
PDL with Intersection and Converse is 2EXP-complete

Stefan Göller1⋆, Markus Lohrey1, and Carsten Lutz2

1 Universität Stuttgart, FMI, Germany
2 Institute for Theoretical Computer Science, TU Dresden, Germany
goeller,lohrey@informatik.uni-stuttgart.de,

lutz@tcs.inf.tu-dresden.de

Abstract. We study the complexity of satisfiability in the expressive extension
ICPDL of PDL (Propositional Dynamic Logic), which admits intersection and
converse as program operations. Our main result is containment in2EXP, which
improves the previously known non-elementary upper bound and implies2EXP-
completeness due to an existing lower bound for PDL with intersection. The proof
proceeds by showing that every satisfiable ICPDL formula hasa model of tree-
width at most two and then giving a reduction to the (non)-emptiness problem for
alternating two-way automata on infinite trees. In this way,we also reprove in an
elegant way Danecki’s difficult result that satisfiability for PDL with intersection
is in 2EXP.

1 Introduction

Propositional Dynamic Logic (PDL) was introduced by Fischer and Ladner in 1979 as
a modal logic for reasoning about the input/output behaviour of programs [6]. In PDL,
there are two syntactic entities: formulas, built from Boolean and modal operators and
interpreted as sets of nodes of a Kripke structure; and programs, built from the operators
test, union, composition, and Kleene star (reflexive transitive closure) and interpreted
as binary relations in a Kripke structure. Since its invention, many different extensions
of PDL have been proposed, mainly by allowing additional operators on programs.
Three prominent such extensions are PDL with the converse operator (CPDL), PDL
with the intersection operator (IPDL), and PDL with the negation operator on programs
(NPDL), see the monograph [9] and references therein. Whilesome of these extensions
such as CPDL are well-suited for reasoning about programs, many of them aim at the
numerous other applications that PDL has found since its invention. Notable examples
of such applications include agent-based systems [14], regular path constraints [2], and
XML-querying [1, 17]. In AI, PDL received attention due to its close relationship to
description logics [7] and epistemic logic [18, 10].

The most important decision problem for PDL is satisfiability: is there a Kripke
structure which satisfies a given formula at some node? A classical result of Fischer and
Ladner states that satisfiability for PDL isEXP-complete [6, 16]. TheEXP upper bound
extends without difficulty to CPDL and can even be established for several extensions

⋆ The first and second author are supported by the DFG project GELO; the third author is sup-
ported by the EU funded IST-2005-7603 FET Project Thinking Ontologies (TONES).

thereof [19]. In contrast, the precise complexity of satisfiability for IPDL was a long
standing open problem. In [4], Danecki proved a 2EXP upper bound. Alas, Danecki’s
proof is rather difficult and many details are omitted in the published version. One of the
reasons for the difficulty of IPDL is that, unlike PDL, it lacks the tree model property,
i.e., a satisfiable IPDL formula does not necessarily have a tree model. Danecki proved
that every satisfiable IPDL formula has a special model whichcan be encoded by a tree.
This observation paves the way to using automata theoretic techniques in decision pro-
cedures for IPDL. Only recently, a matching 2EXP lower bound for IPDL was shown
by Lange and the third author [11]. Regarding NPDL, it is longknown that satisfiability
is undecidable [9]. As recently shown in [9], the fragment ofNPDL in which program
negation is restricted to atomic programs is decidable andEXP-complete.

In this paper, we consider extensions of PDL with (at least two of) converse, in-
tersection, and negation. Our main result concerns the complexity of satisfiability in
ICPDL, the extension of PDL with both converse and intersection. Decidability was
shown by the third author in [12] using a reduction to monadicsecond order logic over
the infinite binary tree. However, this only yields a nonelementary algorithm which does
not match the 2EXP lower bound that ICPDL inherits from IPDL. We prove that sat-
isfiability in ICPDL can be decided in 2EXP, and thus settle the complexity of ICPDL
as 2EXP-complete. There are some additional virtues of our result.First, we provide
a shorter and (hopefully) more comprehensible proof of the 2EXP upper bound for
IPDL. Second, the information logic DAL (data analysis logic) [5] is a fragment of
ICPDL (but not of IPDL) and thus inherits the 2EXP upper bound. And third, our result
has applications in description logic and epistemic logic,see [12] for more details.

Our main result is proved in three clearly separated parts. In part one, we establish a
model property for ICPDL based on the notion of tree width. Tree width measures how
close a graph is to a tree, and is one of the most important concepts in modern graph
theory with many applications in computer science. As mentioned earlier, IPDL (and
hence also ICPDL) does not have the tree model property. We prove that ICPDL enjoys
an ”almost tree model property”: every satisfiable ICPDL formula has a model of tree
width at most two This part of our proof is comparable to Danecki’s observation that
every satisfiable IPDL formula has a special model which can be encoded by a tree.

In part two of our proof, we use the established model property to give a poly-
time reduction of satisfiability in ICPDL to what we callω-regular tree satisfiabilityin
ICPDL. The latter problem is defined in terms of two-way alternating parity tree au-
tomata (TWAPTAs). A TWAPTA is an alternating automaton witha parity acceptance
condition that runs on infinite node-labeled trees and can move upwards and down-
wards in the tree. Infinite node-labeled trees can be viewed in a natural way as Kripke
structures and thus we can interpret ICPDL formulas in such trees. Now,ω-regular
tree satisfiability in ICPDL is the following problem: givenan ICPDL formulaϕ and
a TWAPTA T , is there a tree accepted byT which is a model ofϕ? Our reduction of
satisfiability in ICPDL to this problem is based on a suitableencoding of width two
tree decompositions of Kripke structures. The TWAPTA constructed in the reduction
accepts precisely such encodings.

Finally, in part three we reduceω-regular tree satisfiability in ICPDL to the non-
emptiness problem for TWAPTAs. The latter problem was shownto beEXP-complete

in [20]. Since our reduction ofω-regular tree satisfiability in ICPDL to TWAPTA-non-
emptiness involves an exponential blow-up in automata size, we obtain an 2EXP upper
bound forω-regular tree satisfiability in ICPDL and also for standard satisfiability in
ICPDL. The reduction employs a technique from [8], where thefirst and second author
proved that the model-checking problem for IPDL over transition graphs of pushdown
automata is 2EXP-complete. In fact, this model-checking problem can be easily reduced
toω-regular tree satisfiability in ICPDL. This illustrates that ω-regular tree satisfiability
in ICPDL is of interest beyond its application in the currentpaper.

To obtain a more complete picture, we finally investigate theoption of extending
ICPDL with program negation. It turns out that in the presence of intersection, program
negation is problematic from a computational perspective.In particular, we prove that
already IPDL extended with negation restricted to atomic programs is undecidable. This
should be contrasted with the decidability result for PDL extended with atomic negation
mentioned above [13].

2 ICPDL

Let P be a set ofatomic propositionsandA a set ofatomic programs. Formulasϕ and
programsπ of the logic ICPDL are defined by the following grammar, wherep ranges
overP anda overA:

ϕ ::= p | ¬ϕ | 〈π〉 ϕ

π ::= a | π1 ∪ π2 | π1 ∩ π2 | π1 ◦ π2 | π∗ | π | ϕ?

We introduce the usual abbreviationsϕ1 ∧ ϕ2 = 〈ϕ1?〉ϕ2, ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2),
and [π]ϕ = ¬〈π〉¬ϕ. The fragment IPDL of ICPDL is obtained by dropping theπ
clause from the above grammar.

Thesemanticsof ICPDL is defined in terms of Kripke structures. AKripke structure
is a tupleK = (X, {→a | a ∈ A}, ρ), where (i)X is a set ofstates, (ii) →a ⊆ X ×X
is a transition relationfor eacha ∈ A, and (iii) ρ : X → 2P assigns to each state a set
of atomic propositions. Given a Kripke structureK = (X, {→a | a ∈ A}, ρ), we define
by mutual induction for each ICPDL programπ a binary relation[[π]]K ⊆ X ×X and
for each ICPDL formulaϕ a subset[[ϕ]]K ⊆ X as follows:3

[[p]]K = {x | p ∈ ρ(x)} for p ∈ P

[[¬ϕ]]K = X \ [[ϕ]]K

[[〈π〉ϕ]]K = {x | ∃y : (x, y) ∈ [[π]]K ∧ y ∈ [[ϕ]]K}

[[a]]K = →a for a ∈ A

[[ϕ?]]K = {(x, x) | x ∈ [[ϕ]]K}

[[π∗]]K = [[π]]∗K

[[π]]K = {(y, x) | (x, y) ∈ [[π]]K}

[[π1 opπ2]]K = [[π1]]K op [[π2]]K for op∈ {∪,∩, ◦}

3 Overloading notation, we use◦ both as a program operator of ICPDL and to denote the com-
position operator for binary relations, i.e.,R ◦ S = {(a, b) | ∃c : (a, c) ∈ R, (c, b) ∈ S}.

Forx ∈ X we write(K,x) |= ϕ if x ∈ [[ϕ]]K . If (K,x) |= ϕ for somex ∈ X , thenK
is amodelof ϕ. The formulaϕ is satisfiableif there exists a model ofϕ.

Since the converse operator can be pushed down to atomic programs, we assume
for the rest of this paper that converse is only applied to atomic programs. Let us set
A = {a | a ∈ A}. The size|ϕ| of an ICPDL formulaϕ and the size|π| of an ICPDL
programπ is defined as follows:|p| = |a| = 1 for all p ∈ P anda ∈ A ∪ A, |¬ϕ| =
|ϕ?| = |ϕ|+1, |〈π〉ϕ| = |π|+ |ϕ|+1, |π1 opπ2| = |π1|+ |π2|+1 for op∈ {∪,∩, ◦},
and|π∗| = |π| + 1.

The main result of this paper is the following.

Theorem 1. Satisfiability in ICPDL is2EXP-complete.

As discussed in the introduction, it suffices to give a 2EXP algorithm for satisfiability in
ICPDL because of the known 2EXP lower bound for IPDL [11]. The rest of the paper
is organized as follows. In Section 3, we show that every satisfiable ICPDL formula has
a model of tree width at most two. In Section 4, satisfiabilityof ICPDL formulas in a
model of tree width at most two is reduced toω-regular tree satisfiability in ICPDL. In
Section 5, the latter problem is shown to be in 2EXP. Finally, Section 6 contains the
undecidability proof for IPDL extended with negation of atomic programs.

3 Models of tree-width two suffice

We start with defining tree decompositions and the tree-width of Kripke structures.
Although we do not assume countability of Kripke structuresin general, it suffices to
consider tree decompositions and the tree width only of countable Kripke structures.
LetK = (X, {→a | a ∈ A}, ρ) be a countable Kripke structure. Atree decomposition
ofK is a tuple(T, (Xv)v∈V), whereT = (V,E) is a countable undirected tree,Xv is a
subset ofX (also called abag) for all v ∈ V , and the following conditions are satisfied:

–
⋃
v∈V Xv = X

– For every transitionx→a y of K there existsv ∈ V with x, y ∈ Xv.
– For everyx ∈ X , the set{v ∈ V | x ∈ Xv} is a connected subset of the treeT .

The width of this tree decomposition is the supremum of{|Xv| − 1 | v ∈ V }. Thetree
widthof a Kripke structureK is the minimalk such thatK has a tree decomposition of
width k. The purpose of this section is to prove the following theorem.

Theorem 2. Every satisfiable ICPDL formula has a countable model of treewidth at
most two.

As a preliminary to proving Theorem 2, we mutually define the set of subprograms
subp(α) and the set ofsubformulassubf(α), whereα is either an ICPDL formula or an
ICPDL program:

– subp(a) = {a}, subp(a) = {a, a}, subf(a) = subf(a) = ∅ for a ∈ A;
– subp(π) = {π} ∪ subp(π1) ∪ subp(π2) and subf(π) = subf(π1) ∪ subf(π2) if
π = π1 opπ2 for op∈ {∪,∩, ◦};

– subp(π∗) = {π∗} ∪ subp(π) andsubf(π∗) = subf(π);

– subp(ϕ?) = {ϕ?} ∪ subp(ϕ) andsubf(ϕ?) = subf(ϕ)
– subp(p) = ∅ andsubf(p) = {p} for p ∈ P;
– subp(¬ϕ) = subp(ϕ) andsubf(¬ϕ) = {¬ϕ} ∪ subf(ϕ);
– subp(〈π〉ϕ) = subp(π)∪ subp(ϕ) andsubf(〈π〉ϕ) = {〈π〉ϕ}∪ subf(π)∪ subf(ϕ).

To prove Theorem 2, fix a satisfiable formulaϕ0, a (not necessarily countable) model
K = (X, {→a | a ∈ A}, ρ) of ϕ0, and a statex0 ∈ [[ϕ0]]K . Also fix choice functions
W (for witness),U (for union),C (for composition), andS (for star) such that

– if ϕ = 〈π〉ψ ∈ subf(ϕ0) andx ∈ [[ϕ]]K , thenW (x, ϕ) = y ∈ X such that
y ∈ [[ψ]]K and(x, y) ∈ [[π]]K ;

– if π = χ ∪ σ ∈ subp(ϕ0) and(x, y) ∈ [[π]]K , thenU(x, π, y) = τ ∈ {χ, σ} such
that(x, y) ∈ [[τ]]K .

– if π = χ ◦ σ ∈ subp(ϕ0) and(x, y) ∈ [[π]]K , thenC(x, π, y) = z ∈ X such that
(x, z) ∈ [[χ]]K and(z, y) ∈ [[σ]]K ;

– if π = χ∗ ∈ subp(ϕ0) and(x, y) ∈ [[π]]K with x 6= y, thenS(x, π, y) = z ∈ X
such that there exists a sequencex0, . . . , xn ∈ X with
1. x0 = x andxn = y;
2. (xi, xi+1) ∈ [[χ]]K for all i < n;
3. x0, . . . , xn is a shortest sequence with Properties 1 and 2;
4. x1 = z.

Now we inductively define a node-labeled tree(T, (tv)v∈V) with T = (V,E) and
tv ∈ X ∪ X2 ∪ X3 for all v ∈ V . During the construction, each node in the tree
is assigned a type, which may either be “singleton” orπ for π ∈ subp(ϕ0). Figure 1
illustrates the different cases, which are as follows:

1. Start the construction with a root nodev of type singleton and settv = x0;
2. if v ∈ V is of type singleton andtv = x, then for everyϕ = 〈π〉ψ ∈ subf(ϕ0) such

thatx ∈ [[ϕ]]K , add a successorw of typeπ and settw = (x,W (x, ϕ));
3. if v ∈ V is of typea or a, wherea ∈ A andtv = (x, y), then add a successorw of

type singleton and settw = y;
4. if v ∈ V is of typeπ = χ ∪ σ andtv = (x, y), then

– add a successorw of type singleton and settw = y;
– add a successorw′ of typeU(x, π, y) and settw′ = (x, y);

5. if v ∈ V is of typeπ = χ ∩ σ andtv = (x, y), then
– add a successorw of type singleton and settw = y;
– add successorsu, u′ of typeχ andσ, respectively, and settu = tu′ = (x, y);

6. if v ∈ V is of typeπ = χ ◦ σ andtv = (x, y), then
– add a successorw of type singleton and settw = y;
– add a successorw′ of typeπ and settw = (x,C(x, π, y), y);

7. if v ∈ V is of typeπ = χ ◦ σ andtv = (x, z, y), then add successorsu, u′ of type
χ andσ and settu = (x, z) andtu′ = (z, y);

8. if v ∈ V is of typeπ = χ∗ andtv = (x, y) with x 6= y, then
– add a successorw of type singleton and settw = y;
– add a successorw′ of typeπ and settw = (x, S(x, π, y), y);

9. if v ∈ V is of typeπ = χ∗ andtv = (x, z, y), then add successorsu, u′ of typeχ
andπ, respectively, and settu = (x, z) andtu′ = (z, y).

1. singleton
x0

2. singleton
x

π

(x,W (x,ϕ))

3.
a/a

(x, y)

singletony

4.
π =χ∪σ

(x, y)

singlet.
y

U(x,π,y)

(x, y)

5.
π=χ∩σ

(x, y)

singlet.
y

χ

(x, y)
σ

(x, y)

6.
π =χ◦σ

(x, y)

singlet.
y

π

(x,C(x,π,y),y)

7. π =χ◦σ

(x, z, y)

χ

(x, z)
σ

(z, y)

8.
π=χ∗

(x, y)

singlet.
y

π

(x,S(x,π,y),y)

9. π =χ∗

(x, z, y)

χ

(x, z)
π

(z, y)

Fig. 1. Inductive definition of(T, (tv)v∈V).

We assume that successors are added at most once to each node in the induction step and
that the construction proceeds in a breadth first manner. Note that nodes of typeψ? are
always leafs, and so are nodesv of typeχ∗ with tv = (x, x) for somex ∈ X . Another
important property, which illustrates the connection betweenK and the constructed
tree, is the following:

∀v ∈ V : if v is of typeπ andtv = (x, y), then(x, y) ∈ [[π]]K . (†)

A placeis a pair(v, x) such thatx is a member oftv. We denote the set of all places
with P and let∼ be the smallest equivalence relation onP which contains all pairs
of the form((u, x), (v, x)), where(u, v) ∈ E is an edge of the treeT . We use[v, x]
to denote the equivalence class of(v, x) ∈ P w.r.t. the relation∼. Define a Kripke
structureK ′ = (X ′, {→′

a | a ∈ A}, ρ′) as follows:

– X ′ = {[v, x] | (v, x) ∈ P};
– [v, x] →′

a [v′, y] if and only if at least one of the following holds:
• there isu ∈ V of typea s.t.tu = (x, y), (u, x) ∼ (v, x), and(u, y) ∼ (v′, y);
• there isu ∈ V of typea s.t.tu = (y, x), (u, x) ∼ (v, x), and(u, y) ∼ (v′, y).

– ρ′([v, x]) = ρ(x).

SinceK ′ is clearly countable, to finish the proof it suffices to show the following:

1. settingXv = {[v, x] | x occurs intv} for all v ∈ V , we obtain a tree decomposition
(T, (Xv)v∈V) of K ′ of width two;

2. K ′ satisfiesϕ0.

Using the definitions ofK ′ and∼, it is readily checked that(T, (Xv)v∈V) is a tree de-
composition ofK ′. Tree width two is then immediate by construction of(T, (tv)v∈V).
Finally, we can prove the following, whose Point 3 yields that K ′ is a model ofϕ0.

Lemma 1. For all v, u ∈ V , x, y ∈ X , π ∈ subp(ϕ0), andϕ ∈ subf(ϕ0),

1. if tv = (x, y) andv is of typeπ, then([v, x], [v, y]) ∈ [[π]]K′ ;
2. if (v, x), (u, y) ∈ P and([v, x], [u, y]) ∈ [[π]]K′ , then(x, y) ∈ [[π]]K ;
3. if (v, x) ∈ P , then(K,x) |= ϕ if and only if(K ′, [v, x]) |= ϕ.

4 Reduction toω-regular tree satisfiability

We exploit the model property established in the previous section to reduce satisfiability
in ICPDL toω-regular tree satisfiability in ICPDL. Since the latter is defined in terms
of alternating automata on infinite trees, we start with introducing these automata and
the trees on which they work.

Let Γ andΥ be finite sets. AΓ -labeled (directed)Υ -tree is a partial functionT :
Υ ∗ → Γ such thatdom(T) (the set of nodes) is prefix-closed. Ifdom(T) = Υ ∗, then
T is calledcomplete. If Υ is understood or not important, we simply talk ofΓ -labeled
trees. We deliberately work with two kinds of trees here: undirected trees as a basis for
tree decompositions in Section 3, and directed trees introduced here as the objects on
which alternating tree automata work.

Let P be a finite set of atomic propositions andA a finite set of atomic programs,
not necessarily identical to the setsP andA fixed in Section 2. A complete2P-labeled
A-treeT can be viewed as a Kripke structureKT = (A∗, {→a| a ∈ A}, T) over the set
of atomic propositionsP and atomic programsA, where→a = {(u, ua) | u ∈ A∗} for
all a ∈ A. In the following, we identifyT and the associated Kripke structureKT .

We now define alternating automata on completeΓ -labeledΥ -trees. For a finite
setX we denote byB+(X) the set of allpositive boolean formulaswith elements of
X used as variables. The constantstrue andfalse are admitted. A subsetY ⊆ X
can be seen as a valuation in the obvious way: itsatisfiesa formulaθ ∈ B+(X) if
and only if by assigningtrue to all elements inY the formulaθ is evaluated totrue.
Define the set ofΥ -movesasmov(Υ) = Υ ⊎ Υ ⊎ {ε}, whereΥ = {a | a ∈ Υ}. For
u ∈ Υ ∗ anda ∈ Υ , defineua = v if u = va for somev ∈ Υ ∗ andua = undefined
if u 6∈ Υ ∗a. A two-way alternating parity tree automaton(TWAPTA for short) over
Γ -labeledΥ -trees is a tupleT = (S, δ, s0,Acc), where (i)S is a finite non-empty set of
states, (ii)δ : S × Γ → B+(S × mov(Υ)) is thetransition function, (iii) s0 ∈ S is the
initial state, and (iv)Acc : S → N is thepriority functionwhich assigns to each state
a nonnegative integer. Define|Acc| = max{Acc(s) | s ∈ S}. Let T be a complete
Γ -labeledΥ -tree,u ∈ Υ ∗ a node, ands ∈ S a state. An(s, u)T -run of T is a (not
necessarily complete)(S × Υ ∗)-labeledΩ-treeTR for some finite setΩ such that the
following two conditions are satisfied: (i)TR(ε) = (s, u), and (ii) ifα ∈ dom(TR) with

TR(α) = (q, v) andδ(q, T (v)) = θ, then there exists a subsetY ⊆ S × mov(Υ) that
satisfies the formulaθ and for all(s′, e) ∈ Y , ve is defined and there exists aσ ∈ Ω
with ασ ∈ dom(TR) andTR(ασ) = (s′, ve). We say that an(s, u)T -run issuccessful,
if for every infinite pathα1α2 · · · ∈ dom(TR)ω of TR (α1 = ε, αi+1 = αiσ for some
σ ∈ Ω), the numbermin{Acc(q) | q ∈ S, TR(αi) ∈ {q} × Υ ∗ for infinitely manyi} is
even. Define

[[T , s]]T = {u ∈ Υ ∗ | there exists a successful(s, u)T -run ofT } and

L(T) = {T | ε ∈ [[T , s0]]T }.

The subscriptT is omitted if clear from the context. Anω-regular tree languageL is a
set of completeΓ -labeledΥ -trees such thatL(T) = L for some TWAPTAT .

Our TWAPTA model differs slightly from other definitions in the literature: First,
we run TWAPTA only on complete trees; this will be convenientin Section 5. Second,
usually a TWAPTA has an operation↑ for moving to the parent node of the current
node. In our model,↑ is replaced by the operationsa ∈ Υ for all a ∈ Υ . The operation
a can only be executed if the current node is ana-successor of its parent node. It is easy
to see that these two models are equivalent.

In Section 5, we will make use of the following result of Vardi:

Theorem 3 ([20]). For a given TWAPTAT = (Q, δ, s0Acc) it can be checked in time
exponential in|Q| · |Acc| whetherL(T) = ∅.

We are now in the position to formally defineω-regular tree satisfiability in ICPDL:
given a TWAPTAT over2P-labeledA-trees and an ICPDL formulaϕ using only atomic
propositions fromP and atomic programs fromA (in the following we simply say that
ϕ is overP andA), decide whether there is aT ∈ L(T) such that(T, ε) |= ϕ.

To reduce satisfiability in ICPDL toω-regular tree satisfiability in ICPDL, we trans-
late an ICPDL formulaϕ overP andA into a TWAPTAT and an ICPDL formulâϕ
over

A = {a, b, 0, 1, 2} and P = {t} ∪ prop(ϕ) ∪ ({0, 1, 2} × prog(ϕ) × {0, 1, 2}),

whereprop(ϕ) = subf(ϕ) ∩ P and prog(ϕ) = subp(ϕ) ∩ A. Intuitively, each2P-
labeledA-treeT accepted byT encodes a tree decomposition of a Kripke structure
K overP andA of tree width at most two (in a sense yet to be made precise), and T
is a model ofϕ̂ if and only if K is a model ofϕ. To achieve an elegant encoding of
tree decompositions, we work withgood tree decompositions. A tree decomposition
(T, (Xv)v∈V) with T = (V,E) is called good if

– V = {a, b}∗, i.e.,T is a complete binary tree, and
– Xv ⊆ Xvc orXvc ⊆ Xv for all v ∈ V andc ∈ {a, b}.

It is easily seen how to convert a tree decomposition of a Kripke structureK of width
k into a good tree decomposition ofK of width k by introducing additional nodes.

Lemma 2. Every countable Kripke structure of tree widthk has a good tree decompo-
sition of widthk.

In the following, we only need the case wherek = 2. To encode a good tree decom-
position(T, (Xv)v∈{a,b}∗) of width two of a Kripke structure as a2P-labeledA-tree,
we think of every tree nodev ∈ {a, b}∗ as being divided into three slots which can
be empty or filled with a state of the Kripke structure. When moving to a child, by the
second condition of good tree decompositions we either add nodes to empty slots or
remove nodes from slots, but not both. The three slots of the nodev are described by
new leafsv0, v1, v2. This explains our choice ofA above. When slotvi is occupied by
a state of the Kripke structure, thenvi receives the special labelt ∈ P (and probably
propositional letters as additional labels). Informationabout the edges of the Kripke
structure are stored in tree nodes from{a, b}∗. We now formally define these encod-
ings. We work with complete trees because TWAPTAs work on such trees. Nodes that
are present only to ensure completeness of the tree are labelled with the empty set. A
complete2P-labeledA-treeT is calledvalid if the following holds for allv ∈ A∗:

– if v ∈ {a, b}∗ andi ∈ {0, 1, 2}, then eitherT (vi) = ∅ or {t} ⊆ T (vi) ⊆ {t} ∪ P;
setXv := {i | t ∈ T (vi)};

– if v ∈ {a, b}∗, thenT (v) ⊆ Xv × A ×Xv;
– if v ∈ {a, b}∗ andc ∈ {a, b}, thenXv ⊆ Xvc orXvc ⊆ Xv;
– if v /∈ {a, b}∗ ∪ {a, b}∗{0, 1, 2}, thenT (v) = ∅.

Let T be a valid2P-labeledA-tree. We now make precise the Kripke structureK(T)
overP andA whose good tree decomposition is described byT . Define a set ofplaces
P = {u ∈ A∗ | t ∈ T (u)} and let∼ be the smallest equivalence relation onP which
contains all pairs(vi, vci) ∈ P × P , wherev ∈ {a, b}∗, c ∈ {a, b}, and0 ≤ i ≤ 2.
Foru ∈ P , we use[u] to denote the equivalence class ofu w.r.t.∼. Now setK(T) =
(X, {→a| a ∈ A}, ρ), where:

X = {[u] | u ∈ P}

→a = {([vi], [vj]) | v ∈ {a, b}∗, (i, a, j) ∈ T (v)}

ρ([u]) =
⋃

v∈[u]

T (v) ∩ P

The structureK(T) should not be confused withT viewedas a Kripke structure over
P andA as discussed at the beginning of this section: the original formulaϕ whose
satisfiability is to be decided is interpreted inK(T) whereas the reduction formulâϕ,
to be defined below, is interpreted inT viewed as a Kripke structure. The following two
lemmas are easily proved.

Lemma 3. If T is a valid2P-labeledA-tree, then the Kripke structureK(T) has tree
width at most two. Conversely, ifK is of tree width at most two, then there exists a valid
2P-labeledA-treeT such thatK is isomorphic toK(T).

Lemma 4. The set of all valid2P-labeledA-trees is anω-regular tree language.

Now we show how to convert formulasψ and programsπ overprop(ϕ) andprog(ϕ)

into formulasψ̂ and programŝπ overP andA such that for every valid2P-labeledA-tree
T , we have (i)[[π̂]]T ⊆ P × P and (ii) for allu, v ∈ P ,

u ∈ [[ψ̂]]T ⇔ [u] ∈ [[ψ]]K(T)

(u, v) ∈ [[π̂]]T ⇔ ([u], [v]) ∈ [[π]]K(T)

First, we define the auxiliary program

π1
∼ =

⋃

i∈{0,1,2}

t? ◦ i ◦ (a ∪ b ∪ a ∪ b) ◦ i ◦ t?

and letπ∼ = (π1
∼)∗. Note that[[π∼]]T equals∼. Now, for all a ∈ prog(ϕ) andp ∈

prop(ϕ) we define

â =
⋃

i,j∈{0,1,2}

π∼ ◦ i ◦ (i, a, j)? ◦ j ◦ π∼ and p̂ = 〈π∼〉p.

To extend this translation to complex ICPDL formulas and programs, we can simply
replace all atomic programsa and formulasp with â and p̂, respectively. From the
construction of̂ϕ and Lemmas 2 and 3, we obtain the following.

Proposition 1. The formulaϕ has a model of tree width at most two if and only if there
is a valid2P-labeledA-treeT such that(T, ε) |= 〈(0 ∪ 1 ∪ 2) ◦ t?〉ϕ̂.

From Theorem 2, Lemma 4, and Proposition 1, we obtain:

Theorem 4. There is a polynomial time reduction from satisfiability in ICPDL toω-
regular tree satisfiability in ICPDL.

5 ω-regular tree satisfiability in ICPDL is in 2EXP

Our remaining goal is to show thatω-regular tree satisfiability in ICPDL can be solved
in doubly exponential time. This is achieved by a reduction to theEXP-complete (non)-
emptiness problem for TWAPTAs. The main ingredient of the reduction is an inductive
translation of ICPDL formulas into TWAPTAs and ICPDL programs into a certain kind
of non-deterministic automata which we call NFAs. NFAs resemble word automata, but
navigate in a completeA-tree reading symbols fromA ∪ A. They can make conditional
ε-transitions, which are executable only if the current treenode is accepted by some
fixed TWAPTA. We start with presenting NFAs and the inductivetranslation.

Fix a finite set of atomic propositionsP and a finite set of atomic programsA. For
the rest of this section, it is more convenient to assume thata TWAPTA does not have an
initial state. Hence, it is just a tuple of the form(S, δ,Acc). A non-deterministic finite
automaton (NFA)A over a TWAPTAT = (S, δ,Acc) is a pair(Q,→A), whereQ is a
finite set ofstatesand→A is a set of transitions of the following form, whereq, q′ ∈ Q:

q
a
−→A q

′ with a ∈ A ∪ A or q
T ,s
−−→A q

′ with s ∈ S.

Transitions of the latter kind are calledtest transitions. LetT be a complete2P-labeled
A-tree. Define the relation⇒A,T ⊆ (A∗ ×Q)× (A∗ ×Q) as the smallest relation such
that

– (u, p) ⇒A,T (ua, q) if p
a
−→A q (a ∈ A, u ∈ A∗);

– (ua, p) ⇒A,T (u, q) if p
a
−→A,T q (a ∈ A, u ∈ A∗);

– (u, p) ⇒A,T (u, q) if p
T ,s
−−→A q andu ∈ [[T , s]]T (u ∈ A∗).

For a pair(p, q) ∈ Q×Q, define[[A, p, q]]T = {(u, v) ∈ A∗×A∗ | (u, p) ⇒∗
A,T (v, q)}.

5.1 From ICPDL to automata

For each ICPDL formulaϕ, we construct a TWAPTAT (ϕ) such that for all2P-labeled
A-treesT , [[T (ϕ), s]]T = [[ϕ]]T , wheres is some selected state ofT (ϕ). For each ICPDL
programπ, we construct a TWAPTAT (π) and an NFAA(π) overT (π) such that for
all 2P-labeledA-treesT , [[A(π), p, q]]T = [[π]]T , wherep, q are two selected states of
A(π). In the following, the indexT will be omitted for brevity. The construction is by
induction on the structure ofϕ andπ. We start with the construction of the TWAPTAs
T (ϕ) for ICPDL formulasϕ.

If ψ = p ∈ P, we putT (ψ) = ({s}, δ, s 7→ 1), where for allY ⊆ P we have
δ(s, Y) = true if p ∈ Y andδ(s, Y) = false otherwise.

If ψ = ¬θ, thenT (ψ) is obtained fromT (θ) by applying the standard complementation
procedure where all positive Boolean formulas on the right-hand side of the transition
function are dualized and the acceptance condition is complemented by increasing the
priority of every state by one, see e.g. [15].

If ψ = 〈π〉θ, then we have inductively constructedA = A(π) with state setQ over a
TWAPTA T (π) = (S1, δ1,Acc1) such that[[π]] = [[A, p0, q0]] for somep0, q0 ∈ Q. We
have also constructed a TWAPTAT (θ) = (S2, δ2,Acc2) such that[[θ]] = [[T (θ), s0]] for
somes0 ∈ S2. We construct the TWAPTAT (ψ) = (S, δ,Acc) with S = Q⊎ S1 ⊎ S2.
For states inS1 or inS2, the transitions ofT (ψ) are as inT (π) andT (θ), respectively.
It remains to simulateA. Handling transitions ofA of the formq

a
−→A q

′ is easy:T (ψ)
simply navigates up or down in the tree as required. WhenT (ψ) is in stateq ∈ Q and

there is a transitionq
T (π),s
−−−−→A r, we branch universally to simulate bothT (π) in state

s and the state change ofA to stater. Finally, we admit anε-transition from stateq0 to
s0, thus simulatingT (θ) after finishing the simulation ofA. Formally, forq ∈ Q and
Y ⊆ P, we define

δ(q, Y) =
∨

{〈r, a〉 | r ∈ Q, a ∈ A ∪ A, q
a
−→A r} ∨

∨
{〈s, ε〉 ∧ 〈r, ε〉 | r ∈ Q, s ∈ S1, q

T (π),s
−−−−→A r} ∨

((q = q0) ∧ 〈s0, ε〉)

The priority functionAcc is defined by settingAcc(s) = 1 if s ∈ Q andAcc(s) =
(Acc1 ⊎ Acc2)(s) for s ∈ S1 ⊎ S2. We setAcc(s) = 1 for all s ∈ Q since we want
to assure that the NFAA is simulated for finitely many steps only, asψ = 〈π〉θ is a
diamond formula. We obtain[[ψ]] = [[T (ψ), p0]].

We now describe the inductive construction ofA(π) andT (π) for an ICPDL programπ.
If Ti = (Si, δi,Acci), i ∈ {1, 2}, are two TWAPTAs with disjoint sets of states, in what
follows we useT1 ⊎ T2 = (S1 ⊎ S2, δ1 ⊎ δ2,Acc1 ⊎ Acc2) denote their disjoint union;
it is defined in the obvious way.

If π = a ∈ A∪A, the NFAA(π) has two statesp andq with the only transitionp
a
−→ q.

Hence,[[π]] = [[A(π), p, q]].

If π = ψ?, we can assume that there exists a TWAPTAT (ψ) with a states such that
[[ψ]] = [[T (ψ), s]]. The TWAPTAT (π) is T (ψ). The NFAA(π) has two statesp and

q with the only transitionp
T (π),s
−−−−→ q. Hence, we have[[π]] = [[A(π), p, q]] = {(u, u) |

u ∈ [[T (ψ), s]]}.

If π = π1 ∪ π2, π = π1 ◦ π2, or π = χ∗, we constructA(π) by using the standard
automata constructions for union, concatenation, and Kleene-star. In caseπ = π1∪π2 or
π = π1◦π2, we setT (π) = T (π1)⊎T (π2), whereas forπ = χ∗, we setT (π) = T (χ).

It remains to constructA(π1∩π2) andT (π1∩π2), which is the most difficult step of the
construction. Assume that the NFAsA(πi) = (Qi,→A(πi)) over the TWAPTAsT (πi)
have already been constructed, fori ∈ {1, 2}. Thus,[[A(πi), pi, qi]] = [[πi]] for some
statespi, qi ∈ Qi. A natural idea for defining an NFA forπ1 ∩ π2 is to apply a product
construction toA1 andA2. A naive attempt to do this is bound to fail because a run of
A1 in T and a run ofA2 in T , both starting in a tree nodeu and ending in a tree node
v, may proceed along different paths. More precisely, the tworuns both travel along the
unique shortest fromu to v, but they may make different “detours” from this shortest
path. In order to eliminate this problem and make the productconstruction available, we
modifyA(π1) andA(π2) by admitting additional test transitions that allow to short-cut
the mentioned detours. These modified NFAs can always travelalong the shortest path
without any detours, and thus the product construction can be used.

Before we can constructA(π1 ∩ π2), we make a digression to introduce the men-
tioned modification of NFAs. LetT = (S, δ,Acc) be a TWAPTA andA = (Q,→A)
an NFA overT . Define the relationloopA ⊆ A∗ ×Q×Q as the smallest set such that:

(i) for all u ∈ A∗ andq ∈ Q we have(u, q, q) ∈ loopA,

(ii) if (ua, p′, q′) ∈ loopA, p
a
−→A p

′ andq′
a
−→A q, then(u, p, q) ∈ loopA,

(iii) if (u, p′, q′) ∈ loopA, p
a
−→A p

′, andq′
a
−→A q, then(ua, p, q) ∈ loopA,

(iv) if (u, p, r) ∈ loopA and(u, r, q) ∈ loopA, then(u, p, q) ∈ loopA, and

(v) if u ∈ [[T , s]] andp
T ,s
−−→A q for s ∈ S, then(u, p, q) ∈ loopA.

Intuitively, loopA describes detours, i.e., (parts of) a run ofA that start at some node in
the tree and eventually return to the very same node. It is nottoo difficult to prove the
following.

Lemma 5. We have(u, p, q) ∈ loopA if and only if(u, p) ⇒∗
A (u, q).

Since Conditions (i)–(v) can be easily translated into a TWAPTA, we obtain:

Lemma 6. There is a TWAPTAU = (S′, δ′,Acc′) with S′ = S ⊎ (Q×Q) s.t.

(i) [[U , s]] = [[T , s]] for all s ∈ S,
(ii) [[U , (p, q)]] = {u ∈ A∗ | (u, p, q) ∈ loopA} for all (p, q) ∈ Q×Q, and
(iii) |Acc′| = |Acc|.

Now define a new NFAB = (Q,→B) over the TWAPTAU , that results fromA by

adding for every pair(p, q) ∈ Q × Q, the test transitionp
U ,(p,q)
−−−−→B q. The following

lemma shows that our modification did not damage the NFA.

Lemma 7. Letu, v ∈ A∗ and letp, q ∈ Q. Then(u, v) ∈ [[A, p, q]] iff (u, v) ∈ [[B, p, q]].

We now return to the construction ofA(π1 ∩ π2) andT (π1 ∩ π2) fromA(π1), A(π2),
T (π1), andT (π2). Fori ∈ {1, 2}, we first construct the NFAB(πi) over the TWAPTA
U(πi) = (S′

i, δ
′
i,Acc′i) as described above. Note that|S′

i| = |Si| + |Qi|
2. We take

T (π1 ∩ π2) = U(π1) ⊎ U(π2). The NFAA(π1 ∩ π2) is the product automaton of
B(π1) = (Q1,→B(π1)) andB(π2) = (Q2,→B(π2)), where test transitions can be
carried out asynchronously:

– The state set ofA(π1 ∩ π2) isQ1 ×Q2.
– For a ∈ A ∪ A we have(r1, r2)

a
→A(π1∩π2) (r′1, r

′
2) if and only if r1

a
→B(π1) r

′
1

andr2
a
→B(π2) r

′
2.

– For s ∈ S′
1 ⊎ S′

2 we have the test transition(r1, r2)
T (π1∩π2),s
−−−−−−−→A(π1∩π2) (r′1, r

′
2)

if and only if (i) s ∈ S′
1, r2 = r′2, andr1

U(π1),s
−−−−−→B(π1) r

′
1 or (ii) s ∈ S′

2, r1 = r′1,

andr2
U(π2),s
−−−−−→B(π1) r

′
2.

It is possible to show that[[A(π1 ∩ π2), (p1, p2), (q1, q2)]] = [[π1 ∩ π2]].This finishes the
inductive translation of ICPDL formulas and programs into automata. A careful analysis
of the constructions outlined above, allows us to inductively establish the following
bounds.

Lemma 8. For every ICPDL formulaψ and every ICPDL programπ we have:

1. If T (ψ) = (S, δ,Acc), then|S| ≤ 2|ψ|
2

and|Acc| ≤ |ψ|.
2. If A(π) = (Q,→A(π)) andT (π) = (S, δ,Acc) then|Q| ≤ 2|π|, |S| ≤ 2|π|

2

, and
|Acc| ≤ |π|.

The doubleexponential bound in Point 1 of Lemma 8 is due to the fact that the con-
struction for dealing with program intersection blows up the size of NFAs quadratically.
In contrast, all other constructions involve only a linear blowup.

5.2 Wrapping up

It is now easy to decideω-regular tree satisfiability in ICPDL. LetT0 be a TWAPTA over
2P-labeledA-trees and letϕ be an ICPDL formula withprop(ϕ) ⊆ P andprog(ϕ) ⊆ A.
There is a states of T (ϕ) such that[[T (ϕ), s]]T = [[ϕ]]T for all 2P-labeledA-trees
T . Let the TWAPTAT be the intersection ofT0 andT (ϕ) (taking the intersection
of TWAPTAs is trivial an can be done in linear time), wheres becomes the initial
state ofT (ϕ). Clearly,L(T) 6= ∅ if and only if there exists some treeT ∈ L(T0)
with (T, ε) |= ϕ. By Lemma 8 and Theorem 3, we thus obtain a2EXP upper bound
for ω-regular tree satisfiability in ICPDL. A matching lower bound is obtained by a
straightforward reduction of satisfiability in ICPDL in tree-shaped Kripke structures. It
was shown in [11] that this problem is2EXP-hard.

Theorem 5. ω-regular tree satisfiability in ICPDL is2EXP-complete.

Together with Theorem 4, this finally proves our main result Theorem 1. It is interesting
to note that the bound given in Point 1 of Lemma 8 improves to single exponential if
the intersection height (which can be defined in the obvious way) of ICPDL programs
is bounded by a constant. Thus, we actually obtainEXP-completeness for this case.

6 Negation of atomic programs

We consider extensions of IPDL and ICPDL with negation of programs. It is well known
that adding full program negation renders PDL undecidable [9], whereas PDL with pro-
gram negation restricted to atomic programs remains decidable andEXP-complete [13].
In this section, we show that IPDL and hence also ICPDL becomeundecidable already
when extended with atomic program negation. Since intersection of programs can be
defined in terms of program union and (full) program negation, this also yields an alter-
native proof of the undecidability of PDL with full program negation.

Our proof proceeds by reduction from the undecidable tilingproblem of the first
quadrant of the plane [3]. Atiling systemT = (T,H, V) consists of a finite set oftile
typesT and horizontal and vertical matching relationsH,V ⊆ T × T . A solutionto T
is a mappingτ : N × N → T such that for all(x, y) ∈ N × N, we have

– if τ(x, y) = t andτ(x + 1, y) = t′, then(t, t′) ∈ H , and
– if τ(x, y) = t andτ(x, y + 1) = t′, then(t, t′) ∈ V .

Thetiling problemis to decide, given a tiling systemT , whetherT has a solution.

We use IPDL(¬) to denote the extension of IPDL with negation of atomic programs,
which we write as¬a (a ∈ A). The semantics of the new constructor is defined in the
obvious way, i.e.,[[¬a]]K = (X×X)\[[a]]K. To reduce the tiling problem to satisfiability
in IPDL(¬), we give a translation of tiling systemsT = (T,H, V) into formulasϕT of
IPDL(¬) such thatT has a solution if and only ifϕT is satisfiable. In the formulaϕT ,
we use two atomic programsax anday for representing the gridN × N and we use the
elements ofT as atomic propositions for representing tile types. More precisely,ϕT is
a conjunction consisting of the following conjuncts:

(a) every element of a (connected) model ofϕT represents an element ofN×N and is
labelled with a unique tile type:

[(ax ∪ ay)
∗]

(∨

t∈T

t ∧
∧

t,t′∈T,t6=t′

¬(t ∧ t′)
)

(b) every element has anax-successor and anay-successor:

[(ax ∪ ay)
∗]

(
〈ax〉true ∧ 〈ay〉true

)

(c) the programsax anday are confluent:

[(ax ∪ ay)
∗] [(ax; ay) ∩ (ay;¬ax)]false

(d) the horizontal and vertical matching conditions are respected:

[(ax ∪ ay)
∗]

(∧

t∈T

t ⇒
(
[ax]

∨

(t,t′)∈H

t′ ∧ [ay]
∨

(t,t′)∈V

t′
))
.

Lemma 9. T has a solution if and only ifϕT is satisfiable.

We have thus established the following result.

Theorem 6. Satisfiability in IPDL(¬) is undecidable.

References

1. L. Afanasiev, P. Blackburn, I. Dimitriou, B. Gaiffe, E. Goris, M. J. Marx, and M. de Rijke.
PDL for ordered trees.Journal of Applied Non-Classical Logics, 15(2):115-135, 2005.

2. N. Alechina, S. Demri, and M. de Rijke. A modal perspectiveon path constraints.Journal
of Logic and Computation, 13(6):939–956, 2003.

3. R. Berger. The undecidability of the dominoe problem.Memoirs of the American Mathe-
matical Society, 66, 1966.

4. R. Danecki. Nondeterministic Propositional Dynamic Logic with intersection is decidable.
In Proc. 5th Symp. Computation Theory, LNCS 208, pages 34–53, 1984.

5. L. Farinas Del Cerro and E. Orlowska. DAL-a logic for data analysis.Theoretical Computer
Science, 36(2-3):251–264, 1985.

6. M. J. Fischer and R. E. Ladner. Propositional Dynamic Logic of Regular Programs.Journal
of Computer and System Sciences, 18(2):194–211, 1979.

7. G. D. Giacomo and M. Lenzerini. Boosting the correspondence between description logics
and propositional dynamic logics. InProc. AAAI94, pages 205–212, 1994.

8. S. Göller and M. Lohrey. Infinite state model-checking ofpropositional dynamic logics. In
Proc. CSL 2006, LNCS 4207, pages 349–364. Springer, 2006.

9. D. Harel, D. Kozen, and J. Tiuryn.Dynamic Logic. Foundations of computing. The MIT
Press, 2000.

10. W. van der Hoek and J.J. Meyer. A complete epistemic logicfor multiple agents – Com-
bining distributed and common knowledge.Epistemic Logic and the Theory of Games and
Decisions, pages 35–68. Kluwer, 1997.

11. M. Lange and C. Lutz. 2-ExpTime Lower Bounds for Propositional Dynamic Logics with
Intersection.Journal of Symbolic Logic, 70(4):1072–1086, 2005.

12. C. Lutz. PDL with intersection and converse is decidable. In Proc. CSL 2005, LNCS 3634,
pages 413–427. Springer, 2005.

13. C. Lutz and D. Walther. PDL with negation of atomic programs. Journal of Applied Non-
Classical Logics, 15(2):189–213, 2005.

14. J. Meyer. Dynamic logic for reasoning about actions and agents. In J. Minker, editor,Logic-
Based Artificial Intelligence, pages 281–311. Kluwer Academic Publishers, 2000.

15. D. Muller and P. Schupp. Alternating automata on infinitetrees. Theoretical Computer
Science, 54(2-3):267–276, 1987.

16. V. Pratt. A near-optimal method for reasoning about action. Journal of Computer and System
Sciences, 20:231–254, 1980.

17. B. ten Cate. The expressivity of XPath with transitive closure. InProceedings of the
Twenty-Fifth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems (PODS 2006), pages 328–337. ACM Press, 2006.

18. H. P. van Ditmarsch, W. van der Hoek, and B. P. Kooi. Concurrent dynamic epistemic logic
for MAS. In Proc. AAMAS 2003, pages 201–208. ACM Press, 2003.

19. M. Y. Vardi. The taming of converse: Reasoning about two-way computations. InProc.
Logics of Programs, LNCS 193, pages 413–423. Springer, 1985.

20. M. Y. Vardi. Reasoning about the past with two-way automata. InProc. ICALP ’98, LNCS
1443, pages 628–641. Springer, 1998.

