PDL with Intersection and Converse is EXP-complete

Stefan Gollet*, Markus Lohrey, and Carsten Lutz

L Universitat Stuttgart, FMI, Germany
2 Institute for Theoretical Computer Science, TU Dresdenn@ay
goel l er,l ohrey@nformati k. uni -stuttgart. de,
lutz@cs.inf.tu-dresden. de

Abstract. We study the complexity of satisfiability in the expressixéeasion
ICPDL of PDL (Propositional Dynamic Logic), which admitsténsection and
converse as program operations. Our main result is conaihm2EXP, which
improves the previously known non-elementary upper bountimplies2EXP-
completeness due to an existing lower bound for PDL withré@etion. The proof
proceeds by showing that every satisfiable ICPDL formulaghemdel of tree-
width at most two and then giving a reduction to the (non)-t&ness problem for
alternating two-way automata on infinite trees. In this weg,also reprove in an
elegant way Danecki’s difficult result that satisfiabiligr PDL with intersection
is in 2EXP.

1 Introduction

Propositional Dynamic Logic (PDL) was introduced by Fisched Ladner in 1979 as
a modal logic for reasoning about the input/output behavidyprograms [6]. In PDL,
there are two syntactic entities: formulas, built from Beaol and modal operators and
interpreted as sets of nodes of a Kripke structure; and progrbuilt from the operators
test, union, composition, and Kleene star (reflexive ttamstlosure) and interpreted
as binary relations in a Kripke structure. Since its invemtimany different extensions
of PDL have been proposed, mainly by allowing additionalra@s on programs.
Three prominent such extensions are PDL with the converseatqr (CPDL), PDL
with the intersection operator (IPDL), and PDL with the nigaoperator on programs
(NPDL), see the monograph [9] and references therein. Vgbitee of these extensions
such as CPDL are well-suited for reasoning about prograrasyrof them aim at the
numerous other applications that PDL has found since igntion. Notable examples
of such applications include agent-based systems [14}]Jaepath constraints [2], and
XML-querying [1,17]. In Al, PDL received attention due t itlose relationship to
description logics [7] and epistemic logic [18, 10].

The most important decision problem for PDL is satisfiayilis there a Kripke
structure which satisfies a given formula at some node? Aiclalgesult of Fischer and
Ladner states that satisfiability for PDLEXP-complete [6, 16]. Th&XP upper bound
extends without difficulty to CPDL and can even be estabtisloe several extensions

* The first and second author are supported by the DFG projecOGthe third author is sup-
ported by the EU funded IST-2005-7603 FET Project Thinkingdbgies (TONES).

thereof [19]. In contrast, the precise complexity of saisdity for IPDL was a long
standing open problem. In [4], Danecki provedBX® upper bound. Alas, Danecki's
proof is rather difficult and many details are omitted in tiblshed version. One of the
reasons for the difficulty of IPDL is that, unlike PDL, it lackhe tree model property,
i.e., a satisfiable IPDL formula does not necessarily haveearhodel. Danecki proved
that every satisfiable IPDL formula has a special model wharhbe encoded by a tree.
This observation paves the way to using automata theosatimiques in decision pro-
cedures for IPDL. Only recently, a matchingX2P lower bound for IPDL was shown
by Lange and the third author [11]. Regarding NPDL, it is [émgwn that satisfiability
is undecidable [9]. As recently shown in [9], the fragmenN&fDL in which program
negation is restricted to atomic programs is decidableEafietcomplete.

In this paper, we consider extensions of PDL with (at least 6f) converse, in-
tersection, and negation. Our main result concerns the kit of satisfiability in
ICPDL, the extension of PDL with both converse and inteisaectDecidability was
shown by the third author in [12] using a reduction to monaeicond order logic over
the infinite binary tree. However, this only yields a nonedetary algorithm which does
not match the BXP lower bound that ICPDL inherits from IPDL. We prove that sat-
isfiability in ICPDL can be decided inEXP, and thus settle the complexity of ICPDL
as EXP-complete. There are some additional virtues of our re§ilst, we provide
a shorter and (hopefully) more comprehensible proof of tBXR2 upper bound for
IPDL. Second, the information logic DAL (data analysis gi5] is a fragment of
ICPDL (but not of IPDL) and thus inherits th&XP upper bound. And third, our result
has applications in description logic and epistemic logi® [12] for more detalils.

Our main resultis proved in three clearly separated partsait one, we establish a
model property for ICPDL based on the notion of tree widtleelwidth measures how
close a graph is to a tree, and is one of the most importantegtsién modern graph
theory with many applications in computer science. As nogrétd earlier, IPDL (and
hence also ICPDL) does not have the tree model property. Geefhat ICPDL enjoys
an "almost tree model property”: every satisfiable ICPDLriafa has a model of tree
width at most two This part of our proof is comparable to Déiismbservation that
every satisfiable IPDL formula has a special model which @aricoded by a tree.

In part two of our proof, we use the established model prgptertgive a poly-
time reduction of satisfiability in ICPDL to what we callregular tree satisfiabilityn
ICPDL. The latter problem is defined in terms of two-way alting parity tree au-
tomata (TWAPTASs). A TWAPTA is an alternating automaton watlparity acceptance
condition that runs on infinite node-labeled trees and camemupwards and down-
wards in the tree. Infinite node-labeled trees can be viewednatural way as Kripke
structures and thus we can interpret ICPDL formulas in sueést Noww-regular
tree satisfiability in ICPDL is the following problem: givem ICPDL formulay and
a TWAPTA T, is there a tree accepted Bywhich is a model ofp? Our reduction of
satisfiability in ICPDL to this problem is based on a suitaheoding of width two
tree decompositions of Kripke structures. The TWAPTA carged in the reduction
accepts precisely such encodings.

Finally, in part three we reduce-regular tree satisfiability in ICPDL to the non-
emptiness problem for TWAPTAS. The latter problem was shtawme EXP-complete

in [20]. Since our reduction ab-regular tree satisfiability in ICPDL to TWAPTA-non-
emptiness involves an exponential blow-up in automatg sieeobtain an EXP upper
bound forw-regular tree satisfiability in ICPDL and also for standaatissiability in
ICPDL. The reduction employs a technique from [8], wherefits¢ and second author
proved that the model-checking problem for IPDL over triosigraphs of pushdown
automatais EXP-complete. In fact, this model-checking problem can begesiuced
to w-regular tree satisfiability in ICPDL. This illustrates tharegular tree satisfiability
in ICPDL is of interest beyond its application in the currpaper.

To obtain a more complete picture, we finally investigatedpgon of extending
ICPDL with program negation. It turns out that in the preseotintersection, program
negation is problematic from a computational perspectivparticular, we prove that
already IPDL extended with negation restricted to atomigpaims is undecidable. This
should be contrasted with the decidability result for PDteexled with atomic negation
mentioned above [13].

2 ICPDL

Let P be a set ohtomic propositiongndA a set ofatomic programsFormulasy and
programsr of the logic ICPDL are defined by the following grammar, whemnges
overP anda overA:

pu=p | —p| (m)e
mu=a| mUm | mNme | mome | #° | T | ¢?

We introduce the usual abbreviatiops A @2 = (©17)2, 1 V w2 = (-1 A —pa),
and[r]p = —(m)—p. The fragment IPDL of ICPDL is obtained by dropping the
clause from the above grammar.

Thesemantic®f ICPDL is defined in terms of Kripke structuresKhipke structure
isatupleK = (X,{—, | a € A}, p), where ()X is a set ofstates (i) —, C X x X
is atransition relationfor eacha € A, and (iii) p : X — 2F assigns to each state a set
of atomic propositions. Given a Kripke structuke= (X, {—, | a € A}, p), we define
by mutual induction for each ICPDL prograima binary relatiof7]x € X x X and
for each ICPDL formula a subsefy]x C X as follows:3

[Pl ={z|p€plx)}forpeP

[elx = X\ [¢lx

[(melx ={z |3y : (z,y) € [r]lx Ay € [¢]x}

[a]x = —4 fOra e A

[e?lx = {(z,2) | = € [¢]k }

[* 1k = [r]%
[Flx ={(y.2) | (z,y) € [r]x}

[opme]x = [m1]x op[r2]k forope {U,N, o}

% Overloading notation, we useboth as a program operator of ICPDL and to denote the com-
position operator for binary relations, i.&,0 S = {(a,b) | 3c¢: (a,¢) € R, (¢,b) € S}.

Forz € X we write(K,z) E pif z € [¢]k. If (K,x) = ¢ forsomex € X, thenK
is amodelof . The formulay is satisfiabldf there exists a model af.

Since the converse operator can be pushed down to atomicapnegwe assume
for the rest of this paper that converse is only applied tonéd@rograms. Let us set
A = {@ | a € A}. The size|p| of an ICPDL formulay and the sizér| of an ICPDL
programr is defined as followsip| = |a| = 1 forallp € Panda € A UA, |~¢| =
07| = |l + 1, [{m)p| = || + || + 1, |1 Opma| = |ma| + |ma| + 1 for op € {U, N, 0},
and|7*| = |r| + 1.

The main result of this paper is the following.

Theorem 1. Satisfiability in ICPDL i2EXP-complete.

As discussed in the introduction, it suffices to giveEXP algorithm for satisfiability in
ICPDL because of the knowrEXP lower bound for IPDL [11]. The rest of the paper
is organized as follows. In Section 3, we show that evergfatile ICPDL formula has
a model of tree width at most two. In Section 4, satisfiabilifyCPDL formulas in a
model of tree width at most two is reduceduderegular tree satisfiability in ICPDL. In
Section 5, the latter problem is shown to be BXP. Finally, Section 6 contains the
undecidability proof for IPDL extended with negation of miic programs.

3 Models of tree-width two suffice

We start with defining tree decompositions and the treefwaftKripke structures.
Although we do not assume countability of Kripke structuregeneral, it suffices to
consider tree decompositions and the tree width only of tahle Kripke structures.
Let K = (X, {—. | a € A}, p) be a countable Kripke structure.tfee decomposition
of K isatuple(T, (X,).cv), whereT = (V, E) is a countable undirected trek,, is a
subset ofX (also called dag) for all v € V, and the following conditions are satisfied:

- UUEV X'U =X . . .
— For every transition: —, y of K there existe € V with z,y € X,.
— Foreveryz € X, thesef{v € V | z € X, } is a connected subset of the tfEBe

The width of this tree decomposition is the supremunf|&f,| — 1 | v € V'}. Thetree
width of a Kripke structurds is the minimalk such that” has a tree decomposition of
width k. The purpose of this section is to prove the following thewre

Theorem 2. Every satisfiable ICPDL formula has a countable model of wédth at
most two.

As a preliminary to proving Theorem 2, we mutually define tbe &f subprograms
subp(«) and the set ofubformulasubf(a), whereqa is either an ICPDL formula or an
ICPDL program:

— subp(a) = {a}, subp(@) = {a,a}, subf(a) = subf(a) = B fora € A;

— subp(w) = {7} Usubp(m;) Usubp(me) andsubf(m) = subf(m) U subf(ms) if
m=m opms forope {U,N,o};

— subp(7*) = {7*} U subp(w) andsubf(7*) = subf(n);

— subp(¢?) = {7} Usubp(yp) andsubf(y?) = subf(y)

— subp(p) = 0 andsubf(p) = {p} forp € P;

— subp(—p) = subp() andsubf(—y) = {~p} U subf(¢);

— subp((m)p) = subp(m) Usubp(p) andsubf({m)y) = {{(m)p} Usubf(7) Usubf(p).

To prove Theorem 2, fix a satisfiable formuylg, a (not necessarily countable) model
K = (X,{—4 | a € A},p) of o, and a statey € [¢o]x. Also fix choice functions
W (for witness),U (for union),C (for composition), and (for star) such that

—if ¢ = (m)p € subf(yp) andz € [y]k, thenW(z,) = y € X such that
y € [¥]x and(z,y) € [rlx;
—if m=xUo € subp(pp) and(zx,y) € [r]x, thenU(x,m,y) = 7 € {x,0} such
that(z,y) € [7]x.
— if m = x o0 € subp(yp) and(z,y) € [r]x, thenC(z,7,y) = z € X such that
(z,2) € [[X]]K and(z,y) € [[U]]K;
—if m = x* € subp(po) and(x,y) € [r]x with x # y, thenS(z,m,y) = z € X
such that there exists a sequenge. . ., z,, € X with
1. xg = x andz,, = y;
2. (x5, mi41) € [X]x foralli < n;
3. x9,...,x, IS a shortest sequence with Properties 1 and 2;
4. x1 = z.

Now we inductively define a node-labeled tr€E, (t,).,cv) with T = (V, E) and

t, € X UX2U X3 forall v € V. During the construction, each node in the tree
is assigned a type, which may either be “singleton’rdior = € subp(yg). Figure 1
illustrates the different cases, which are as follows:

1. Start the construction with a root nodef type singleton and set = x;
2. ifv € Vis of type singleton antl, = x, then for everyp = ()¢ € subf(yp) such
thatz € [¢]x, add a successar of typer and set,, = (z, W(x, ¢));
3. ifv € Vis of typea ora, wherea € A andt, = (z,y), then add a successarof
type singleton and sef, = y;
4. if v € Vis of typer = x U o andt, = (x,y), then
— add a successar of type singleton and sét, = y;
— add a successar’ of typeU(z, 7, y) and set,, = (x,y);
5. ifv € Vis of typer = x N o andt, = (z,y), then
— add a successar of type singleton and sef, = y;
— add successors v’ of type x ando, respectively, and sef, = t,, = (x,y);
6. if v € Vis of typer = x o o0 andt, = (z,y), then
— add a successar of type singleton and sef, = y;
— add a successar’ of typer and set,, = (x, C(z,7,y),y);
7. ifv € Vis of typer = x o o andt,, = (z, z,y), then add successousu’ of type
x ando and set,, = (z, z) andt, = (z,y);
8. ifv € Visof typer = x* andt, = (z,y) with z # y, then
— add a successar of type singleton and sef, = y;
— add a successar’ of typer and set,, = (x, S(z,7,y),y);
9. ifv € Vis of typer = x* andt, = («, z,y), then add successossu’ of type x
andm, respectively, and sef, = (x, z) andt,, = (z,y).

1 singleton 2. singleton 3. a/a
o z (z,y)
g inglet
(CC7W($,Q0)) ysmgeon
4 5. 6
T=xUo T=xNo T=X00O
(z,y) (z,9) (z,9)
snget/ Uz, ,y) singlet. X o snget/ T
y (z,y v o (zy) () ¥ @Clmyy)
7 rvee | 8. e 9 et
(m,z,y (m7y) (CC7Z,y
X o singlet. b X b
(2,2) (z,) ¥y @Semyy)| (z,2) (z,)

Fig. 1. Inductive definition of(T, (t,)vev).

We assume that successors are added at most once to each thededuction step and
that the construction proceeds in a breadth first mannee that nodes of typé? are
always leafs, and so are nodesf type x* with ¢, = (z, z) for somez € X. Another
important property, which illustrates the connection tew/i and the constructed
tree, is the following:

Vo € V :if vis of typer andt, = (z,y), then(x,y) € [7]k. 6

A placeis a pair(v, z) such thatz is a member of,,. We denote the set of all places
with P and let~ be the smallest equivalence relation Brwhich contains all pairs
of the form ((u, z), (v, z)), where(u,v) € E is an edge of the tre€. We use[v, z]

to denote the equivalence class(ofz) € P w.r.t. the relation~. Define a Kripke
structureK’ = (X', {—', | a € A}, p’) as follows:

- X' ={[v,2] | (v,z) € P};

— [v,z] =/ [v',y] if and only if at least one of the following holds:
e thereisu € V of typea s.t.t, = (z,v), (u,z) ~ (v,z), and(u,y) ~ (v',y);
e thereisu € V of typea s.t.t, = (y,), (u,z) ~ (v,z), and(u,y) ~ (v',y).

= p/([v,2]) = pl).

SinceK’ is clearly countable, to finish the proof it suffices to showfibllowing:

1. settingX, = {[v, z] | « occurs int, } forallv € V, we obtain a tree decomposition
(T, (Xy)vev) of K’ of width two;
2. K’ satisfiesp.

Using the definitions of(’ and~, it is readily checked thdfT", (X,),cv) is a tree de-
composition ofK’. Tree width two is then immediate by construction®t (¢,),cv)-
Finally, we can prove the following, whose Point 3 yieldstthd is a model ofp.

Lemmal. Forallv,u € V,x,y € X, 7 € subp(pg), andp € subf(yp),

1. ift, = (z,y) andwv is of typer, then([v, z], [v,y]) € [7]k’;
2. if (v,2), (u,y) € Pand([v, z], [u,y]) € [7] k', then(z,y) € [7]k;
3. if (v,z) € P, then(K,z) |= ¢ ifand only if (K, [v, z]) |= ¢.

4 Reduction tow-regular tree satisfiability

We exploit the model property established in the previous@eto reduce satisfiability
in ICPDL to w-regular tree satisfiability in ICPDL. Since the latter idided in terms
of alternating automata on infinite trees, we start withadtrcing these automata and
the trees on which they work.

Let I" andY be finite sets. Al"-labeled (directed) -tree is a partial functiofl” :
T* — I' such thatlom(T) (the set of nodes) is prefix-closed.dém(7T") = 7*, then
T is calledcompletelf 7" is understood or not important, we simply talk Bflabeled
trees. We deliberately work with two kinds of trees here:itewded trees as a basis for
tree decompositions in Section 3, and directed trees inted here as the objects on
which alternating tree automata work.

Let P be a finite set of atomic propositions aAda finite set of atomic programs,
not necessarily identical to the s@sandA fixed in Section 2. A completg®-labeled
A-treeT can be viewed as a Kripke structukg- = (A*, {—,| a € A}, T') over the set
of atomic proposition® and atomic program&, where—, = {(u,ua) | u € A*} for
all a € A. In the following, we identifyl" and the associated Kripke structute-.

We now define alternating automata on complEtéabeled? -trees. For a finite
setX we denote by3*(X) the set of allpositive boolean formulawith elements of
X used as variables. The constattsie andfalse are admitted. A subsét C X
can be seen as a valuation in the obvious wagatisfiesa formulad € BT (X) if
and only if by assigningrue to all elements iit” the formulad is evaluated tarue.
Define the set of’-movesasmov(?) = T WY ¥ {e}, wherel = {a | a € T}. For
u € Y* anda € 7T, defineua = v if u = va for somev € * andua = undefined
if u € T*a. A two-way alternating parity tree automatqWAPTA for short) over
I'-labeled!-treesis atupld = (.5, d, so, Acc), where (i)S is a finite non-empty set of
states, (i) : S x I' — B*(S x mov(7)) is thetransition function (i) s € S is the
initial state, and (iv) Acc : S — N is thepriority functionwhich assigns to each state
a nonnegative integer. DefilAcc| = max{Acc(s) | s € S}. LetT be a complete
I'-labeledY-tree,u € 7 a node, and € S a state. An(s,u)p-run of 7 is a (not
necessarily completéf x 7*)-labeled(2-treeTx for some finite sef? such that the
following two conditions are satisfied: @z () = (s, u), and (i) if & € dom(Tr) with

Tr(a) = (q,v) andd(q, T'(v)) = 6, then there exists a subsétC S x mov(?") that
satisfies the formulé and for all(s’,e) € Y, ve is defined and there existsszac {2
with ac € dom(Tr) andTr(ac) = (s',ve). We say that arfs, u)r-run issuccessful
if for every infinite pathayas - - - € dom(Tg)* of Tk (a1 = &, @41 = ;0 for some
o € £2), the numbemin{Acc(q) | ¢ € S, Tr(c;) € {q} x Y™ for infinitely manyi} is
even. Define

[7,s]r = {ueT*| there exists a successful, u)r-run of 7} and
L(T)={T|¢e€[T,so]r}

The subscripf is omitted if clear from the context. An-regular tree languagd. is a
set of completd™-labeledY -trees such thak(7) = L for some TWAPTAT .

Our TWAPTA model differs slightly from other definitions ihe literature: First,
we run TWAPTA only on complete trees; this will be convenien$ection 5. Second,
usually a TWAPTA has an operatignfor moving to the parent node of the current
node. In our model] is replaced by the operationsz 7 for all « € 7. The operation
@ can only be executed if the current node isiasuccessor of its parent node. It is easy
to see that these two models are equivalent.

In Section 5, we will make use of the following result of Vardi

Theorem 3 ([20]). For a given TWAPTA = (Q, 4, spAcc) it can be checked in time
exponential iNQ| - |Acc| whetherL(7T) = 0.

We are now in the position to formally defineregular tree satisfiability in ICPDL
given a TWAPTAT over2P-labeledA-trees and an ICPDL formulausing only atomic
propositions fronP and atomic programs fror (in the following we simply say that
w isoverP andA), decide whether there isiac L(7) such tha(T, ¢) |= ¢.

To reduce satisfiability in ICPDL to-regular tree satisfiability in ICPDL, we trans-
late an ICPDL formulap overP andA into a TWAPTA 7 and an ICPDL formula
over

A ={a,b,0,1,2} and P = {t}Uprop(¢)U ({0,1,2} x prog(y) x {0,1,2}),

whereprop(¢) = subf(¢) NP and prog(¢) = subp(p) N A. Intuitively, each2P-
labeledA-treeT" accepted by encodes a tree decomposition of a Kripke structure
K overP andA of tree width at most two (in a sense yet to be made precisd)7an
is a model ofp if and only if K is a model ofp. To achieve an elegant encoding of
tree decompositions, we work witlipod tree decompositions. A tree decomposition
(T, (Xy)vev) With T = (V, E) is called good if

-V ={a,b}* i.e,T is acomplete binary tree, and
- X, C Xye0rX,. C X, forallv e Vandc € {a,b}.

It is easily seen how to convert a tree decomposition of akérigtructure/X” of width
k into a good tree decomposition &f of width & by introducing additional nodes.

Lemma 2. Every countable Kripke structure of tree widtthas a good tree decompo-
sition of widthk.

In the following, we only need the case whédre= 2. To encode a good tree decom-
position (7', (X,)ve{a,b}+) Of Width two of a Kripke structure as 2f-labeledA-tree,
we think of every tree node € {a,b}* as being divided into three slots which can
be empty or filled with a state of the Kripke structure. Wherving to a child, by the
second condition of good tree decompositions we either adigsto empty slots or
remove nodes from slots, but not both. The three slots of tlien are described by
new leafsv0, v1, v2. This explains our choice @ above. When slots is occupied by
a state of the Kripke structure, then receives the special labele P (and probably
propositional letters as additional labels). Informatairout the edges of the Kripke
structure are stored in tree nodes frém b}*. We now formally define these encod-
ings. We work with complete trees because TWAPTAs work o stees. Nodes that
are present only to ensure completeness of the tree ardeldlvégth the empty set. A
complete2P-labeledA-treeT is calledvalid if the following holds for allv € A*:

— if v € {a,b}* andi € {0, 1,2}, then eithefl (vi) = () or {t} C T(vi) C {t} UP;

setX, :={i|teT(vi)};

—if v € {a,b}* thenT(v) C X, x A x X,;

— if v € {a,b}* andc € {a, b}, thenX, C X, or X, C X,;

—ifv ¢ {a,b}* U{a,b}*{0,1,2}, thenT (v) = 0.
Let 7' be a valid2P-labeledA-tree. We now make precise the Kripke structéfér’)
overP andA whose good tree decomposition is describedbfpefine a set oplaces
P ={ue A" |t e T(u)} and let~ be the smallest equivalence relation Brwhich
contains all pairqui, vci) € P x P, wherev € {a,b}*, ¢ € {a,b}, and0 < i < 2.
Foru € P, we use{u] to denote the equivalence classuofv.r.t. ~. Now setK (T') =
(X,{—al a € A}, p), where:

X =A{[u] |ue P}
—a = {([vi], [vj]) [v € {a,b}", (i,a,5) € T(v)}
p(ul) = J T(w)nE
ve[y]

The structureX (T") should not be confused with viewedas a Kripke structure over
P and A as discussed at the beginning of this section: the origimahfila whose
satisfiability is to be decided is interpreted(7") whereas the reduction formuja

to be defined below, is interpretedihviewed as a Kripke structure. The following two
lemmas are easily proved.

Lemma 3. If T is a valid 2P-labeledA-tree, then the Kripke structur& (T') has tree
width at most two. Conversely,Af is of tree width at most two, then there exists a valid
2P-labeledA-tree T' such thatK is isomorphic tok (7).

Lemma 4. The set of all vali®P-labeledA-trees is anv-regular tree language.

Now we show how to convert formulas and programs over prop(y) andprog(y)

into formula&[and programs overP andA such that for every valid® -labeledA-tree
T, we have (i)[7]r € P x P and (i) for allu,v € P,

-~

u€ Ylr & [u] € [Ylkr)
(u,v) € [7]r < ([u], [v]) € [7] K1)

First, we define the auxiliary program

7l = U t?0io(aUbUa@uUb)oiot?
1€{0,1,2}
and letr.. = (71)*. Note that[r.]r equals~. Now, for alla € prog(¢) andp €
prop(p) we define

a= U n.oio(i,a,j)?ojom. and p= (m.)p.
i,5€{0,1,2}
To extend this translation to complex ICPDL formulas andgpams, we can simply
replace all atomic programs and formulasy with @ and p, respectively. From the
construction ofg and Lemmas 2 and 3, we obtain the following.

Proposition 1. The formulap has a model of tree width at most two if and only if there
is a valid2P-labeledA-tree T' such that(T, ¢) = ((0U 1 U 2) o 7).

From Theorem 2, Lemma 4, and Proposition 1, we obtain:

Theorem 4. There is a polynomial time reduction from satisfiability DRDL to w-
regular tree satisfiability in ICPDL.

5 w-regular tree satisfiability in ICPDL is in 2EXP

Our remaining goal is to show thatregular tree satisfiability in ICPDL can be solved
in doubly exponential time. This is achieved by a reductmtheEXP-complete (non)-
emptiness problem for TWAPTAS. The main ingredient of trduaion is an inductive
translation of ICPDL formulas into TWAPTAs and ICPDL prograinto a certain kind
of non-deterministic automata which we call NFAs. NFAs reb&e word automata, but
navigate in a complet&-tree reading symbols frorh U A. They can make conditional
e-transitions, which are executable only if the current tneee is accepted by some
fixed TWAPTA. We start with presenting NFAs and the inductiamslation.

Fix a finite set of atomic propositio’sand a finite set of atomic programs For
the rest of this section, it is more convenient to assumesth@YAPTA does not have an
initial state. Hence, it is just a tuple of the forf, ¢, Acc). A non-deterministic finite
automaton (NFAY over a TWAPTAT = (5,6, Acc) is a pair(Q, — 4), whereQ is a
finite set ofstatesand— 4 is a set of transitions of the following form, where;’ € Q:

qg5aqd withae AUA or quq’withseS.

Transitions of the latter kind are callégist transitionsLet T’ be a complete®-labeled
A-tree. Define the relatior- 4 7 C (A* x Q) x (A* x @) as the smallest relation such
that

— (u,p) = a1 (ua,q)if pLaq(acAucA),

- (U(I,p) jA.,T (’LL, q) If p i>A.,T q (a € Ka u € A*)u

— (u,p) = a1 (u,q) if p =54 gandu € [T, s]r (u € A%).

Forapair(p, q) € QxQ, define[A, p, q]r = {(u,v) € A*xA* | (u,p) =% 1 (v,9)}-

5.1 From ICPDL to automata

For each ICPDL formula, we construct a TWAPTAT () such that for alRP-labeled
A-treesT, [T (y), s]r = [¢]r, wheres is some selected stateDfy). For each ICPDL
programr, we construct a TWAPTA(7) and an NFAA(x) over7 (w) such that for
all 2P-labeledA-treesT, [A(7),p, ¢l = [r]r, wherep, q are two selected states of
A(m). In the following, the indext” will be omitted for brevity. The construction is by
induction on the structure af and=. We start with the construction of the TWAPTAS
T () for ICPDL formulasy.

If v = p € P, we put7(y) = ({s},d,s — 1), where for allY C P we have
0(s,Y) =trueif p € Y andi(s,Y) = false otherwise.

If » = -0, then7 (v) is obtained fron¥ () by applying the standard complementation
procedure where all positive Boolean formulas on the rigdntd side of the transition
function are dualized and the acceptance condition is cemghted by increasing the
priority of every state by one, see e.g. [15].

If 4» = ()6, then we have inductively constructed= A(r) with state set) over a
TWAPTA 7 (7) = (51, 61, Accq) such thafn] = [A, po, qo] for somepg, o € Q. We
have also constructed a TWAPTA(H) = (.52, d2, Acce) such thafd] = [7 (6), so] for
somes € Sy. We construct the TWAPTA (¢) = (.5, 6, Acc) with S = Q W S1 W .Ss.
For states irb; or in S, the transitions of (¢) are as ir7 (=) and7 (), respectively.
It remains to simulated. Handling transitions of of the formq % 4 ¢’ is easy7T ()
simply navigates up or down in the tree as required. Whég) is in stateg € @ and

there is a transition ﬁm r, we branch universally to simulate bdIf{r) in state

s andthe state change of to stater. Finally, we admit arz-transition from state to
s0, thus simulatindZ (6) after finishing the simulation afl. Formally, forq € @ and
Y C P, we define

5(q,Y):\/{<T,a> |reQacAUA g =47} V

\/{ rs|r€Q,s€Sl,qL)’> r} v
(((J—QO)/\<50,€>)

The priority functionAcc is defined by setting\cc(s) = 1if s € Q andAcc(s) =

(Accy W Acca)(s) for s € S1 W S,. We setAce(s) = 1 forall s € @ since we want
to assure that the NFAL is simulated for finitely many steps only, ds= (7)d is a
diamond formula. We obtaipy] = [7 (¢), po]-

We now describe the inductive construction4tfr) and7 () for an ICPDL program.

If 7, = (S;, 0:, Acc;), i € {1,2}, are two TWAPTASs with disjoint sets of states, in what
follows we useT; W 75 = (S1 W So, §1 W da, Accr W Acco) denote their disjoint union;
it is defined in the obvious way.

If =a € AUA, the NFAA(r) has two statep andg with the only transitiorp % ¢.
Hence[r] = [A(~7), p, q].

If # = ¢?, we can assume that there exists a TWAPTTA)) with a states such that
[¥] = [T (¥), s]. The TWAPTAT (7) is 7 (¢). The NFA A(r) has two statep and

g with the only transitiorp Timse, q. Hence, we havér] = [A(7), p,q] = {(u,u) |

u € [T(¥), s}

If 7 = m Umy,m = m omg, OF T = x*, we constructd(w) by using the standard
automata constructions for union, concatenation, andi€estar. In case = m Umy Or
T = momg, We setl () = T (7)WT (me2), whereas forr = x*, we set7 () = 7 (x).

It remains to construcd (m; Ne) and7 (71 N7a), which is the most difficult step of the
construction. Assume that the NFAS7;) = (Qs, — a(x,)) Over the TWAPTAST (m;)
have already been constructed, foe {1,2}. Thus,[A(m;), pi, ;] = [m:] for some
statew;, ¢; € Q;. A natural idea for defining an NFA for; N 75 is to apply a product
construction ta4; and A,. A naive attempt to do this is bound to fail because a run of
A; in T and a run ofd, in T', both starting in a tree nodeand ending in a tree node
v, may proceed along different paths. More precisely, thertvns both travel along the
unique shortest from to v, but they may make different “detours” from this shortest
path. In order to eliminate this problem and make the produoicstruction available, we
modify A(m) and A(w2) by admitting additional test transitions that allow to shaut
the mentioned detours. These modified NFAs can always tedorf) the shortest path
without any detours, and thus the product construction eaumsied.

Before we can construct(m N m2), we make a digression to introduce the men-
tioned modification of NFAs. Lef = (5,6, Acc) be a TWAPTA andd = (Q, —4)
an NFA over?7 . Define the relatiofoop , C A* x @ x @ as the smallest set such that:

(i) forall uw € A* andg € Q we have(u, g, q) € loop 4,
(ii) if (ua,p’,q') €loop,p =4 p’ andq’ =4 g, then(u,p, q) € loop 4,

(iii) if (u,p',q') € loop,, p >4 p, andg’ %4 g, then(ua, p, q) € loop 4,
(iv) if (u,p,r) € loop, and(u,r, q) € loop 4, then(u, p, q) € loop 4, and

(v) if u € [T, s] andp =54 g for s € S, then(u, p, q) € loop,,.

Intuitively, loop 4 describes detours, i.e., (parts of) a rundothat start at some node in
the tree and eventually return to the very same node. It isawotlifficult to prove the
following.

Lemma 5. We havgu, p, q) € loop 4 if and only if (u, p) =% (u, q).

Since Conditions (i)—(v) can be easily translated into a PVA, we obtain:
Lemma 6. There is a TWAPTA = (5’8, Acc’) with S’ = S (Q x Q) s.t.

(i) [U,s] =[T,s]forallse S,

(i) [U,(p,q)] ={u e A* | (u,p,q) € loop,} forall (p,q) € Q x Q, and
(iii) |Acc’| = |Accl.

Now define a new NFAB = (Q, —p) over the TWAPTAL/, that results from4 by

adding for every paifp, q) € Q x Q, the test transitiop MB q. The following

lemma shows that our modification did not damage the NFA.

Lemma 7. Letu,v € A*andletp, ¢ € Q. Then(u,v) € [A,p, q] iff (u,v) € [B,p,q].

We now return to the construction df(7r; N m2) and7 (my N m2) from A(my), A(m),
7 (m), andT (m2). Fori € {1, 2}, we first construct the NFB(r;) over the TWAPTA
U(r;) = (S,6., Acc;) as described above. Note that| = |S;| + |Q;|>. We take
T(m Nme) = U(m) WU(m). The NFA A(m N w2) is the product automaton of
B(m) = (Q1,—B(xy)) @d B(m2) = (Q2,— p(x,)), Where test transitions can be

carried out asynchronously:

— The state set ofl(m; N m2) ISQ1 X Qo.
— Fora € AUA we have(r1,72) 5 a(rnm) (11, 75) if and only if ry gy
andr, i>B(ﬂ.2) 7’/2.

o T
— Fors € S; W S, we have the test transitigm, , o) M)A(mﬂm) (7, 7%)
if and only if (i) s € S, 75 = 5, andry 25 o or (i) s € 85,1y = 7,

andr, M)B(ﬂ"[) 7’/2.
Itis possible to show thdtd (7 N m2), (p1, p2), (g1, ¢2)] = [m1 N 72].This finishes the
inductive translation of ICPDL formulas and programs intitoanata. A careful analysis
of the constructions outlined above, allows us to indutfiestablish the following
bounds.

Lemma 8. For every ICPDL formula) and every ICPDL program we have:

1. BT (y) = (5,6, Acc), then|S| < 21“I” and|Acc| < [¢].
2. If A(m) = (Q, = a(m) @and T (1) = (5,4, Acc) then|Q| < 271, |S| < 217, and
|[Acc| < |x|.

The doubleexponential bound in Point 1 of Lemma 8 is due to the fact thatcon-
struction for dealing with program intersection blows ue $ize of NFAs quadratically.
In contrast, all other constructions involve only a lineknvup.

5.2 Wrapping up

Itis now easy to decide-regular tree satisfiability in ICPDL. L&, be a TWAPTA over
2P-labeledA-trees and lep be an ICPDL formula witlprop () C P andprog(¢) C A.
There is a state of 7 () such that[7 (¢), s]lr = [¢]r for all 2P-labeledA-trees
T. Let the TWAPTAT be the intersection ofy and 7 (¢) (taking the intersection
of TWAPTAs is trivial an can be done in linear time), wherdecomes the initial
state of7 (¢). Clearly, L(7T) # 0 if and only if there exists some treE € L(7)
with (T, ¢) = . By Lemma 8 and Theorem 3, we thus obtai@EXP upper bound
for w-regular tree satisfiability in ICPDL. A matching lower baliis obtained by a
straightforward reduction of satisfiability in ICPDL in &eshaped Kripke structures. It
was shown in [11] that this problem 2XP-hard.

Theorem 5. w-regular tree satisfiability in ICPDL i EXP-complete.

Together with Theorem 4, this finally proves our main resadrem 1. Itis interesting
to note that the bound given in Point 1 of Lemma 8 improvesnglsi exponential if
the intersection height (which can be defined in the obvioayg)wf ICPDL programs
is bounded by a constant. Thus, we actually obEXi®-completeness for this case.

6 Negation of atomic programs

We consider extensions of IPDL and ICPDL with negation ofpamns. Itis well known
that adding full program negation renders PDL undecid&jleffhereas PDL with pro-
gram negation restricted to atomic programs remains delg@mdEXP-complete [13].
In this section, we show that IPDL and hence also ICPDL becandecidable already
when extended with atomic program negation. Since intémseof programs can be
defined in terms of program union and (full) program negatilois also yields an alter-
native proof of the undecidability of PDL with full progranegation.

Our proof proceeds by reduction from the undecidable tifingblem of the first
quadrant of the plane [3]. Aling systemZ = (T, H, V') consists of a finite set dile
typesI’ and horizontal and vertical matching relatiadsV’ C 7' x T'. A solutionto 7
is a mapping : N x N — T such that for al(z, y) € N x N, we have

— if 7(z,y) = tandr(z + 1,y) = t/, then(¢,t') € H, and
— if 7(z,y) = tandr(z,y + 1) = t/, then(t,t') e V.

Thetiling problemis to decide, given a tiling systefh, whether7 has a solution.

We use IPDIC™) to denote the extension of IPDL with negation of atomic pangs,
which we write as-a (a € A). The semantics of the new constructor is defined in the
obviousway, i.e.[-a] x = (X xX)\[a] k. To reduce the tiling problem to satisfiability
in IPDL(™), we give a translation of tiling systerfs = (T, H, V) into formulasy+ of
IPDL(™) such that has a solution if and only ip7 is satisfiable. In the formular,
we use two atomic programs anda, for representing the gritf x N and we use the
elements ofl" as atomic propositions for representing tile types. Moeejzely,p is
a conjunction consisting of the following conjuncts:

(a) every element of a (connected) modepef represents an elementifx N and is
labelled with a unique tile type:

[(aaUa) 1 (\/t A N\ At

teT t,t' €T, t#t"
(b) every element has arn.-successor and ar),-successor:
[(az Uay)*]((az)true A (a,)true)

(c) the programs, anda, are confluent:

[(ag Uay)™] [(ag; ay) N (ay; nag)|false
(d) the horizontal and vertical matching conditions argeesed:

[(az Uay)* /\t:> [az] \/ t" A lay] \/
teT (t,t')eH (t,t") eV

Lemma 9. 7 has a solution if and only ip7 is satisfiable.
We have thus established the following result.
Theorem 6. Satisfiability in IPDL(™) is undecidable.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

L. Afanasiev, P. Blackburn, I. Dimitriou, B. Gaiffe, E. g M. J. Marx, and M. de Rijke.
PDL for ordered treesJournal of Applied Non-Classical Logic$5(2):115-135, 2005.

. N. Alechina, S. Demri, and M. de Rijke. A modal perspectivepath constraintsJournal

of Logic and ComputatigriL3(6):939-956, 2003.

. R. Berger. The undecidability of the dominoe probleklemoirs of the American Mathe-

matical Society66, 1966.

. R. Danecki. Nondeterministic Propositional Dynamic icogith intersection is decidable.

In Proc. 5th Symp. Computation ThephNCS 208, pages 34-53, 1984.

. L. Farinas Del Cerro and E. Orlowska. DAL-a logic for datalgsis. Theoretical Computer

Science36(2-3):251-264, 1985.

. M. J. Fischer and R. E. Ladner. Propositional Dynamic t@jiRegular Programslournal

of Computer and System SciencH¥(2):194-211, 1979.

. G. D. Giacomo and M. Lenzerini. Boosting the corresponddretween description logics

and propositional dynamic logics. Proc. AAAI94 pages 205212, 1994.

. S. Goller and M. Lohrey. Infinite state model-checkingafpositional dynamic logics. In

Proc. CSL 2006LNCS 4207, pages 349—-364. Springer, 2006.

. D. Harel, D. Kozen, and J. TiuryrDynamic Logic Foundations of computing. The MIT

Press, 2000.

W. van der Hoek and J.J. Meyer. A complete epistemic l&mienultiple agents — Com-
bining distributed and common knowledg&pistemic Logic and the Theory of Games and
Decisions pages 35-68. Kluwer, 1997.

M. Lange and C. Lutz. 2-ExpTime Lower Bounds for Proposdl Dynamic Logics with
Intersection.Journal of Symbolic Logic70(4):1072—-1086, 2005.

C. Lutz. PDL with intersection and converse is decidabié€Proc. CSL 2005LNCS 3634,
pages 413-427. Springer, 2005.

C. Lutz and D. Walther. PDL with negation of atomic pragsa Journal of Applied Non-
Classical Logics15(2):189-213, 2005.

J. Meyer. Dynamic logic for reasoning about actions gyehts. In J. Minker, editot,ogic-
Based Artificial Intelligencgpages 281-311. Kluwer Academic Publishers, 2000.

D. Muller and P. Schupp. Alternating automata on infimitees. Theoretical Computer
Science54(2-3):267-276, 1987.

V. Pratt. A near-optimal method for reasoning aboubactiournal of Computer and System
Sciences20:231-254, 1980.

B. ten Cate. The expressivity of XPath with transitivescire. InProceedings of the
Twenty-Fifth ACM SIGACT-SIGMOD-SIGART Symposium on Riee of Database Sys-
tems (PODS 2006pages 328-337. ACM Press, 2006.

H. P. van Ditmarsch, W. van der Hoek, and B. P. Kooi. Cameurdynamic epistemic logic
for MAS. In Proc. AAMAS 2003pages 201-208. ACM Press, 2003.

M. Y. Vardi. The taming of converse: Reasoning about wey- computations. IfProc.
Logics of ProgramsLNCS 193, pages 413-423. Springer, 1985.

M. Y. Vardi. Reasoning about the past with two-way aut@mé#n Proc. ICALP 98 LNCS
1443, pages 628-641. Springer, 1998.

