
Characterization of context-free languages with
polynomially bounded ambiguity

Klaus Wich
E-mail: wich@informatik.uni-stuttgart.de

Institut für Informatik, Universität Stuttgart,
Breitwiesenstr. 20-22, 70565 Stuttgart.

Abstract. We prove that the class of context-free languages with poly-
nomially bounded ambiguity (PCFL) is the closure of the class of un-
ambiguous languages (UCFL) under projections which deletes Parikh
bounded symbols only. A symbol a is Parikh bounded in a language L
if there is a constant c such that no word of L contains more than c oc-
currences of a. Furthermore PCFL is closed under the formally stronger
operation of Parikh bounded substitution, i.e., a substitution which is
the identity for non Parikh bounded symbols. Finally we prove that the
closure of UCFL under union and concatenation is a proper subset of
PCFL.

1 Introduction

A context-free (for short cf) grammar is unambiguous if each word has at most
one derivation tree. Otherwise it is ambiguous. There are cf languages which
cannot be generated by unambiguous cf grammars [8]. These languages are called
(inherently) ambiguous. A cf grammar has a k-bounded ambiguity if no word
has more than k derivation trees. It is k-ambiguous if it is k-bounded but not
(k−1)-bounded. A language L is ambiguous of degree k if it is generated by a k-
ambiguous grammar, but it cannot be generated by a (k−1)-bounded grammar.
There are examples for k-ambiguous languages for each k ∈ N [6]. But even
languages with infinite degree of ambiguity exist [3]. We can distinguish these
languages by the asymptotic behavior of their ambiguity with respect to the
length of the words. The ambiguity function of a cf grammar is a monotonous
function which yields the maximal number of derivation trees for words up to
a given length. By an undecidable criterion which is related to the Pumping
Lemma it can be shown that each cycle-free cf grammar is either exponentially
ambiguous or its ambiguity is bounded by a polynomial [10, 11]. Consequently
there is a gap between polynomial and exponential ambiguity. We introduce
(inherent) asymptotic ambiguity for languages similarly as above. There are cf
languages with exponential ambiguity and with Θ(nk) ambiguity for each k ∈ N
[7]. Even a linear cf language with logarithmic ambiguity is known [12].

A symbol a is Parikh bounded in a language L if there is a constant c such
that no word of L contains more than c occurrences of a. Thus c is an upper

bound for the corresponding component in the Parikh mapping. A substitution
is called Parikh bounded if it is the identity for non Parikh bounded symbols. It
is easily seen that PCFL is closed under Parikh bounded substitution. We prove
that PCFL is the closure of unambiguous context-free languages (UCFL) under
Parikh bounded projection, i.e., a substitution which deletes Parikh bounded
symbols only. The construction is effective and can be computed in polynomial
time. Note that Parikh bounded projection is a special case of Parikh bounded
substitution for UCFL languages since singletons are unambiguous. Finally we
prove that the closure of UCFL under union and concatenation (UCFL[·,∪])
is a proper subset of PCFL. This class is interesting since each language in
UCFL[·,∪] is generated by a cf grammar with quadratic Earley parsing time.

2 Preliminaries

Let Σ be a finite alphabet. Let u = a1 · · · an ∈ Σ∗ be a word over Σ, where
ai ∈ Σ for 1 ≤ i ≤ n. The length of u is |u| := n. For 1 ≤ i ≤ n we define u[i] = ai.
The empty word is denoted by ε. Formal languages and their concatenation are
defined as usual [1]. Let Σ and Γ be two alphabets. A substitution σ is the
homomorphic extension of a mapping σ : Σ → 2Γ∗

. For a ∈ Σ, L ⊆ Σ∗, and
L̃ ⊆ Γ ∗, the single symbol substitution defined by σ(a) = L̃ and σ(b) = {b} for
each b ∈ Σ \ {a} is denoted [a/L̃]. We write L[a/L̃] for [a/L̃](L). For L ⊆ Σ∗

and a substitution σ we define σ(L) := {u | u ∈ σ(w) for some w ∈ L}. For
Γ ⊆ Σ the projection πΓ is the homomorphism given by πΓ (b) = b for all b ∈ Γ
and πΓ (b) = ε for b ∈ Σ \ Γ . For each w ∈ Σ∗, a ∈ Σ, and Γ ⊆ Σ we define
|w|Γ := |πΓ (w)| and |w|a := |w|{a}.

A context-free grammar is a triple G = (V, P, S), where V is a finite alphabet,
P ⊆ V × V ∗ is a finite set of productions, and S ∈ V is the start symbol.
NG := {A ∈ V | A×V ∗∩P 6= ∅} is called the set of nonterminals. ΣG := V \NG

is the set of terminals. A production p = (A,α) is denoted by A→ α or (A→ α).
The left-, and right-hand sides of p are `(p) := A, and r(p) := α, respectively.
We call p an ε-production if r(p) = ε.

The usual way to introduce the ambiguity of a word w over ΣG is by the
number of its leftmost derivations, which are in one to one correspondence with
the derivation trees for w. This correspondence does not hold for trees which
contain nonterminals in their frontier. But in our consideration trees with this
property, especially so called pumping trees, play a crucial rule. On the other
hand we do not need the full term rewriting formalism to handle derivation trees.
Therefore we use an intermediate formalism.

Let X ∈ V ∪P and τ ∈ (V ∪P)∗. The root of Xτ is X if X ∈ V and `(X) if
X ∈ P . The root of Xτ is denoted by ↑Xτ . The projection πV (τ) is the yield of
τ denoted by ↓τ . A derivation tree ρ is either an element of V ∪{p r(p) | p ∈ P}
or it can be decomposed as ρ = τ1ρ

′τ2 such that ρ′ and τ1 (↑ρ′) τ2 are derivation
trees. The set of derivation trees of G is denoted by 4(G). If ρ is a derivation tree
then the interface of ρ is the pair lρ := (↑ρ, ↓ρ). An element from {1, . . . , |ρ|} is
said to be a node of ρ. A node ν is an internal node if ρ[ν] ∈ P and we say that

the P -label of ν is ρ[ν]. The node ν is a leaf if ρ[ν] ∈ V . The label of ν is ρ[ν] if ν
is a leaf and it is `(ρ[ν]) if ν is an internal node. Note that |↓ρ|Γ = |ρ|Γ holds for
each Γ ⊆ V . Thus |ρ|Γ is the number of leaves in ρ labeled with an element of
Γ . A node µ is an ancestor of ν if ρ = τ1 · · · τ5, µ = |τ1|+ 1, ν = |τ1τ2|+ 1, and
τ2τ3τ4, τ3 ∈ 4(G) for some τ1, . . . , τ5 ∈ (V ∪P)∗. The node ν is a descendant of
µ if µ is an ancestor of ν .The node µ is a proper ancestor (descendant) of ν if µ
is an ancestor (a descendant) such that µ 6= ν. Let P be a property of nodes. The
node µ is the first ancestor of ν with property P if no proper descendant of µ
which satisfies P is an ancestor of ν. The first common ancestor of two nodes ν1
and ν2 is the first ancestor of ν1 which is an ancestor of ν2. A node ν is a son of
a node µ if µ is the first proper ancestor of ν. A tree format ∆ is a mapping that
assigns to each cf grammar G a subset of4(G). The tree format defined by4(G)
for each cf grammar G is 4. The set of compressed derivation trees is defined by
comp(4(G)) := {πV ∪P (ρ) | ρ ∈ 4(G)}. Note that πV ∪P restricted to 4(G) is
a bijection from 4(G) to comp(4(G)). If ↓ρ ∈ Σ∗ then πV ∪P (ρ) coincides with
the well known left-parse. The standard derivation tree format 4S

Σ is defined
by 4S

Σ(G) := {ρ ∈ 4(G) | lρ ∈ {S} × Σ∗
G}. The language generated by G is

L(G) := {↓ρ | ρ ∈ 4S
Σ(G)}. The set of sentential forms is ζ(G) := {↓ρ | ρ ∈

4(G)}. In the sequel the notions language and grammar represent context-free
languages and context-free grammars, respectively. A grammar G = (V, P, S) is
cycle-free if ↑ρ = ↓ρ implies ρ ∈ V . It is reduced if either for each p ∈ P there is
a ρ ∈ 4S

Σ(G), such that p appears in ρ, or P = {S → S} in case L(G) = ∅. A
reduced grammar G = (V, P, S) is strongly reduced if either L((V, P,A)) 6= {ε}
for each A ∈ NG or P = {S → ε} in case L(G) = {ε}. For each grammar G
there is an equivalent strongly reduced grammar which is not larger than G.
If G is a grammar, then its canonical strongly reduced equivalent grammar is
denoted by red(G). If not stated otherwise G = (V, P, S) is an implicitly “for
all” quantified cycle-free strongly reduced grammar and N = NG, Σ = ΣG,
A,B ∈ N ; a, b, c ∈ Σ; X,Y ∈ V . The ambiguity function amG : N0 → N0 is
defined by amG(n) := max

{
|{ρ ∈ 4S

Σ(G)|↓ρ = w}|
∣∣w ∈ Σ∗ ∧ |w| ≤ n

}
. The

grammar G is unambiguous if amG(n) ≤ 1 for each n ∈ N, it is of polynomially
bounded ambiguity if amG(n) = O(nk) for some k ∈ N, and it is exponentially
ambiguous if amG(n) = 2Ω(n). The set of grammars with the corresponding
asymptotic ambiguities are denoted by UCFG, PCFG, and ECFG, respectively.
The class of languages generated by unambiguous grammars, and grammars
with polynomially bounded ambiguity are called UCFL, and PCFL, respectively.
The class of languages which require an exponentially ambiguous grammar to
be generated is called ECFL. If X is a set of languages or grammars then X
denotes the set of cycle-free strongly reduced cf grammars or cf languages which
do not belong to X. Let ∆ be a tree format. The set ∆(G) is unambiguous if for
all ρ1, ρ2 ∈ ∆(G) we have lρ1 = lρ2 ⇒ ρ1 = ρ2. The set of grammars which are
unambiguous w.r.t.∆ is defined by U(∆) = {G cycle-free and strongly reduced |
∆(G) is unambiguous}. Note that U(4) = UCFG = U(4S

Σ).

3 Closure properties of PCFL

Lemma 3.1. PCFL is not closed under length preserving homomorphisms.

Proof. Let L := ({ai$bi−1cj | i, j ≥ 1} ∪ {aibj−1$cj | i, j ≥ 1})∗ and h :
{a, b, c, $}∗ → {a, b, c}∗ be defined by h(x) = x for x 6= $ and h($) = b. It
is easily seen that L ∈ UCFL. But h(L) = {aibjck | i = j ∨ j = k}∗ is an
inherently exponentially ambiguous language [7].

Definition 3.2. We extend N to a complete lattice by adding a maximal element
ω. Thus each subset of N ∪ {ω} has a supremum. Let L be a language over Σ.
Let Γ ⊆ Σ. The Parikh supremum is defined by Ψsup : 2Σ∗ → (2Σ → N ∪ {ω})
where Ψsup(L)(Γ) := sup{|w|Γ | w ∈ L}. For each grammar G = (V, P, S)
and each Γ ⊆ V , the set Γ is called Parikh bounded (Pb) if Ψsup(G)(Γ) :=
Ψsup(ζ(G))(Γ) < ω. A symbol X ∈ V is Pb if {X} is Pb.

The Parikh supremum is the maximum number of Γ symbols which can occur in
a word of L. We write Ψsup(L)(a) for Ψsup(L)({a}). Ψsup(L)(a) can be considered
as the supremum of the corresponding component over all Parikh vectors for L.
See [9] for the definition of Parikh vectors.

Definition 3.3. Let Σ and Γ be finite alphabets. A substitution σ : Σ∗ → 2Γ∗

is Parikh bounded for a language L ⊆ Σ∗ if for each a ∈ Σ which is not Parikh
bounded σ(a) = {a} holds. The projection πΓ (L) is a Parikh bounded projection
if Σ \ Γ contains Parikh bounded symbols only.

Lemma 3.4. The language class PCFL is closed under Parikh bounded substi-
tution, Parikh bounded projection, concatenation and union.

Proof. Let L1, L2 ∈ PCFL generated by G1, G2 ∈ PCFG with disjoint sets of
nonterminals. Let a be a Parikh bounded symbol in L1 with the Parikh supre-
mum k. We can construct a grammar for L1[a/L2] by replacing each occurrence
of an a by the start symbol of G2. Then each word of L1[a/L2] consists of a word
from L1, where all occurrences of a in w (at most k many) have been replaced
by words of L2. Each inserted word is specified by the positions where it starts
and ends. Therefore the number of possible factorizations is bounded by O(n2k).
Since ambiguity functions are monotonous the ambiguity of a word of length n
in L1[a/L2] is bounded by O(amG1(n) · (amG2(n))k ·n2k), which is polynomially
bounded. Each Parikh bounded substitution can be written as a sequence of
single symbol substitutions. For the Parikh bounded projection πΣG1\{a}(L1),
concatenation, and union we obtain the better upper bounds O(amG1(n) · nk),
O(amG1(n) · amG2(n) · n), and O(amG1(n) + amG2(n)), respectively. ut

4 Types of symbols, productions, trees and tree formats

Definition 4.1. We say A derives B, denoted by A ` B, if there exists ρ ∈
4(G) such that ↑ρ = A and |ρ|B > 0. We define an equivalence relation ≡ by:
A ≡ B if A ` B ∧ B ` A. The equivalence class of A is denoted by [A].

Lemma 4.2. Let X ∈ V , ΓX = {A ∈ N | A ` X} and Ψ := Ψsup((V, P, S)).
Then Ψ(ΓX) = Ψ(X).

Proof. Since each Element of ΓX can generate at least one occurrence of X, we
obtain Ψ(ΓX) ≤ Ψ(X). On the other hand X ∈ ΓX . Therefore Ψ(X) ≤ Ψ(ΓX).
Thus the claim follows. ut

Definition 4.3. A production (A→ α) ∈ P is called

– pumping production if |α|[A] > 0.
– descending production if it is not a pumping production.
– bounded production if it is descending and A is Parikh bounded.
– unbounded production if it is not bounded.

The sets of pumping, descending, bounded, and unbounded productions are de-
noted by, P=, P<, P<ω, and Pω, respectively.

On a path from a leaf to the root a pumping production can occur arbitrarily
often, while a descending production can occur only once. Hence the maximal
number of occurrences of a descending production in an arbitrary derivation tree
is bounded by the Parikh supremum of its left-hand side. Bounded productions
will play a particularly crucial role in the sequel.

Definition 4.4. A derivation tree ρ ∈ 4(G) is a pumping tree if |ρ|↑ρ > 0, it
is a partial pumping tree if |ρ|[↑ρ] > 0, and it is an unbounded production tree
if it doesn’t contain a bounded production, i.e., |ρ|P<ω

= 0. The set of pumping,
partial pumping,and unbounded production trees, are denoted by 4(G), 4[] (G),
and 4ω (G), respectively. The corresponding tree formats are 4, 4[] , and 4ω . For
an arbitrary tree format ∆ the tree formats ∆ω and ∆<ω are defined by the
restriction of ∆ to trees with non Parikh bounded and Parikh bounded roots,
respectively.

Note that each tree obtained from a pumping tree by cutting off some subtrees
is a partial pumping tree.

Definition 4.5. A symbol X is pumpable, if there is a ρ ∈ 4(G) such that
|ρ|X > |↑ρ|X .

Lemma 4.6. A symbol X is pumpable if and only if it is not Parikh bounded.

Proof. IfX is pumpable then by definition we have a pumping tree, which pumps
occurrences of X. Hence X is not Parikh bounded. If X is not Parikh bounded,
we choose a word with sufficiently many occurrences of X. We mark them ac-
cording to Ogden’s iteration Lemma [1] for context-free grammars, and obtain
a pumping tree which is appropriate to show the pumpability of X. ut

In the sequel we will use the notion pumpable symbol synonymous for non
Parikh bounded symbols, without explicitly referencing the previous lemma.

5 Computation of Parikh Suprema

There is a polynomial time algorithm which takes a pair, consisting of a reduced
grammar G = (V, P, S) and an alphabet Γ ⊆ V (in a binary encoding), as
the input and computes Ψsup(G)(Γ). The algorithm works as follows: First we
compute directlyPumpable := {X | ∃p ∈ P= : |r(p)|X > |`(p)|X}. Then we
compute Pumpable := {Y | X ∈ directlyPumpable ∧ X ` Y }. It is easily seen
that Pumpable is the set of pumpable symbols. The set Γ ⊆ V is not Parikh
bounded if and only if at least one X ∈ Γ is not Parikh bounded. Hence we can
determine by the algorithm above whether Γ is Parikh bounded or not. If Γ is
not Parikh bounded then Ψsup(G)(Γ) = ∞. Otherwise we proceed as follows:
First we construct G′ by erasing all productions p where `(p) is a pumpable
symbol and by erasing all occurrences of pumpable symbols in right-hand sides of
productions. By Lemma 4.2 no Parikh bounded symbol can ever be generated by
a pumpable symbol. Hence G′ is reduced. Again by Lemma 4.2 the Parikh bound
is an invariant w.r.t. the equivalence≡. Hence we can replace each occurrence of a
symbol by its equivalence class and obtain grammar G′′. The remaining pumping
productions all have the form [X] → [X] and can be eliminated to obtain G′′′.
It is easily seen that Ψsup(G)(Γ) = Ψsup(G′′′)(Γ ′) for Γ ′ := {[X] | X ∈ Γ}. Since
the grammar G′′′ has descending productions only 4(G′′′) is finite. Obviously
we can explore all the trees in 4(G′′′) to compute the Parikh supremum in
exponential time. But we can use dynamic programming methods to compute
the Parikh bound efficiently. Let G′′′ = (V, P, S). We can allow productions as
start symbols with the semantic that this production has to be the first one in
each derivation tree. Obviously this definition does not increase the generative
power of cf grammars. We compute for each µ ∈ P ∪V the Parikh supremum of
Γ ′ in the grammar (V, P, µ). For µ ∈ ΣG′′′ the task is trivial. Starting with the
terminals we compute Ψsup(G′′′)(Γ ′) bottom up by the use of the equation:

Ψsup((V, P,X))(Γ ′) =
{

max{Ψsup((V, P, ν))(Γ ′) | ν ∈ P ∩X × V ∗} if X ∈ V∑k
i=1 Ψsup((V, P,Xk))(Γ ′) if X = A→ X1 · · ·Xk ∈ P

6 Characterization of PCFL

Theorem 6.1 ([11]). U(4) ⊆ ECFG.

The idea of the proof is as follows. If G /∈ U(4) then there exist two different
pumping trees ρ1, ρ2 with a common interface. Thus we can construct trees
which contain chains of n such pumping trees. Their interfaces do not depend
on the chosen pumping trees at an arbitrary position in the chain. Hence we
have at least 2n ways to construct derivation trees of that kind, all having the
same interface. To be sure that this idea yields exponential ambiguity we need
the fact that the grammar is cycle-free and strongly reduced. Even U(4) ⊆
PCFG and the undecidability of U(4) have been proved in [11]. But we will use
Theorem 6.1 only. Included in our final result we will get an alternative proof
for U(4) ⊆ PCFG . As an immediate consequence of the definitions we obtain
the following Lemma:

Lemma 6.2. Let ∆1 and ∆2 be tree formats. Then (∀G : ∆1(G) ⊆ ∆2(G)) ⇒
U(∆2) ⊆ U(∆1).

Lemma 6.3. Let ∆, ∆1, and ∆2 be tree formats such that: ∀G : ∆(G) ⊆
∆1(G) ∪∆2(G) and {lρ | ρ ∈ ∆1(G)} ∩ {lρ | ρ ∈ ∆2(G)} = ∅. Then U(∆1) ∩
U(∆2) ⊆ U(∆).

Proof. Let G ∈ U(∆1) ∩ U(∆2) and ρ1, ρ2 ∈ ∆(G) such that lρ1 = lρ2. In case
ρ1 ∈ ∆1(G), the assumption ρ2 ∈ ∆2(G) would lead to a nonempty intersection
of the interfaces of ∆1(G) and ∆2(G), contradicting our requirements. Hence
ρ2 ∈ ∆1(G) too. Thus ρ1 = ρ2 follows from G ∈ U(∆1). The assumption ρ1 ∈
∆2(G) yields in an analogous manner ρ1 = ρ2. Hence G ∈ U(∆). ut

Lemma 6.4. U(4) = U(4[]).

Proof. Since 4(G) ⊆ 4[] (G) for each grammar G the inclusion U(4[]) ⊆ U(4) is
a consequence of Lemma 6.2. Let G ∈ U(4). Choose arbitrary ρ1, ρ2 ∈ 4[] (G)
such that lρ1 = lρ2. We have to show that this implies ρ1 = ρ2. By definition
of 4[] there is a B ∈ N such that B is contained in the yield and ↑ρ1 ≡ B. By
definition of ≡ this implies that there is a derivation tree ρ = τ1(↑ρ1)τ2 ∈ 4(G)
such that ↑ρ = B. Then we obtain that τ1ρ1τ2 and τ1ρ2τ2 are pumping trees
with a common interface. Since G ∈ U(4) this implies τ1ρ1τ2 = τ1ρ2τ2. By left-
and right cancellation we obtain ρ1 = ρ2. Thus G ∈ U(4[]). ut

Lemma 6.5. U(4) ⊆ U(4ω).

Proof. Let G ∈ U(4). Choose arbitrary ρ1, ρ2 ∈ 4ω(G) such that lρ1 = lρ2.
Then X := ↑ρ1 is pumpable. Hence by definition there is a derivation tree
ρ = τ1Xτ2 ∈ 4(G), such that |ρ|X − |↑ρ|X > 0. Now either X = ↑ρ then
|τ1τ2|↑ρ = |τ1(↑ρ)τ2|↑ρ − |↑ρ|↑ρ = |ρ|X − |↑ρ|X > 0 or ↑ρ 6= X then |τ1τ2|↑ρ =
|τ1Xτ2|↑ρ = |ρ|↑ρ > 0 since ρ ∈ 4(G). Hence in both cases |τ1τ2|↑ρ > 0. This
implies τ1ρ1τ2, τ1ρ2τ2 ∈ 4(G). Now G ∈ U(4) implies τ1ρ1τ2 = τ1ρ2τ2. By left-
and right cancellation we obtain ρ1 = ρ2. Hence G ∈ U(4ω). ut

Lemma 6.6. Let ρ ∈ 4(G). If ρ contains a node ν labeled with a Pb symbol A
then each ancestor of ν is labeled with a Pb symbol.

Proof. If ν′ is an ancestor of ν labeled with B then B generates A (i.e. B ` A).
Thus by Lemma 4.2 we have Ψsup(B) ≤ Ψsup(A). Hence B is a Pb symbol. ut

Lemma 6.7. Let ρ ∈ 4(G). Let ν1 and ν2 be two nodes labeled with a Pb sym-
bol where neither one is an ancestor of the other. Then there is a node ν <
min{ν1, ν2} such that the P -label of ν is a bounded production.

Proof. Let ν be the first common ancestor of ν1 and ν2. Then ν ≤ min{ν1, ν2}.
Since neither one is an ancestor of the other ν < min{ν1, ν2}. By Lemma 6.6 the
node ν and two distinct sons of ν are labeled with Pb symbols. But among the
descendants of a pumping production there is at most one Pb symbol. Therefore
the P -label of ν must be a descending production. Thus we obtain that the P -
label of ν is a bounded production. ut

Corollary 6.8. Let ρ ∈ 4(G). If ρ contains more than one leaf labeled with a
Pb symbol then ρ /∈ 4ω (G).

Proof. Let ν1, ν2 be two distinct leaves of ρ labeled with a Pb symbol . Obviously
neither is an ancestor of the other. Hence by Lemma 6.7 the tree ρ contains a
bounded production. ut

Lemma 6.9. Let ρ ∈ 4<ω(G). If |ρ|[↑ρ] = 0 then ρ /∈ 4ω (G).

Proof. By definition ↑ρ is a Pb symbol. Hence ρ contains a node ν, labeled
with a symbol in [↑ρ], which has no descendants in [↑ρ]. If |ρ|[↑ρ] = 0 then this
node cannot be a leaf, i.e., there is a production p which is the P -label of ν.
This production is descending by the choice of ν. Moreover `(p) ∈ [↑ρ] is Parikh
bounded. Thus p is a bounded production, which implies ρ /∈ 4ω (G). ut

Immediately by Corollary 6.8 and Lemma 6.9 we obtain:

Lemma 6.10. If ρ ∈ 4ω<ω(G) then ρ contains exactly one leaf labeled with a
Pb symbol and this symbol is in [↑ρ].

Lemma 6.11. 4ω<ω(G) = 4[]<ω(G).

Proof. The inclusion 4ω<ω(G) ⊆ 4[]<ω(G) is an immediate consequence of Lemma
6.10. Let ρ be an arbitrary element of 4[]<ω(G). Then ρ contains a leaf ν labeled
with a symbol A ∈ [↑ρ]. Since ↑ρ is Pb it suffices to show that an arbitrary
internal node µ of ρ must not have a bounded production as its P -label. First
assume µ is an ancestor of ν labeled B. Then ↑ρ ` B ` A ` ↑ρ since A ∈ [↑ρ].
Hence B ∈ [↑ρ]. But then the first ancestor of ν which is a son of µ is in [↑ρ]
as well. This implies that the P -label of µ is a pumping production p. Thus p is
not bounded. Now assume µ is no ancestor of ν, then the first common ancestor
of µ and ν is a pumping production capable to pump the label of µ and again
the P -label of µ must not be a bounded production. ut

Theorem 6.12. PCFG ⊆ U(4) ⊆ U(4ω).

Proof. PCFG ⊆T6.1 U(4) ⊆L6.4 U(4[]) ⊆L6.2 U(4[]<ω). Moreover U(4) ⊆L6.5

U(4ω). Hence U(4) ⊆ U(4ω) ∩ U(4[]<ω). Obviously {lρ | ρ ∈ 4ω} ∩ {lρ |
ρ ∈ 4[]<ω} = ∅ and 4ω (G) ⊆ 4ω(G) ∪ 4ω<ω(G) ⊆L6.11 4ω(G) ∪ 4[]<ω(G). Thus by
Lemma 6.3 we obtain U(4ω) ∩ U(4[]<ω) ⊆ U(4ω). ut

Obviously U(4ω) and U(4ω) are closed under deletion and insertion of terminals
in bounded productions. Now Theorem 6.12 states that for the generation of
polynomially bounded ambiguity, bounded productions must be essential. If we
insert sufficiently many markers in bounded productions to destroy their capacity
to cause ambiguity then the resulting grammar should be unambiguous. This is
exactly what we are about to do. Note that we will use productions of the original
grammar as marker symbols in the constructed grammar.

Lemma 6.13. Each ρ ∈ (4<ω(G)∩(4(G)\4ω (G))) has a unique decomposition
ρ = ξpτχ where p ∈ P<ω is a bounded production, such that pτ ∈ 4(G), and
ξ `(p)χ ∈ 4ω<ω.

Proof. Let ρ be an element of (4<ω(G)∩(4(G)\4ω (G))). Then ρ contains at least
on bounded production. For each internal node µ in ρ there is a uniquely defined
decomposition ρ = ξpτχ such that |ξ| = µ− 1 and pτ, ξ`(p)χ ∈ 4(G). Our task
is to find the appropriate µ. Since ξ must not contain a bounded production
but p is a bounded production, the only possible candidate for µ is the smallest
integer i such that ρ[i] is a bounded production. Now we choose the uniquely
defined ξ ∈ (V ∪Pω)∗, τ, χ ∈ (V ∪P)∗, and p ∈ P<ω with the property ρ = ξpτχ
and ρ′ := ξ`(p)χ, pτ ∈ 4(G). Now assume that there is a node µ′ in the χ
portion of ρ′ which is P -labeled by a bounded production. Since µ < µ′ the node
µ′ cannot be an ancestor of µ. On the other hand µ is a leaf and is therefore no
ancestor of µ′. Thus by Lemma 6.7 there is a node ν < µ which is P -labeled by a
bounded production, which is a contradiction to our choice of µ. That implies χ
does not contain bounded productions. Therefore ξ`(p)χ ∈ 4ω (G). Finally, since
`(p) is Pb, Lemma 6.6 implies that ξ`(p)χ ∈ 4ω<ω(G). ut

Definition 6.14. Let hG : (N ∪ P)∗ → (N ∪ (N × (V ∪ P<ω)∗))∗ be the homo-
morphism defined by hG(X) := X for X ∈ N∪Pω and hG(p) := (A→ pu0A1 · · ·
puk−1Akpuk) for p = (A → u0A1 · · ·uk−1Akuk) ∈ P<ω. The skeleton grammar
for G = (V, P, S) is defined by s(G) := (V ∪ P<ω, P

′, S) where P ′ := {hG(p) |
p ∈ P}.

Note that restricted to compressed derivation trees the mapping hG is a bijection
from comp(4(G)) to comp(4(s(G))).

Lemma 6.15. G ∈ U(4ω) ⇒ s(G) ∈ UCFG.

Proof. Observe that p ∈ P is an unbounded production of G if and only if
hG(p) is an unbounded production of s(G). Moreover Pω = P ′

ω which implies
4ω (G) = 4ω (s(G)). For G ∈ U(4ω) we must show that arbitrary ρ1, ρ2 ∈ 4(s(G))
have common interfaces only if ρ1 = ρ2. We prove this by induction on |ρ1|P<ω

.
The basis is that ρ1 ∈ 4ω (s(G)). Now ↓ρ1 does not contain any symbols in P<ω.
Since each production in h(P<ω) generates symbols in P<ω and lρ1 = lρ2 we
obtain that ρ2 is in 4ω (s(G)) too. By the observation above ρ1, ρ2 ∈ 4ω (G). Hence
G ∈ U(4ω) implies ρ1 = ρ2. Assume the claim has been proved for all ρ ∈ 4(s(G))
with at most n bounded productions. Let ρ1 contain n+1 bounded productions.
By Lemma 6.13 for i ∈ {1, 2} we can uniquely decompose ρi = ξi h(pi) τiχi

such that ρ′i := ξil(h(pi))χi ∈ 4ω (s(G)), h(pi) ∈ P
′

<ω, and h(pi)τi ∈ 4(s(G)).
Since all bounded productions happen to occur in h(pi)τi it follows that p1 and
p2 generate the leftmost and rightmost occurrences of symbols from P<ω in ↓ρ1

and ↓ρ2, respectively. By lρ1 = lρ2 this implies p := p1 = p2 and lρ′1 = lρ′2.
Now ρ′1, ρ

′
2 ∈ 4ω (s(G)) implies ρ′1, ρ

′
2 ∈ 4ω (G). Since G ∈ U(4ω) this implies

ρ′1 = ρ′2. Now p is both a terminal of s(G) and a bounded production of G. Thus
h(p) = (A → pu0A1pu1 · · ·Akpuk) for some k ∈ N, and for each j ∈ {1, . . . , k}

we have A,Aj ∈ N and uj ∈ Σ∗. Then τi = τi,1 · · · τi,k has, for each i ∈ {1, 2},
a unique decomposition in k derivation trees τi,1, . . . , τi,k ∈ 4(s(G)) such that
Aj = ↑τi,j . Since h(p) is a descending production it cannot occur in any τi,j .
Hence their yields cannot contain a p. Therefore we can uniquely retrieve the
yield of each τi,j from ↓ρi, i.e., for each j ∈ {1, . . . , k} we have ↓τ1,j = ↓τ2,j .
Hence lτ1,j = lτ2,j for each j ∈ {1, . . . , k}. But since they must not contain
h(p) they contain at most n bounded productions. Therefore by the inductive
hypothesis τ1,j = τ2,j for each j ∈ {1, . . . , k}. This finally implies ρ1 = ρ2. ut

By elementary combinatorial considerations we obtain:

Lemma 6.16. s(G) ∈ UCFG ⇒ amG(n) = O(nk), where k = ψ(s(G))(P<ω).

Lemma 6.17. PCFG = U(4) = U(4[]) = U(4ω).

Proof. PCFG ⊆T6.1 U(4) ⊆L6.12 U(4ω). By Lemma 6.4 we have U(4) = U(4[]).
Finally let G ∈ U(4ω) then s(G) ∈ UCFG by Lemma 6.15. Thus G ∈PCFG by
Lemma 6.16. ut

Theorem 6.18. amG = 2Ω(n) or amG = O(nk), where k = ψ(s(G))(P<ω).

Proof. If G ∈ U(4) then G ∈ECFG by Theorem 6.1, i.e., amG = 2Ω(n). If
G ∈ U(4) then G ∈ U(4ω) follows by Lemma 6.17. Thus s(G) ∈UCFG by
Lemma 6.15 and by Lemma 6.16 we obtain amG(n) = O(nk). ut

Note that the value of k in the theorem above can be computed in polynomial
time w.r.t. the size of the grammar.

Theorem 6.19. The closure of UCFL under Parikh bounded projection coin-
cides with PCFL

Proof. By Lemma 3.4 the closure of UCFL under Parikh bounded projection
is a subset of PCFL. Let L ∈PCFL and let G = (V, P, S) ∈PCFG such that
L = L(G). Then G ∈ U(4ω) by Lemma 6.17. By Lemma 6.15 this implies
L(s(G)) ∈UCFL. Obviously L = πV (L(s(G))). Finally we observe that πV is
Parikh bounded for L(s(G)). ut

Corollary 6.20. A grammar G = (V, P, S) is in PCFG if and only if (V, Pω, S)
is in U(4).

Proof. Obviously 4((V, Pω, S)) = 4ω (G). Hence by Theorem 6.17 the claim fol-
lows. ut

In general PCFG is undecidable, which has been shown in [11]. But in special
cases Corollary 6.20 can help us to decide whetherG belongs to PCFG since there
are fewer derivation trees to consider. Furthermore the constructed grammar is
not necessarily reduced. This can be used to break it into a bunch of grammars
which are likely to be much smaller and easier to handle than the original one:

Corollary 6.21. Let G = (V, P, S) be a grammar and Nr := {B ∈ N | ∃p ∈
P<ω : |r(p)|B > 0}∪{S}. Then G ∈ PCFG if and only if for all A ∈ Nr we have
red((V ∪ ÑG, Pω ∪P ′, A)) ∈ UCFG, where ÑG := {X̃ | X ∈ N} is a copy of the
nonterminals disjoint from V , and P ′ := {A→ Ã | A ∈ ÑG}.

7 The semiring closure of UCFL

Definition 7.1. If X is a language class then X[∪] and X[·] denote the closure
of X under union and concatenation, respectively. X[·,∪] denotes the closure
under union and concatenation. X[·,∪] is called the semiring closure of X.

Lemma 7.2. Each language in UCFL[·,∪] can be parsed by the Earley algorithm
in O(n2).

The previous lemma can be proved analogously to the proof for the quadratic
parsing time of metalinear languages [4].

Definition 7.3. We define Lp := {u ∈ {b, c}∗ | u = uR}, where uR is the
reversal of u. Thus Lp is the set of palindromes. Now we define L� := {w ∈
{a, b, c,#}∗ | ∃i ∈ N : ∃u, v ∈ Lp : w = ai#uv#ai}.

Lemma 7.4. L� ∈ PCFL.

Proof. Let L1 := {ai#$$#ai | i ∈ N}. Obviously L1, Lp ∈ UCFL and the
substitution [$/Lp] is Pb. By Lemma 3.4 this implies L� = L1[$/Lp] ∈ PCFL.

ut

Lemma 7.5. L� /∈ UCFL[∪, ·].

Proof. Assume L� ∈ UCFL[∪, ·]. By the distributive laws this is equivalent to
L� ∈ UCFL[·][∪]. Thus for some k, ` ∈ N, U1, . . . , U` ∈ UCFL, and L1, . . . , Lk ∈
UCFL[·]\UCFL we have L� = (∪`

i=1Ui) ∪ (∪k
i=1Li). Let us consider Li for an

arbitrary i ∈ {1, . . . , k}. Now for some minimal m ∈ N we can write Li =
Ũ1 · · · Ũm where Ũ1, . . . , Ũm ∈ UCFL. Since Li is ambiguous we have m > 1.
Each word in L� contains exactly two #’s. Therefore ∀j ∈ {1, . . . ,m} : ∀u, v ∈
Ũj : |u|# = |v|#. Assume the words in Ũ1 do not contain a # then Ũ1 only
contains words of the form a∗. Recall that for each w ∈ Li = Ũ1 · · · Ũm the
number of a’s to the left of the first # must match the number of a’s to the
right of the second #. Therefore Ũ1 must be a singleton. But then Ũ1 · Ũ2

is unambiguous contradicting the minimal choice of m. Thus each word in Ũ1

must contain the first #. Similarly we obtain that each word in Ũm must contain
the second #. This implies that the words in Ũ1 and Ũm consist of words of the
forms a∗#{b, c}∗ and {b, c}∗#a∗, respectively. Again, if the number of a’s would
not be fixed we could compose words with non matching “a” blocks. Hence Li ⊆
ani#{b, c}∗#ani for some ni ∈ N. We define n = max{ni | i ∈ {1, . . . , k}} + 1.
Let R := an#{b, c}∗#an. Then L�∩R = ((∪`

i=1Ui)∪(∪k
i=1Li))∩R = ((∪`

i=1Ui)∩
R)∪((∪k

i=1Li)∩R) = (∪`
i=1Ui)∩R = ∪`

i=1(Ui∩R). Since unambiguous languages
are closed under intersection with regular sets [5], this implies L�∩R ∈ UCFL[∪].
Moreover, unambiguous languages are closed under cancellation of singletons [5].
By cancellation of an# from the left-hand side and #an from the right-hand side,
we obtain LpLp ∈ UCFL[∪]. But this is false since in [3] it is proved that LpLp

has infinite ambiguity. Therefore L� /∈ UCFL[∪, ·]. ut

As an immediate consequence of Lemmas 3.4, 7.4 and 7.5 we obtain:

Theorem 7.6. UCFL[∪, ·] (PCFL.

8 Conclusion

We have shown that PCFL is the closure of unambiguous languages under Parikh
bounded projection. Even if we use the formally stronger operation of Parikh
bounded substitution we cannot leave PCFL. There is another nontrivial char-
acterization of PCFL which proves a gap between polynomial and exponential
ambiguity [11]. By Corollary 6.20 we know that exponential ambiguity is in-
dependent from bounded productions. On the other hand ambiguity which is
polynomially bounded crucially depends on bounded productions. Recall that in
the construction of the skeleton grammar we have inserted terminals in bounded
productions only. By Lemma 6.17 and Lemma 6.15 this is sufficient to destroy
subexponential ambiguity. The class PCFL is not only interesting for structural
research, but also for applications. For example, the concept of polynomially
bounded ambiguity has been recently applied in [2].

Acknowledgments: Thanks to Markus Lohrey and Gundula Niemann for
proofreading and valueable discussions, and to Horst Prote, for some LATEX tips.

References

1. J. Berstel. Transductions and context-free languages. Teubner, Stuttgart, 1979.
2. A. Bertoni, M. Goldwurm, and M. Santini. Random generation and approximate

counting of ambiguously described combinatorical structures. In H. Reichel and
S. Tison, editors, Proc. STACS 2000, LNCS 1770, pp. 567–580, Berlin-Heidelberg-
New York, 2000. Springer.

3. J. Crestin. Un langage non ambigu dont le carré est d’ambiguité non bornée. In
M. Nivat, editor, Automata, Languages and Programming, pp. 377–390. Amster-
dam, North-Holland, 1973.

4. J. C. Earley. An efficient context-free parsing algorithm. PhD thesis, Carnegie-
Mellon Uni., 1968.

5. M. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, Read-
ing, 1978.

6. H. Maurer. The existence of context-free languages which are inherently ambiguous
of any degree. Research series, Dept. of Mathematics, Uni. of Calgary, 1968.

7. M. Naji. Grad der Mehrdeutigkeit kontextfreier Grammatiken und Sprachen, 1998.
Diplomarbeit, FB Informatik, JWG-Universität Frankfurt/M.

8. R. J. Parikh. Language–generating devices. In Quarterly Progress Report, vol-
ume 60, pp. 199–212. Research Laboratory of Electronics, M.I.T, 1961.

9. A. Salomaa and M. Soittola. Automata theoretic aspects of formal power series.
Springer, 1978.

10. K. Wich. Kriterien für die Mehrdeutigkeit kontextfreier Grammatiken, 1997. Diplo-
marbeit, FB Informatik, JWG-Universität Frankfurt/M.

11. K. Wich. Exponential ambiguity of context-free grammars. In G. Rozenberg and
W. Thomas, editors, Proc. DLT, 1999, pp. 125–138. World Scientific, Singapore,
2000.

12. K. Wich. Sublinear ambiguity. In M. Nielsen and B. Rovan, editors, Proc. MFCS
2000, LNCS 1893, pp. 690–698, Berlin-Heidelberg-New York, 2000. Springer.

