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Abstract. So far the least growth rate known for a divergent inher-
ent ambiguity function was logarithmic. This paper shows that for each
computable divergent total non-decreasing function f : N → N there is
a context-free language L with a divergent inherent ambiguity function
g below f . This proves that extremely slow growing divergent inherent
ambiguity functions exist. For instance there is a context-free language
L with infinite inherent ambiguity below log∗.

1 Introduction

A context-free grammar G is unambiguous if it does not have two different
derivation trees for any word. A context-free language is unambiguous if it is
generated by an unambiguous context-free grammar. Context-free grammars
and languages are ambiguous if they are not unambiguous. Ambiguous context-
free languages are also called inherently ambiguous. The existence of ambiguous
context-free languages is shown in [12]. Ambiguous context-free grammars and
languages can be distinguished by their degree of ambiguity, that is, by the least
upper bound for the number of derivation trees which a word can have. There
are examples for k-ambiguous languages for each k ∈ N [9]. But even languages
with infinite degree of ambiguity exist [14, 5]. They can be distinguished by the
asymptotic behaviour of their ambiguity with respect to the length of the words.
There is an efficient algorithm which computes for each cycle-free context-free
grammar G a constant k with the promise that the ambiguity of G is either
O(nk) or 2Θ(n)[17]. However which alternative is the case is undecidable [15].
Languages with ambiguity 2Θ(n) and with ambiguity Θ(nk) for each k ∈ N are
presented in [10].

The class of languages with polynomially bounded ambiguity (PCFL) has
some interesting properties. For instance [17] shows that PCFL is the closure
of the class of unambiguous context-free language under a restricted form of
projection. Combined with [13, Theorem 3] one easily obtains that each language
L ∈ PCFL can be recognised in O(log n) time on a CREW PRAM. Polynomially
bounded ambiguity is also important in the field of random generation [4].

Infinite sublinear ambiguity is interesting for two reasons: Firstly from the
theoretical point of view it is interesting to know whether there is a gap be-
tween constant ambiguity and the “lowest” possible divergent ambiguity as is
the case between polynomially bounded and exponential ambiguity. Secondly it



is well known that the parsing algorithm of Early [6, 1] parses general context-free
grammars in O(n3) time while unambiguous context-free grammars are parsed
in O(n2) time. The proof which shows the speed up for unambiguous grammars

can easily be generalised to O(n2 · d̂G(n + kG)) time for an arbitrary reduced

context-free grammar G where d̂G is the ambiguity function of G and kG ∈ N

is a constant only depending on G.1 Thus Earley’s algorithm parses languages
with sublinear ambiguity faster than in cubic time. Languages with inherent
square-root and logarithmic ambiguity can be found in [16], respectively. In [18]
the following theorem has been shown:

Theorem 1.1. The set of ambiguity functions for cycle-free context-free gram-
mars and the set of inherent ambiguity functions coincide.

Thus in order to prove the existence of infinite but sublogarithmic inherent
ambiguity it suffices to present a cycle-free context-free grammar with the cor-
responding ambiguity.

It is well known that each recursively enumerable language is the homomor-
phic image of the intersection of two context-free languages [2, 7, 8]. In this paper
we use similar ingredients. For each Turing machine M we construct context-
free grammars generating languages of the form (L{#})∗F({#}R)∗, where F
is an unambiguous context-free subset of M ’s configurations, while L and R
generate pairs of configurations separated by a “#” symbol, such that the right
configuration is obtained in one step of M from the left one. Moreover exactly
one of the configurations of such a pair is written in reverse. In case of L the
right configuration is reversed, while for R it is the left one. It turns out that
the ambiguity function of these grammars is dominated by the ambiguity of the
words which lie in F({#}R)∗ ∩ (L{#})∗F . A word w within this set represents
a segment of a computation of the Turing machine M which starts and ends
in a configuration belonging to F . Moreover the ambiguity of w is the number
of times a configuration which belongs to F and which is preceded by an even
number of configurations occurs in w. Since we are free in the choice of the un-
derlying Turing machine M and the unambiguous context-free set F we have a
strong tool to design very low divergent ambiguity functions. Roughly speaking,
it is sufficient to find candidates for M and F , such that computations of M
containing many configurations in F cannot be to short.

2 Preliminaries

If not stated otherwise Σ is an arbitrary finite non-empty alphabet in the sequel.
The symbol # is not in Σ. The empty word is denoted by ε. For w ∈ Σ∗ the
reversal wR of w is defined by εR = ε and (au)R = uRa for u ∈ Σ∗ and
a ∈ Σ. The length of a word w ∈ Σ∗ is denoted by |w|. For all n ∈ N we define
Σn := {w ∈ Σ∗ | |w| = n}, Σ≤n := ∪i∈{0,...,n}Σ

i, and Σ<n := Σ≤n \ Σn. A

1 The constant kG can be omitted if ∃c ∈ N : ∀n ∈ N : d̂G(n + 1) ≤ c · d̂G(n). An
ambiguity function which violates this condition is not known.



context-free grammar is a quadruple G = (N,Σ,P, S) where N and Σ are two
disjoint alphabets of nonterminals and terminals, respectively, P ⊆ N×(N∪Σ)∗

is a finite set of productions, and S ∈ N is the start symbol. The reader is assumed
to be familiar with derivation trees and the definition of the language generated
by G as defined in [8]. A context-free grammar G is cycle-free if a nonterminal
cannot reproduce itself in a non-void derivation.

Let G = (N,Σ,P, S) be a context-free grammar. The ambiguity of a word w
is its number of derivation trees. The ambiguity power series of G is a function
dG : Σ∗ → N which maps each word to its ambiguity. This function is not
well defined if a single word has infinite ambiguity. Let G = (N,Σ,P, S) be a
context-free grammar with a well defined ambiguity power series. The ambiguity
function d̂G : N → N of G is d̂G(n) = max{dG(w) | w ∈ Σ≤n}, i.e., it maps
each n ∈ N to the ambiguity of the most ambiguous word of length up to n. The
grammar G is unambiguous if its ambiguity function is bounded by 1.

The grammar G is reduced if it does not contain useless symbols, i.e., sym-
bols which does not occur in any derivation tree. Useless symbols can easily be
eliminated. This elimination preserves the ambiguity power series. Therefore we
do not need to consider non-reduced context-free grammars. It is easily seen that
a reduced context-free grammar has a well defined ambiguity power series if and
only if it is cycle-free.

A context-free language is unambiguous if it is generated by some unam-
biguous context-free grammar. It is ambiguous otherwise. For each context-free
language L and each n ∈ N there is a context-free grammar G such that all the
words of length up to n are generated unambiguously, i.e., d̂G(n) ≤ 1. In case
L is ambiguous to increase n one has to switch to context-free grammars with
larger and larger pumping constants. But for an ambiguous language it may be
possible to specify the least length of a word with a given ambiguity up to a
constant depending only on the the pumping constant of the used context-free
grammar. This leads us to the following definition taken from [18]:

Definition 2.1. Let L be a context-free language and f : N → N a function.
The language L is f -ambiguous if

1. there is a context-free grammar G such that L = L(G) and f = d̂G and
2. for each context-free grammar G such that L = L(G) there exists a c ∈ N

such that f(n) ≤ d̂G(cn) for all n ∈ N \ {0}.

A function f : N → N is an inherent ambiguity function if there is a context-
free language L such that L is f -ambiguous. If L is f -ambiguous then L is
f ′-ambiguous for all non-decreasing functions f ′ such that f ′ agrees with f
for all but a finite number of arguments. Note that the question whether each
context-free language has an inherent ambiguity function is open. Now we have
introduced all the notions needed to properly understand Theorem 1.1, which
occurred in the introduction.

The reader is assumed to be familiar with single tape Turing machines as
defined in [8]. Whenever we refer to a Turing machine in this paper we mean
this type. Whether the Turing machine is deterministic or nondeterministic or



whether the tape is single or both sided infinite does not matter here. But it
may help to think of deterministic machines. A configuration of a Turing machine
consists of the tape content, the state of the Turing machine and the position
of the head. It is denoted by a word consisting of the shortest string which
represents the coherent portion of the tape which covers all the non blank cells
and the position of the tape head. The head is denoted immediately to the left of
the tape cell the machine reads in the next step. For each Turing machine M the
corresponding set of configurations is denoted by IDM . The relation `M contains
all the pairs of configurations (ida, idb) ∈ IDM × IDM where idb is obtained from
ida by a single step of M .

3 Block Correlation Languages

Our aim is to find for each computable divergent non-decreasing function f an
inherent ambiguity function g which falls below f . As a tool to design divergent
ambiguity functions with a very slow growth rate we introduce block correlation
languages.

Definition 3.1. Let R ⊆ Σ∗ × Σ∗ be a relation. Then

L(R) := {u#vR | (u, v) ∈ R} and R(R) := {uR#v | (u, v) ∈ R}.

The relation R is (unambiguous) context-free if L(R) and R(R) are both (un-
ambiguous) context-free languages.

It can be shown that L(R) is (unambiguous) context-free if and only if R(R)
is (unambiguous) context-free. But instead to prove this statement for arbitrary
R it is easier to check both languages for the relations considered below.

Definition 3.2. Let R ⊆ Σ∗×Σ∗ be an unambiguous context-free relation, and
F ⊆ Σ∗ an unambiguous context-free language. The block correlation language
over the relation R and the set F is defined by:

L(R,F) :=
(

L(R)#
)∗
F
(

#R(R)
)∗

.

If L(R,F) is a block-correlation language then F is called the corresponding
language of free blocks.

Definition 3.3. A canonical grammar for a block correlation language L(R,F)
over a relation R ⊆ Σ∗ × Σ∗ and a set F ⊆ Σ∗ is a context-free grammar:

G :=
(

{S,A} ∪̇NL ∪̇NR ∪̇NF , Σ ∪ {#}, P ∪ PL ∪ PR ∪ PF , S
)

.

where GL := (NL, Σ ∪ {#}, PL, SL), GR := (NR, Σ ∪ {#}, PR, SR), and GF :=
(NF , Σ, PF , SF ) are unambiguous context-free grammars generating L(R), R(R),
and F , respectively. Moreover P is defined by:

P := {S → SL#S, S → SFA, A → A#SR, A → ε}.

Note that GL, GR, and GF have pairwise disjoint sets of nonterminals. Moreover
the nonterminal sets does not contain the symbols S and A, respectively. This is
expressed by the dot on the union symbols.



Let G be a canonical grammar which generates a block correlation lan-
guage L(R,F) with all the sets and symbols named as above and let G′ :=
({S,A}, {SL, SR, SF ,#}, P, S). Obviously the grammar G′ is unambiguous and
generates the regular language (SL#)∗SF (#SR)∗. A given derivation tree ρ of
G generating a word w can always be trimmed in a unique way to obtain a
derivation tree ρ′ of G′. Let α be the frontier of ρ′. If we know α we can retrieve
ρ′ since G′ is unambiguous. Moreover, except for the first and last symbol, each
occurrence of SL, SR and SF in α is immediately preceded and followed by
a “#” symbol. Furthermore each string of terminals generated by SL or SR

contains exactly one “#” symbol and a terminal string generated by SF never
generates a “#” symbol. Therefore each occurrence of the symbols SL, SR and
SF in α can be uniquely matched with the infix of w it generates. This is suffi-
cient to complete the remainder of ρ uniquely since the grammars GL, GR, and
GF are unambiguous. Thus if we know w and α we can uniquely retrieve the
whole derivation tree ρ. But this does not mean that G is necessarily unambigu-
ous since w does not determine α in general. We can only deduce the length of
α ∈ (SL#)∗SF (#SR)∗, but there may be several permissible position for SF .
We consider the “#” symbols as markers factorising w into blocks. Thus SF

generates exactly one block called the free block in the sequel. The free block is
preceded and followed by strings of the form

(

L(R)#
)∗

and
(

#R(R)
)∗

, respec-
tively. (In particular this implies that the free block is preceded and followed by
an even number of blocks.) The number of derivation trees for w coincides with
the number of decompositions of w satisfying the requirements stated above.
The result of our discussion is summarised in the following lemma:

Lemma 3.4. Let G be a canonical grammar generating a block correlation lan-
guage L(R,F) over a relation R ⊆ Σ∗ × Σ∗ and a set F ⊆ Σ∗, and let
w ∈

(

Σ ∪ {#}
)∗

. Then the number of derivation trees for w is:

dG(w) = |{i ∈ N | w ∈
(

L(R)#
)i
F
(

#R(R)
)∗
}|.

Example 3.5. Let Σ = {a} and R := {(ai, a2i) | i ∈ N}. Here L(R) = R(R)
since Σ is unary. To compute the ambiguity of a word w in a canonical grammar
for the block correlation language L(R,Σ∗) we consider each pair of consecutive
blocks in w separated by a “#” symbol. From left to right we draw alternating
arcs below and above consecutive pairs of blocks starting with an arc below the
leftmost pair. An arc is drawn with a solid line if the pair is in relation, i.e.,
the number of a’s in the right block is twice the number of a’s in the left one.
Otherwise the arc is dotted. Let us consider the following word:

# # # # # # # #w := a7 a14 a3 a6 a12 a10 a20 a40 a80

By definition the free block is preceded and followed by an even number of blocks.
Such a block is a candidate for the free block if all the arcs below the word to
its left and all the arcs above the word to its right are solid. These criteria are
satisfied for exactly those blocks of w written in boxes. Therefore the word w has
exactly two derivation trees for any canonical grammar generating L(R,Σ∗).



Note that a canonical grammar generating a block correlation language is not al-
ways the least ambiguous grammar generating it. For instance consider the unary
alphabet Σ = {a} and the unambiguous context-free relation R := {(ai, a) | i ∈
N}. Then it is easily seen that L(R,Σ∗) = (a∗#a#)∗a∗(#a∗#a)∗, which is reg-
ular, and therefore unambiguous context-free. Despite that, for each canonical
grammar generating L(R,Σ∗) and for each i ∈ N the word (a#)2ia has i + 1
derivation trees.

Definition 3.6. Let G be a context-free grammar over Σ. Then the support of
d̂G is the set:

supportG := {w ∈ L(G) | ∀u ∈ Σ<|w| : dG(u) < dG(w)}

Thus a word w is in the support of the ambiguity function of a context-free
grammar G if it is a shortest word with ambiguity at least dG(w). To determine

the ambiguity function d̂G of G it is sufficient to consider the words in supportG
and their corresponding ambiguities. More precisely the ambiguity function d̂G

is uniquely determined by the set:

{(|w|, dG(w)) ∈ N × N | w ∈ support(G)}.

But how do the words in the support of a canonical grammar for a block corre-
lation language look like? It turns out to be necessary for them that each pair
of consecutive blocks is correlated. In the notation of Example 3.5 this means
that a word in the support of a canonical grammar never has a “dotted” arc
connecting consecutive blocks. Before showing this formally, we define:

Definition 3.7. Let R ⊆ Σ∗×Σ∗ be a relation and F ⊆ Σ∗ a formal language.
Then

val(R,F) :=

{

w0#wR
1 # · · ·#w2n

∣

∣

∣

∣

w0, w2n ∈ F ∧
∀i ∈ {0, . . . , 2n − 1} : (wi, wi+1) ∈ R

}

.

It is easily seen that val(R,F) =
(

L(R)#
)∗
F ∩F

(

#R(R)
)∗

for each relation
R and each language F over Σ.

Theorem 3.8. Let G be a canonical grammar of some block correlation lan-
guage L(R,F). Then

supportG ⊆ val(R,F).

Proof. Let w ∈ L(R,F) \ val(R,F). By definition w ∈
(

L(R)#
)∗
F
(

#R(R)
)∗

.

Since val(R,F) =
(

L(R)#
)∗
F ∩ F

(

#R(R)
)∗

we know that w /∈
(

L(R)#
)∗
F

or w /∈ F
(

#R(R)
)∗

. If w /∈ F
(

#R(R)
)∗

then w ∈
(

L(R)#
)+

F
(

#R(R)
)∗

.
But then cancellation of the first two blocks in w yields a shorter word w′ ∈
L(R,F). Moreover the number of blocks of w′ which belong to F and which
are preceded by an even number of blocks equals the number of blocks in w
with these properties. According to Lemma 3.4 this implies dG(w′) = dG(w).
Thus w is not in the support of dG. Analogously if w /∈

(

L(R)#
)∗
F we can



cancel the last two blocks to obtain a shorter word w′ with the same ambiguity
as w which implies that w is not in the support of dG in this case either. Thus
(L(R,F)\val(R,F))∩supportG = ∅. But supportG ⊆ L(R,F). Hence supportG ⊆
val(R,F). ut

Note that in the proof above we do neither state that the word w′ obtained from
the cancellation of a block pair is in supportG nor that it is in val(R,F). But
since w′ ∈ L(R,F) we can iterate the cancellation of block pairs either from
left or right until eventually a word in val(R,F) with the same ambiguity as
the original word is reached. (For the word w in Example 3.5 this procedure
would yield a3#a6#a12.) Since w has a finite number of blocks such an iteration
terminates.

If we apply Theorem 3.8 to the language L(R,Σ∗) of Example 3.5 we see
that the support of each canonical grammar G for this language only contains
words where the number of a’s is doubled from block to block. That is the
shortest word with ambiguity i + 1 is a20

#a21

# · · ·#a22i

for an arbitrary i ∈
N. Since the length grows exponentially with the ambiguity we see that d̂G is
logarithmic for each canonical context-free grammar generating L(R,Σ∗). It can
be shown that L(R,Σ∗) is even inherently ambiguous of logarithmic degree. A
proof for the existence of an inherent logarithmic ambiguity function can be
found in [16], actually for a very similar language. The result there is slightly
stronger, since by a reordering of the blocks a linear context-free language could
be achieved. The reordering used there resembles the one in [2] to show that
recursively enumerable sets can be characterised by the homomorphic image of
the intersection of two linear context-free languages. Moreover by the example
in [16] it can be shown that there is a regular trace language with a logarithmic
ambiguity degree, which has been observed in [3].

How can we get a divergent ambiguity function with a sublogarithmic growth
rate? One trial may be to force an even stronger growth of the length of related
blocks. But this approach doesn’t work as the following lemma shows:

Lemma 3.9. Let R ⊆ Σ∗ × Σ∗ be a relation and L(R) a context-free language
with the pumping-constant n. Then

∀x, y ∈ Σ∗ :
(

(

(x, y) ∈ R ∧ ∀z ∈ Σ<|y| : (x, z) /∈ R
)

⇒ n(|x| + 1) ≥ |y|
)

.

Proof. We prove this statement by induction on |y|. For |y| ≤ n it is trivial. Now
assume for some m ≤ n the statement holds for all y ∈ Σ≤m. Let y ∈ Σm+1.
For each x ∈ Σ∗ we have to check the implication stated above. The nontrivial
case is the one where the left-hand side of the statement is satisfied. In this
case x#yR ∈ L(R) and we can mark the rightmost |y| symbols of this word.
According to Ogden’s Lemma [11, 8] we can pump down x#yR into a word of
the form x′#y′ ∈ L(R). Now |y′| < |y| ≤ |y′|+ n. Due to the minimality of y we
obtain that |x′| + 1 ≤ |x|. Hence we finally get:

|y| = |y| − |y′| + |y′| ≤ n + |y′| ≤ n + n(|x′| + 1) ≤ n + n|x| = n(|x| + 1).

ut



Since 2|x| ≥ |x| + 1 for x 6= ε Lemma 3.9 immediately implies:

∀x, y ∈ Σ+ :
(

(

(x, y) ∈ R ∧ ∀z ∈ Σ<|y| : (x, z) /∈ R
)

⇒ 2n|x| ≥ |y|
)

.

Hence we cannot force consecutive blocks to grow faster than by a constant
factor, except for the very first step. Therefore sublogarithmic ambiguity cannot
be obtained by this method. Obviously we can prove a version of Lemma 3.9
with L(R) replaced by R(R) in an analogous way.

4 Valid Computations

In example 3.5 the language for the free blocks is Σ∗. Therefore no candidate
for the free block can be excluded in this case. As we have seen there is no hope
to achieve sublogarithmic ambiguity just by increasing the growth rate of the
blocks any further.

The new idea is to find an unambiguous context-free relation R and an unam-
biguous context-free language F such that in an infinite chain of words w0, w1, . . .
such that (wi, wi+1) ∈ R for each i ∈ N there are infinitely many words with
even index belonging to the free block language F . But with rising index the
blocks in F occur less frequent.

Let M be a Turing machine. For each F ⊆ IDM the words in val(`M ,F)
represent computations which start and end in configurations belonging to F . It
is easily seen that `M is an unambiguous context-free relation for each Turing
machine M (even if M is nondeterministic). In fact L(`M ) and R(`M ) are
even deterministic and linear context-free languages. Therefore by application
of Theorem 3.8 we obtain:

Corollary 4.1. Let M be a Turing machine and let F ⊆ IDM be an unam-
biguous context-free language. Then L(`M ,F) is a block correlation language.
Moreover if G is a canonical grammar generating L(`M ,F) then

supportG ⊆ val(`M ,F).

Even though L(`M ,F) is a large superset of val(`M ,F) we don’t need to
care for the words in L(`M ,F) \ val(`M ,F) since they don’t contribute to the
ambiguity function of G. Therefore Corollary 4.1 provides a strong tool to design
ambiguity functions. For instance let M be a Turing machine and F ⊆ IDM the
set of configurations of M where M is in the initial state. Let G be a canonical
grammar generating L(`M ,F). Then only the words in val(`M ,F) are relevant
for the computation of the ambiguity function, i.e., the words representing com-
putations which start and end in configurations containing the initial state of
M . The ambiguity of such a word is just the number of occurrences of the initial
state in w at positions preceded by an even number of configurations. By the
use of F we can induce an additional unambiguous context-free constraint on
the initial configuration.



5 The Design of Slow Divergent Ambiguity Functions

Now we construct suitable Turing machines by the use of Corollary 4.1.

Lemma 5.1. Let f : N → N be a computable divergent total non-decreasing
function Then there is a Turing machine M and an unambiguous context-free set
F ⊆ IDM with the following properties: For each n ∈ N\{0, 1} their is a word w ∈
val(`M ,F) which contains n occurrences of configurations in F and the shortest
word with this property has a length of at least f(n). Moreover each occurrence
of a configuration in F is preceded by an even number of configurations.

Proof. Let g : N → N be defined by g(n) := f(n + 2) for each n ∈ N. Then g
is obviously a computable divergent total non-decreasing function. Let M ′ be a
Turing machine which computes g. Without loss of generality we assume that
{0, 1} is the input alphabet of M ′ and that non negative integers are encoded
binary. Let q0 be the initial state of M . We further assume that the state sets
of M and M ′ are disjoint. The set F contains all the configurations of the form
q0q

′
0n$nR. Here $ is a tape symbol of M which is not a tape symbol of M ′

and q′0 is the initial state of M ′ and at the same time a tape symbol of M .
Finally n is a binary encoded non negative integer. For convenience we identify
binary encodings and the corresponding non-negative integers. Note that F is an
unambiguous context-free language. The machine M never corrupts the initial
format, i.e., if τ ∈ IDM is reached from a configuration in F then by erasing
the state of M from τ we obtain a string of the form u1$u2 ∈ IDM ′$N, here
N means the set of binary encodings of non negative integers. We refer to u1

and u2 by calling them the first or second segment of τ . Note that u1 contains
a state of M ′. The string obtained from u1 by erasing this state is called the
tape of the first segment. Let M be in the configuration q0q

′
0n1$n

R
1 ∈ F . Then

M goes through the following infinite loop:

1. Switch to a state q1 6= qo which starts the simulation of M ′.
2. Simulate M ′ on the first segment until it halts. This eventually happens

since the function g is computed by M ′ is total.
3. Decrement the tape of the first segment stepwise until it is 0. This is an idle

loop (which loops g(n1) times when step 3 is called for the first time.)
4. Increment the second segment in its reverse coding (which yield (n1 + 1)R

when step 4 is called for the first time.)
5. Overwrite the first segment by q′0n, where n is the reversal of the second

segment, (q′0n = q′0(n1 + 1) when step 5 is called for the first time), place
the head at the position of q′0. If the last time the machine M was in q0 is
an odd number of steps ago enter q0 immediately, otherwise wait one step
before entering q0. The parity of a step can easily be stored within the finite
control of the Turing machine M . This action returns M into the initial
situation. Thus it performs a kind of “goto 1” command.

Moreover we require that the Turing machine M is programmed in such a way
that it does not enter the state q0 except for the cases where this is explicitly
mentioned above.



If a word w ∈ val(`M ,F) contains n occurrences of configurations in F for
some n ∈ N \ {0, 1} then steps 1 to 5 have been called at least n− 1 times each.
The value computed in the last call of step 2 was g(n1 + n − 2), where n1 is
the argument for which g is computed the first time. Since g is non-decreasing
we have g(n1 + n − 2) ≥ g(n − 2) = f(n), and the machine needs at least
g(n1 + n − 2) ≥ f(n) steps in the idle loop executed in the last call of point 3
which is denoted in w. Hence w contain at least f(n) many configuration each
of which requires at least one symbol to be denoted.

Finally since the first configuration of a word in val(`M ,F) is in F and M
always makes an even number of steps before reentering a configuration in F
each of these configurations are preceded by an even number of configurations.
This completes the argument. ut

Note that M started on a configuration in F runs forever and passes an infinite
number of times through a configuration in F . The set val(`M ,F) contains finite
infixes of infinite runs of M .

The estimation in the previous proof is rather wasteful, but simple to under-
stand. Since we are not looking for a result on the density of ambiguity functions
here, we can afford to use such a rough estimation.

Theorem 5.2. Let f : N → N be a computable divergent total non-decreasing
function then there is a context-free grammar such that for each n ∈ N \ {0, 1}
a shortest word with at least n derivation tree has length at least f(n).

Proof. By Lemma 5.1 there is a Turing machine M and an unambiguous context-
free language F such that a shortest word in val(`M ,F) with n occurrences of
a configuration in F has length at least f(n) for n ∈ N \ {0, 1}. Moreover each
of these occurrences is preceded by an even number of configurations. Therefore
according to Lemma 3.4 these words have n derivation trees in a canonical
grammar generating L(`M ,F) and by Corollary 4.1 we do not need to consider
other words in L(`M ,F). ut

Now we can guarantee that the length of a shortest word with ambiguity n ∈
N \ {0, 1} is larger than f(n) where f belongs to a set of function which allow
huge growth rates. While we have considered the word length as a function of the
ambiguity, the ambiguity function considers ambiguity as a function of the word
length. Thus if the shortest word with ambiguity at least n exceeds a length of
f(n) for a given grammar G then roughly speaking d̂G falls below f−1. But we
have to take care of non injective functions which technically does not have an
inverse. Therefore we define:

Definition 5.3. Let f : N → N be a divergent total non-decreasing function.
Then:

f−1(n) := max
{

x ∈ N | f(x) = min{y ∈ f(N) | y ≥ n}
}

.

It can be easily shown that (f−1)−1 = f holds for each divergent total non-
decreasing function. Now let f be a computable divergent total non-decreasing



function. Then f−1 is as well a computable divergent total non-decreasing func-
tion. Thus according to Theorem 5.2 there is a context-free grammar G such
that for each n ∈ N \ {0, 1} a shortest word with ambiguity of at least n
has length at least f−1(n). But one can easily verify that this translates into

d̂G(n) ≤ (f−1)−1(n) = f(n) for all n ≥ f−1(1). Now it is possible to construct a

context-free grammar G′ for L(G) \ Σ≤f−1(1) from G such that d̂G′(n) = d̂G(n)

for all n > f−1(1). Obviously d̂G′(n) = 0 for each n ≤ f−1(1). Therefore

d̂G′(n) ≤ f(n) for each n ∈ N. Obviously G′ has a well defined ambiguity power
series. Moreover we can assume that G′ is reduced. Hence G′ is cycle-free. This
leads us to:

Theorem 5.4. If f is a computable divergent total non-decreasing function then
there is a cycle-free context-free grammar G such that d̂G is a divergent function
satisfying d̂G(n) ≤ f(n) for all n ∈ N.

By the use of Theorem 1.1 and Theorem 5.4 we immediately obtain:

Theorem 5.5. If f is a computable divergent total non-decreasing function then
there is a context-free language L such that L has a divergent inherent ambiguity
function d̂L such that d̂L(n) ≤ f(n) for all n ∈ N.

6 Conclusion

We have seen that for each computable divergent total non-decreasing function
there is a divergent inherent ambiguity functions which fall below f . We have
not examined which functions are indeed ambiguity functions. Seemingly there
are no substantial gaps below linear ambiguity, in contrast to the gap between
exponential and polynomially bounded ambiguity. But how can we characterise
the “density” of ambiguity functions formally? To examine this question one
should improve the estimation in this paper. There is no need to use single steps
of Turing machines as a means of computation. Instead we can allow unambigu-
ous context-free relations to perform single steps. Clearly for the computational
power this is unimportant but it provides more control over the length of the
computations, which is crucial to control the ambiguity in our construction.

A characterisation of the set of inherent ambiguity functions is still a chal-
lenging problem, not only for sublogarithmic, but also for the whole class of
context-free languages with polynomially bounded ambiguity.

By the result of this paper it is obvious that for each context-free grammar
G1 with a divergent ambiguity function we can find a not necessarily equivalent
context-free grammar G2 with a substantially lower ambiguity function. Sub-
stantially lower here means that for any c ∈ N we have dG1

(n) ≥ dG2
(cn) for all

but finitely many n ∈ N. Is there a context-free language L such that a similar
property holds for all the context-free grammars generating L? In this case L
would not have an inherent ambiguity function. Are there in fact context-free
languages which does not have an inherent ambiguity function?
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