1
and exactly oneq ∈ Q, the atomic propositionpq holds inuj , expressing thatM is
currently in stateq and scans cellj. Furthermore, worldsuj anduj+1 are connected
by the atomic programs for all 0 ≤ j < 2N − 1. Moreover, the worldu2N−1 may be
connected to the first cell of one or both successor configuration(s) ofC via the atomic
programs. Let Λ = Q ⊎ Γ . Formally, the formulaϕ will be over the atomic propo-
sitionsP = {cj(0), cj(1) | 0 ≤ j ≤ N − 1} ∪ {pλ | λ ∈ Λ} and over the atomic
program setA = {s}. The crucial part of the formulaϕ is to find a programmatch that
relates the current cell to the cell of some successor configuration at same positions. Let
ϕfirst =

∧

1≤j≤N−1 cj(0), which expresses that the current world represents some cell
at position0. The auxiliary programπ = (s ◦ ¬ϕfirst?)

∗ ◦ s ◦ ϕfirst? ◦ (s ◦ ¬ϕfirst?)
∗

relates a cellc with a cellc′ such thatc′ is in some successor configuration of the config-
uration ofc, not necessarily at same positions. Letα−1 = π and, for all0 ≤ i ≤ N −1,
defineαi = ⊕(⊕(αi−1, ci(0), ci(1)), ci(1), ci(0)). We putmatch = αN−1. Since we
enforced that each reachable world in a model ofϕ satisfies exactly one of the atomic
propositionsci(0) andci(1) for all 0 ≤ i ≤ N − 1, the programmatch relates only
worlds that agree on the same atomic propositions from{ci(0), ci(1) | 0 ≤ i ≤ N−1}.

Since the programπ relates cells in consecutive configurations, we relate cells in con-
secutive configurations at same positions. ⊓⊔

AcknowledgmentsThe author thanks the anonymous referees for interesting and
substantial comments. Moreover the author thanks Markus Lohrey and Carsten Lutz for
fruitful discussions on the topic as well as Florian Studentfor reading a draft version of
this paper.

References

1. A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the Association
for Computing Machinery, 28(1):114–133, 1981.

2. R. Danecki. Nondeterministic Propositional Dynamic Logic with Intersection is decidable.
In Proc. of FCT 1984, LNCS 208, pages 34–53, Springer 1984.

3. S. Demri. A reduction from DLP to PDL.Journal of Logic and Computation, 15(5):767–
785, 2005.

4. M. J. Fischer and R. E. Ladner. Propositional Dynamic Logic of Regular Programs.Journal
of Computer and System Sciences, 18(2):194-211, 1979.

5. S. Göller, M. Lohrey, and C. Lutz. PDL with Intersection and Converse is 2EXP-Complete.
In Proc. of FoSSaCS 2007, LNCS 4423, pages 198–212, Springer 2007.

6. M. Lange and C. Lutz. 2-ExpTime Lower Bounds for Propositional Dynamic Logics with
Intersection.Journal of Symbolic Logic, 70(4):1072–1086, 2005.

7. C. Löding and P. Rohde. Model Checking and Satisfiabilityfor Sabotage Modal Logic. In
Proc. of FST&TCS 2003, LNCS 2914, pages 302–313, Springer 2003.

8. C. Lutz and D. Walther. PDL with Negation of Atomic Programs. Journal of Applied Non-
Classical Logic, 15(2):189–214, 2005.

9. V. R. Pratt. A Practical Decision Method for Propositional Dynamic Logic: Preliminary
Report. InProc. of STOC 1980, pages 326–337, ACM Press 1978.

10. R. Pucella and V. Weissman. Reasoning about Dynamic Policies. InProc. of FoSSaCS 2004,
LNCS 2987, pages 453–467, Springer 2004.

11. J. van Benthem. An Essay on Sabotage and Obstruction. InProc. of Mechanizing Mathe-
matical Reasoning, LNCS 2605, pages 268–276, Springer 2005.

12. R. van der Meyden. The Dynamic Logic of Permission.Journal of Logic and Computation,
6(3):465–479, 1996.

13. M. Y. Vardi. Reasoning about the Past with Two-Way Automata. In Proc. of ICALP 98,
LNCS 1443, pages 628–641, Springer 1998.

14. M. Y. Vardi and P. Wolper. Automata-Theoretic Techniques for Modal Logics of Programs.
Journal of Computer and System Sciences, 32(2):183–221, 1986.

15. R. J. Wieringa and J.-J. C. Meyer. Applications of Deontic Logic in Computer Science: A
Concise Overview. InDeontic Logic in Computer Science, pages 17–40, 1993.

Appendix
Proof of Lemma 3

Proof.
⇒: Assumeϕ is satisfiable. Hence there exists an extended Kripke structure K =
(X, {→a| a ∈ A}, ̺, P) over the atomic propositionsP and over the atomic programs
A s.t. for some worldx0 ∈ X we have(K, x0) |= ϕ. By Lemma 3.3. in [3], we can as-
sume that for alla, b ∈ A with a 6= b, we have→a ∩ →b= ∅. Recall that{ψ1, . . . , ψn}
is an enumeration ofOcc(ϕ) with ϕ = ψn. Define the Kripke structureK′ = (X, {→′

a|
a ∈ A ∪ A}, ̺′) over the atomic propositionsP ⊎ {p1, . . . , pn} and over the atomic
programsA ⊎ A as follows: For alla ∈ A define→′

a =→a ∩ P and→′
a =→a \ P

and for allx ∈ X we put̺′(x) = ̺(x) ∪ {pi | 1 ≤ i ≤ n ∧ (K ↾ σ(ψi), x) |= ψi}.
Hence, for alli ∈ [n] we have(K′, x) |= pi if and only if (K, σ(ψi)) |= ψi. Now, the
following claim holds:
Claim: For everyx ∈ X and for everyψi ∈ Occ(ϕ) we have:

(K ↾ σ(ψi), x) |= ψi ⇔ (K′, x) |= ||ψi||.

The claim is proven below. It remains to show thatK′ is a model ofϕ′. Due to the
definition of̺′ and the above claim, for everyx ∈ X and for everyψi ∈ Occ(ϕ), we
have(K′, x) |= pi if and only if (K′, x) |= ||ψi||. Since(K, x0) |= ϕ andϕ = ψn, we
also have(K′, x0) |= pn by the above claim. Thus, we can conclude

(K′, x0) |= pn ∧ [(A ∪ A)∗]
∧

i∈[n]

(pi ↔ ||ψi||).

We prove the above claim directly by distinction of the structure ofψi.

– If ψi is atomic, i.e.ψi = p for somep ∈ P, then by definition of|| · ||, we have
||ψi|| = p. Thus, we have

(K ↾ σ(ψi), x) |= p
Remark2
⇔ (K, x) |= p

⇔ p ∈ ̺(x)

⇔ p ∈ ̺′(x)

⇔ (K′, x) |= p.

– If ψi = ¬ψj , then(K ↾ σ(ψi), x) |= ψi if and only if (K ↾ σ(ψj), x) 6|= ψj . The
latter is equivalent to(K′, x) 6|= pj by definition of̺′. As ||ψi|| = ¬pj , we are done.

– If ψi = ψj ∨ ψk, then

(K ↾ σ(ψi), x) |= ψi ⇔ (K ↾ σ(ψj), x) |= ψj or (K ↾ σ(ψk), x) |= ψk

⇔ (K′, x) |= pj or (K′, x) |= pk

⇔ (K′, x) |= pj ∨ pk.

– If ψi = grant(ψj , ψk)ψl, then

(K ↾ σ(ψi), x) |= ψi ⇔ (((K ↾ σ(ψi)) ↾ (ψj , ψk,∪), x) |= ψl

⇔ (K ↾ σ(ψl), x) |= ψl

⇔ (K′, x) |= pl.

– If ψi = revoke(ψj , ψk)ψl, then

(K ↾ σ(ψi), x) |= ψi ⇔ (((K ↾ σ(ψi)) ↾ (ψj , ψk, \), x) |= ψl

⇔ (K ↾ σ(ψl), x) |= ψl

⇔ (K′, x) |= pl.

– If ψi = 〈π〉ψj , then by definition of̺ ′ for every test programψk? that occurs
in π and for everyy ∈ X we have(K ↾ σ(ψk), y) |= ψk if and only if pk ∈
̺′(y). Analogously, for everyy ∈ X we have(K ↾ σ(ψj), y) |= ψj if and only if
pj ∈ ̺′(y) by definition of̺′. Now leta ∈ A be arbitrary. By Remark 2, we have
[[a]]K↾σ(ψi) = [[a]]K and by construction ofK′ we have[[a]]K = [[a]]K′∪ [[a]]K′ , hence
[[a]]K↾σ(ψi) = [[a]]K′ ∪ [[a]]K′ = [[T (a)]]K′ . SinceT (π) is defined homomorphic on
∪, ◦, and on∗, andT (ψk?) = pk? for test programsψk?, it is easy to see that
(K ↾ σ(ψi), x) |= 〈π〉ψj if and only if (K′, x) |= 〈T (π)〉pj .

– Assumeψi = perm(π)ψj , σ = σ(ψi) = (θ1, θ
′
1, op1) · · · (θk, θ

′
k, opk) andK ↾

σ = (X, {→a| a ∈ A}, ̺, Pσ). By definition of ̺′, for everyy ∈ X and for
everyψk ∈ Occ(ϕ) such that eitherψk? occurs inπ or ψk occurs inσ, we have
(K ↾ σ(ψk), y) |= ψk if and only if pk ∈ ̺′(y). Analogously, for everyy ∈ X we
have(K ↾ σ(ψj), y) |= ψj if and only ifpj ∈ ̺′(y) by definition of̺′. Leta ∈ A be
arbitrary. Again, by Remark 2, we have[[a]]K↾σ(l) = [[a]]K′ ∪ [[a]]K′ for all l ∈ [0, k].
Too, by construction ofK′, we have[[a]]K ∩ P = [[a]]K′ . Moreover, recall that for
every subsetS = {j1, . . . , jl} ⊆ [k] and every programζ, we definedζS = ζSl ,
whereζS0 = ζ, andζSh = ⊕(ζSh−1,¬p(θjh),¬p(θ′jh)) for all h ∈ [1, l]. Taking this
all together and by applying Lemma 1, we can formulate(y, z) ∈ [[a]]K↾σ ∩ Pσ as
follows: There exists someu ∈ {0} ⊎ Uσ such that

(y, z) ∈

{

[[aMσ]]K′ if u = 0

[[p(θu)? ◦ (a ∪ a)Mσ∩[u,k] ◦ p(θu)′?]]K′ else
.

Hence, for all(y, z) ∈ X × X we have(y, z) ∈ [[a]]K↾σ ∩ Pσ if and only if
(y, z) ∈ [[T ∀(a)]]K′ . SinceT ∀ is defined homomorphic on∪, ◦, and on∗, and
T ∀(ψk?) = pk? for test programsψk?, it follows that(K ↾ σ(ψi), x) |= ψi) if and
only if (K′, x) |= 〈T ∀(π)〉pj .

– ψi = fperm(π)ψj can be proven analogously to the previous case.

⇐: Assumeϕ′ is satisfiable. Hence, there exists an extended Kripke structureK′ =
(X, {→′

a| a ∈ A ⊎ A}, ̺) over the atomic propositionsP ⊎ {p1, . . . , pn} and over the
atomic programsA ⊎ A such that for somex0 ∈ X we have(K′, x0) |= ϕ′. Since
PDL⊕[A] is equally expressive as PDL and PDL is a fragment of DLP+

dyn , we can

again apply Lemma 3.3. in [3] and assume that for alla, b ∈ A ∪ A with a 6= b we have

→′
a ∩ →

′
b= ∅. LetK = (X, {→a| a ∈ A}, ̺, P) be the extended Kripke structure over

the atomic propositionsP and over the atomic programsA, where for alla ∈ A we have
→a=→

′
a ∪ →

′
a, for all x ∈ X we have̺ (x) = ̺′(x) ∩ P, andP =

⋃

a∈A
→′
a. Recall

ϕ = ψn and

ϕ′ = pn ∧ [(A ∪ A)∗]
∧

i∈[n]

(pi ↔ ||ψi||).

We call a statex ∈ X reachablefrom x0 if (x0, x) ∈
(
⋃

a∈A
→′
a ∪ →

′
a

)∗
(which is

equivalent to(x0, x) ∈
(
⋃

a∈A
→a

)∗
). Now, the following claim holds:

Claim: For everyψi ∈ Occ(ϕ) and for everyx ∈ X that is reachable fromx0, we have

(K ↾ σ(ψi), x) |= ψi ⇔ (K′, x) |= pi.

The claim is proven below. We show thatK is a model forϕ. By assumption, we have
(K′, x0) |= ϕ′, thus also(K′, x0) |= pn. Sinceψn = ϕ and by applying the above
claim, we have(K, x0) |= ϕ. We proceed by proving the above claim. Recall that

(K′, x0) |= pn ∧ [(A ∪ A)∗]
∧

i∈[n]

(pi ↔ ||ψi||).

Define the binary relation< ⊆ Occ(ϕ)×Occ(ϕ) as follows:

ψi < ψj ⇔ ψi 6= ψj and(ψi ∈ Occ(ψj) orψi occurs inσ(ψj)).

Clearly, the relation< is acyclic. Define⊏ = <+. Hence, the relation⊏ is a strict
partial order onOcc(ϕ). We prove the above claim by induction on⊏.
Base. Let ψi be minimal w.r.t.⊏. Thenψi = p for somep ∈ P. Since(K′, x0) |= ϕ′

andx is reachable fromx0, we have(K′, x) |= pi ↔ ||ψi||. Since||ψi|| = p, we get

(K ↾ σ(ψi), x) |= p
Remark2
⇔ (K, x) |= p

⇔ (K′, x) |= p

⇔ (K′, x) |= pi.

Step.

– If ψi = ¬ψj , then we have

(K ↾ σ(ψi), x) |= ψi ⇔ (K ↾ σ(ψi), x) 6|= ψj

⇔ (K ↾ σ(ψj), x) 6|= ψj
IH
⇔ (K′, x) 6|= pj

⇔ (K′, x) |= ¬pj
(K′,x)|=pi↔¬pj

⇔ (K′, x) |= pi.

– If ψi = ψj ∨ ψk, then we have

(K ↾ σ(ψi), x) |= ψi ⇔ (K ↾ σ(ψi), x) |= ψj or (K ↾ σ(ψi), x) |= ψk

⇔ (K ↾ σ(ψj), x) |= ψj or (K ↾ σ(ψk), x) |= ψk
IH
⇔ (K′, x) |= pj or (K′, x) |= pk

⇔ (K′, x) |= pj ∨ pk
(K′,x)|=pi↔pj∨pk

⇔ (K′, x) |= pi.

– Assumeψi = 〈π〉ψj . By IH, for every statey ∈ X that is reachable fromx0

we have (i)(K ↾ σ(ψk), y) |= ψk if and only if (K′, y) |= pk for everyψk ∈
Occ(ϕ) such that eitherψk? occurs as a test program ofπ or ψk occurs inσ and
(ii) (K ↾ σ(ψj), y) |= ψj if and only if (K′, y) |= pj . By definition ofK and by
Remark 2, we have[[a]]K↾σ = [[a]]K = [[a]]K′ ∪ [[a]]K′ , thus[[a]]K↾σ = [[T (a)]]K′ .
Furthermore, it is clear that whether(K ↾ σ(ψi), x) |= ψi or not, depends only on
thosey ∈ X that are reachable fromx (and thus reachable fromx0). SinceT (π) is
defined homomorphic on∪, ◦ and on∗, T (ψk?) = pk? for test programsψk?, it is
easy to see that(K ↾ σ(ψi), x) |= 〈π〉ψj if and only if (K′, x) |= 〈T (π)〉pj . Since
x is reachable fromx0 and we have(K′, x) |= (〈T (π)〉pj)↔ pi, we are done.

– If ψi = grant(ψj , ψk)ψl, then we have

(K ↾ σ(ψi), x) |= ψi ⇔ (K ↾ σ(ψl), x) |= ψl
IH
⇔ (K′, x) |= pl

(K′,x)|=(pi↔pl)
⇔ (K′, x) |= pi.

– If ψi = revoke(ψj , ψk)ψl, then we have

(K ↾ σ(ψi), x) |= ψi ⇔ (K ↾ σ(ψl), x) |= ψl
IH
⇔ (K′, x) |= pl

(K′,x)|=(pi↔pl)
⇔ (K′, x) |= pi.

– If ψi = perm(π)ψl, then we can prove(K ↾ σ(ψi), x) |= ψi ⇔ (K′, x) |= pi
similarly as for the casefperm below.

– Assumeψi = fperm(π)ψl, σ = σ(ψi) = (θ1, θ
′
1, op1) · · · (θk, θ

′
k, opk) andK ↾

σ = (X, {→a| a ∈ A}, ̺, Pσ). By IH, for every statey ∈ X that is reach-
able fromx0 and everyψk ∈ subf(ϕ) such that eitherψk? occurs as a test pro-
gram in π, or ψk occurs inσ, we have(K ↾ σ(ψk), y) |= ψk if and only if
(K′, y) |= pk. Too, by IH, for all y ∈ X that are reachable fromx0, we have
(K ↾ σ(ψj), y) |= ψj if and only if (K′, y) |= pj . Let a ∈ A be arbitrary. By con-
struction ofK = (X, {→a| a ∈ A}, ̺, P) and by Remark 2, we have[[a]]K \ P =
[[a]]K′ and [[a]]K↾σ = [[a]]K′ ∪ [[a]]K′ = [[T (a)]]K′ . Moreover, recall that for every
subsetS ⊆ {j1, . . . , jl} ⊆ [k] and every programζ, we haveζS = ζSl , where
ζS0 = ζ andζSh = ⊕(ζSh−1,¬p(θjh),¬p(θ′jh)) for all h ∈ [1, l]. Taking this all to-
gether and by applying Lemma 1, we can, for ally, z ∈ X that are reachable from

x0, formulate(y, z) ∈ [[a]]K↾σ \ Pσ as follows: There exists somem ∈ {0} ⊎Mσ

such that(y, z) ∈

{

[[aUσ]]K′ if m = 0

[[p(θm)? ◦ (a ∪ a)Uσ∩[m,k] ◦ p(θ′m)?]]K′ else
.

Hence, for ally, z ∈ X that are reachable fromx0, we have(y, z) ∈ [[a]]K↾σ \
Pσ if and only if (y, z) ∈ [[T ∃(a)]]K′ . Moreover, it is clear that, whether(K ↾

σ(ψi), x) |= ψi or not, depends only on those worlds that are reachable fromx

(and thus reachable fromx0). Hence, it is easy to see, by definition ofT ∃(π), that
we have(K ↾ σ(ψi), x) |= fperm(π)ψj if and only if (K′, x) |= ¬〈T ∃(π)〉pj .
Sincex is reachable fromx0 and thus(K′, x) |= (¬〈T ∃(π)〉pj) ↔ pi, we can
conclude(K′, x) |= pi.

⊓⊔

Proof of Lemma 4

Proof.
⇒: Assumeϕ is satisfiable. Then, there exists a Kripke structureK = (X, {→a| a ∈
A}, ̺) and some worldz ∈ X with (K, z) |= ϕ. Recall thatψ1, . . . , ψk is an enumera-
tion of all diamond formulas ofcl(ϕ). For each NFAA that appears in some diamond
formula 〈A〉χ ∈ cl(ϕ), fix an arbitrary total order⊏A onΣ(A). We extend the total
order⊏A to words overΣ(A) as the corresponding length lexicographic order w.r.t.
⊏A, i.e. for allu, v ∈ Σ(A)∗ we defineu ⊏A v if and only if either (i)|u| < |v|, or (ii)
|u| = |v| and for somew ∈ Σ(A)∗ and someb, c ∈ Σ(A) with b ⊏A c we have thatwb
is a prefix ofu andwc is a prefix ofv. Let us, for eachx ∈ X and eachi ∈ [k] such that
ψi = 〈A〉χ and(K, x) |= ψi, fix the⊏A-minimal sequenceσx,i = b1 · · · bn (n ≥ 0),
wherebj ∈ Σ(A) for eachj ∈ [n], and fix someinvolved worldsx0, x1, . . . , xn ∈ X
and someinvolved statesq0, q1, . . . , qn ∈ Q(A) such that

– x0 = x,
– q0 = q0(A),
– (xj−1, xj) ∈ [[bj]]K for all j ∈ [n],

– qj−1
bj
⇒A qj for all j ∈ [n],

– (K, xn) |= χ, and
– qn ∈ F (A).

Recall thatB denotes the set of all basic programs that occur inϕ andΓ = 2cl(ϕ) ×
(B ⊎ {⊥}) × [0, k]. Our goal is to find a Hintikka tree forϕ. For this, inductively,
by the length of the elements from[k]∗, we simultaneously define aΓ -labeledk-tree
T : [k]∗ → Γ and a mappingΨ : [k]∗ → X . We set

Ψ(ε) = z,

T (ε)1 = {ψ ∈ cl(ϕ) | (K, z) |= ψ},

T (ε)2 = ⊥, and

T (ε)3 = 0.

The definition ofT andΨ will have the property that for allu ∈ [k]∗ we have

T (u)1 = {ψ ∈ cl(ϕ) | (K, Ψ(u)) |= ψ}. (1)

Now assume thatΨ(u) andT (u) have been defined foru ∈ [k]∗ but yetΨ(ui) and
T (ui) have not been defined for alli ∈ [k]. AssumeΨ(u) = x for somex ∈ X . Then,
for eachi ∈ [k], we do the following:

– If ψi = 〈A〉χ ∈ T (u)1, then we know, by equation (1), that(K, x) |= ψi. We
distinguish two cases:
• σx,i is either empty or only consists of test programs. Then, we put

Ψ(ui) = z,

T (ui)1 = {ψ ∈ cl(ϕ) | (K, z) |= ψ},

T (ui)2 = ⊥, and

T (ui)3 = 0.

• σx,i = b1 · · · bn contains at least one basic program. Moreover, letq0, q1, . . . , qn ∈
Q(A) be the involved states and letx0, x1, . . . , xn ∈ X be the involved worlds
for σx,i. Let l ∈ [n] be minimal such thatbl = α ∈ B is a basic program and
let ψj = 〈Aql

〉χ. Then, we put

Ψ(ui) = xl,

T (ui)1 = {ψ ∈ cl(ϕ) | (K, xl) |= ψ},

T (ui)2 = α, and

T (ui)3 = j.

– If ψi = 〈A〉χ 6∈ T (u)1, then we put

Ψ(ui) = z,

T (ui)1 = {ψ ∈ cl(ϕ) | (K, z) |= ψ},

T (ui)2 = ⊥, and

T (ui)3 = 0.

Before proving thatT is indeed a Hintikka tree, we prove the following claim:
Claim: For all u ∈ [k]∗ and all i ∈ [k] such thatT (ui)2 = β for someβ ∈ B, the
following equivalence holds for allα ∈ B with At(α) = At(β):

(Ψ(u), Ψ(ui)) ∈ [[α]]K ⇔ (T (u)1, T (ui)1) |= α.

Proof (of claim).Let At(α) = At(β) = a for somea ∈ A. We prove the claim by
induction on the syntactic structure ofα, which is possible sinceAt(α′) = At(α) for
all basic programsα′ that occur inα.
Base. Assumeα is atomic. SinceT (ui)2 = β, we have(Ψ(u), Ψ(ui)) ∈ [[β]]K by
definition ofT . Sinceα is atomic, it is clear that also(Ψ(u), Ψ(ui)) ∈ [[α]]K. On the
other hand, directly by definition of|=, we have(T (u)1, T (ui)1) |= α.

Step. Now assumeα = ⊕(α′, χ1, χ2) and, by IH, the claim already holds forα′. We
have

(Ψ(u), Ψ(ui)) ∈ [[α]]K

⇔ (Ψ(u), Ψ(ui)) ∈ ⊕([[α′]]K, [[χ1]]K, [[χ2]]K)

⇔ (Ψ(u), Ψ(ui) ∈ [[α′]]K and(Ψ(u) ∈ [[χ1]]K or Ψ(ui) ∈ [[χ2]]K)
IH
⇔ (T (u)1, T (ui)1) |= α′ and(Ψ(u) ∈ [[χ1]]K or Ψ(ui) ∈ [[χ2]]K)

eq. (1)
⇔ (T (u)1, T (ui)1) |= α′ and(χ1 ∈ T (u)1 or χ2 ∈ T (ui)1)

Def. of |=
⇔ (T (u)1, T (ui)1) |= α.

This completes the proof of the above claim.

It remains to prove thatT is indeed a Hintikka tree forϕ.
Point (H1), i.e.ϕ ∈ T (ε)1, follows directly from the induction base of the definition of
T .

It follows directly by the semantics of PDL⊕[A] that (H2) holds, i.e.T (u)1 is a Hin-
tikka set forϕ for everyu ∈ [k]∗.

Let us prove (H3), i.e.T is locally consistent in allu ∈ [k]∗. Let Ψ(u) = x for some
x ∈ X .
First, let us prove that (L1) holds. So leti ∈ [k] and assumeψi = 〈A〉χ ∈ T (u)1. Then,
by equation (1), we have(K, x) |= ψi. Assumeσx,i = b1 · · · bn, let q0, q1, . . . , qn ∈
Q(A) be its involved states, and letx0, x1, . . . , xn ∈ X be its involved worlds. Fur-
thermore, letw = χ1? · · ·χl? (l ≥ 0) be the longest prefix ofσx,i that only consists
of test programs. Thus, we haveq0(A)

w
⇒A ql and(K, x) |= χj for all j ∈ [l]. Hence,

{χ1, . . . , χl} ⊆ T (u)1 by equation (1). We distinguish the following two cases:

1. If σx,i is empty or only consists of test programs, thenl = n, xl = x, andql ∈
F (A). Since the latter implies(K, x) |= χ, we getχ ∈ T (u)1 by equation (1). By
construction ofT , we haveT (ui)2 = ⊥ andT (ui)3 = 0. Altogether, this implies
(L1) (a).

2. Assumeσx,i contains at least one basic program. This impliesbl+1 = α for some
α ∈ B and we haveql

α
⇒A ql+1. Letψj = 〈Aql+1

〉χ. Clearly, we have(K, xl+1) |=
ψj and due to construction ofT , we haveΨ(ui) = xl+1. Thus, equation (1) yields
ψj ∈ T (ui)1. By construction ofT , we also haveT (ui)2 = α andT (ui)3 = j.
Since(Ψ(u), Ψ(ui)) ∈ [[α]]K andT (ui)2 = α, the above claim implies
(T (u)1, T (ui)1) |= α. Altogether, this implies (L1) (b).

Let us now prove that (L2) holds. So assume[A]χ ∈ T (u)1 andq0(A)
α
⇒ q for some

α ∈ Σ(A) ∩ B and someq ∈ Q(A). Furthermore, assume, by contradiction, that
for somej ∈ [k] with T (uj)2 = β, whereβ ∈ B andAt(α) = At(β), we have
(T (u)1, T (uj)1) |= α and [Aq]χ 6∈ T (uj)1. By equation (1),[Aq]χ 6∈ T (uj)1 is
equivalent to(K, Ψ(uj)) |= 〈Aq〉¬χ. Since(T (u)1, T (uj)1) |= α, we have
(Ψ(u), Ψ(uj)) ∈ [[α]]K by the above claim. By combiningq0(A)

α
⇒A q and(Ψ(u), Ψ(uj)) ∈

[[a]]K and(K, Ψ(uj)) |= 〈Aq〉¬χ, we can deduce(K, Ψ(u)) |= 〈A〉¬χ, which contra-
dicts to(K, Ψ(u)) |= [A]χ and thus also to[A]χ ∈ T (u)1 by equation (1).

Before finally proving (H4), the following proposition holds:
Proposition: For all u ∈ [k]∗ and all i ∈ [k] such thatψi ∈ T (u)1, Ψ(u) = x,
Ψ(ui) = y, andT (ui)3 = j for somex, y ∈ X and somej ∈ [k], we have

|σx,i| > |σy,j |.

The proposition follows directly by construction ofT and by definition ofσx,i andσy,j .
To prove (H4), assume, by contradiction, that for somei ∈ [k] the diamond formulaψi
is infinitely delaying in someu ∈ [k]∗. Furthermore, assumeΨ(u) = x for some
x ∈ X . But by the above proposition, the existence of an infinite path τ : ω → [k]
with τ(1) = i andT (uτ(1) · · · τ(n))3 = τ(n+ 1) for all n ≥ 1 clearly contradicts the
finiteness of|σx,i|.

⇐: Let T : [k]∗ → Γ be a Hintikka tree forϕ. We will prove that there exists a model
for ϕ. Define the Kripke structureK = (X, {→a| a ∈ A}, ̺) as follows:

– X = [k]∗,
– for all a ∈ A, we define

→a = {(u, ui) ∈ [k]∗× [k]∗ | i ∈ [k], T (ui)2 = α ∈ B andAt(α) = a},

– and for allu ∈ [k]∗, we define̺ (u) = T (u)1 ∩ P.

Let us define the acyclic binary relation≺⊆ cl(ϕ)×cl(ϕ) as the smallest binary relation
on cl(ϕ) that satisfies the following conditions:

– If ψ = χ1 ∧ χ2 ∈ cl(ϕ) orψ = χ1 ∨ χ2 ∈ cl(ϕ), thenχi ≺ ψ and¬χi ≺ ψ for all
i ∈ {1, 2}.

– If ψ = 〈A〉χ ∈ cl(ϕ) or ψ = [A]χ ∈ cl(ϕ), thenχ ≺ ψ, ¬χ ≺ ψ andχ′ ≺
ψ,¬χ′ ≺ ψ for all formulasχ′ ∈ cl(ϕ) such that eitherχ′? ∈ Σ(A) \ B is a test
program orχ′ occurs in some basic program ofΣ(A).

Let ⊏=≺+ be the transitive closure of≺, which is a strict partial order oncl(ϕ). Note
that the minimal elements ofcl(ϕ) w.r.t. ⊏ are formulasψ such that eitherψ = p or
ψ = ¬p for somep ∈ P. Our goal is to prove, that, for allψ ∈ cl(ϕ) and for allu ∈ [k]∗,
the following implication holds:

ψ ∈ T (u)1 ⇒ (K, u) |= ψ. (2)

The lemma then follows immediateley, since, by (H1), we knowϕ ∈ T (ε)1 and thus,
by implication (2), we get(K, ε) |= ϕ. We prove implication (2) by induction on⊏.
Base. Assumeψ is minimal w.r.t.⊏. Henceψ = p or ψ = ¬p for somep ∈ P. It
follows directly by the definition of̺ and by (C3) thatψ ∈ T (u)1 implies(K, u) |= ψ.
Step.

– If ψ = χ1 ∧ χ2 or ψ = χ1 ∨ χ2, thenψ ∈ T (u)1 ⇒ (K, u) |= ψ follows
immediateley by (C1),(C2), and by IH.

– Letψ = 〈A〉χ orψ = [A]χ. Let us first prove the following claim:
Claim: Let u ∈ [k]∗ andi ∈ [k] and assume(u, ui) ∈→a for somea ∈ A. Then,
for all basic programsα ∈ Σ(A) ∩ B such thatAt(α) = a, we have

(T (u)1, T (ui)1) |= α ⇔ (u, ui) ∈ [[α]]K.

Proof (of claim).SinceAt(α′) = At(α) for all basic programsα′ that occur inα,
we can prove the claim by induction on the syntactic structure ofα.
Base. Assumeα is atomic. By definition of|=, we have(T (u)1, T (ui)1) |= α. By
assumption, we also have(u, ui) ∈ [[α]]K.
Step. Letα = ⊕(α′, χ1, χ2) and assume the claim is true forα′. Let us first prove
that the following two statements are equivalent:
(i) χ1 ∈ T (u)1 or χ2 ∈ T (ui)1.
(ii) u ∈ [[χ1]]K or ui ∈ [[χ2]]K.
The implication from (i) to (ii) follows directly by (C2) andthe outer IH. To prove
that (ii) implies (i), assume by contradiction and w.l.o.g., u ∈ [[χ1]]K andχ1 6∈
T (u)1. Then, by (C3), we have¬χ1 ∈ T (u)1. By the outer IH, we have(K, u) 6|=
χ1, which contradictsu ∈ [[χ1]]K. Thus, we get

(T (u)1, T (ui)1) |= α

Def. of |=
⇔ (T (u)1, T (ui)1) |= α′ and(χ1 ∈ T (u)1 or χ2 ∈ T (ui)1)

(i) ⇔ (ii)
⇔ (T (u)1, T (ui)1) |= α′ and(u ∈ [[χ1]]K or ui ∈ [[χ2]]K)

inner IH
⇔ (u, ui) ∈ [[α′]]K and(u ∈ [[χ1]]K or ui ∈ [[χ2]]K)

⇔ (u, ui) ∈ ⊕([[α′]]K, [[χ1]]K, [[χ2]]K)

⇔ (u, ui) ∈ [[α]]K.

This completes the proof of the claim.

Let us first prove that ifψ = 〈A〉χ, thenψ ∈ T (u)1 implies (K, u) |= ψ. Let
ψ = ψi for somei ∈ [k] and assume thatψi ∈ T (u)1. SinceT is a Hintikka tree
for ϕ, and thus the diamond formulaψi is not infinitely delaying inu, there exists
a unique finite sequenceτ = j1 · · · jn ∈ [k]∗, n ≥ 1, such thatj1 = i, T (uτ)3 = 0
andT (uτ (m))3 = jm+1 for all 1 ≤ m < n. Let Σ? = Σ(A) \ B denote the
set of all test programs that occur inΣ(A). SinceT (uτ (m))3 = jm+1 6= 0 and
T is locally consistent inuτ (m) for all 1 ≤ m < n, condition (L1)(b) holds for
all uτ (m) with 1 ≤ m < n. On the other hand, sinceT (uτ)3 = 0 andT is also
locally consistent inuτ , we know that condition (L1)(a) holds inuτ . Taking these
facts together, we conclude that there exist statesq1, q

′
1, . . . , qn, q

′
n ∈ Q(A), words

w1, . . . , wn−1 ∈ Σ∗
? , and basic programsα1, . . . , αn−1 ∈ Σ(A) ∩ B such that the

following holds:
(1) q1 = q0(A),
(2) Occ(wm) ⊆ T (uτ (m−1))1 for all 1 ≤ m ≤ n,
(3) qm

wm⇒A q
′
m for all 1 ≤ m ≤ n,

(4) q′m
αm⇒A qm+1 for all 1 ≤ m < n,

(5) ψjm = 〈Aqm
〉χ ∈ T (uτ (m−1))1 for all 1 ≤ m < n,

(6) (T (uτ (m−1))1, T (uτ (m))1) |= αm for all 1 ≤ m < n,
(7) q′n ∈ F (A),
(8) χ ∈ T (uτ (n−1))1, and
(9) T (uτ)2 = ⊥.
Taking the transitions from (3) and (4) together, we obtain the following run:

q0(A) = q1
w1⇒A q

′
1
α1⇒A q2 · · ·

αn−1
⇒ A qn

wn⇒A q
′
n

Moreover, by the above claim, point (6) implies(uτ (m−1), uτ (m)) ∈ [[αm]]K for
all 1 ≤ m < n. By the IH, point (2) implies(uτ (m−1), uτ (m−1)) ∈ [[wm]]K for
all 1 ≤ m ≤ n. Altogether, we obtain(u, uτ (n−1)) ∈ [[w1α1 · · ·wn−1αn−1wn]]K.
Moreover, point (8) and the IH implies(K, uτ (n−1)) |= χ. Since, by point (1),
q1 = q0(A) and, by (7),q′n ∈ F (A), we conclude(K, u) |= 〈A〉χ.

It remains to prove that[A]χ ∈ T (u)1 implies (K, u) |= [A]χ. For this, assume
[A]χ ∈ T (u)1. Let u0, u1, . . . , un ∈ [k]∗ be worlds such that for some states
q0, . . . , qn ∈ Q(A) and someσ1, . . . , σn ∈ Σ(A) the following holds:
(1) u0 = u,
(2) q0 = q0(A),
(3) for all 1 ≤ j ≤ n we haveqj−1

σj
⇒A qj ,

(4) for all 1 ≤ j ≤ n we have(uj−1, uj) ∈ [[σj]]K, and
(5) qn ∈ F (A).
We prove(K, un) |= χ. It suffices to prove that for all0 ≤ j ≤ n we have
[Aqj

]χ ∈ T (uj)1, sinceqn ∈ F (A) and[Aqn
]χ ∈ T (un)1 impliesχ ∈ T (un)1

by (C4) and this yields(K, un) |= χ by the outer IH. We prove[Aqj
]χ ∈ T (uj)1

by induction onj. The induction base, i.e.[Aq0]χ ∈ T (u0)1, holds by assumption.
For the induction step, let0 ≤ j < n and assume[Aqj

]χ ∈ T (uj)1 already holds.
To prove[Aqj+1]χ ∈ T (uj+1)1, we distinguish the following two cases:
• σj+1 is a test program, i.e.σj+1 = χ′? for someχ′? ∈ Σ(A)\B. Hence,uj =
uj+1 and(K, uj+1) |= χ′. The outer IH and (C3) implies¬χ′ 6∈ T (uj+1)1.

Since alsoq0(Aqj
) = qj

χ′

⇒A qj+1, we get[Aqj+1]χ ∈ T (uj+1)1 by (C5).
• σj+1 is a basic program, i.e.σj+1 = α for someα ∈ Σ(A)∩B. As(uj , uj+1) ∈

[[α]]K, there exists someβ ∈ B such thatT (uj+1)2 = β andAt(α) = At(β).
Too, the above claim yields(T (uj)1, T (uj+1)1) |= α. Hence, by (L2), we get
[Aqj+1]χ ∈ T (uj+1)1.

⊓⊔

Continuation of Proof of Theorem 9.

Let us define some auxiliary formulas and programs. First, for every subsetX ⊆ Λ, we
defineϕX as

ϕX =
∨

x∈X

px.

The formulaϕsound checks that the atomic propositions in the current world describe
sound representations of cells of configurations ofM. More precisely, for each0 ≤ i ≤
N − 1 exactly one of the atomic propositionspci(0) andpci(1) is true. Moreover, for
exactly one elementγ ∈ Γ we have thatpγ holds. Furthermore, for at most oneq ∈ Q
the atomic propositionpq holds.

ϕsound =
∧

0≤i≤N−1

(ci(0)↔ ¬ci(1)) ∧
∨

γ∈Γ

pγ ∧
∧

γ′∈Γ :γ′ 6=γ

¬pγ′

∧
∧

q∈Q

pq →
∧

q′∈Q:q′ 6=q

¬pq′

The formulaϕfirst (ϕlast) checks if the current world represents the first (last) cellof
some configuration:

ϕfirst =
∧

0≤i≤N−1

ci(0)

ϕlast =
∧

0≤i≤N−1

ci(1)

The formulaϕsucc checks that the current world, say it represents a cell on position
0 ≤ k ≤ 2N − 1, does not represent the last cell (i.e.k < 2N−1) and all successor
worlds represent some cell on positionk + 1:

ϕsucc =
∨

0≤i≤N−1

ci(0) ∧ [s]ci(1) ∧
∧

0≤j<i

cj(1) ∧ [s]cj(0)

∧
∧

i<j≤N−1

∧

b∈{0,1}

cj(b)→ [s]cj(b)

The formulaϕglobal guarantees that all reachable worlds describe a sound representa-
tion of cells. Moreover, it is checked that all reachable worlds, which do not represent
a last cell, have some successor world that represents a cellon the successor position,
and all successors of reachable worlds that represent last cells, are first cells. Finally,
the formulaϕglobal prohibits that a configuration contains two cells that both contain
some state symbol:

ϕglobal = [s∗]

(

ϕsound ∧ (¬ϕlast → (ϕsucc ∧ 〈s〉true)) ∧ (ϕlast → [s]ϕfirst)

∧¬
〈

(ϕQ ∧ ¬ϕlast)? ◦ (s ◦ ¬ϕfirst?)
+ ◦ ϕQ?

〉

true

)

Recall thatw = w1 · · ·wn is the input. We will give a formulaϕw that guarantees that
the configurationq0w�2N−n is the first configuration seen.

ϕw = ϕfirst ∧ pq0 ∧ pw1

∧[s]

(

pw2 ∧ ¬ϕQ

∧[s](pw3 ∧ ¬pQ
...

∧[s](pwn
∧ ¬ϕQ) · · ·)

∧[(s ◦ ¬ϕfirst?)
+]p� ∧ ¬ϕQ)

)

Let us now, for each formulaψ, define a programmatch(ψ) that relates the current cell
c to the corresponding cellc′ of some successor configuration (i.e.c andc′ are cells at

same positions) and moreover, ifc andc′ are not first cells, checks if the predecessor
cell of c′ satisfies the formulaψ. First, let us define the auxiliary programα−1(ψ):

α−1(ψ) = ((s ◦ ¬ϕfirst?)
∗ ◦ s ◦ ϕfirst? ◦ (s ◦ ¬ϕfirst?)

∗ ◦ ψ? ◦ s ◦ ¬ϕfirst?)

∪ (ϕfirst? ◦ (s ◦ ¬ϕfirst?)
∗ ◦ s ◦ ϕfirst?)

For all0 ≤ i ≤ N − 1, define auxiliary programsαi(ψ):

αi(ψ) = ⊕

(

⊕
(

αi−1(ψ), ci(0), ci(1)
)

, ci(1), ci(0)

)

Eventually, we define

match(ψ) = αN−1(ψ).

Since we will enforce that each (reachable) world in a model satisfies exactly one of
the atomic propositionsci(0) and ci(1) for each0 ≤ i ≤ N − 1, the programs
match(ψ) can only relate worlds that agree on exactly the same atomic propositions
from {ci(0), ci(1) | 0 ≤ i ≤ N − 1}.
Now, for every moveµ = (q, γ, d) ∈ Moves, whereq ∈ Q, γ ∈ Γ , andd ∈ {←,→},
we define a programπµ that checks if the successor configuration is in stateq, scans
the correct cell after moving the read/write head in directiond, and has the symbolγ at
the cell that corresponds to the current one.
First, letµ = (q, γ,→). As we move the read/write head ofM to the right, we have to
make sure that we do not scan the last cell of our current configuration and we define

πµ = ¬ϕlast? ◦match(true) ◦ pγ? ◦ s ◦ pq?.

Analogously, since we move the read/write head to the left, we have to make sure that
we do not scan the first cell of our current cnfiguration and we define

πµ = ¬ϕfirst? ◦match(pq) ◦ pγ?.

Let us now describe the formulaϕδ that assures that every model ofϕ contains a rep-
resentation of a computation tree ofM.

ϕδ = [s∗]

∧

q∈Q∃,γ∈Γ :

δ(q,γ)=(µ1 ,µ2)

(pq ∧ pγ)→
∨

i∈{1,2}

〈πµi
〉true

∧
∧

q∈Q∀,γ∈Γ :

δ(q,γ)=(µ1 ,µ2)

(pq ∧ pγ)→
∧

i∈{1,2}

〈πµi
〉true)

∧
∧

γ∈Γ

((pγ ∧ ¬pQ)→ [match(true)]pγ)

To ensure that every reachable configuration is accepting, we enforce that for allq ∈
Qrej, the atomic propositionpq never occurs:

ϕ¬rej = [s∗]
∧

q∈Qrej

¬pq

Eventually, we define

ϕ = ϕglobal ∧ ϕw ∧ ϕδ ∧ ϕ¬rej.

⊓⊔

