
Exponential ambiguity of context-free grammars

K. Wich
Fachbereich Mathematik/Informatik, Universität Kassel, 34109 Kassel

E-mail: wich@theory.informatik.uni-kassel.de

Abstract

A context-free grammar G is ambiguous if and only if there is a word that can be
generated by G with at least two different derivation trees. Ambiguous grammars are often
distinguished by their degree of ambiguity, which is the maximal number of derivation
trees for the words generated by them. If there is no such upper bound G is said to be
ambiguous of infinite degree. Here as a new tool for examining the ambiguity of cycle-
free context-free grammars the ambiguity function is introduced. This function maps
the natural number n to the maximal number of derivation trees which a word of length
at most n may have. This provides the possibility to distinguish infinitely ambiguous
context-free grammars by the growth-rate of their ambiguity functions. We present a
necessary and sufficient, but in general undecidable, criterion for exponential ambiguity.
In fact violation of this criterion leads to a polynomial upper bound for the ambiguity,
which can be effectively constructed from the grammar. Hence for cycle-free context-free
grammars the ambiguity function is either an element of 2Θ(n) or of O(nd) for some d ∈ N0

which can be effectively constructed from G.

1 Introduction

A context-free grammar G is ambiguous if and only if there is a word that can be generated
by G with at least two different derivation trees. A context-free language is said to be
(inherently) ambiguous if and only if there is no unambiguous context-free grammar for it.
In [8] Parikh presents an inherently ambiguous context-free language which is the union
of two unambiguous linear languages. Thus ambiguity contributes in an essential way to
the generative power of context-free grammars. The problem whether a grammar or a
language is ambiguous or not is undecidable.

Ambiguous grammars are often distinguished by their degree of ambiguity, which is
the maximal number of derivation trees for the words generated by them. If there is no
such upper bound G is said to be ambiguous of infinite degree. In [6] Maurer presents
examples of context-free languages with inherent degree of ambiguity k for each k ∈ N.

As a new tool for examining the ambiguity of cycle-free context-free grammars with
infinite degree of ambiguity the ambiguity function am, which is total for cycle-free gram-
mars, is introduced. It maps the natural number n to the maximal number of derivation
trees which a word of at most length n may have. This new approach provides the abil-
ity to distinguish infinitely ambiguous grammars by the growth-rate of their ambiguity
functions.

We present a necessary and sufficient, but in general undecidable, criterion for the ex-
ponential ambiguity of cycle-free context-free grammars. In fact violation of this criterion
leads to a polynomial upper bound for the ambiguity, which can be effectively constructed
from the grammar.

1

Hence for cycle-free context-free grammars the ambiguity function is either an element
of 2Θ(n) or of O(nd) for some d ∈ N0. This means that there is a gap between polynomial
and exponential ambiguity. For example a function of growth 2

√
Θ(n) cannot be the

ambiguity function of any cycle-free context-free grammar.

2 Preliminaries

Let Σ be a finite alphabet. For words u, v ∈ Σ∗, a symbol a ∈ Σ, and n ∈ N the length
of u is denoted by |u| and the number of a’s in u is denoted by |u|a. The empty word
is denoted by ε. Σn and Σ≤n denote all words over Σ of length n and of length up to
n, respectively. The word v is a prefix of u, denoted by v ≤ u, if and only if u = vz for
some z ∈ Σ∗. It is a proper prefix, written v < u, if z ∈ Σ+. The cardinality of a set S is
denoted by |S|.

A context-free grammar is a quadruple G = (N,Σ, P, S), where N and Σ are finite
disjoint alphabets of nonterminals and terminals, respectively, S ∈ N is the start symbol,
and P ⊆ N × (N ∪Σ)∗ is a finite set of productions. We usually write A → α or (A → α)
for the pair (A,α). If f = (A → α) ∈ P we say that A is the left-hand side of f and α
is the right-hand side of f . The set of productions from P with the left-hand side A is
denoted by PA.

For a context-free grammar G = (N,Σ, P, S) and α, β ∈ (N ∪ Σ)∗, we say that α
derives β in one step, denoted by α ⇒G β, if there are α1, α2, γ ∈ (N ∪ Σ)∗ and A ∈ N
such that α = α1Aα2, β = α1γα2 and (A → γ) ∈ P . Let ⇒+

G denote the transitive
closure of ⇒G and ⇒∗

G denote the reflexive closure of ⇒+
G . We say that α derives β if

α ⇒∗
G β. Thus the language generated by G is described by

L(G) = {w ∈ Σ∗|S ⇒∗
G w}.

If the grammar is clear from the context, the subscript is omitted.
A language L is said to be context-free if there is a context-free grammar G with

L = L(G). Let G = (N,Σ, P, S) be a context-free grammar and α ∈ (N ∪ Σ)∗. We say
that α is a sentential form of G if S ⇒∗ α. The grammar G is said to be cycle-free if
there is no A ∈ N such that A ⇒+ A. An A ∈ N is said to be useful if there are strings
α, β ∈ (N ∪ Σ)∗ and a word w ∈ T ∗ such that S ⇒∗ αAβ ⇒∗ w. A is useless if it is
not useful. A is said to be an ε-symbol if no nonempty string of terminals can be derived
from A. A production f ∈ P is said to be an ε-production if f ∈ (N × {ε}). In contrast
to the elimination of ε-productions the elimination of ε-symbols does not increase the
size of the grammar. Note that ε-symbols can be deleted from the right-hand side of all
productions without effecting the generated language. Afterwards they are useless and
all the productions with an ε-symbol on the left-hand side can be eliminated obtaining a
smaller grammar which may still contain ε-productions, but no more ε-symbols.

If not stated otherwise we assume throughout this paper that G = (N,Σ, P, S)
is an arbitrary context-free grammar and that A ∈ N is an arbitrary nonter-
minal.

The ambiguity of a word w ∈ Σ is the number of derivation trees for w. Formally
we can count the number of derivation trees for w by counting the number of leftmost
derivations (see the definition below). This is possible since there is a one-to-one corre-
spondence between derivation trees and the leftmost derivations for words consisting only
of terminals. In this paper we will consider pumpable trees, which contain at least one leaf
labeled with a nonterminal. Since there are trees with nonterminals in the frontier which
cannot be generated by a leftmost derivation we define a generalization of the leftmost
derivation, called leftskip derivation. This derivation proceeds from left to right marking
the current position by a dot. In each step either a production from P is applied to the
nonterminal next in line or this nonterminal is skipped, which means that it remains in

2

the sentential form and the dot is advanced to the next nonterminal. If no further nonter-
minal has to be considered, the dot is removed and the derivation is complete. For trees
with a terminal frontier the leftmost and the leftskip derivation are identical.

Notation 2.1. We fix { r , s} to be an alphabet which is disjoint from each finite set used
in the definition of a context-free grammar throughout the paper.

For all α, β ∈ (N ∪ Σ)∗ we define

α r→β :=
{

αw rγ if β = wγ for some w ∈ Σ∗ and γ ∈ N(N ∪ Σ)∗

αβ otherwise

We use this notation to “find” the next nonterminal from a given position if there is
any. In the next definition the symbol s is used as the name of the skipping rule. To
outline the relationship between the leftskip (ls) and the leftmost (lm) derivation we define
them in parallel.

Definition 2.2. For every α, α1, α2 ∈ (N ∪ Σ)∗, A ∈ N, f ∈ P we define

(i) α1Aα2 ⇒f
G,lm α1αα2 if f = (A → α) ∈ P ∧ α1 ∈ Σ∗

(ii) α1 rAα2 ⇒f
G,ls α1 r→αα2 if f = (A → α) ∈ P

(iii) α1 rAα2 ⇒s
G,ls α1A r→α2

We can distinguish between leftmost and leftskip derivations by the existence of the
dot. Therefore we often omit the subscript.

We extend this definition of the one step derivation in the natural way to π ∈ (P∪{s})∗
such that π encodes a sequence of one step derivations.

We summarize some of the properties of the leftskip derivation in the following obser-
vation.

Observation 2.3. Let A,B ∈ N ; α, β, γ, δ ∈ (N ∪ Σ)∗; π ∈ (P ∪ {s})∗; τ ∈ P ∗ and
w ∈ Σ∗. Then:

α rAβ ⇒π γ rBδ y α ≤ γr→α ⇒τ r→β yx α ⇒τ βrA ⇒π w yx A ⇒π w

Next we define the set of parses for a sentential form β derived from A and the
ambiguity of β.

Definition 2.4. Let β ∈ (N ∪ Σ)∗.

parseG(A, β) := {π ∈ (P ∪ {s})∗ | rA ⇒π β}
amG(A, β) := |parseG(A, β)|

We call π ∈ (P ∪ {s})∗ a parse if π ∈ parseG(A, β) for some β ∈ (N ∪Σ)∗. Note that
(i) after applying a parse to a nonterminal the dot marker disappears;
(ii) that each derivation tree, no matter whether or not there are nonterminals at the

frontier, has a unique parse;
(iii) no proper prefix of a parse can ever be a parse;
(iv) amG(A, β) can be infinite if G is not cycle-free, and it is zero if and only if β cannot

be derived from A.

Now we define the ambiguity function of G.

Definition 2.5. Let G = (N,Σ, P, S) be a cycle-free context-free grammar. Let A ∈
N, L ⊆ (N ∪ Σ)∗ and n ∈ N. Then

amG(n) := max
w∈Σ≤n

amG(S, w).

3

Note that by definition the ambiguity of sentential forms containing nonterminals is
not taken into account for the ambiguity function.

Definition 2.6. A cycle-free context-free grammar G is said to be of polynomially
bounded ambiguity if amG(n) = O(nk) for some k ∈ N. It is said to be exponentially
ambiguous if amG(n) = 2Ω(n).

Definition 2.7. A cycle-free context-free grammar G = (N,Σ, P, S) satisfies criterion
Cexp, shortly denoted by CG

exp, if the following condition is satisfied:

∃A ∈ N ; α, β ∈ (N ∪ Σ)∗ : amG(A,αAβ) > 1
and αAβ contains neither useless nor ε-symbols.

3 Criterion Cexp is sufficient for exponential ambiguity

In [4] Kemp presents a decidable sufficient criterion for ambiguity. In the proof he con-
structs two derivation trees τ1 and τ2 such that the “concatenation” τ1τ2 of these two trees
and the concatenation τ2τ1 yield two different derivation trees with the same frontier.
We generalize this idea, sacrificing decidability, to characterize exponentially ambiguous
grammars.

We will prove that a cycle-free context-free grammar G is exponentially ambiguous if
and only if it satisfies Cexp (see Def 2.7). In other words, there are two different derivation
trees with a common root and a common frontier such that the frontier does not contain
useless or ε-symbols and it contains at least one node labeled with the same nonterminal
as the root. If this criterion is satisfied we can pump up the ambiguity by concatenating
these trees and choose randomly in each step the first or the second one. Thus the number
of combinations grows exponentially with respect to the length of the frontiers obtained
by this method. In this section we prove the sufficiency of the criterion, and in the next
one the necessity. There are two problems to take care of in this section.

• We have to prove that different combinations always yield different trees. It is not
obvious that the trees cannot “commute”.

• Ambiguity of a grammar is defined by the number of derivation trees for terminal
strings only. There are examples of unambiguous grammars (on the terminal strings)
with exponential ambiguity in the sentential forms. Thus we have to find conditions
under which the ambiguity of each sentential form is carried to a terminal strings
which is longer at most by a constant factor.

The proof is divided in an algebraic and a combinatorial part.

3.1 The free monoid of pumping trees

A pumping tree for a nonterminal A is a derivation tree with the root A and at least one
leaf labeled A. One of those leaves is designated to be the linkage point (called link) for
further pumping trees. We concatenate two pumping trees by identifying the root of the
second one with the link of the first. This yields a pumping tree that inherits the root
from the first and the link from the second pumping tree. The parse of a pumping tree
is factorized by the link into a derivation before and a derivation after skipping the link.
We now define pumping trees and their concatenation formally.

Definition 3.1. A pumping tree of G with root A is a pair ϑ = (π, τ) where π, τ ∈
(P ∪ {s})∗ such that

rA ⇒π α rAγ ⇒s αA r→γ ⇒τ αAβ for some α, β, γ ∈ (N ∪ Σ)∗.

4

The set of pumping trees of G with root A is denoted by ΦA
G. We write λ for (ε, ε). One

can easily verify that λ ∈ ΦA
G. A pumping tree ϑ ∈ ΦA

G is said to be a proper pumping tree
if ϑ 6= λ.

For a given pumping tree the strings α, β, and γ in the definition above are uniquely
specified. In some proofs we will consider these strings. Therefore we define the following
mappings:

Definition 3.2. Let ϑ := (π, τ) ∈ ΦA
G. Then we define αA

G, βA
G, and γA

G as mappings
ΦA

G → (N ∪ Σ)∗ such that

rA ⇒π αA
G(ϑ) rAγA

G(ϑ) and r→γA
G(ϑ) ⇒τ βA

G(ϑ)

Definition 3.3. The concatenation � of ϑ1, ϑ2 ∈ ΦA
G, where ϑ1 := (π1, τ1) and ϑ2 :=

(π2, τ2) for some π1, π2, τ1, τ2 ∈ (P ∪ {s})∗, is defined as follows:

ϑ1 � ϑ2 := (π1π2, τ2τ1).

The symbol � is often omitted.

One can easily verify that the concatenation of two pumping trees again yields a
pumping tree.

Observation 3.4. Let ϑ1, ϑ2 ∈ ΦA
G. Then αA

G(ϑ1ϑ2) = αA
G(ϑ1)αA

G(ϑ2),
βA

G(ϑ1ϑ2) = βA
G(ϑ2)βA

G(ϑ1), γA
G(ϑ1ϑ2) = γA

G(ϑ2)γA
G(ϑ1).

Theorem 3.5. (ΦA
G,�) is a monoid with left and right cancellation.

Proof. The concatenation of pumping trees is an operation on the set ΦA
G with the neutral

element λ. The operation � is associative, since � performs a component-wise concate-
nation of strings which is an associative operation. Similarly left and right cancellation
are inherited.

Definition 3.6. Let ϑ := (π, τ) ∈ ΦA
G. The size of ϑ is defined by |ϑ| := |π|+ |τ |.

Observation 3.7. Let ϑ, ϑ1, ϑ2 ∈ ΦA
G. Then |ϑ1ϑ2| = |ϑ1| + |ϑ2|. Moreover |ϑ| = 0 if

and only if ϑ = λ.

Definition 3.8. A pumping tree ϑ ∈ ΦA
G \{λ} is prime if and only if it is not the product

of two proper pumping trees. That is:

∀ϑ1, ϑ2 ∈ ΦA
G \ {λ} : ϑ1ϑ2 6= ϑ.

The set of prime pumping trees is denoted by ΨA
G.

A pumping tree χ ∈ ΦA
G is prime if and only if on the unique path from the link to

the root there is no other node labeled with A.
We can factorize χ ∈ ΦA

G by the following method. If the link is already the root, then
χ = λ and we are done. Otherwise we move up along the unique path from the link of
χ to the root until we meet the first node labeled with A. Since the root is labeled A,
there is surely such a node. We split χ at this position into ϑ ∈ ΦA

G and θ ∈ ΨA
G such

that χ = ϑθ. Thus we can split off a prime pumping tree from the right side of χ. We
must not skip any occurrence of an A on the path because then one factor would not be
prime. Now we proceed recursively with ϑ. Since the path to the root has finite length,
the algorithm eventually stops.

We exploit this idea without formalizing derivation trees and the indicated algorithm.

Theorem 3.9. Each pumping tree χ ∈ ΦA
G \ λ has a unique prime factorization, that is,

∃!k ∈ N : ∃!θ1, . . . , θk ∈ ΨA
G : χ = θ1 � · · · � θk

5

Proof. Assume |χ| = 1. Then χ is prime by Observation 3.7 and hence χ is already
a prime factorization with k = 1. Now by the definition of primeness this is the only
factorization. Assume the claim has been proved for all χ with |χ| ≤ n.

Now let |χ| = n + 1. Again if χ is prime, it is already the unique prime factorization.
Otherwise χ = ϑ1ϑ2 for some ϑ1, ϑ2 ∈ ΦA

G \ λ. Now by Observation 3.7 we have |ϑ2| ≤ n.
Hence by the inductive hypothesis ϑ2 = θ1�· · ·�θk̄ for some k̄ ∈ N and some θ1, . . . , θk̄ ∈
ΨA

G. Let ϑ := ϑ1θ1�· · ·�θk̄−1 and θ := θk̄. Then by the associativity of the concatenation
χ = ϑ1ϑ2 = ϑ1 � (θ1 � · · · � θk̄) = (ϑ1 � θ1 � · · · � θk̄−1) � θk̄ = ϑθ. Thus we can split
off a prime pumping tree from χ. Now assume we also have χ = ϑ̄θ̄ for some ϑ̄ ∈ ΦA

G and
some θ̄ ∈ ΨA

G.

Let πl, πr, π̄l, π̄r, τl, τr, τ̄l, τ̄r ∈ (P ∪ {s})∗;
αl, αr, ᾱl, ᾱr, βl, βr, β̄l, β̄r, γl, γr, γ̄l, γ̄r ∈ (N ∪ Σ)∗ such that

ϑ = (πl, τl), αA
G(ϑ) = αl, βA

G(ϑ) = βl, γA
G(ϑ) = γl,

θ = (πr, τr), αA
G(θ) = αr, βA

G(θ) = βr, γA
G(θ) = γr,

ϑ̄ = (π̄l, τ̄l), αA
G(ϑ̄) = ᾱl, βA

G(ϑ̄) = β̄l, γA
G(ϑ̄) = γ̄l,

θ̄ = (π̄r, τ̄r), αA
G(θ̄) = ᾱr, βA

G(θ̄) = β̄r, γA
G(θ̄) = γ̄r.

From ϑθ = ϑ̄θ̄ we obtain by Observation 3.4:

πlπr = π̄lπ̄r; τrτl = τ̄r τ̄l; αlαr = ᾱlᾱr; βrβl = β̄rβ̄l; γrγl = γ̄rγ̄l.

Without loss of generality we assume π̄l ≤ πl. Then πl = π̄lπ and π̄r = ππr for some
π ∈ (P ∪ {s})∗. Therefore rA ⇒π̄l ᾱl rAγ̄l ⇒π αl rAγl. Since π < π̄rsτ̄r the derivation
cannot be a parse and we obtain rA ⇒π α rBγ for some α, γ ∈ (N ∪ Σ)∗ and B ∈ N .
With ᾱl rAγ̄l ⇒π ᾱlα rBγγ̄l = αl rAγl we obtain

B = A, αl = ᾱlα, ᾱr = ααr, γl = γγ̄l, γ̄r = γrγ.

Assume τ̄r < τr. Then γr ⇒τ̄r δ1 rCδ2 for some δ1, δ2 ∈ (N ∪ Σ)∗ and C ∈ N . Hence
we have r→γrγ ⇒τ̄r δ1 rCδ2γ ∧ r→γrγ = r→γ̄r ⇒τ̄r β̄r. This implies δ1 rCδ2γ = β̄r,
which is a contradiction, since β̄r does not contain the dot symbol. Thus follows τr ≤ τ̄r.
Hence τ̄r = τrτ and τl = τ τ̄l for some τ ∈ (P ∪ {s})∗. Now r→γ̄r ⇒τ̄r β̄r and τ̄r = τrτ
implies r→γ̄r ⇒τrτ β̄r. Thus r→γ̄r = r→γrγ ⇒τr βr r→γ ⇒τ β̄r. Hence β̄r = βrβ for
some β ∈ (N ∪ Σ)∗. Now βrβl = β̄rβ̄l whence βl = ββ̄l.

Finally let ξ := (π, τ). Then rA ⇒π α rAγ ⇒s αA r→γ ⇒τ αAβ implies ξ ∈ ΦA
G.

Thus ξθ = (ππr, τrτ) = (π̄r, τ̄r) = θ̄. But θ̄ and θ are assumed to be prime. Hence ξ = λ
and θ = θ̄ follow. By right cancellation we obtain ϑ = ϑ̄. Hence each prime factorizations
of χ has θ as the rightmost factor and the factors before form a prime factorization of
ϑ. Since |ϑ| ≤ n, by the inductive hypothesis ϑ has a unique prime factorization, that is,
∃!k̃ ∈ N : ∃!θ1, . . . , θk̃ ∈ ΨA

G, such that ϑ = θ1 � · · · � θk̃. Let k = k̃ + 1 and θk := θ then
the unique prime factorization of χ is θ1 � · · · � θk.

From Theorem 3.5 and 3.9 we immediately obtain the following theorem.

Theorem 3.10. ΦA
G is a free monoid over ΨA

G.

Thus we can apply [2] (Corollary of Theorem 1.3.3 and Theorem 1.3.4) and obtain:

Theorem 3.11. Let ϑ1, ϑ2 ∈ ΦA
G. Then

(i) ϑ1ϑ2 = ϑ2ϑ1 y ϑ1 = ϑk and ϑ2 = ϑl for some ϑ ∈ ΦA
G and some k, l ∈ N.

(ii) ϑ1ϑ2 6= ϑ2ϑ1 y {ϑ1, ϑ2}∗ is a free submonoid of ΦA
G.

6

3.2 Pumping up ambiguity

The definition of pumping trees is tailored to allow a simple formalization of the concate-
nation. For the combinatorial part we now switch to another representation.

Definition 3.12. Let ϑ := (π, τ) ∈ ΦA
G. We define the parse of ϑ by p(ϑ) = πsτ and the

interface by i(ϑ) = (αA
G(ϑ), βA

G(ϑ)).

While the parse completely presents the internal structure of a pumping tree, it has
no information about the linkage position at its frontier. For example let ω = p(ϑ) for
some ϑ ∈ ΦA

G. Let α ∈ (N ∪Σ)∗ be the corresponding frontier. Then there are |α|A many
different pumping trees with the parse ω, since each occurrence of A in α can be the link.
The interface on the other hand represents the linkage position by a factorization of the
frontier which does not necessarily determine the internal structure. But we see easily

Observation 3.13. Two pumping trees ϑ1, ϑ2 ∈ ΦA
G are equal if and only if they have

the same parse and the same interface.

Now we pump up the ambiguity of sentential forms.

Lemma 3.14. Let ϑ1, ϑ2 ∈ ΦA
G; n ∈ N; and i(ϑ1) = i(ϑ2) = (α, β) for some α, β ∈

(N ∪ Σ)∗. Then
ϑ1ϑ2 6= ϑ2ϑ1 y amG(A,αnAβn) ≥ 2n.

Proof. By Theorem 3.11 we know ϑ1ϑ2 6= ϑ2ϑ1 implies |{ϑ1, ϑ2}n| = 2n. Additionally
we have i(ϑ) = (αn, βn) for all ϑ ∈ {ϑ1, ϑ2}n. Thus by Observation 3.13 the elements of
{ϑ1, ϑ2}n have pairwise different parses. Hence amG(A,αnAβn) ≥ 2n.

Different pumping trees ϑ1, ϑ2 ∈ ΦA
G with a common interface can never commute in

a cycle-free grammar:

Lemma 3.15. Let G = (N,Σ, P, S) be a cycle-free context-free grammar; A ∈ N and
ϑ1, ϑ2 ∈ ΦA

G. Then

i(ϑ1) = i(ϑ2) and ϑ1 6= ϑ2 y ϑ1ϑ2 6= ϑ2ϑ1

Proof. Assume i(ϑ1) = i(ϑ2) and ϑ1ϑ2 = ϑ2ϑ1. Then by Theorem 3.11 ϑ1 = ϑk and
ϑ2 = ϑl for some ϑ ∈ ΦA

G and some k, l ∈ N0. Now ϑ1 6= ϑ2 implies ϑ 6= λ and l 6= k. For
some α, β ∈ (N ∪ Σ)∗ we have i(ϑ) = (α, β). Thus i(ϑ1) = (αk, βk) = (αl, βl) = i(ϑ2).
Since k 6= l this implies α = β = ε. Finally since ϑ 6= λ, this implies A ⇒+ A, which is a
contradiction to the cycle-freeness of G.

Ambiguity of sentential forms, without useless and without ε-symbols, is carried over
to terminal strings:

Lemma 3.16. Let α ∈ (N ∪ Σ)∗ such that α contains no ε-symbols. Further let h :
(N ∪ Σ)∗ → Σ∗ be a morphism satisfying

h(X) =
{

X if X ∈ Σ.
w ∈ Σ+ where X ⇒+ w if X ∈ N occurs in α.

Then amG(A,α) ≤ amG(A, h(α)).

Proof. (sketch) Let A,B ∈ N , u ∈ Σ∗, β, γ ∈ (N ∪ Σ)∗ and for j ∈ {1, 2}, let πj ∈ P ∗

and τj ∈ (P ∪ {s})∗ such that rA ⇒πj u rBγ ⇒s uB r→γ ⇒τj uBβ and π1sτ1 6= π2sτ2.
Let z = h(B) and ω ∈ (P ∪ {s})∗ such that B ⇒ω z. Now assume π1ωτ1 = π2ωτ2, that
is, by appending a given tree with a nonempty frontier to the first nonterminal in the
common frontier of two different derivation trees, respectively, we obtain the same tree.
We will prove that this is impossible if the frontier does not contain ε-symbols. First

7

we observe that either π1 < π2 or π2 < π1. Without loss of generality we assume the
first. It can be shown that no proper prefix of a parse ω is a suffix of ω. Thus, there
is a ρ ∈ (P ∪ {s})∗ such that π1ωρ = π2. Since z 6= ε after applying π1ω the dot in
the derivation is advanced at least one position behind u. But by definition the dot can
never move back to the left. Thus after applying π2 = π1ωρ the dot is not immediately
behind u which is a contradiction to the definition of π2. Thus π1ωτ1 6= π2ωτ2, that
is, the ambiguity does not collapse, when a tr ee with a nonempty frontier is appended.
Therefore am(A, uBβ) ≤ am(A, uzβ). Now for each α ∈ (N ∪Σ)∗ we can easily prove by
induction over the number of nonterminals in α that am(A,α) ≤ am(A, h(α)).

Note that if a sentential form contains an ε-symbol then the required ε-free homo-
morphism does not exist. In fact there are examples of context-free grammars where the
set of sentential forms have higher ambiguity than the grammar itself. (Recall that the
ambiguity of a grammar is defined by the ambiguity of the terminal strings only.)

Example 3.17. Let G = ({S, A}, {a}, {f1 = (S → SaAA), (S → ε), f2 = (A → ε)}, S).
For each i ∈ N we have amG(S, S(aA)j) = 2j. But L(G) is a∗ and for each j ∈ N the
word aj has the unique parse f j

1f2j
2 . Hence G is unambiguous.

Theorem 3.18. Let G = (N,Σ, P, S) be a cycle-free context-free grammar.

CG
exp y amG(n) = 2Ω(n) (see Def 2.5 and 2.7).

Proof. Assume G satisfies criterion Cexp. Then there are ϑ1, ϑ2 ∈ ΦA
G such that p(ϑ1) 6=

p(ϑ2) and i(ϑ1) = i(ϑ2) = (α, β) for some α, β ∈ (N ∪ Σ)∗. Then ϑ1 6= ϑ2 by Observa-
tion 3.13. By Lemma 3.15 this implies ϑ1ϑ2 6= ϑ2ϑ1. Thus by Lemma 3.14 we obtain
amG(A,αnAβn) ≥ 2n. Since A is not useless there are u, v ∈ Σ∗ such that rS ⇒+ uAv.
Now appending at the top is not critical, therefore amG(S, uαnAβnv) ≥ 2n. Since uαAβv
contains neither useless nor ε-symbols we can define a morphism h that satisfies the con-
ditions of Lemma 3.16. Thus we obtain amG(S, h(uαnAβnv)) ≥ 2n. Since αβ 6= ε by the
cycle-freeness of G we finally obtain amG(n) = 2Θ(n).

The obvious way to prove CG
exp for a cycle-free context-free grammar G is to look for

two different pumping trees with common interface. But it is often helpful to have the
following corollary, with slightly weaker conditions on the pumping trees, in mind.

Corollary 3.19. Let G = (N,Σ, P, S) be a cycle-free context-free grammar.(
∃ϑ1, ϑ2 ∈ ΦA

G; α, β ∈ (N ∪ Σ)∗; k, l,m, n ∈ N :
i(ϑ1) = (αk, βl) ∧ i(ϑ2) = (αm, βn) ∧ ϑ1ϑ2 6= ϑ2ϑ1

)
yx CG

exp

Proof. If the left-hand side is satisfied then i(ϑ1ϑ2) = (αk+m, βl+n) = i(ϑ2ϑ1). Thus
ϑ1ϑ2 6= ϑ2ϑ1 implies p(ϑ1ϑ2) 6= p(ϑ2ϑ1) by Observation 3.13 and CG

exp follows. If G

satisfies Cexp then there are ϑ1, ϑ2 ∈ ΦA
G such that i(ϑ1) = i(ϑ2) and p(ϑ1) 6= p(ϑ2). By

Lemma 3.15 this implies ϑ1ϑ2 6= ϑ2ϑ1. Thus for k := l := m := n := 1, α := αA
G(ϑ1) and

β := βA
G(ϑ1) the left-hand side of the claim is satisfied.

The following sufficient criterion for CG
exp depends only on the interfaces of two pumping

trees.

Corollary 3.20. Let G = (N,Σ, P, S) be a cycle-free context-free grammar.(
∃ϑ1, ϑ2 ∈ ΦA

G; α, β ∈ (N ∪ Σ)+; k, l,m, n ∈ N :
i(ϑ1) = (αk, βl) ∧ i(ϑ2) = (αm, βn) ∧ lm 6= kn

)
y CG

exp

8

Proof. If the left-hand side is satisfied then i(ϑ1ϑ2) = (αk+m, βl+n) = i(ϑ2, ϑ1). As-
sume p(ϑ1ϑ2) = p(ϑ2, ϑ1). Then since the interfaces coincide we obtain ϑ1ϑ2 = ϑ2ϑ1 by
Observation 3.13. By Theorem 3.11 then ϑ1 = ϑp and ϑ2 = ϑq for some p, q ∈ N where
i(ϑ) = (ᾱ, β̄) for some ᾱ, β̄ ∈ (N∪Σ)+. This implies k·|α| = p·|ᾱ| ∧ l·|β| = p·|β̄| ∧ m·|α| =
q ·|ᾱ| ∧ n·|β| = q ·|β̄|. By multiplication we obtain k ·|α|·n·|β| = p·|ᾱ|·q ·|β̄| = l·|β|·m·|α|.
Since |α| · |β| > 0 we obtain by devision kn = lm which is a contradiction. Hence
p(ϑ1ϑ2) 6= p(ϑ2, ϑ1) and CG

exp follows.

Finally we prove a decidable sufficient criterion for exponential ambiguity, which is
even for grammars in Chomsky normal form, a proper generalization of the ambiguity
criterion presented by Kemp [4].

Corollary 3.21. A cycle-free context-free grammar G = (N,Σ, P, S) is exponentially
ambiguous if it contains a nonterminal which is left as well as right recursive. Formally,
that is, ∃A ∈ N ; α, β ∈ (N ∪ Σ)∗ : A ⇒+ αA ∧ A ⇒+ Aβ) y CG

exp.

Proof. If G is cycle-free and A ∈ N is as well left and right recursive, then there are
ϑ1, ϑ2 ∈ ΦA

G such that i(ϑ1) = (γ, ε) and i(ϑ2) = (ε, δ) for some γ, δ ∈ (N ∪ Σ)+. Thus
for k := n := 1, l := m := 0, α := γ and β := δ the left-hand side of Corollary 3.20 is
satisfied an we obtain CG

exp.

4 Criterion Cexp is necessary for exponential ambiguity

In this section we prove that a cycle-free context-free grammar which does not satisfy
Cexp (see Def 2.7) is at most polynomially ambiguous.

For a given derivation tree with root labeled A all but the subtree dominated by the
last preorder occurrence of the symbol A is covered by a pumping tree. The violation of
Cexp implies that this pumping tree is unambiguous. This observation applies recursively
to the trees dominated by the direct descendants of the last preorder occurrence of A.
But the descendants does not contain nodes labeled with A. We use this observation to
prove our claim by induction on the number of nonterminals in the grammar.

By the following definitions we will consider two pumping trees as equivalent if the
same production is applied to the last preorder occurrence of A and if this occurrence and
its direct descendants impose the same factorization on the frontier.

Definition 4.1. For each w ∈ L(G), we define
(i) Σ̄ := Σ ∪ {♦f |f ∈ P} ∪ {♦}.
(ii) For f = (A → u0B1u1 . . . Bmum) ∈ P with m ∈ N, A,B1, . . . , Bm ∈ N , and

u0, . . . , um ∈ Σ∗ define f̄ := (A → ♦fu0B1♦ . . . Bm♦um) and cf := m + 1, that is,
cf is the number of symbols from Σ̄− Σ on the right-hand side of f̄ .

(iii) P̄ := P ∪ {f̄ |f ∈ P}.
(iv) Ḡ := (N, Σ̄, P̄ , S).
(v) For π = ωfτ ∈ parse(S, w), where ω ∈ P ∗, f ∈ PS, and τ ∈ (P − PS)∗, define

π̄ = ωf̄τ . Note that π̄ is well-defined, as f replaces exactly the last occurrence of a
production with left-hand side S in the parse π.

(vi) νw : parse(S, w) → Σ̄∗ : νw(π) = w̄, where w̄ is the unique word satisfying
S ⇒π̄

lm,Ḡ
w̄.

(vii) For π1, π2 ∈ parse(S, w) we say that π1 is equivalent to π2, in symbols π1
∼=w π2, if

and only if νw(π1) = νw(π2) (obviously ∼=w is an equivalence relation).
(viii) index(∼=w) is the number of equivalence classes of ∼=w.
(ix) parseG,f (S, w) := {π ∈ parse(S, w)|π = ωfτ for some ω ∈ P ∗, τ ∈ (P − PS)∗}.

The subscript G is omitted when it is clear from the context.

9

Theorem 4.2. Let c = max{cf |f ∈ PS}. Then for each w ∈ L(G),

index(∼=w) ≤
∑

f∈PS

(
|w|+ cf

cf

)
= O(|w|c).

Proof. Let w ∈ L(G) and f ∈ PS ; π1, π2 ∈ parsef (S, w) such that w1 := νw(π1) 6=
νw(π2) =: w2. Then w1 and w2 have the form

w1 = u0♦fu1♦ . . .♦ucf
and w2 = v0♦fv1♦ . . .♦vcf

with u0 . . . ucf
= v0 . . . vcf

= w. That is, w1 and w2 differ in the positions of symbols
from Σ̄− Σ which are cf many symbols out of |w|+ cf . Thus∣∣∣{νw(π)|π ∈ parsef (S, w)}

∣∣∣ ≤ (
|w|+ cf

cf

)
·

As parse(S, w) =
⋃

f∈PS
parsef (S, w) we finally obtain

index(∼=w) ≤
∑

f∈PS

(
|w|+ cf

cf

)
≤ |PS | ·

(
|w|+ c

c

)
= O(|w|c)

Theorem 4.3. For each context-free grammar G = (N,Σ, P, S) that does not satisfy Cexp

and each word w ∈ L(G), the number of derivation trees for w is bounded by an expression
which is polynomial in |w|.

Proof. We proceed by induction on |N |.
Assume |N | = 1. Let f ∈ P . Assume π1, π2 ∈ parseG,f (S, w) are equivalent

parses, that is, νw(π1) = v0♦fuv1 = νw(π2), where f = (S → u). By the defi-
nition of parseG,f (S, w) we have π1 = π′1fτ1 and π2 = π′2fτ2 with π′1, π

′
2 ∈ P ∗ and

τ1, τ2 ∈ (P − PS)∗. But P − PS = ∅. Hence τ1 = τ2 = ε.
Thus π1 = π′1f and π2 = π′2f , implying that π̄1 = π′1f̄ and π̄2 = π′2f̄ . Now we get

S ⇒π′1 v0Sv1 and S ⇒π′2 v0Sv1. Thus π′1 = π′2, because otherwise Cexp would be satisfied.
Hence every equivalence class of ∼=w contains at most one parse. By Theorem 4.2 this
means that the number of derivation trees is bounded by a polynomial expression in |w|.

Assume the claim is true for |N | ≤ n. Let |N | = n+1 and f = (S → u0B1u1 . . . Bmum) ∈
PS for some m ∈ N.
Assume further that π1, π2 ∈ parseG,f (S, w) with π1 6= π2 are equivalent. Then

νw(π1) = v0♦fu0v1♦ . . . um−1vm♦umvm+1 = νw(π2).

For k ∈ {1, 2} we can write πk as ωkfπk1 . . . πkmτk such that

(ωk, τk) ∈ ΦS
G ∧ i((ωk, τk)) = (v0, vm+1)

S ⇒f̄ ♦fu0B1♦ . . . um−1Bm♦um and
πkj ∈ parseG(Bj , vj) for each 1 ≤ j ≤ m.

Thus p((ω1, τ1)) = p((ω2, τ2)), because otherwise Cexp would be satisfied. Thus all equiv-
alent derivations of w differ only in the πkj which are parses not containing rules from PS .
For 1 ≤ j ≤ m we define GBj

:= (N \ S, Σ, P − PS , Bj). Then πkj ∈ parseGBj
(Bj , vj).

For each 1 ≤ j ≤ m, the grammar GBj has n nonterminals and therefore by the induc-
tion hypothesis parseGBj

(Bj , vj) is bounded by an expression which is polynomial in |vj |.
Thus the number of parses which are in the same equivalence class as π1 is bounded by
the product of m polynomial expressions in |w|. Finally, as index (∼=w) is polynomial
(Theorem 4.2), the claim follows.

10

Actually it can be shown that for each context-free grammar G = (N,Σ, P, S) not
satisfying Cexp we have amG(n) = O(n2c−1), where c :=

∑|N |−1
k=0 lk and l is the maximal

number of nonterminals on the right-hand sides of the productions.
From Theorems 3.18 and 4.3 we obtain the following.

Theorem 4.4. A context-free grammar is exponentially ambiguous if and only if it sat-
isfies Cexp.

5 Cexp is undecidable

Definition 5.1. A cycle-free context-free grammar is extreme if it is unambiguous or
exponentially ambiguous.

Theorem 5.2. For the class of extreme cycle-free context-free grammars Cexp is unde-
cidable.

Proof. Let Γ := {a, b, c, d, #, A, B, C, S} be an alphabet. Let Σ := {a, b, c, d, #} Let
x1, . . . , xn, y1, . . . yn ∈ {a, b}+. And let

P1 := {S → A, S → B} ∪ {A → xjAdcj | 1 ≤ j ≤ n} ∪ {B → yjAdcj | 1 ≤ j ≤ n},
P2 := {A → xjdcj | 1 ≤ j ≤ n} ∪ {B → yjdcj | 1 ≤ j ≤ n},
P̄2 := {A → xjCdcj | 1 ≤ j ≤ n} ∪ {B → yjCdcj | 1 ≤ j ≤ n} ∪ {C → ε}.

In [2] (Theorem 8.4.5) it is shown that the grammar G1 := ({S, A,B, },Σ, P1 ∪ P2, S) is
ambiguous if and only if the instance ((x1, . . . , xn),(y1, . . . yn)) of Post Correspondence
Problem has a solution. The same argument applies to G2 := ({S, A,B,C},Σ, P1 ∪
P̄2, S). We only guarantee to terminate with a unique ε-production. Now consider G3 =
({S, A,B,C},Σ, P1∪P̄2∪{C → #S#}, S). It is easily seen that the production C → #S#
does not introduce ambiguity. But if G1 is already ambiguous then G3 satisfies Cexp (see
Def 2.7). Hence G3 is extreme, but it is not decidable whether it is unambiguous or
exponentially ambiguous.

6 Conclusion

Our main goal was to prove the necessity and sufficiency of the criterion Cexp (see Def 2.7)
for exponential ambiguity. Since a grammar which violates Cexp is at most polynomially
ambiguous, we have proved an even stronger result:

Corollary 6.1. Each context-free grammar is exponentially ambiguous if it satisfies Cexp

and it is at most polynomially ambiguous otherwise.

In [7] Naji explored inherent ambiguity. A context-free language L has inherent am-
biguity Θ(f) for a total function f : N → R+ if there is a grammar G0 with an ambiguity
function from O(f) and each grammar that generates L has an ambiguity function from
Ω(f). Naji presents examples with inherent ambiguity from 2Θ(n) and inherent ambigui-
ties from Θ(nk) for each k ∈ N. Hence there is an infinite proper hierarchy.

Criterion Cexp requires the existence of two different pumping trees having the same
root and frontier. This is remarkably close to the definition of ambiguity itself. The only
additional requirement is that pumping trees are always involved. But pumping is very
natural for context-free grammars. In section 4 we saw that in grammars which violate
Cexp each derivation tree is mostly covered by “unambiguous” pumping trees. This shows
that violation of Cexp is a strong restriction for context-free grammars. Therefore it is an
interesting field of research.

The class of languages with subexponential ambiguity has some natural properties:

11

• In [1] Crestin has shown that the complete hierarchy of finite degrees can be skipped
by a single concatenation. The author exploits the language C := {uv | u = uR∨v =
vR} which already has ambiguity of inherent infinite degree. But C = L2

p where
Lp := {u | u = uR} is the unambiguous language of palindromes. From our point
of view C has linear ambiguity which is a moderate growth-rate. This leaves room
for further distinctions. For example I strongly conjecture that Lk+1

p has ambiguity
Θ(nk) for each k ∈ N.

• With respect to closure properties languages with polynomially bounded ambiguity
fit nicely into the hierarchy depicted by the following table:

∪ · ∗
unambiguous context-free languages – – –
context-free languages with finite degree of ambiguity + – –
context-free languages where am is polynomially bounded + + –
context-free + + +

where “∪” is the union, “·” is the concatenation, and “∗” is the Kleene-star-operation.
The symbols “+” and “–” indicate whether or not a language class is closed under
the corresponding operation.

• A new yet unpublished result is, that the class of languages with polynomial bounded
ambiguity can be characterized as the closure of unambiguous languages under a
restricted type of substitution operation.

Further questions under investigation are:

• Is the upper bound for polynomial ambiguity sharp? I strongly conjecture it is. Prof
Y. Kobayashi [5] gave a first example of a linear grammar with only one nonterminal
and with linear ambiguity. This is the highest possible subexponential ambiguity
for such a grammar. The basic concept can be generalized to grammars with more
nonterminals and higher branching (number of nonterminals on the right-hand side).

• What are the possible complexities for the ambiguity functions? This question
is of particular interest, as contrary to my expectations languages with sublinear
ambiguity have been found recently [10].

• To prove that a given language L is inherently ambiguous is usually tedious, espe-
cially when we prove that the complexity of a given function is unavoidable for the
grammars that generate L. I strongly conjecture that for each context-free grammar
G in Greibach normal form there is a language L (6= L(G)) such that, for each gram-
mar Ḡ with L(Ḡ) = L, there is a constant cḠ ∈ N such that amḠ(n) ≥ amG(cḠn)
for all but finitely many n. For the investigation of the spectrum of ambiguities
we would obtain that all ambiguities of Greibach normal form grammars are inher-
ent for some context-free languages, avoiding the tedious direct proof of inherent
ambiguity.

Acknowledgments Thanks to Friedrich Otto, Gundula Niemann and Dieter Hof-
bauer for proofreading, valuable discussions and LATEXtips.

References

[1] J.P. Crestin. Un langage non ambigu dont le carré est d’ambiguité non bornée. Au-
tomata, Languages and Programming (M. Nivat, ed.), pp. 377–390, Amsterdam,
North-Holland, 1973.

[2] M.A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, 1978

12

[3] J.E. Hopcroft, J.D. Ullman. Introduction to Automata Theory, Formal Languages,
and Computation. Addison-Wesley, 1979.

[4] R. Kemp. Mehrdeutigkeit Kontextfreier Sprachen. LNCS., vol 14, pp. 534–546, 1974

[5] Y. Kobayashi. Personal communication 1999

[6] H. Maurer. The existence of context-free languages which are inherently ambiguous
of any degree. Department of Mathematics, Research Series. University of Calgary,
1968

[7] M. Naji. Grad der Mehrdeutigkeit kontextfreier Grammatiken und Sprachen. Diplo-
marbeit, FB Informatik,Johann–Wolfgang–Goethe–Universität, Frankfurt am Main,
1998.

[8] R.J. Parikh. Language–generating devices. Quarterly Progress Report, No. 60, Re-
search Laboratory of Electronics, M.I.T., pp. 199–212. 1961

[9] K. Wich. Kriterien für die Mehrdeutigkeit kontextfreier Grammatiken. Diplomarbeit,
FB Informatik, Johann–Wolfgang–Goethe–Universität, Frankfurt am Main, 1997.

[10] K. Wich. Sublinear Ambiguity. Submitted for publication.

13

