
Comparison of Standard and Zipf-Based
Document Retrieval Heuristics

Benjamin Hoffmann
Universiẗat Stuttgart,

Institut für Formale Methoden der Informatik

Universiẗatsstr. 38, D-70569 Stuttgart, Germany

hoffmann@fmi.uni-stuttgart.de

September 15, 2010

Abstract

Document retrieval is the task to retrieve from a possibly huge collection
of documents those which are most similar to a given query document. In
this paper, we present a new heuristic for inexact topK retrieval. It is simi-
lar to the well-known index elimination heuristic and is based on Zipf’s law,
a statistical law observable in natural language texts. We compare the two
heuristics with regard to retrieval performance and execution time. There-
fore, we use a text collection consisting of scientific articles from various
computer science conferences and journals. It turns out that our newap-
proach is not better than index elimination. Interestingly, a combination of
both heuristics yields the best results.

1 Introduction

Today, information retrieval (IR) gains rapidly increasinginterest from researchers
in the area of computer science. This is mainly due to the factthat for most
people, information retrieval systems (like, for example,web search engines) are
the preferred means of information access. Furthermore, technical progress has
made it possible to accumulate huge amounts of data. According to the 2008
annual review of Thomson Reuters, every day 15 petabytes of new data are created
[2]. Thus, one needs efficient algorithms which are capable of handling huge data
sets.

1

A common task in the context of information retrieval is the following. Given
a document collection (corpus) and a query document, we wantto determine docu-
ments from the collection that are most similar to the query document with respect
to some similarity measure (e.g. cosine similarity). We denote this task bydocu-
ment retrieval. It appears in a wide range of applications, including for example
text clustering, duplicate detection, and search engines (e.g. a “more like this”
feature available in the results list) .

In this paper, we present a new document retrieval method which exploits
a fact on the probabilities of intersecting sets in theZipf model[9]. The Zipf
model is a randomized input model for the maximal intersection problem, which
is defined as follows: Given a setT and a databaseD ⊆ 2T along with a query
setq ⊆ T . We ask for a memberd ∈ D having an intersection of maximal size
with the query setq. In general, determining such a member is computationally
expensive. It becomes efficiently feasible if the input follows the Zipf model.
Loosely speaking, in the Zipf model an almost optimal answercan be found by
considering only a relatively small subset ofT . In this paper, we transfer this
idea to document retrieval in the vector space model and compare it with the
well-known index elimination method. Our new approach accomplishes inexact
top K retrieval where the selection criterion for relevant termsis the document
frequency.

The remainder of the paper is organized as follows: In Section 2 we give an
overview of the vector space model and introduce simultaneously the notation
used. In Section 3 we state the maximal intersection problemand explain the Zipf
model. (Readers familiar with these two models can immediately skip to Section
4.) In Section 4 we show how the Zipf model can be applied to document re-
trieval and present our new algorithm. Section 5 explains the experimental setting
and compares the results obtained by our method with those obtained by index
elimination. We give a conclusion in Section 6.

2 The vector space model

The most common information retrieval task isad hoc retrieval. Given a collec-
tion of documents, we want from our IR system a method providing documents
from within the collection that are relevant to an arbitraryset of (search) terms
initiated by the user. This terms are called thequery. In order to solve the retrieval
task by our system, we have to formalize the notion of relevance. (Clearly, the
relevance of a document depends on the user’s information need. A formal def-
inition tries to capture the information need.) The standard way to do this is the
usage ofcosine similarity. Therefore, we represent each documentd as a vector
~V (d) over thevocabularyof terms. Usually, the vocabulary does not contain each

2

word occurring in our collection, but a subset of the words suited for document
retrieval. These words are calledterms(see Section 5.1). Theterm frequencytft,d

is the number of occurrences of termt in documentd. Thedocument frequencydft

is the number of documents in the collection that contain term t. The components
of a document vector~V (d) are thetf -idf weights of the document’s correspond-
ing terms. Thetf -idft,d weight of termt in documentd is the product of its term
frequencytft,d and its inverse document frequencyidft = log N

dft

. Intuitively, this
weighting scheme is reasonable since a term gets a high scoreif it occurs many
times in a document and only in a small number of documents (thus, discrimi-
nating those documents from the rest). The similarity between two documents is
defined as the cosine similarity of their vector representations ~V (d1) and~V (d2),

sim(d1, d2) =
~V (d1) · ~V (d2)

|~V (d1)||~V (d2)|
.

(The numerator represents the dot product of the two vectors.) Clearly, this con-
cept of similarity can easily be transferred to measure similarity between a doc-
ument and a query by representing the query as a vector over the vocabulary.
Consequently, we use the cosine similarity as a measure of relevance of a docu-
ment to the query. Note that document retrieval differs fromad hoc retrieval since
the query itself is a document and not a set of user-initiatedsearch terms.

Now that we have an exact mathematical notion of relevance, we must explain
how relevant documents are retrieved. This is done by the usage of aninverted
index, which is a data structure that stores for each vocabulary term t a so called
postings list. A postings list is a list of those documents containing termt. In order
to answer a query, we calculate for each document that contains at least one search
(query) term its cosine similarity with the query. As result, we present theK top-
scoring documents. Here, we call this algorithm thestandardretrieval algorithm.
The computation cost of it can be lowered if we do not demand that precisely the
K documents with the highest scores are returned. A common heuristic, called
index elimination, is to consider only the postings lists of terms whoseidf exceeds
a certain value and to return a ranked list of the documents contained in the union
of all such postings (inexact topK retrieval). For a more detailed treatment of the
vector space model and a comprehensive list of references, we refer the reader to
[10, 6].

3 Maximal intersection queries and the Zipf model

Let T = {t1, t2, . . . , tm}. Themaximal intersection (MI) problemis the follow-
ing:

3

Input: A database ofn finite setsD = {d1, . . . , dn} ⊆ 2T .

Query: Given a finite query setq ⊆ T , we ask for a setd ∈ D having a maximal
intersection withq, that is,|q ∩ d′| ≤ |q ∩ d| for all d′ ∈ D.

Thek-approximateversion of this problem asks for a setd ∈ D such that|q∩d′| ≤
k · |q ∩ d| for all d′ ∈ D, k > 1.

The exact version is as hard as thenearest neighbor searchproblem in the
Hamming cube (see [7]), for which no preferable solution (i.e., one using(n ·
m)O(1) storage and havingmO(1) search time) is known so far.1 Moreover, it is
believed that no such solution exists at all [3]. However, for many applications
like text clustering, recommendation systems, and the distribution of online ad-
vertisements it suffices to solve the approximate version.

In real life, most problem inputs are not random, but exhibita certain underly-
ing structure. An obvious example are natural language texts which exhibitsZipf ’s
law [12]. Zipf’s law states that the frequencyf of a word is inversely proportional
to its rankr in the frequency table, that is,

f ∝
1

r
.

Or, in other words, there exists a constantc such thatf · r ≈ c. In the next
paragraph we will explain a randomized input model for the MIproblem based on
Zipf’s law, called theZipf model.

3.1 The Zipf model

Since the Zipf model is motivated by an empirical law which ismainly observed
in natural language texts, we deal in the following withdocumentsinstead of sets.
The setT can be considered as the vocabulary.

The Zipf model was introduced in [9] and further developed in[8, 7]. It is a
probabilistic process for generating a document collection which follows Zipf’s
law. Each document is generated by choosing terms that will be contained in it.
Each term is chosen independently and the termti is chosen with probability1

i
.

Every document is also generated independently. (Note thatby this process, each
term can occur at most once in a document.) Now, if a collection is generated
in this way, one can observe that the document frequencies ofthe terms are dis-
tributed according to Zipf’s law. For inputs (i.e., document collectionandquery)
following the Zipf model, the following holds:

1Clearly, for both problems there exist solutions. Namely, alinear scan over the database or the
usage of a hash table storing for each possible query the correct answer. However, these solutions
do not comply with the complexity constraints of a preferable solution.

4

Theorem 3.1. There exists a deterministic algorithm for the MI problem that re-
turns a 1+E(ε,n)

1−∆(δ,n)
-approximate answer with probabilityp(ε, δ, n) tending to one as

n → ∞, whereε, δ > 0 andE(ε, n) → ε, ∆(δ, n) → δ asn → ∞. The algo-
rithm has a preprocessing time of̃O(nm) and a query time of̃O(log m+n) in the
average case2. The space required isn1+o(1).

This algorithm is based on the fact that in the Zipf model athreshold phe-
nomenonon the most probable intersection size holds. That is, assume the terms
of each document from the collection and the query terms are ordered in descend-
ing order according to their document frequency. Then, one can show that up to
a certain values (threshold) a document matching the first(1 − δ)s query terms
exists with high probability, where for larger values the probability falls to nearly
zero. Surprisingly, this behavior cannot only be observed for a match in thefirst
terms, but also for an “arbitrary” match. The crucial observation is that for both
kinds of matches the threshold values are close to each other(see Figure 1). Thus,
determining a document that has a maximal commonprefix3 match with the query
yields with high probability an almost optimal answer.

threshold

1

probability

r

Figure 1: Exemplary probability curves forr-match (the solid line) andr-prefix
match (the dashed line)

In [7], the author generalized the Zipf model such that it cancope with stop
words. Stop wordsare words which occur very frequently in a text and there-
fore appear to be of little value in reflecting its content. Inthe context of the
Zipf model, the notion stop word refers to terms that occur inall (or nearly all)
documents. Clearly, a term which is contained in every document is irrelevant
for the MI problem. It was shown that without stop words, a threshold theorem

2Õ(f) :=
⋃

k>0
O(f logk f)

3according to the above order

5

analogously to the one above holds and the same deterministic algorithm can be
applied. While the complexity remains the same, the approximation factork be-
comes larger by a multiplicative factor depending on the collection. For a full
description of the generalized model see [7].

4 Applying the Zipf model to document retrieval

So far we have introduced the “background” we will need in thefollowing. We
now explain how the Zipf model and its threshold phenomenon can be applied to
document retrieval. Recall that by document retrieval we denote the problem to
determine to some given query document a set of documents that are most similar
to the query with respect to cosine similarity.

As mentioned in Section 2, in the vector space model index elimination (i.e.,
consider only the postings of terms whoseidf exceeds a certain value) is used
in order to speed up query processing. Now, instead of selecting query terms
according toidf value, we take the terms with the highest document frequencyand
intersect the according postings lists. The documents in this intersection constitute
the answer set and will be ranked according to their similarity with the query
document. To be more precise, we apply the following three-step algorithm:

Preprocessing.Determine the vocabulary of terms (removing stop words, nor-
malization, stemming).

Data structure. Generate an index which is sorted according to document fre-
quency.

Query processing. 1. Preprocess the query (cf. Preprocessing).

2. Determine the answer set by intersecting the postings of the query
terms in descending order according to document frequency.Stop if
the set size is equal to or for the first time smaller than some predefined
value.

3. Calculate the cosine similarity between each answer document and the
query document.

The above is a high-level description of the algorithm. In the next section, we
explain the different steps in more detail.

We derived this method from the threshold phenomenon mentioned in the last
section, where the query terms with the highest document frequency suffice to
determine an almost maximal matching. The fact that most documents we deal
with in information retrieval are natural language texts (thus, exhibiting Zipf’s
law) makes this approach obvious and, moreover, justifies it. However, a problem

6

might be that we want to maximize cosine similarities and notintersection sizes.
It is not clear that the set of answer documents chosen according to the ”high
frequency” query terms they contain yield high cosine similarities. As we will see
in Section 5, for our test collection this is the case.

Other discrepancies to the Zipf model are the facts that documents are usually
multisets of words and that Zipf’s law makes a statement about the distribution
of word frequencies in a single text, and not about document frequencies in a
collection. In Section 5.2.1, we discuss these issues in detail.

5 Experiments

In this section, we set out our experimental setting and compare the results of our
new approach with the inverted index method.

Our test corpus consists of 1432 freely available4 scientific articles from var-
ious conferences in the area of computer science. The main topics include al-
gorithm theory, automata and language theory, theoreticalcomputer science in
general, and combinatorics on words. As queries, we have randomly chosen 120
texts from the corpus; all results are averaged over these queries. The texts were
given in PDF format. For further processing, we converted them to the simple
TXT format by the toolpdftotext using ASCII7 encoding.

5.1 Determining the vocabulary

First, we applied case-folding by reducing all letters to lower case. We then re-
move stop words since they do not reflect the content of a document and thus
appear to be of little value in selecting content-similar documents. (In general,
information retrieval systems remove stop words before indexing.) We applied
the stop word list provided by the SMART software [1]. This list contains 571
different stop words. Given the nature of our corpus, we extended the list by the
following words:abstract, computer, define, defined, definition, denote, de-
notes, exist, exists, general, introduction, lemma, number, paper, perform,
performs, problem, proof, references, result, results, science, section, the-
orem, theory. In [11] Miller et al. established empirically that the average length
of a stop word is 3.13 letters. Hence, in addition to the wordsof the list, we re-
moved all words whose length is less than 5. We also removed special characters
(e.g. @, &, ?). As a final filtering step, we performed some simple stemming
techniques. To be more precise, we removed each ’s’ at the ending of a word if
the predecessor of this last ’s’ is not equal to ’s’, ’i’, or ’u’. For words ending

4Or available via access provided by the library of the University of Stuttgart.

7

with ”ies”, we replaced this ending by ’y’. Additionally, weapplied the following
replacements:

vertices→ vertex

queries→ query

suffixes→ suffix

We list some statistics of our collection in Table 1. Note that both retrieval meth-
ods use the vocabulary determined by this linguistic preprocessing.

Statistic Value

documentsN 1,312
words (before pp) 137,188
terms 93,220
avg. # tokens per document (before pp) 3,404
avg. # tokens per document 1,837
avg. # terms per document 551
collection size (before pp) 51 MB
collection size 24 MB

Table 1: Collection statistics. If not explicitly stated otherwise, all values refer to
the collection after preprocessing (pp).

5.2 Implementation details

5.2.1 Adapting the data to the Zipf model

As mentioned in Section 3, in a document collection following the Zipf model the
terms’ document frequencies are distributed according to Zipf’s law. However, in
a collection of real texts, Zipf’s law states that thecollection frequencies(the total
number of times each term appears in the collection) are distributed according
to it. To see that this holds, just consider the concatenation of all texts. This
means that a real text collection does not necessarily behave according to the
Zipf model. And indeed, if we consider the terms from our vocabulary and plot
the document frequency as a function of the rank, the resulting graph is not a
line with slope -1, as it should be according to Zipf’s law (cf. Figure 2). The
shape of this graph is due to the fact that the terms with the highest document
frequency occur in the bulk of the documents (see Table 2, theleft column) and
do not follow Zipf’s law (the most frequent term occurs twiceas often as the

8

 1

 10

 100

 1000

 1 10 100 1000 10000

lo
g1

0
df

log10 rank

Term frequency distribution

before pp
after pp
20/doc

Figure 2: Rank-frequency distribution of our test corpus. Document frequency
(df) is plotted as a function of the rank. On both axes, we use logarithmic scales.

second most frequent one and so on). According to our discussion at the end of
Section 3, these terms are stop words in the context of the Zipf model. Thus, a
possible solution is to remove these most frequent terms. However, they occur not
in every document and most of them are relevant regarding thecontent. Therefore,
dropping them might impair retrieval results, see Remark 5.1. Another indicator
for this assumption provides the theoretical analysis in [7]. According to it, the
approximation factor would become larger by the multiplicative factor of 241 for
our corpus. Thus, we applied the following heuristic: We usefrom each document
only the 20 most frequently occurring terms for indexing, which means only the
terms which are most important in describing the content of adocument. The right
column in Table 2 shows the first 10 terms for this case. Note that the document
frequencies are closer to Zipf’s law. Also, if we plot the document frequency of
the resulting term set, we get a graph which fits Zipf’s law better than the graph of
all terms after preprocessing (see Figure 2). Clearly, this adaption is only applied
for the Zipf-based method.

Remark 5.1. In order to verify the (theoretical) assumption that dropping stop
words impairs retrieval results, we applied this approach to the test corpus. To be
more precise, we applied the Zipf-based heuristic without further modifications of
the vocabulary, with dropping the first 100 terms, and with dropping the first 500

9

All terms 20/doc

property (1104) algorithm (549)
assume (1086) function (345)
function (1079) state (292)
order (1078) language (276)
called (1067) graph (269)
prove (1055) bound (261)
algorithm (1048) finite (255)
application (1022) probability (222)
university (1015) system (221)
similar (970) vertex (219)

Table 2: Most frequently occurring terms and their documentfrequencies.

terms. In all cases, the results were worse with respect to highest rank and pre-
cision/recall than those obtained with adaption. While the decline for the highest
ranks was moderate, the decline with respect to precision/recall was significantly
(for example, precision decreases by 50 % or more). For the sake of clarity, we do
not list the results here explicitly. Note also that without adaption the vocabulary
size is larger which results in higher execution times.

5.2.2 Index structure

Using from each document only 20 terms reduces the overall number of terms to
4447. As index structure we build aterm-document incidence matrix. We sort the
terms in decreasing order according to their document frequency. Our experiments
have shown that the last matrix row considered was number 326. Therefore, it is
likely that we do not need all rows. To use the first 500 rows might be a reasonable
number. This observation is also supported by the thresholdtheorem, which yields
implicitly an upper bound for the number of terms among a maximal prefix match
occurs with high probability, see [7]. By coding the rows intointegers, the whole
matrix requires about 0.73 MB. Taking only the first 500 rows reduces the size to
82 KB (we assume that an integer contains 32 bits). Note that instead of using a
matrix we could have also used a standard index.

5.2.3 Query processing

In order to process a query, we first apply to it the same preprocessing steps we ap-
plied to the corpus. Then, we take the 20 most frequently occurring query terms

10

and sort them in decreasing order according to their document frequency in the
corpus. The answer set is determined by intersecting the matrix rows correspond-
ing to the sorted query term sequence, starting with the terms having the highest
document frequency (cf. Section 3: prefix match in the Zipf model). Note that
intersecting reduces to abinary and. We stop this process once the size of the
answer set is equal to or for the first time smaller than0.05 · N (for our corpus,
5% of the corpus size is a good compromise between quality of the results and fast
execution time.) Finally, we rank the answer documents according to their cosine
similarity with the query document.

5.3 Results

Table 3 shows experimental results the different algorithms yield on our test cor-
pus. We list the results for the standard retrieval algorithm without5 and with
index elimination, where in the latter case we choose asidf threshold the value
2.6. Then, only postings of terms withdf ≤ 131 are considered, which means that
the 12711 terms with higherdf values are dropped. The threshold 2.6 is chosen
so that we get approximately the same number of answer documents as the Zipf-
based algorithm retrieves. Considering the last column in the Table 3, we see that

Statistic Std. Std. Zipf
(measure:cosine) no elimination idf > 2.6 ≤ 0.05 · N

avg. sim. best answer 0.410 0.351 0.234
highest rank(avg./med./# rank 1) 1 / 1 / 120 4 / 2 / 59 19 / 6 / 22

avg. size answer set 1304 36 31
avg. # (postings lists traversed) 503 29 2
last postings list(avg./max.) 84409 / 93138 17 / 326

preprocessing time (inµs) 47.7 12.3
avg. query time (inµs) 0.211 0.013 0.008

Table 3: Retrieval results for the standard retrieval algorithm (with and without
index elimination) and our new algorithm (Zipf heuristic).Similarity is measured
by cosine similarity. The average value over the 120 averagesimilarity values
between each query and all documents is 0.022, the average maximal similarity is
0.410.

our new selection heuristic corresponds to high cosine similarities. However, the

5We list the results for the algorithm without index elimination mainly for time comparison.

11

standard algorithm in connection with the quite rigorous index elimination yields
even better results. Most notably, in 59 of 120 cases it retrieves the document
which is most similar to the query, while for our method this happens in 22 cases
only.

The first two entries (cosine) of Table 4 listprecision(prec.) andrecall (rec.),
which are defined as follows:

precision=
#(relevant documents retrieved)

#(retrieved documents)

recall=
#(relevant documents retrieved)

#(relevant documents)

For our tests, we set the number of relevant documents to be the 20 or 40 high-
est ranked documents from the corpus. For 40 relevant documents, the precision
increases for both heuristics. Simultaneously, the recalldecreases. Here, it is in-
teresting that for the Zipf heuristic the decrease in recallis much smaller than for
the index elimination heuristic. This means that for the Zipf heuristic the number
of relevant documents retrieved scales linearly with respect to the number of rel-
evant documents. Or, in other words, the relative increase in relevant documents
is larger. However, in absolute terms index elimination retrieves more relevant
documents.

Examining the execution times, we see that our new method is faster, espe-
cially preprocessing takes one fifth of the time needed by thestandard algorithm.
This is due to the fact that the latter method constructs a much larger index struc-
ture (93220 instead of 4447). Note that for both methods, we have calculated the
weighted document vectors and for each term itsidf value once during prepro-
cessing. If space consumption is a concern (note that storing the weights require
floating point numbers), the weights could also be computed during query pro-
cessing at the expense of a longer query time. The differencein query times is
mainly indebted to the longer query input time of the standard method (recall that
here we read all query terms, while the Zipf method reads the 20 most frequent
ones only). To a small amount, this difference comes also from the different num-
ber of postings lists traversed. Note that the predecessor step of counting the term
frequencies in the query document is done in the same way for both methods, so
we do not consider it.

5.4 Jaccard similarity coefficient

The better retrieval results index elimination yields compared to the Zipf method
might arise from the fact that in the Zipf model, the objective is to maximize
intersection sizes instead of cosine similarities. Originally, cosine similarity is de-
signed to retrieve documents subject to a query consisting of terms expressing a

12

Std. idf > 2.6 Zipf ≤ 0.05 · N

relevant 20 40 20 40

cosine
prec. 0.132 0.200 0.073 0.137
rec. 0.230 0.170 0.093 0.090

Jaccard
prec. 0.144 0.204 0.083 0.136
rec. 0.250 0.173 0.110 0.093

Table 4: Average precision and recall values for both selection heuristics and
similarity measures.

user’s information need. If complete documents are employed as queries, there is
another reasonable similarity measure: the size of the common vocabulary of two
documents (as mentioned before, stop words do not reflect thecontent of a text so
they are not considered; individual term frequency is not considered, too). Intu-
itively, this measure captures if two documents have nearlythe same content, or
at least the same topic. It is derived from the definition of non-identical duplicates
stated in [5]. There, two documents are duplicates if they retain much of the same
language and if at least 80% of the words in one document are contained in the
other (in terms of terminology). Accordingly, we replaced the cosine similarity
measure by intersection sizes. Again, the incidence matrixis built by using the
20 most frequent terms of each document. The intersection sizes are calculated
using all words. Since a long document can result in a higher score just because
it is longer (which increases the probability that it contains more terms from the
query document), we use theJaccard (similarity) coefficient|A∩B|/|A∪B|. This
coefficient is a ”normalized” form of the intersection size.In [4] the resemblance
between two documents was also defined by the Jaccard coefficient. However, the
author represents each document as a set of so called shingles6. To give the reader

Query Answer

Approx. the cut-norm via Grothendieck’s inequ. Quadratic forms on graphs

N. Alon and A. Naor, STOC ’04 Alon et al., STOC ’05

Distinct distances in three and higher dimensions Cutting triangular cycles of lines in space

Aronov et al., STOC ’03 Aronov et al., STOC ’03

Table 5: Example query and corresponding answer documents (both answers are
optimal).

6A shingle is a contiguous fixed-length subsequence of tokens

13

some ideas that this similarity measure is reasonable, we list in Table 5 two query
documents for which the Zipf-based algorithm yields the best answer documents
with respect to the Jaccard coefficient. The subjects of the first query and answer
document are quadratic programming methods and computations on matrices. In
both texts, Grothendieck’s inequality plays a central role. The query and answer
document in the second entry are about geometrical problems. Obviously, each
answer is relevant to its corresponding query.

Statistic Std. Zipf
(measure:Jaccard) idf > 2.6 ≤ 0.05 · N

avg. sim. best answer 0.244 0.218
highest rank(avg./med./# rank 1) 2 / 1 / 82 14 / 6 / 25

preprocessing time (inµs) 42.0 9.3
avg. query time (inµs) 0.009 0.005

Table 6: Retrieval results for the standard retrieval algorithm with index elimina-
tion and our new algorithm (Zipf heuristic). Similarity is measured by the Jaccard
coefficient. Note that the average value over the 120 averagesimilarity values
between each query and all documents is 0.118, the average maximal similarity is
0.247.

Table 6 shows the results for the Jaccard measure. For both heuristics, the
results are better than under cosine similarity, with indexelimination showing a
significant improvement (cf. table entry “highest rank”). Both heuristics need less
preprocessing time since the calculation of weighted document vectors andidf
values is not required. The average query time reduces also since we do not need
to calculate thetf -idf weights of the query document. Precision and recall behave
identical as they do under cosine similarity, whereas underJaccard similarity most
values are slightly higher.

5.5 Combining both heuristics

Examining the obtained results in detail reveals that thereexist queries for which
the Zipf heuristic yields better results than index elimination, even though the
overall performance of the latter one is better. Thus, a natural approach is to com-
bine both heuristics. Here, combining means to determine byeach search heuris-
tic an answer set and then taking their union as the final answer set. Compared to
the “stand-alone” index elimination method, the additional storage requirement is
marginal (cf. Section 5.2.2, storage requirements of the incidence matrix).

14

Measure Cosine Jaccard

avg. sim. best answer 0.364 0.245
highest rank(avg./med./# rank 1) 3 / 1 / 66 1 / 1 / 88

precision
20 0.096 0.104
40 0.156 0.157

recall
20 0.293 0.315
40 0.240 0.241

avg. size answer set 65
avg. query time (inµs) 0.027

Table 7: Retrieval results for the combination of both searchheuristics. Average
maximal cosine similarity: 0.410; average maximal Jaccardsimilarity: 0.247.

In Table 7 we list the results for our test corpus. Compared to index elimina-
tion, the improvement regarding the highest rank is quite small due to the already
good results obtained by this method. However, recall improves considerably,
which means we retrieve a larger number of relevant documents. The decline in
precision is due to the fact that on average 65 documents are retrieved instead
of 36. The doubling in execution time is also attributed to this larger number of
documents.

6 Conclusion

In this paper, we examined a new method for efficient documentretrieval. The
method is derived from the Zipf model, which is a randomized input model for
the maximal intersection problem. We conducted an experimental comparison
and analysis of our new approach with the well-known inverted index technique
used for computing cosine similarities in the vector space model.

We applied two different document similarity measures: cosine similarity and
the Jaccard coefficient. The latter one is a normalized form of the intersection
size of two sets, and thus conform to the Zipf model. Our experiments show
that for both measures the inverted index technique in connection with the index
elimination heuristic yields significantly better results. This is quite interesting,
since the index elimination heuristic is designed to maximize cosine similarities,
and not intersection sizes. Thus, it seems to be the case thatquery terms with a
low document frequency have a strong influence on the intersection size. With
regard to time complexity, our new approach is better. However, the differences

15

are moderate.
We obtained good results by combining both heuristics. By accepting a slightly

higher execution time, this approach outperforms the standard index elimination
method.

An important issue in our considerations was the adaption ofthe data to the
Zipf model. We believe that a better adaption could improve the results.

References

[1] SMART ftp site. ftp://ftp.cs.cornell.edu/pub/smart/. Cited August 9, 2010.

[2] Thomson Reuters 2008 annual review. http://ar.thomsonreuters.com/2008/.
Cited August 9, 2010.

[3] A. Borodin, R. Ostrovsky, and Y. Rabani. Lower bounds for high dimen-
sional nearest neighbor search and related problems. InSTOC ’99: Pro-
ceedings of the thirty-first annual ACM symposium on Theory ofcomputing,
pages 312–321, New York, NY, USA, 1999. ACM.

[4] A. Z. Broder. On the resemblance and containment of documents. In In
Compression and Complexity of Sequences (SEQUENCES97, pages 21–29.
IEEE Computer Society, 1997.

[5] J. G. Conrad, X. S. Guo, and C. P. Schriber. Online duplicatedocument
detection: signature reliability in a dynamic retrieval environment. InCIKM
’03: Proceedings of the twelfth international conference onInformation and
knowledge management, pages 443–452, New York, NY, USA, 2003. ACM.

[6] D. A. Grossman and O. Frieder.Information Retrieval: Algorithms and
Heuristics. Springer, second edition, 2004.

[7] B. Hoffmann.Similarity Search with Set Intersection as a Distance Measure.
PhD thesis, University of Stuttgart, 2010.

[8] B. Hoffmann, M. Lifshits, Y. Lifshits, and D. Nowotka. Maximal intersec-
tion queries in randomized input models.Theor. Comp. Sys., 46(1):104–119,
2010.

[9] B. Hoffmann, Y. Lifshits, and D. Nowotka. Maximal intersection queries in
randomized graph models. InCSR, pages 227–236, 2007.

[10] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information
Retrieval. Cambridge University Press, New York, NY, USA, 2008.

16

[11] G. A. Miller, E. B. Newman, and E. A. Friedman. Length-frequency statis-
tics for written english.Information and Control, 1(4):370–389, 1958.

[12] G. K. Zipf. Human behavior and the principle of least effort. Addison-
Wesley, 1949.

17

