
Universal Inherence of cycle-free context-free
Ambiguity Functions

Klaus Wich
E-mail: wich@informatik.uni-stuttgart.de

Institut für Informatik, Universität Stuttgart,
Breitwiesenstr. 20-22, 70565 Stuttgart.

Abstract. It is shown that the set of inherent ambiguity functions for
context-free languages and the set of ambiguity functions for cycle-free
context-free grammars coincide. Moreover for each census function γ of
an unambiguous context-free language the least monotone function larger
than or equal to γ is an inherent ambiguity function. Both results are
based on a more general theorem. Informally it states that the loss of
information induced by a length preserving homomorphism on an unam-
biguous context-free language can be turned into inherent ambiguity.

1 Introduction

A context-free (for short cf) grammar G is ambiguous if there is some word w
which can be derived by G with at least two different derivation trees. Other-
wise G is unambiguous. A cf language is (inherently) ambiguous if it cannot
be generated by an unambiguous cf grammar. The existence of ambiguous cf
languages is shown in [5]. Ambiguous cf grammars and languages can be dis-
tinguished by their degree of ambiguity, that is, the least upper bound for the
number of derivation trees which a word may have. There are examples for k
ambiguous languages for all k ∈ N [3]. But even languages with infinite degree of
ambiguity exist [2]. They can be distinguished by the asymptotic behaviour of
their ambiguity with respect to the length of the words. In [6] it has been shown
that each cf grammar is either 2Ω(n)- or O(nk)-ambiguous for some computable
k ∈ N. Languages with inherent ambiguity 2Θ(n) and Θ(nk) for all k ∈ N are
presented in [4]. Languages with sublinear ambiguity are presented in [7].

So far the questions whether for a given function f there is an f -ambiguous
cf grammar or whether there is an f -ambiguous cf language have been studied
separately. The latter question is considered to be much harder then the first
one. In this paper we reduce the problem for cf languages to the corresponding
problem for cycle-free cf grammars.

In Section 3 for each pair consisting of an unambiguous cf language L and
a length preserving homomorphism h we show a strong connection between the
loss of information induced by h on L, and the ambiguity of the constructed cf
language. In Section 4 we apply the results of Section 3 and obtain:



– The least monotone function γ̂ larger than or equal to the census function γ
of an arbitrary unambiguous cf language is an inherent ambiguity function.
(See Definition 4.1.)

– The set of ambiguity functions for cycle-free context-free grammars and the
set of inherent ambiguity functions for cf languages coincide.

2 Preliminaries

Let A be a set. Then |A| denotes the cardinality of A and 2A the power set
of A. For arbitrary i, j ∈ N the interval from i to j is [i, j] := {k ∈ N | i ≤
k ≤ j}. We generally assume alphabets to be finite. Let A be an alphabet. Let
u := a1 · · · an ∈ A∗ be a word, where ai ∈ A for all i ∈ [1, n]. The symbol at
position i is u[i] := ai. The length of u is |u| = n. The words over A of length
at most n are denoted by A≤n := {w ∈ A∗ | |w| ≤ n}. The empty word ε is
the unique word with length 0. For all i ∈ [1, n + 1] and j ∈ [0, n] we define
the factor of u from position i to position j as u[i, j] := ai · · · aj . If j < i then
u[i, j] = ε. The word u[1, j] is a prefix of u, it is a proper prefix if j < n. The
word u[i, n] is a suffix of u. A homomorphism h : A∗ → Γ ∗ is length preserving
if |h(X)| = 1 for all X ∈ A. The projection on a subalphabet Γ ⊆ A is the
homomorphism πΓ : A∗ → Γ ∗ given by πΓ (X) = X for X ∈ Γ and πΓ (X) = ε
for X ∈ A \ Γ . If A and Γ are two alphabets then we call a homomorphism
h : A∗ → 2Γ∗

a substitution, where the operation on 2Γ∗
is the concatenation of

languages defined by L1 · L2 := {uv | u ∈ L1 and v ∈ L2}.
A context free grammar is a quadruple G = (N,A, P, S) where N and A

are two disjoint alphabets of nonterminals and terminals, respectively, P ⊆
N × (N ∪A)∗ is a finite set of productions, and S ∈ N is the start symbol.

The usual way to continue at this point is to introduce a derivation relation
and sentential forms. A sentential form can be considered as the sequence of
leaves obtained from the preorder traversal of a derivation tree. But for ambiguity
considerations we need a formalism which describes derivation trees completely.
The well-known left parse of a derivation tree can be used for this purpose if
we restrict ourselves to trees without nonterminal leaves. The left parse of a
tree can be seen as the result of a preorder traversal of a derivation tree, where
the internal nodes are represented by the productions applied to them, while
the leaves are omitted. Thus sentential forms and left parses are complementary
parts of derivation trees. It is useful to shuffle both according to the preorder
thus forming a single more general tree formalism.

The tree alphabet of a cf grammar G = (N,A, P, S) is TG := N ∪ A ∪ P . A
word ρ ∈ T ∗

G is a partial derivation tree of G if

(1) ρ ∈ N ∪A or
(2) if ρ = τ1(X, α)ατ2 for some partial derivation tree τ1Xτ2 and (X, α) ∈ P .

Note that (X, α) is a single letter of the tree alphabet. The set of G’s partial
derivation trees is denoted ΛG. It is easily seen that ΛG ⊆ N∪A∪PT ∗

G. The root
of a partial derivation tree ρ is ↑G(ρ) := ρ if ρ ∈ N ∪ A and ↑G(ρ) := X if ρ =



(X, α)τ for some (X, α) ∈ P and τ ∈ T ∗
G. The frontier of ρ is ↓G(ρ) := πN∪A(ρ).

If ↑G(ρ) = S then the frontier of ρ is a sentential form. We drop the subscripts
if G is clear from the context. The arrows for the root and the frontier of partial
derivation trees point into the direction where they are usually displayed in a
diagram. A node of ρ is an element of [1, |ρ|]. A node i is a leaf if ρ[i] ∈ N ∪ A,
it is an internal node if ρ[i] ∈ P . The label of a node i is ρ[i] if i is a leaf and
it is the left-hand side of the production ρ[i] if i is an internal node, i.e., it is
X ∈ N if ρ[i] ∈ {X} × (N ∪ A)∗. The set of G’s derivation trees is defined by
∆G := {ρ ∈ ΛG | ↑(ρ) = S ∧ ↓(ρ) ∈ A∗}. The context-free language generated
by G is L(G) = {↓(ρ) | ρ ∈ ∆G}. The grammar G is cycle-free if for all ρ ∈ ΛG

the equation ↑(ρ) = ↓(ρ) implies ρ ∈ N ∪ A, otherwise it is called cyclic. It is
reduced if for each X ∈ N there are τ1, τ2 ∈ T ∗

G and p ∈ {X} × (N ∪ A)∗ such
that τ1pτ2 ∈ ∆G. Finally it is ε-free if P ⊆ N × (N ∪A)+.

The set of mappings from a monoid M into a semiring S is denoted S〈〈M〉〉.
An element r ∈ S〈〈M〉〉 is a formal power series. For m ∈ M the value r(m) is
called coefficient of m. A formal power series can be represented by a formal sum
r :=

∑
m∈M r(m)m. For r ∈ N〈〈A∗〉〉 we define r̂ : N → N by r̂(n) := max{r(w) |

w ∈ A≤n}. The characteristic ambiguity power series of G is the formal power
series dG :=

∑
w∈A∗ |∆G(w)| · w where ∆G(w) := {ρ ∈ ∆G | ↓(ρ) = w} for each

w ∈ A∗, i.e., the coefficients of dG are the numbers of derivation trees for the
corresponding words. The function d̂G is called the ambiguity function of G. It
maps each n ∈ N to the ambiguity of the most ambiguous word of length up
to n. The grammar G is d̂G-ambiguous. We call G k-ambiguous for a k ∈ N if
d̂G is bounded by k but not by k − 1. It is unambiguous if it is 1-ambiguous or
0-ambiguous. Note that a cf grammar is 0-ambiguous if and only if L(G) = ∅.

Let f : N → N be a monotone function. A cf language L is O(f)-ambiguous
if it is generated by a cf grammar G such that d̂G ∈ O(f), it is Ω(f)-ambiguous
if it is only generated by cf grammars G′ such that d̂G′ ∈ Ω(f), and it is Θ(f)-
ambiguous if it is O(f)- and Ω(f)-ambiguous. But the O and Ω notations are
very rough for low ambiguities and at the same time too precise for exponen-
tial ambiguity. For example with this notation all constant degrees of ambiguity
would be subsumed to Θ(1)-ambiguity. On the other hand exponentially ambigu-
ous languages are 2Ω(n)-ambiguous but not Ω(2cn)-ambiguous for any c ∈ R+.
While the O and Ω notations specify the value of a function up to a constant
factor for a fixed argument, in our setting it is more appropriate to specify the
length of a word (argument) up to a constant factor for a fixed ambiguity (value).
This leads us to the following definition:

Definition 2.1. Let L be a cf language and f : N → N a function. The language
L is f -ambiguous if

(1) there is a cf grammar G such that L = L(G) and f = d̂G and
(2) for each cf grammar G′ such that L = L(G′) there exists a c ∈ N such that

f(n) ≤ d̂G′(c · n) for all n ∈ N \ {0}.

We implicitly identify the constant k ∈ N with the corresponding constant func-
tion. A language is unambiguous if it is 1-ambiguous or 0-ambiguous.



A function f : N → N is an inherent ambiguity function if there is a cf language
L such that L is f -ambiguous. If L is f -ambiguous then L is f ′-ambiguous for
all monotone functions f ′ such that f ′ agrees with f for all but a finite number
of arguments. Note that it is not clear whether each context-free language has
an inherent ambiguity function.

It is easily seen that derivation trees cannot overlap, i.e., no non empty
suffix of a partial derivation tree is a proper prefix of a partial derivation tree.
Moreover each position in a partial derivation tree ρ ∈ ΛG is the beginning
of a uniquely determined partial derivation tree. That is, for each i ∈ [1, |ρ|]
there is a uniquely defined j ∈ [i, |ρ|] such that ρ[i, j] ∈ ΛG. If ρ[i, j] ∈ ΛG we
call ρ[i, j] a subtree of ρ and the interval [i, j] a phrase of ρ. Then the word
ρ[1, i − 1] · ↑(ρ[i, j]) · ρ[j + 1, |ρ|] ∈ ΛG is called the remainder tree obtained by
truncation of the phrase [i, j]. Obviously we can append a partial derivation tree
ρ′ with root X to a leaf i of a partial derivation tree ρ, labelled with X, by
a replacement of ρ[i] with ρ′. Let G = (N,A, P, S) be a reduced cf grammar.
The terminals of a partial derivation tree ρ ∈ ΛG \ A can be retrieved from
the remaining symbols, i.e., the restriction of the projection πP∪N to ΛG \ A is
injective. Therefore we define the parse of a partial derivation tree ρ ∈ ΛG \ A,
as a more compact tree representation, by parseG(ρ) := πP∪N (ρ). The reader
familiar with the notion of left parses may note that parse(ρ) and the left parse
of ρ coincides for all derivation trees. But in contrast to the left parse, which is
only defined for partial derivation trees of the form (P ∪A)∗(N ∪A)∗, our parse
notion is a unique representation for all partial derivation trees, but those in A.
We extend the parse notion in the natural way to sets and observe:

Lemma 2.2. For each context-free grammar G the sets ∆G, ΛG, parseG(∆G),
and parseG(ΛG) are unambiguous context-free languages.

We take Ogden’s iteration Lemma for cf grammars and for cf languages
presented in [1, Lemma 2.3 and 2.5] and combine them to:

Lemma 2.3. For each context-free grammar G = (N,A, P, S) there is an in-
teger n ∈ N such that for each ρ ∈ ∆G and any choice of at least n marked
positions in ρ there are α, β, γ, δ, η ∈ T ∗

G and a nonterminal X ∈ N such that:

(1) ρ = αβγδη.
(2) (α and β and γ) or (γ and δ and η) contain at least one marked position.
(3) βδ contains at most n marked positions.
(4) αβiγδiη ∈ ∆G and αβiXδiη, βiγδi, βiXδi ∈ ΛG for all i ∈ N.

A tuple ϑ = (|α| + 1, |αβ|, |αβγ| + 1, |αβγδ|) satisfying the conditions above
is called a pumping phrase and βγδ the subtree corresponding to ϑ. Note that
ρ ∈ ∆G implies ↓(ρ) ∈ L(G). Therefore, if we only mark leaves in ρ we obtain
Ogden’s iteration Lemma for cf languages. The advantage of pumping derivation
trees instead of their frontiers is that they have a unique phrase structure even
if the generated words are ambiguous. As we will see this additional information
can be useful if we generate a sequence of derivation trees by applications of
Ogden’s iteration Lemma with intermediate shifts of the marked positions.



3 The Hiding Theorem

In this section it is shown how the loss of information induced by a length
preserving homomorphism can be turned into inherent ambiguity.

Definition 3.1. For the remainder of the section we define the pairwise disjoint
alphabets Γ , {0, 1}, and A := {a1, . . . , ak}. Further L ⊆ A∗ is an unambiguous
context-free language, h : A∗ → Γ ∗ a length preserving homomorphism, p ∈ N a
positive integer, and q := p! + p.

First we define a system of languages which has an “inherent capacity” to
hide information:

Definition 3.2. For arbitrary j ∈ N we write [j] := 0j1. For i ∈ [1, k] we define:

Li := {ε} ∪ {[j0] · · · [jk] | j0, . . . , jk ∈ N and j0 = ji}.

All the languages defined in the previous definition are unambiguous.

Definition 3.3. We define:

– The formal power series rh,L :=
∑

w∈Γ∗ |h−1(w) ∩ L| · w.
– The substitution σh : A∗ → 2(Γ∪{0,1})∗ given by

σh(ai) := {h(ai)}Li for all i ∈ [1, k].
– The homomorphism fillp : Γ ∗ → (Γ ∪ {0, 1})∗ defined by

fillp(X) := X[q]k+1 for all X ∈ Γ .
– The homomorphism codeh,p : A∗ → (Γ ∪ {0, 1})∗ defined by

codeh,p(ai) := h(ai)[p][q]i−1[p][q]k−i for all i ∈ [1, k].

Words in σh(L) can be broken into blocks and subblocks. A block is an element
of σh(ai) for some i ∈ [1, k]. They are numbered from left to right beginning
with 1. The blocks are uniquely determined since they have the form Γ{0, 1}∗
and do not end before the end of the word or the beginning of the next block. A
subblock is a word of 0∗1 not immediately preceded by a 0-symbol. The subblocks
are numbered from left to right beginning with 0.

The main idea of this work is outlined as follows: For each w ∈ Γ ∗ the
coefficient rh,L(w) is the number of words in L which are mapped by h onto w.
Thus it can be seen as the degree of information hiding induced by h on L. The
mapping codeh,p is injective since the mapped symbol is coded in the blocks of 0-
and 1-symbols trailing the image under h. Now for each u ∈ A∗ both codeh,p(u)
and (fillp ◦ h)(u) are elements of σh(u). Thus σh(u) contains at the same time
words which allow to retrieve u and words which hide all information about u
but h(u). Let G be an arbitrary cf grammar generating σh(L) and let u ∈ L.
We will see that for large enough p ∈ N the set ∆G contains a derivation tree
with frontier (fillp ◦ h)(u) obtained by pumping a derivation tree with frontier
codeh,p(u). Assume w = h(u1) = h(u2) for two different words u1, u2 ∈ L. Then
there are derivation trees ω1 and ω2, both having the frontier fillp(w) obtained



by pumping up trees with frontiers codeh,p(u1) and codeh,p(u2), respectively. The
main point of Theorem 3.6 is to show that these trees cannot coincide. Thus the
“information hiding” which h induces from the “outside” of L is an inherent
feature of σh(L) “carried out” by the “internal pumping structure” of σh(L).

As an immediate consequence of the definition we observe:

Lemma 3.4.

(1) ∀u ∈ A∗ : σh(u) ∩ Γ ∗ = {h(u)} and
(2) {h(ai)}Li = σh(ai) is an unambiguous cf language for all i ∈ [1, k].

Definition 3.5. For each i ∈ [1, k] let Gi = (Ni, Γ ∪ {0, 1}, Pi, ai) be an un-
ambiguous cf grammar generating σh(ai). Further let GL = (NL, A, PL, S) be
an unambiguous cf grammar generating L, such that N1, . . . , Nk, and NL are
pairwise disjoint. We compose the cf grammar:

G(h, L) := (NL ∪ (∪i∈[1,k]Ni), Γ ∪ {0, 1}, PL ∪ (∪i∈[1,k]Pi), S).

Note that L(G(h, L)) = σh(L).

Theorem 3.6. The substitution σh has the following properties:

(1) For all v ∈ (Γ ∪ {0, 1})∗ we have
rh,L(πΓ (v)) = dG(h,L)(πΓ (v)) ≥ dG(h,L)(v).

(2) For each cf grammar G′ such that σh(L) = L(G′) there is a constant p ∈ N
such that rh,L(w) ≤ dG′(fillp(w)) for all w ∈ Γ ∗.

The proof of Theorem 3.6 contains all the definitions and lemmas until The-
orem 3.15.
Proof of Theorem 3.6 part (1): Each derivation tree ρ ∈ ∆G(h,L) consists of
a partial derivation tree ρ′ ∈ ∆GL

⊂ ΛG(h,L) appended with subtrees belonging
to ∪i∈[1,k]∆Gi

⊂ ΛG(h,L). We often need to refer to the remainder tree ρ′ in the
sequel. Therefore we define:

Definition 3.7. The GL remainder of a derivation tree ρ ∈ ∆G(h,L), denoted
by rem(ρ), is the uniquely defined derivation tree in ∆GL

obtained from ρ by
truncation of all phrases [j, j′] for which ρ[j, j′] ∈ ∪i∈[1,k]∆Gi .

Lemma 3.8. For all ρ ∈ ∆G(h,L) the statement ↓(ρ) ∈ σh((↓ ◦ rem)(ρ)) is true.

Proof. The expression σh((↓◦rem)(ρ)) describes the set of words in σh(L) which
are frontiers of those derivation trees in ∆G(h,L) having the GL remainder rem(ρ).
Obviously ρ is such a tree. Therefore ↓(ρ) ∈ σh((↓ ◦ rem)(ρ)). ut

Lemma 3.9. For w ∈ Γ ∗ and ρ ∈ ∆G(h,L)(w) we have (↓◦rem)(ρ) ∈ h−1(w)∩L.

Proof. Let w ∈ Γ ∗ and ρ ∈ ∆G(h,L)(w). By definition rem(ρ) ∈ ∆GL
. Thus

(↓ ◦ rem)(ρ) ∈ L. It remains to show that (↓ ◦ rem)(ρ) ∈ h−1(w). By Lemma 3.8
we obtain w = ↓(ρ) ∈ σh((↓ ◦ rem)(ρ)). Since w ∈ Γ ∗ we obtain w ∈ σh(u) ∩ Γ ∗

for u := (↓ ◦ rem)(ρ) ∈ A∗. Then w = h((↓ ◦ rem)(ρ)) follows by Lemma 3.4.
This implies h−1(w) = (h−1 ◦ h)((↓ ◦ rem)(ρ)) 3 (↓ ◦ rem)(ρ). ut



Lemma 3.10. For arbitrary v ∈ (Γ ∪ {0, 1})∗ the restriction of rem to the set
∆G(h,L)(v) is injective.

Proof. Let rem(ρ) = rem(ρ′) for some ρ, ρ′ ∈ ∆G(h,L)(v) and let n = |rem(ρ)|.
We can retrieve rem(ρ) from ρ and ρ′ by truncation of all those phrases which cor-
respond to subtrees with roots in A. Let ρ1, . . . , ρn ∈ ∪i∈[1,k]∆Gi and ρ′1, . . . , ρ

′
n

∈ ∪i∈[1,k]∆Gi
be these subtrees for ρ and ρ′ in a left to right order, respectively.

For all i ∈ [1, n] we observe ↑(ρi) = ↑(ρ′i). Thus ρi and ρ′i both must be generated
by the same grammar Gji

for some ji ∈ [1, k]. Since ρi and ρ′i generates the i-th
block of v we have ↓(ρi) = ↓(ρ′i) as well. But Gji

is unambiguous for all i ∈ [1, n].
Hence ρi = ρ′i and we finally obtain ρ = ρ′. ut

Definition 3.11. For all i ∈ [1, k] let ωi ∈ ∆Gi
be a derivation tree such that

↑(ωi) = ai and ↓(ωi) = h(ai). Trees with these properties must exist, since h(ai) ∈
σh(ai) = L(Gi). The homomorphism append : ∆GL

→ ∆G(h,L) is defined by
append(p) = p if p ∈ PL and append(ai) = ωi for all i ∈ [1, k].

Note that for all ρ ∈ ∆GL
we have (↓ ◦ append)(ρ) = (h ◦ ↓)(ρ). Since ρ =

rem(ρ) and the GL remainder is invariant under appending trees we observe that
append is injective.

Lemma 3.12. For all w ∈ Γ ∗ the restriction of (↓ ◦ rem) to ∆G(h,L)(w) is onto
h−1(w) ∩ L.

Proof. Let u ∈ h−1(w) ∩ L. Since u ∈ L there is a ρ ∈ ∆GL
with u = ↓(ρ).

Since all the symbols and productions of GL are contained in G(h, L) we obtain
ρ ∈ ΛG(h,L). Let ρ′ := append(ρ) ∈ ∆G(h,L). Obviously ρ = rem(ρ′). Therefore
u = ↓(ρ) = ↓(rem(ρ′)) = (↓ ◦ rem)(ρ′). It remains to show that ↓(ρ′) = w.
Since u ∈ h−1(w) we have h(u) = w and eventually ↓(ρ′) = ↓(append(ρ)) =
(↓ ◦ append)(ρ) = (h ◦ ↓)(ρ) = h(↓(ρ)) = h(u) = w. ut

Lemma 3.13. The equation rh,L(w) = dG(h,L)(w) holds for all w ∈ Γ ∗.

Proof. Since rh,L(w) = |h−1(w) ∩ L| and dG(h,L)(w) = |∆G(h,L)(w)| it is suffi-
cient to show that the restriction of (↓ ◦ rem) to ∆G(h,L)(w) is a bijection onto
h−1(w) ∩ L. Let (↓ ◦ rem)(ρ) = (↓ ◦ rem)(ρ′) for some ρ, ρ′ ∈ ∆G(h,L)(w). Since
rem(ρ), rem(ρ′) ∈ ∆GL

and GL is unambiguous, rem(ρ) = rem(ρ′) follows. By
Lemma 3.10 this implies ρ = ρ′. Hence the restriction of (↓ ◦ rem) to ∆G(h,L)(w)
is injective. Moreover by Lemma 3.9 it is a mapping into h−1(w) ∩ L, and by
Lemma 3.12 it is a mapping onto h−1(w) ∩ L. ut

Lemma 3.14. The inequality dG(h,L)(πΓ (v)) ≥ dG(h,L)(v) holds for all v ∈
(Γ ∪ {0, 1})∗.

Proof. Since dG(h,L)(v) = |∆G(h,L)(v)| and dG(h,L)(πΓ (v)) = |∆G(h,L)(πΓ (v))|,
it suffices to show that the restriction of (append ◦ rem) to the set ∆G(h,L)(v) is
an injection into the set ∆G(h,L)(πΓ (v)). First we show that this mapping is into
∆G(h,L)(πΓ (v)). If ∆G(h,L)(v) = ∅ this is trivial, otherwise let ρ ∈ ∆G(h,L)(v).



Since rem(ρ) ∈ ∆GL
we obtain (↓ ◦ rem)(ρ) ∈ L ⊆ A∗. Thus we can write

(↓ ◦ rem)(ρ) = aj1 · · · ajn for some j1, . . . , jn ∈ [1, k] and some n ∈ N. By Lemma
3.8 we obtain:

πΓ (↓(ρ)) ∈ πΓ (σh((↓ ◦ rem)(ρ))) ⊆ πΓ (σh(aj1 · · · ajn
))

⊆ πΓ (h(aj1){0, 1}∗ · · ·h(ajn
){0, 1}∗) = {h(aj1 · · · ajn

)}

By the use of v = ↓(ρ) this implies:

πΓ (v) = πΓ (↓(ρ)) = h(aj1 · · · ajn
) = h((↓ ◦ rem)(ρ))

= (h ◦ ↓)(rem(ρ)) = (↓ ◦ append)(rem(ρ)) = ↓((append ◦ rem)(ρ)).

Therefore (append ◦ rem)(ρ) ∈ ∆G(h,L)(πΓ (v)). It remains to show that the
restriction of (append ◦ rem) to ∆G(h,L)(v) is injective. This follows by Lemma
3.10 and the observation that append is injective. ut

Lemma 3.13 and Lemma 3.14 immediately imply part (1) of Theorem 3.6. ut

Proof of Theorem 3.6 part (2): Assume G′ is a cf grammar such that L(G′) =
σh(L), p is the maximum of 3 and the pumping constant of G′, q := p! + p, and
w ∈ Γ ∗. Obviously codeh,p(h−1(w) ∩ L) ⊆ σh(L). In case h−1(w) ∩ L = ∅ the
inequality of Theorem 3.6 part (2) is trivially satisfied. Now assume h−1(w)∩L 6=
∅. Let u ∈ h−1(w) ∩ L and n := |w|. Then for some j1, . . . , jn ∈ [1, k] we have:

codeh,p(u) = h(aj1)[p][q]j1−1[p][q]k−j1 · · ·h(ajn
)[p][q]jn−1[p][q]k−jn .

We say that an interval of a derivation tree lies within a subblock (block) if
the corresponding nodes do not contain any leaf belonging to another subblock
(block). We prove by induction that for each i ∈ [0, n] there is a derivation tree
ρi ∈ ∆G′ such that

↓(ρi) = (fillp ◦ h)(aj1 · · · aji
) · codeh,p(aji+1 · · · ajn

)

and for each m ∈ [1, i] the derivation tree ρi has a pumping phrase allowing
to pump the same number of 0-symbols into the 0-th subblock and the jm-th
subblock of block m jointly. For i = 0 we only have to show that codeh,p(u) =
↓(ρ0) for some ρ0 ∈ ∆G′ . This follows by codeh,p(u) ∈ σh(L) = L(G′). Assume
the statement is true for i− 1. Then there is a derivation tree ρi−1 ∈ ∆G′ with
the required phrase structure and the sentential form:

↓(ρi−1) = (fillp ◦ h)(aj1 · · · aji−1) · h(aji
)[p][q]ji−1[p][q]k−ji · codeh,p(aji+1 · · · ajn).

The 0-th subblock of the i-th block in ↓(ρi−1) is underlined to indicate that the
leaves of ρi−1 forming the 0-symbols of this subblock are marked. According
to Ogden’s Lemma 2.3 the tree ρi−1 = αβγδη for some α, β, γ, δ, η ∈ T ∗

G′ such
that αβlγδlη ∈ ∆G′ for each l ∈ N. Moreover βδ must contain at least one
marked position and at least one of the intervals τβ := [|α| + 1, |αβ|] and τδ :=
[|αβγ|+ 1, |αβγδ|] lies within the 0-th subblock of block i. Let τ := τδ if τβ has
this property and τ := τβ otherwise.



By the choice of p and q the insertion of at most p many 0-symbols into
a subblock [p] yields a subblock shorter than [q]. We will implicitly apply this
argument in the sequel.

Assume τ is not within the i-th block, i.e., it is outside or it overlaps with
block i and some neighbouring blocks. Let i′ = i + c where c is the number of Γ
symbols in β if τ = τβ and i′ := i otherwise. Then block i′ of ↓(αβ2γδ2η) equals
block i of ↓(αβγδη), except for a proper insertion of at most p many 0-symbols
in the 0-th subblock of block i′. Therefore within block i′ the 0-th subblock does
not agree with any other subblock.

Now assume τ lies within block i. Then it cannot contain a 1-symbol because
otherwise the i-th block of ↓(αβ2γδ2η) would contain more than k+1 subblocks.
Hence each of τβ and τδ lie within one subblock of the i-th block. We can easily
verify that ↓(αβ2γδ2η) does not contain more than 2p occurrences of 0-symbols in
the 0-th subblock of block i in this case. This implies that τβ lies within the 0-th
subblock and τδ within the ji-th subblock of block i and 1 ≤ |↓(β)| = |↓(δ)| ≤ p.
Thus for l = p! · |↓(β)|−1 + 1 the derivation tree ρi := αβlγδlη has the property
↓(ρi) = (fillp ◦ h)(aj1 · · · aji

) · codeh,p(aji+1 · · · ajk
). Now ρi contains a pumping

phrase allowing to pump the same number of 0-symbols into the 0-th subblock
and into the ji-th subblock of block i jointly. Moreover the pumping phrases of
ρi to the left of block i are the same as in ρi−1, which completes the induction.

Eventually for i = n we obtain a derivation tree ρn with the frontier ↓(ρn) =
(fillp ◦ h)(u) = fillp(w) and the claimed phrase structure starting from an arbi-
trary word of codeh,p(h−1(w) ∩ L). It remains to show that two trees obtained
in this way beginning with different words in h−1(w) ∩ L cannot coincide. Let
u1, u2 ∈ h−1(w)∩L be two different words and let ω1 and ω2 be the correspond-
ing derivation trees obtained by the pumping sequence described above. Then
ω1 and ω2 both generate fillp(w). Assume ω1 = ω2. Since h is length preserv-
ing we observe |u1| = |u2|. Therefore u1 and u2 differ in at least one position
i ∈ [1, |u1|]. Then aj = u1[i] 6= u2[i] = aj′ for some j, j′ ∈ [1, k]. W.l.o.g. we
assume j > j′. Then ω1 contains a pumping phrase ϑ1 allowing to pump the
0-th subblock and the j-th subblock of block i jointly and it contains a pumping
phrase ϑ2 allowing to pump the 0-th subblock and the j′-th subblock of block
i jointly. Pumping once ω1 corresponding to ϑ1 we obtain a derivation tree ω′

with a word β ∈ (P ∪ {0})∗ inserted to the left of ϑ2. Since β does only con-
tain leaves labelled with 0-symbols ϑ2 is shifted to the right, but remains within
the same subblock as in ω1. Thus in ω′ it is still possible to pump the 0-th
subblock and the j′-th subblock of block i jointly. This pumping yields a deriva-
tion tree ω′′ for which the 0-th subblock of block i does no longer agree with
any other subblock of block i, which is a contradiction. Hence ω1 6= ω2. This
implies that fillp(w) can be generated by at least |codeh,p(h−1(w) ∩ L)| many
different derivation trees. Moreover since codeh,p is injective we finally obtain
dG′(fillp(w)) ≥ |codeh,p(h−1(w) ∩ L)| = |h−1(w) ∩ L| = rh,L(w). ut

Theorem 3.15. The context-free language σh(L) is r̂h,L-ambiguous.

Proof. Recall that L(G(h, L)) = σh(L). Now Theorem 3.6 (1) implies:



max{dG(h,L)(v) | v ∈ (Γ ∪ {0, 1})≤n}
≥ max{dG(h,L)(w) | w ∈ Γ≤n}
= max{dG(h,L)(πΓ (v)) | v ∈ (Γ ∪ {0, 1})≤n}
3.6
≥ max{dG(h,L)(v) | v ∈ (Γ ∪ {0, 1})≤n}

Hence all the expressions above are equal and again by Theorem 3.6 (1) we
obtain:

r̂h,L(n) = max{rh,L(w) | w ∈ Γ≤n} 3.6= max{dG(h,L)(w) | w ∈ Γ≤n}
= max{dG(h,L)(v) | v ∈ (Γ ∪ {0, 1})≤n} = d̂G(h,L)(n)

Thus G(h, L) is appropriate to satisfy property (1) of Definition 2.1. By Theorem
3.6 (2) we obtain that for each cf grammar G′ such that L(G′) = σh(L) there
is a p ∈ N such that for all words w ∈ Γ ∗ we have rh,L(w) ≤ dG′(fillp(w)). This
implies r̂h,L(|w|) ≤ d̂G′(|fillp(w)|) = d̂G′(c · |w|) where c = 1+(k +1)(p!+p+1).
Thus σh(L) and r̂h,L satisfy property (2) of Definition 2.1. ut

4 Applications

4.1 Census Functions

Definition 4.1. Let L ⊆ A∗ be a formal language. The census function γL :
N → N is defined by γL(n) := |An ∩ L|, and the function γ̂L : N → N is defined
by γ̂L(n) := max{γL(i) | i ≤ n}. The homomorphism hide : A∗ → {$} is defined
by hide(X) := $ for all X ∈ A.

Theorem 4.2. Let L ⊆ A∗ be an unambiguous context-free language. Then

σhide(L) is γ̂L-ambiguous.

Proof. By Theorem 3.15 the language σhide(L) is r̂hide,L-ambiguous. We get
r̂hide,L(n) = max{rhide,L(w) | w ∈ A≤n} = max{|hide−1(w) ∩ L| | w ∈ A≤n} =
max

{
|A|w| ∩ L|

∣∣w ∈ A≤n
}

= max
{
|Aj ∩ L|

∣∣ j ≤ n
}

= max
{
γL(j)

∣∣ j ≤ n
}

=
γ̂L(n). ut

Corollary 4.3. There is an unambiguous context-free language L such that L+

is exponentially ambiguous and Lk is Θ(nk−1)-ambiguous for each k ∈ N \ {0}.

Proof. Let {a, b} be an alphabet. We observe that γ̂(a+b)∗b(n) = b2n−1c and
γ̂(a∗b)k(n) =

(
n−1
k−1

)
for each k ∈ N \ {0}. Using Theorem 4.2 we obtain that

σhide((a+b)∗b) is b2n−1c-ambiguous and σhide((a∗b)k) is
(
n−1
k−1

)
-ambiguous. Thus

σhide((a∗b)1) is unambiguous. Finally since σhide is a homomorphism we imme-
diately get σhide((a + b)∗b) = σhide((a∗b)+) = (σhide(a∗b))+ and σhide((a∗b)k) =
(σhide(a∗b))k. Thus L := σhide(a∗b) is a language with the required properties.

ut



4.2 Cycle-free context-free Grammars

In this part our aim is to find out when the ambiguity function of a cf grammar
is inherent for some cf language.

Definition 4.4. A cf grammar G = (N,A, P, S) is in Greibach-normal-form if
P ⊆ N ×AN∗

For cf grammars in Greibach-normal-form the parse of each derivation tree
has the same length as its frontier. Moreover the i-th symbol of the frontier is
uniquely determined by the i-th symbol of the parse. This implies the following
lemma:

Lemma 4.5. Let G = (N,A, P, S) be a cf grammar in Greibach-normal-form
and hG : P ∗ → A∗ the length preserving homomorphism defined by hG(p) := Xp

for each p ∈ P where Xp is the terminal at the beginning of p’s right-hand side.
Then ↓(ρ) = hG(parse(ρ)) for all ρ ∈ ∆G.

Theorem 4.6. Let G = (N,A, P, S) be a context-free grammar in Greibach-
normal-form, and hG defined as in Lemma 4.5. Then the context-free language
σhG

(parseG(∆G)) is d̂G-ambiguous.

Proof. Let L := parseG(∆G) and h := hG.

r̂h,L(n) = max
{
|h−1(w) ∩ L|

∣∣ w ∈ A≤n
}

= max
{∣∣{ρ ∈ ∆G

∣∣ ↓(ρ) = w
}∣∣ ∣∣ w ∈ A≤n

}
= max

{
dG(w)

∣∣ w ∈ A≤n
}

= d̂G(n).

By Lemma 2.2 the cf language parseG(∆G) is unambiguous. Moreover hG is
length preserving. Thus the claim follows by Theorem 3.15 ut

Let us consider the ambiguity function of an arbitrary cycle-free cf grammar
G = (N,A, P, S). If A = ∅ then L(G) ⊆ {ε} and G has a constantly bounded
ambiguity function, which is an inherent ambiguity function. If A 6= ∅ we can
find an ε-free cycle-free cf grammar G′ such that L(G′) = (L(G)∪{a}) \ {ε} for
some a ∈ A, such that d̂G′(n) = d̂G(n) for all n ∈ N \ {0}. It can be shown that
G′ can be transformed into an equivalent cf grammar G′′ in Greibach-normal-
form which has the same characteristic ambiguity power series as G′. Then by
Theorem 4.6 the language σhG′′ (parseG′′(∆G′′)) is d̂G′ -ambiguous. By inspection
of Definition 2.1 we can easily verify that this also implies d̂G-ambiguity for
σhG′′ (parseG′′(∆G′′)). Therefore d̂G is an inherent ambiguity function.

Now we consider an arbitrary inherent ambiguity function f . Then there is an
f -ambiguous cf language L. Since symbols which cannot occur in any derivation
tree do not contribute to the ambiguity function there is a reduced cf grammar
G such that d̂G = f and L = L(G). We assume G is cyclic. Then there is a
word w which has infinitely many derivation trees. Thus f(|w|) = ∞. But each
cf language can be generated by a cycle-free cf grammar. Since they do not have
an infinite number of derivation trees for any word f cannot be inherent for L,
which is a contradiction. Hence G is a cycle-free cf grammar. Therefore f is the
ambiguity function of a cycle-free cf grammar. This finally implies:



Theorem 4.7. The set of ambiguity functions for cycle-free context-free gram-
mars and the set of inherent ambiguity functions coincide.

5 Conclusion

It has been shown that the loss of information induced by a length preserving
homomorphism can be turned into inherent ambiguity. The result has been used
to prove that:

– The least monotone function γ̂ larger than or equal to the census function
of an arbitrary unambiguous context-free language is an inherent ambiguity
function.

– The set of ambiguity functions for cycle-free context-free grammars and the
set of inherent ambiguity functions coincide.

The latter result is particularly useful for future research. As was mentioned
in the introduction some examples of languages with sublinear ambiguity have
recently been discovered. But a characterisation of the obtainable ambiguities
is still missing. The author conjectures that context-free languages with infinite
sublogarithmic ambiguity can be found. To prove that a given function f is
an inherent ambiguity function, with the result of this paper, it is sufficient to
find an f -ambiguous cycle-free context-free grammar. Finally we can raise the
question whether each context-free language is f -ambiguous for some function f .

Acknowledgements: I would like to thank Friedrich Otto for proofreading
and valuable discussions.

References

1. J. Berstel. Transductions and context-free languages. Teubner Studienbücher,
Stuttgart, 1979.

2. J. Crestin. Un langage non ambigu dont le carré est d’ambiguité non bornée. In
M. Nivat, editor, Automata, Languages and Programming, pages 377–390. Amster-
dam, North-Holland, 1973.

3. H. Maurer. The existence of context-free languages which are inherently ambiguous
of any degree. Research series, Department of Mathematics, University of Calgary,
1968.

4. M. Naji. Grad der Mehrdeutigkeit kontextfreier Grammatiken und Sprachen, 1998.
Diplomarbeit, FB Informatik, Johann–Wolfgang–Goethe–Universität Frankfurt/M.

5. R. J. Parikh. Language–generating devices. In Quarterly Progress Report, volume 60,
pages 199–212. Research Laboratory of Electronics, M.I.T, 1961.

6. K. Wich. Exponential ambiguity of context-free grammars. In G. Rozenberg and
W. Thomas, editors, Proceedings of the 4th International Conference on Develop-
ments in Language Theory, July 1999, pages 125–138. World Scientific, Singapore,
2000.

7. K. Wich. Sublinear ambiguity. In M. Nielsen and B. Rovan, editors, Proceedings of
the MFCS 2000, number 1893 in Lecture Notes in Computer Science, pages 690–698,
Berlin-Heidelberg-New York, 2000. Springer.


