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Chapter 1

Introduction

A context-free grammar G is unambiguous if it does not have two differ-
ent derivation trees for any word. A context-free language is unambiguous
if it is generated by an unambiguous context-free grammar. Context-free
grammars and languages are ambiguous if they are not unambiguous. Am-
biguous context-free languages are also called inherently ambiguous.1 The
existence of ambiguous context-free languages is shown in [26, 27]. The
problem whether or not a context-free grammar or language is ambiguous is
undecidable (see [8, 9, 14] or the textbooks [16, Theorem 8.4.5, 8.4.6], [17,
Theorem 8.9, 8.16]).

The ambiguity of a word w with respect to a given context-free grammar
G is the number of different derivation trees for w generated by G. Am-
biguous context-free grammars and languages can be distinguished by their
degree of ambiguity, that is, the least upper bound for the ambiguity which a
word can have. A context-free grammar is k-ambiguous if k is the least upper
bound for the ambiguity of the generated words. A context-free language is
k-ambiguous if it is generated by a k-ambiguous context-free grammar but
by no k − 1-ambiguous grammar. For each k ∈ N there are examples of
k-ambiguous languages [23]. But even languages with an infinite degree of
ambiguity exist [30]. A particularly nice example is the Crestin language,
which is the square of the (unambiguous) set of palindromes [10], i.e the set
of words which can be decomposed as a product of two palindromes.

At first glance this looks like a complete answer to the question which de-
grees of ambiguity are possible. Since each context-free language is generated
by a context-free grammar having finite ambiguity for each particular word,
it is quite natural to ask how fast the ambiguity of an infinitely ambiguous

1In contrast to many textbooks, we rarely use the word “inherent” explicitly since, if
applied to a context-free language, the only meaningful interpretation of the word ambi-
guity is inherent ambiguity.

7



8 CHAPTER 1. INTRODUCTION

context-free language grows with respect to the length of the words. The
question is probably for the first time addressed in [16, Section 7.1]. Here
we can read: “[. . . ] there are inherently ambiguous languages that have an
exponential number of derivation trees in the length of the string”.2 The
ambiguity function of a context-free grammar maps the natural number n to
the maximal ambiguity of words with length at most n. It is non-decreasing.
For a context-free grammar we can specify the ambiguity of an arbitrary
word. In contrast to that we cannot hold a single word accountable for the
ambiguity of a context-free language. In fact, for each context-free language
L and each w ∈ L there is a context-free grammar GL,w generating L and
having only one derivation tree for w. One way to prove the ambiguity of
a context-free language L nevertheless is to fix an infinite subset L′ of L
such that each context-free grammar generating L generates all but a finite
number of words in L′ ambiguously. In such a case the length of the shortest
ambiguous word in L′ depends on the size of the pumping constant of the
considered context-free grammar. Often3 we can use this dependency on the
pumping constant to define an inherent ambiguity function for a context-free
language. (See Definition 2.96 for details.)

This thesis examines ambiguity functions for context-free grammars and
languages. One major question is which functions are ambiguity functions.
Obviously, there are ambiguous context-free grammars for unambiguous
context-free languages. In this sense context-free grammars can have super-
fluous ambiguity. But are there completely superfluous ambiguity functions,
i.e., ambiguity functions for context-free grammars which are not inherent
for any context-free language? One goal is to characterise the sets of ambi-
guity functions of context-free languages and grammars as well as possible.
Another goal is to examine how different ambiguity classes can be separated.
Moreover, we examine how ambiguity is connected to the parsing time of
context-free grammars.

It is obvious that useless symbols have no influence on the ambiguity of
a context-free grammar. Hence, it is sufficient to consider reduced context-
free grammars. Moreover, it is obvious that an ambiguity function of a
reduced context-free grammar is ω (infinite) for all but a finite number of
arguments if and only if the corresponding grammar is cyclic. A context-free
grammar is cyclic if there is a nonterminal which derives itself in a non-void
derivation. Since each context-free grammar can be transformed into an
equivalent cycle-free context-free grammar, ambiguity functions which reach

2A correct example for such a language is presented in [16, Section 7.3]. Unfortunately,
the corresponding proof has a gap. This gap has been closed in [24].

3It is not clear whether each context-free language has an inherent ambiguity function
according to the following definition.
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ω cannot be inherent for any context-free languages. Therefore, we only
consider cycle-free context-free grammars in the sequel.

A main result of this thesis is that the set of ambiguity functions for cycle-
free context-free grammars and the set of ambiguity functions for context-free
languages coincide. 4 This reduces the question whether a given function
f is an inherent ambiguity function for some context-free language to the
corresponding question for cycle-free context-free grammars. Therefore, in
order to show that a function f is an inherent ambiguity function for some
context-free language L, it is sufficient to find a cycle-free context-free gram-
mar G which is f -ambiguous. In such a proof we do not need to care for
the ambiguity of the generated language L(G). This means that, regard-
less how artificial an ambiguity function d̂G of a context-free grammar G is
for the language L(G), there is always a context-free language LG which is
d̂G-ambiguous.

But how can we characterise the set of ambiguity functions of cycle-free
context-free grammars? It is easy to present examples of k-ambiguous and
Θ(nk)-ambiguous context-free grammars for each k ∈ N. Also exponential
ambiguity is easy to achieve. It is clear that super exponential functions
are not possible. Moreover, in his diploma thesis (Diplomarbeit) the author
already showed that a (cycle-free) context-free grammar is either exponen-
tially ambiguous (i.e., 2Θ(n)) or has polynomially bounded ambiguity (i.e.,
the ambiguity function is within O(nΘ(1))). This has been achieved by the
introduction of an undecidable criterion separating the class of exponentially
ambiguous grammars ECFG and the grammars with a polynomial bounded
ambiguity PCFG. It is rather intuitive that a context-free grammar G is in
ECFG if this criterion is satisfied, but it is quite technical to see that it is in
PCFG otherwise.

In this thesis we investigate the causes for the gap between ECFG and
PCFG in more detail. This allows us to divide the technical part of the proof
into two independent results:

� Firstly, we introduce another intuitive criterion. For context-free gram-
mars which satisfy the new criterion, membership in PCFG is easily
seen.

� Secondly, we show that the new criterion is complementary to the first
one, i.e., each cycle-free context-free grammar satisfies exactly one of
the two criteria.

4Note that a reduced grammar which has a finite ambiguity for each word is always
cycle-free.
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Thus, in this thesis the proof of the gap is presented in a more symmetric
and accessible way: We have an intuitive sufficient criterion for exponential
ambiguity and one for polynomially bounded ambiguity, respectively. Then
we show that the two criteria are complementary. As a result both criteria
turn out to be also necessary for their respective ambiguity class. The ne-
cessity of the new criterion for polynomially bounded ambiguity sheds new
light on the relationship between the class of unambiguous context-free lan-
guages (UCFL) and the class of context-free languages with polynomially
bounded ambiguity (PCFL), i.e. the class {L(G) | G ∈ PCFG}. More
specifically, PCFL turns out to be the closure of UCFL under an operation
which we call bounded contraction. This result can be applied to generalise
a result of Rossmanith and Rytter for parallel parsing from UCFL to PCFL
[28]. Therefore, every language in PCFL can be parsed on a CREW-PRAM
in logarithmic time.5 Bounded contraction is a stronger operation on un-
ambiguous languages than union and concatenation together. In fact, the
closure of UCFL under union and concatenation turns out to be a proper
subclass of PCFL.

Another interesting result is the discovery of sublinear ambiguity. In fact,
we can obtain very slowly growing ambiguity functions. More specifically, for
any computable total non-decreasing divergent function f , there is a context-
free language L with a divergent ambiguity bounded from above by f . For
instance there are inherent divergent ambiguity functions below log∗.

Sublinear ambiguity functions are of interest for sequential parsing. It is
well known that the parsing algorithm of Earley [11, 1] parses general context-
free grammars in cubic time, while unambiguous context-free grammars are
parsed in quadratic time. Earley already improved this result by showing
that only a special type of ambiguity, which he calls direct ambiguity, is
expensive for his algorithm [11]. He discovered that context-free grammars
with a degree of direct ambiguity bounded by a constant have quadratic
parsing time, which includes unambiguous context-free grammars and linear
context-free grammars.

We introduce an even more specialised form of ambiguity called imme-
diate ambiguity. Immediate ambiguity is bounded by n + 1 for words of
length n. We show that Earley’s algorithm works in time O(n2 · imG(n)).
Thus, depending on the immediate ambiguity, the costs of parsing range
between quadratic and cubic time for each context-free grammar. More-
over, for each reduced context-free grammar G and each n ∈ N we have
imG(n) ≤ d̂G(n + kG), where kG is a constant only depending on G. Thus,

5A CREW-PRAM is a parallel (P) random access machine (RAM). The shared memory
is accessed in concurrent read exclusive write (CREW) mode.
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for reduced context-free grammars with sublinear ambiguity we obtain sub-
cubic Earley parsing time in general. Immediate ambiguity points out the
expensive part of Earley’s algorithm more precisely than direct ambiguity.
Note that direct ambiguity can be as high as Θ(nj−1) where j is the maximum
number of nonterminals on the right-hand side of a production. Despite that
the classes of context-free grammars with constantly bounded direct ambigu-
ity and with constantly bounded immediate ambiguity coincide (even though
the constant may be lower for immediate ambiguity). Therefore, the differ-
ence is not relevant for results on constantly bounded direct ambiguity. This
observation also holds for the following result by Earley: Each metalinear
grammar is parsed in quadratic parsing time by Earley’s algorithm.6 Let
BDCFL be the class of languages which can be generated by some context-
free grammar with a direct ambiguity bounded by a constant. Note that
BDCFL contains languages with inherent exponential ambiguity.7 By a sim-
ilar argument applied for metalinear languages we will see that the closure
of BDCFL under union and concatenation too can be parsed in quadratic
time by Earley’s algorithm. In particular this means that the closure of
context-free languages with a finite degree of ambiguity under union and
concatenation can be parsed in quadratic time.

As mentioned above we can obtain very slowly growing ambiguity func-
tions far below linear. The corresponding construction can be modified such
that the resulting context-free grammars are linear and have an additional
property called unambiguous turn position. We can even translate the ambi-
guity into the number of representatives a regular language R contains for the
elements of special trace monoids. This number can be seen as the ambiguity
with which the trace is generated by R.

This thesis is structured as follows:
In Chapter 2 basic notions used in this thesis are introduced. A new

formalism is provided which derives trees instead of sentential forms. Since
ambiguity is about the number of trees, such a formalism is particularly
useful. Trees are denoted here as strings obtained from a preorder traversal
(depth first left to right). During this traversal internal nodes are represented
by the production applied to them while leaves are denoted by their labels
directly. Further, motivation and examples for the new formalisms are pro-
vided and some algebraic observations of the tree formalism are proved. For
the sake of completeness it is shown that the formalisms are generalisations
of the classical ones. Finally, we show that our notions allow a simple alter-

6See Definition 2.81 for a definition of metalinear grammars.
7Earley shows that the language {aibjck | i = j or j = k}∗ can be generated by

a grammar with bounded direct ambiguity. This language is inherently exponentially
ambiguous [24].
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native proof for the well-known theorem of Chomsky and Schützenberger on
the relation between context-free languages and Dyck languages.

In Chapter 3 examples for context-free grammars with any finite degree
of ambiguity, with polynomial ambiguity of any degree, and with exponential
ambiguity are provided. All these ambiguities are obtained by right-linear
grammars over a single-letter alphabet.

In Chapter 4 the costs of some interesting operations with respect to
the ambiguity are estimated. This analysis leads to the observation, that
many interesting operations have ambiguity costs bounded by polynomials.
Thus, the class of languages with polynomially bounded ambiguity PCFL is
closed under these operations.

Chapter 5 consists of two parts. In the first part we show that an
arbitrary reduced context-free grammar G can be parsed in O(n2 ·d̂G(n+kG))
time, where kG is a constant only depending on G but not on n. Provided d̂G

satisfies a very weak homogeneity property, this can be simplified to O(n2 ·
d̂G(n)).8 Currently an ambiguity function which does not satisfy the required
property is not known. In fact, we prove a stronger result which shows
that only a special type of ambiguity, which we call immediate ambiguity,
is relevant for the parsing time. Immediate ambiguity is a refinement of the
notion of direct ambiguity introduced by Earley. But in case of sublinear
ambiguity the first estimation is already an improvement compared to the
cubic Earley parsing time in the general case. We will see in Chapter 6 that
the set of functions addressed with this result is not empty. In fact, ambiguity
functions can grow as slowly as any computable function.

The second part of this chapter is dedicated to parallel recognition on
a CREW-PRAM. By a straightforward generalisation of a result of Ross-
manith and Rytter [28] it can be shown that each language in the closure
of UCFL under bounded contraction can be recognised on a CREW-PRAM
in logarithmic time. In Chapter 7 we will see that this class coincides with
PCFL.

Chapter 6 is dedicated to sublinear ambiguity. It is shown that for
each computable divergent total non-decreasing function f : N → N, there
is a context-free grammar G with a divergent ambiguity function g, such
that g(n) ≤ f(n) for all n ∈ N. This proves that extremely slowly grow-
ing divergent inherent ambiguity functions exist. For instance there is a
context-free language L with inherently infinite ambiguity below log∗. The
construction can be done such that it yields linear context-free grammars
which have a so-called unambiguous turn position, i.e., the last step of each

8The constant kG can be omitted if ∃c ∈ N : ∀n ∈ N : d̂G(n + 1) ≤ c · d̂G(n). An
ambiguity function which violates this condition is not known.
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derivation is an ε-production and the position where the nonterminal disap-
pears is unique for each generated word. The resulting ambiguity functions
can also be transformed into the ambiguity with which a regular language
R generates a rational trace language over a special independence alphabet.
Here the ambiguity of a trace is the number of its representatives in R.

In Chapter 7 it is shown that there is no context-free grammar with
an ambiguity between exponential and polynomially bounded growth. This
result is already part of the diploma thesis (Diplomarbeit) but it is proved
here with more specialised formalisms in a less technical and more insightful
way. Moreover, with our new proof we see that PCFL is the closure of
UCFL under bounded contractions. Hence, using the results in Chapter 5
we see that each language in PCFL can be parsed in logarithmic time on a
CREW-PRAM.

Chapter 8 shows that the set of inherent ambiguity functions for context-
free languages and the set of ambiguity functions for cycle-free context-free
grammars coincide. This result is valuable since we have only a few examples
of languages with sublinear ambiguity so far. In contrast to that, Chapter 6
shows that we can create infinitely many sublogarithmic ambiguity functions
for context-free grammars with growth as slowly as any computable function.
With the result of this chapter each of these sublinear ambiguity functions
turns out to be inherent for some context-free language. In fact, we prove a
somewhat stronger technical theorem, which allows us to use grammars even
to show some effects that operations like concatenation or the Kleene star
can have on the ambiguity of the resulting languages.

Chapter 9 contains concluding remarks and a list of open problems and
conjectures.

Chapter A is a summary in German. (Kapitel Chapter A ist eine
Zusammenfassung in deutscher Sprache.)

Chapter B contains symbolic notations.
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Chapter 2

Preliminaries

This chapter contains most of the definitions used throughout this thesis.
It also contains motivation for and basic properties of the newly defined
formalisms.

The usual way to define context-free languages by derivations of senten-
tial forms is not suitable for our purpose. The reason is that sentential forms
fail to describe derivation trees. If the tree structure is needed, most often
the sequence of steps in a leftmost derivation, the so-called left parse, is used.
Thus, the loss of information during a derivation is avoided by storing the
derivation itself. It is more natural to use a formalism which keeps the rele-
vant information as long as we do not decide to throw it away deliberately.
In other words, it is more suitable to derive derivation trees instead of sen-
tential forms. To isolate the frontier we can easily eliminate the internal tree
structure whenever we want to. For these reasons a new particularly suitable
string representation of trees is introduced in this chapter.

The concepts introduced in this chapter are particularly suitable for am-
biguity considerations but they may also be useful beyond the scope of this
thesis, for instance in parsing theory.

2.1 Basic Definitions

2.1.1 Sets of Numbers, disjoint union

The set of non-negative integers is denoted by N. Thus, 0 ∈ N. The set of
real numbers is denoted by R. The set of positive real numbers is R+ :=
{x ∈ R | x > 0}. The disjoint union of two sets S1 and S2 is denoted by
S1 ∪̇S2.

15
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2.1.2 Quantifiers

If we define a variable i by comparison with a constant without specifying
its domain then i is in N. If we write for instance that a statement is true for
all i > 2 this implicitly means that i is an element of N. Let S1, S2, . . . Sk be
arbitrary sets for some k ∈ N. We write x1, . . . , xn ∈ S1 for x1 ∈ S1, . . . , xn ∈
S1 where n ∈ N. We abbreviate ∀x1 ∈ S1 : ∀x2 ∈ S1 : · · · : ∀xn ∈ S1 : by
∀x1, x2, . . . , xn ∈ S1, where n ∈ N. Moreover, we abbreviate

∀x1,1, . . . , x1,j1 ∈ S1 : ∀x2,1, . . . , x2,j2 ∈ S2 : · · · : ∀xk,1, . . . , xk,jk
∈ Sk :

by

∀x1,1, . . . , x1,j1 ∈ S1, x2,1, . . . , x2,j2 ∈ S2, · · · , xk,1, . . . , xk,jk
∈ Sk :

where j1, . . . , jk ∈ N. We use analogous abbreviations for chains of existential
quantifiers.

2.1.3 Relations

Let S, T , and U be sets. Let R1 ⊆ S × T and R2 ⊆ T × U be relations.
We often use the infix notation, i.e., we write sR1t for (s, t) ∈ R1. We write
sR1tR2u for sR1t and tR2u. The composition of R1 and R2 is defined by
R2 ◦ R1 := {(s, u) ∈ S × U | ∃t ∈ T : sR1tR2u}. The inverse of R1 is
R−1

1 := {(t, s) ∈ T × S | (s, t) ∈ R1}. A relation R is said to be on S if
R ⊆ S × S. Let R be on S. We define the transitive closure R+ of R by
R0 := {(s, s) | s ∈ S}, Ri := Ri−1 ◦ R for all i > 0. R+ :=

⋃∞
i=1 Ri, and the

reflexive and transitive closure of R by R∗ := R+ ∪ R0. An element w ∈ S
is irreducible with respect to R if (w, u) /∈ R for all u ∈ S. It is reducible
otherwise. The relation R is

� reflexive if R0 ⊆ R.

� symmetric if R = R−1.

� transitive if R+ = R.

� an equivalence relation if R is reflexive, transitive, and symmetric.

� antisymmetric if R ∩ R−1 ⊆ R0.

� a partial order if R is reflexive, transitive, and antisymmetric.

� a linear order if R is a partial order such that ∀u, v ∈ S : uRv or vRu
holds.



2.1. BASIC DEFINITIONS 17

� noetherian if there is no infinite sequence u0, u1, . . . , ui, . . . of elements
in S such that ∀i ∈ N : uiRui+1.

� a well founded partial order if R is a partial order and R−1 is noetherian.

� confluent if ∀u, v, w ∈ S : (uR∗v and uR∗w ⇒ ∃z ∈ S : vR∗z and
wR∗z.)

� locally confluent if ∀u, v, w ∈ S : (uRv and uRw ⇒ ∃z ∈ S : vR∗z
and wR∗z.)

� convergent if it is noetherian and confluent.

� Church-Rosser, or said to have the Church-Rosser property, if ∀v, w ∈
S : (v, w) ∈ (R ∪R−1)∗ ⇒ ∃z ∈ S : vR∗z and wR∗z.)

The latter notions deal with the question under which circumstances it is
possible to go in the canonical directed graph defined by R from two words v
and w to a common word z along the directed edges. For the Church-Rosser
property it suffices when v and w are equivalent with respect to the least
equivalence relation containing R. Confluence means that v and w must
have a common ancestor along the directed edges. Local confluence means
that the common ancestor needed for v and w is a parent of both.

2.1.4 Functions

We extend the linear order ≤ on N to the set N∪{ω} by considering ω as the
largest element, i.e., we add the pairs in (N ∪ {ω})× {ω} to the ≤ relation
on N. Moreover, <:=≤ \{(n, n) | n ∈ N ∪ {ω}}.

A function f : N → N ∪ {ω} is non-decreasing if the relation f(n) ≤
f(n + 1) holds for each n ∈ N. A non-decreasing function f : N → N ∪ {ω}
is divergent if

ω ∈ f(N) or ∀n ∈ N : ∃m ∈ N : f(n) < f(m).1

Note that according to this definition the constant function which maps any
element of N to ω is divergent.

Let S and T be sets and f : S → T be a mapping. The function f : S → T
is injective if f(x) = f(y) implies x = y for each x, y ∈ S, it is surjective
or onto T if for each t ∈ T there is an s ∈ S such that f(s) = t, and it is
bijective if it is injective and surjective.

1We do not call this property “unbounded” because this definition could lead to strange
statements like: “The unbounded function f is bounded by the function g”. Note that
restricted to non-decreasing functions on N our notion of divergence agrees with the well
known one.
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2.1.5 Monoids, Alphabets, and Concatenation

An operation � on a set M is a mapping � : M × M → M . We write
u � v instead of �(u, v) for each u, v ∈ M . Let M be a set and � be an
operation on it. The operation � is associative if for all u, v, w ∈ M we
have (u � v) � w = u � (v � w). A semigroup is a pair (M,�) consisting
of a nonempty set M and an associative operation � on M . If a semigroup
contains an element 1M ∈ M satisfying 1M � u = u = u� 1M for all u ∈ M
then M is a monoid with the unit 1M . If the operation is understood we call
M itself a monoid and drop the operation symbol in products. Moreover, if
M is understood we write 1 for 1M . If L is a subset of a monoid M then
the closure of L under the operation belonging to M is denoted by L+. We
say that L+ is the semigroup generated by L. The monoid generated by L
is L∗ := L+ ∪ {1}.

A monoid M is free over Σ ⊆ M if each element of M has a unique
representation as a product of elements taken from Σ, i.e., if w is an element
of M and if w = a1 · · ·an = b1 · · · bm holds for some n, m ∈ N, a1, . . . , an ∈ Σ,
and b1, . . . , bm ∈ Σ, then n = m and ai = bi for each i ∈ {1, . . . , n}. For n = 0
we have w = 1. Note that the case n ∈ {0, 1} is not excluded. For n = 0 the
element w is the unit of M , and for n = 1 the product consists of the single
factor a1. Let M be a free monoid over a nonempty set Σ. Then the set Σ is
called the alphabet of M , the elements of Σ are called symbols, the elements
of M are called words or strings, the unit of M is called empty word, and the
corresponding operation is called concatenation. The empty word is denoted
by ε. A word w ∈ Σ∗ is called non-empty if w 6= ε. Obviously, M = Σ∗.
In the sequel we implicitly define free monoids by specifying their alphabet.
Thus, the statement “Let Σ be a finite alphabet” defines the free monoid
over Σ. If not stated otherwise we assume alphabets to be nonempty finite
sets.

As in many textbooks we implicitly assume symbols to be atomic in the
context where they are applied. The next paragraph provides a formalisation
of this assumption, which later will be used implicitly:

Whenever we define words over the union of two alphabets Σ1 and Σ2 we
implicitly assume that Σ∗

1 and Σ∗
2 are both submonoids of the free monoid

over Σ1 ∪ Σ2. Otherwise it would be possible to represent an element of Σ1

by words over Σ2 or vice versa, even if Σ1 and Σ2 are disjoint. For instance
the free monoid over {a, b} contains free submonoids over Σ1 = {aa, b} and
Σ2 = {a, bb}, respectively. Thus, Σ1 and Σ2 are disjoint sets such that
Σ1 ∩ Σ+

2 6= ∅ and vice versa Σ2 ∩ Σ+
1 6= ∅. Our convention forbids to call the

sets Σ1 and Σ2 alphabets in a context where we define words over Σ1 ∪ Σ2,
because (Σ1 ∪ Σ2)

∗ is not free over Σ1 ∪ Σ2. This convention is applied for
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instance when we define the right-hand sides of productions as words over
the union of two disjoint alphabets called sets of terminals and nonterminals,
respectively. Thus, we implicitly assume that a nonterminal is never a string
over the set of terminals and vice versa. Similarly whenever we add a new
symbol $ to an alphabet Σ we assume that Σ∗ is a submonoid of the free
monoid over Σ ∪ {$}.

2.1.6 Factors of Words, Languages, and Homomor-
phisms

For arbitrary i, j ∈ N the interval from i to j is [i, j] := {k ∈ N | i ≤ k ≤ j}.
Let Σ be an alphabet. Let u := a1 · · ·an ∈ Σ∗ be a word, where ai ∈ Σ
for 1 ≤ i ≤ n. The symbol at position i is u[i] := ai. The length of
u is |u| = n. The empty word ε is the unique word with length 0. For
i ∈ [1, n+1] and j ∈ [0, n] the infix or factor of u from position i to position
j is u[i, j] := ai · · ·aj. If j < i then u[i, j] = ε. We write u[i,−] for u[i, n].
A word v is a prefix of u if v = u[1, k] for some k ∈ [0, n]. A word v is a
suffix of u if v = u[k,−] for some k ∈ [1, n+1]. The word u is a proper prefix
(proper suffix ) of v if it is a prefix (suffix) such that u 6= v.

The power set of a set S is 2S := {s | s ⊆ S}. Let Σ be an alphabet.
A formal language over Σ is a subset of Σ∗. Let L, L1, and L2 be formal
languages over Σ. Then the concatenation of L1 and L2 is L1 · L2 := {uv ∈
Σ∗ | u ∈ L1 ∧ v ∈ L2}. We often write L1L2 for L1 · L2. If w ∈ Σ∗ then
wL := {w}L and Lw := L{w}. The set 2Σ∗

is a monoid with the unit {ε}.
We define L0 := {ε} and Ln := L · Ln−1 for n > 0. Thus, Σn contains all
words of length n. The set of words with length up to n is defined Σ≤n :=
∪n

i=0Σ
i = {w ∈ Σ∗ | |w| ≤ n}. Similarly Σ<n := ∪n−1

i=0 Σi and Σ≥n := Σ∗\Σ<n.
Usually Sn is defined as the n-fold Cartesian product of a set S, i.e., the set
of all n tuples over S. But for a language L the expression Ln denotes the
set of words which can be written as products of n words in L, which is
something different. Whenever we want to form tuples instead of products
of words we make this explicit by adding a “×” symbol in the superscript,
i.e., L×n := {(w1, . . . , wn) | w1, . . . , wn ∈ L}. Note that for a symbol a
we have {ε, a}2 = {ε, a, aa} 6= {(ε, ε), (ε, a), (a, ε), (a, a)} = {ε, a}×2. In
particular |{ε, a}2| = 3 6= 4 = |{ε, a}×2|. A tuple (w1, . . . , wn) ∈ (Σ∗)×n is a
decomposition or factorisation of the word w1 · · ·wn ∈ Σ∗.

For w ∈ Σ∗ the reversal wR of w is defined by εR = ε and (au)R = uRa
for u ∈ Σ∗ and a ∈ Σ. The reversal is extended wordwise to languages, i.e.,
for L ⊆ Σ∗ we define LR := {wR | w ∈ L}.

Let S and T be monoids. A (monoid) homomorphism h : S → T is
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a mapping with the property h(xy) = h(x)h(y) and h(1S) = 1T for each
x, y ∈ S. A homomorphism h : Σ∗ → Σ∗ is uniquely defined by the images
of the symbols of Σ. It is length preserving if |h(a)| = 1 for each a ∈ Σ. The
projection of Σ on a subalphabet Γ is the homomorphism πΣ→Γ : Σ∗ → Γ∗

given by πΣ→Γ(X) := X for X ∈ Γ and πΣ→Γ(X) = ε for X ∈ Σ\Γ. Formally
πΣ→Γ depends on Σ but the domain of a projection is always implicitly given
by the words on which it is applied. Therefore, we drop the specification
of the domain in the sequel thus abbreviating πΣ→Γ by πΓ. For each u ∈
Σ∗, a ∈ Σ, and Γ ⊆ Σ we define |u|Γ := |πΓ(u)| and |u|a := |u|{a}. Let Σ and
Γ be two alphabets. We call a homomorphism σ : Σ∗ → 2Γ∗

a substitution.
For L ⊆ Σ∗ and a substitution σ we define σ(L) := {u | u ∈ σ(w) for some
w ∈ L}.

Definition 2.1 For a, b ∈ Σ, L ⊆ Σ∗, and L̃ ⊆ Γ∗, a single symbol substi-
tution [a/L̃] is a homomorphism Σ∗ → 2((Σ∪Γ)\{a})∗ defined by:

[a/L̃](b) :=

{

L̃ if b = a

{b} otherwise

We write L[a/L̃] for [a/L̃](L).

Example 2.2 Let {a, b, c, #} be an alphabet. We define the language

L� := {w = ai#uv#ai | i ∈ N, u, v ∈ Lp}

where Lp := {u ∈ {b, c}∗ | u = uR} is the language of palindromes over {b, c}.
Let $ be a symbol not in {a, b, c, #} and L := {an#$$#an | n ∈ N}. Then
L� = L[$/Lp].

2.1.7 Parikh Vectors and Suprema

The Parikh vector of a word w over a finite alphabet Σ is a |Σ|-tuple over
N, which has a component for each symbol of Σ. The component associated
with an a ∈ Σ is |w|a, which is the number of occurrences of the symbol a
in w. Parikh vectors are introduced in [26, 27]. They are frequently used in
language theory (for instance see [29].) It is more convenient to use multisets
instead of vectors, thus avoiding to specify the correspondence between vector
components and letters. We stick to the well known name “Parikh vectors”
despite the fact that formally we use multisets.

A multiset X over a set S is a mapping X : S → N. For an a ∈ S we write
a ∈ X if X(a) > 0. We consider X(a) as the number of copies of the element
a which are contained in X. A multiset X over S is a subset of a multiset Y
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over S, denoted by X ⊆ Y , if ∀x ∈ S : X(x) ≤ Y (x). The multiset X ∩ Y is
defined by (X∩Y )(a) := min{X(a), Y (a)} for each a ∈ S. Similarly X∪Y is
defined by (X ∪Y )(a) := max{X(a), Y (a)} for each a ∈ S. We also compare
multisets with sets. A set Z over S is associated with the multiset Z ′ defined
by Z ′(a) = 0 if a /∈ Z and Z ′(a) = 1 if a ∈ Z. In case of an intersection
Z ∩ X between a set and a multiset the result can be considered as a set.
For a function f : S → N we define

∑

x∈X f(x) :=
∑

s∈S X(s) · f(s).
In order to define the supremum of an infinite number of multisets prop-

erly we extend N to a complete lattice by adding a maximal element ω to N.
Thus, each set T ⊆ N has a supremum sup(T ) ∈ N ∪ {ω}.

Definition 2.3 Let X be a set of multisets over a finite set S. Then the
supremum of X is the mapping sup(X ) : S → N ∪ {ω} defined by:

∀a ∈ S : sup(X )(a) 7→ sup({X(a) | X ∈ X}).

If X is finite sup(X ) = ∪X∈XX. In general suprema of multisets are not
necessarily multisets since their range may contain the element ω.

Definition 2.4 Let w be a word over an alphabet Σ. The Parikh vector of
w is the multiset ~w : Σ→ N defined by:

∀a ∈ Σ : ~w(a) 7→ |w|a.

Definition 2.5 The Parikh supremum of a language L over Σ is defined:

sup(L) := sup({~w | w ∈ L}).

The Parikh supremum of a symbol a ∈ Σ in the language L is sup(L)(a).
For a subalphabet Γ ⊆ Σ the Parikh supremum is defined by the following
extension of sup(L):

sup(L)(Γ) :=
∑

a∈Γ

sup(L)(a).

Here the addition on N ∪ ω is meant in the intuitive way, i.e., a + b is the
usual addition on integers if a and b belongs to N and it is ω otherwise.

An element or subset of Σ is unbounded in a language L over Σ if its
Parikh supremum is ω. It is bounded otherwise.

Intuitively the Parikh supremum of a symbol a in a language L is the
maximal number of occurrences of the symbol a in a word of L.
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2.1.8 Regular Expressions

Let Σ be an alphabet. Then the syntax of regular expression over Σ is
recursively defined as follows:

(i) Each a ∈ Σ is a regular expression and ε is a regular expression.

(ii) If α and β are regular expressions then so are (α ·β), (α+β), and (α∗).

For convenience we write αβ instead of α · β. We define α+ := αα∗, α0 = ε,
and αn+1 := ααn for each n ∈ N.

The semantic L(α) of a regular expression α is defined by:

(i) L(a) = {a} for each a ∈ Σ and L(ε) := {ε}.

(ii) If α and β are regular expressions then:
L((α · β)) := L(α)L(β), L((α + β)) := L(α) ∪ L(β), and L((α∗)) =
L(α)∗.

Parenthesis can be omitted in regular expressions. Then their evaluation is
determined by the following precedence rules. As usual paranthesis preceeds
over exponents (∗, +, n ∈ N), exponents precede over products (·) and
products precede over additions (+).

In the sequel we will identify the semantic of regular expressions with
their syntax, i.e., for a regular expression α we denote L(α) by α itself. Since
we do not deal with the syntax of regular expressions this is no source of
confusion.

A language is regular if it can be represented by a regular expression.

2.2 Trees and Forests

In this section we introduce tree strings which allow to denote ordered trees
and forests in a convenient way. Moreover, we introduce a formalism to
derive them in a context-free way. Finally, we show some basic properties of
tree strings which represent ordered trees or forests.

2.2.1 Motivation of tree derivations

Readers familiar with context-free languages are likely to expect other for-
malisms than those found in the subsequent sections. In most textbooks
context-free grammars are introduced as tools to generate sentential forms
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by a derivation relation. The generated language is defined there as the sub-
set of those sentential forms which consist of terminal symbols only. This
approach provides a very simple definition of context-free languages.

The drawback of sentential forms is that they only represent the sequence
of leaves but not the tree structure. But ambiguity considerations and parsing
theory is about the structure of derivation trees. In case of a non linear
context-free grammar even a complete derivation does not always cover the
structure of a derivation tree uniquely. For instance if a derivation contains
the step:

SS ⇒ SSS

it is not clear which S has been expanded. Parikh solved this problem in
his classical report [26] by making the position explicit where the expansion
takes place. Another solution is to fix, for each sentential form, the nontermi-
nal which has to be expanded next. For this purpose it is usual to introduce
the so-called leftmost derivation, which requires the leftmost nonterminal to
be expanded. This leads to a one-to-one correspondence between leftmost
derivations and derivation trees. So the ambiguity of a word can be defined
as the number of its leftmost derivations. Another choice is to define the
ambiguity of a word by the number of its rightmost derivations or any other
fixed convention to choose the nonterminal to be expanded next. The re-
sulting number of derivations does not depend on this choice, which is an
indication for a sound definition.

But in order to understand the structures which cause ambiguity it is
important to consider derivation trees which are not complete, i.e., they may
contain nonterminal leaves. Such trees are called embedded trees. A special
case of embedded trees are pumping trees, which have a leaf labelled with
the same nonterminal as the root. Pumping trees will play a crucial role in
Chapter 7.

The most natural way to extend the notion of ambiguity to general sen-
tential forms is to count the number of embedded trees generating them.
Unfortunately, some embedded trees fail to have a corresponding leftmost
derivation. For instance let us consider a context-free grammar G with the
start symbol S and only two productions

S → SS and S → a,

where a is a terminal. The sentential form SSSa has the 5 embedded trees
depicted in Figure 2.1. None of them has a leftmost derivation. We say
SSSa is not a left sentential form. On the other hand, among them there
are exactly three trees, namely T2, T4 and T5, having a rightmost derivation.
This example shows that the number of derivations for a given sentential form
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T1 T2 T3 T4 T5
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a

S
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S

S S

S

a

S

S S

S S

S S

a

Figure 2.1: Trees for SSSa, which only use the productions [S, SS] and [S, a].

crucially depends on the convention for the order in which nonterminals are
expanded. But the only meaningful ambiguity of SSSa for the grammar
G is not 0, or 3 but 5. So leftmost (and rightmost) derivations are not
appropriate for our purposes. We conclude that counting the number of
leftmost derivations may be a good way to define the ambiguity for a purely
terminal word, but extending this definition to general sentential forms leads
to a quite artificial notion of ambiguity.

One way to circumvent this obstacle is to extend the leftmost derivation
by marking the nonterminal which has to be expanded next, and add a
special rule allowing to skip this nonterminal by moving the marker to the
next nonterminal in a left to right order. This has been done in [32]. The
main problems can be solved this way but the resulting formalism is still not
convenient. For instance a complete leftmost derivation is lengthy and highly
redundant since in each step only one symbol is replaced while the remaining
part of the sentential form is copied. If we just denote the sequence of applied
productions (and skips) in a leftmost order, known as the left parse, it is hard
to recover the generated word. The best way to retrieve it, is to draw the
derivation tree and read the generated word off the leaves. In other words,
the skipping rule introduced in [32] is just another patch for a formalism,
which was originally not designed for the investigation of ambiguity.

In some sense Parikh’s approach in [26] was more suitable than the mod-
ern one. His notion of derivation represents derivation trees for arbitrary
sentential forms by making the number of the position explicit where the
next symbol is expanded. But in the case of a non-linear context-free gram-
mar (a grammar having more than one nonterminal on the right-hand side
of some production) this approach allows several derivations for the same
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tree. Parikh dealt with this situation by the use of phrases which belong to
a derivation. These phrases are the infixes which correspond to subtrees of
the corresponding derivation tree. Since the phrase structure is independent
of the order in which neighbouring nonterminals are expanded the problem
of multiple derivations for a single tree can be handled this way.

It is even more suitable to derive trees instead of sentential forms from
the very beginning, since trees are the central objects to be studied in an
investigation on ambiguity. It is important to use a tree representation which
allows to extract the corresponding frontier easily. Now sentential forms
and left parses are complementary parts of derivation trees. Both can be
obtained by a depth first left to right traversal of the tree, also called preorder
traversal. On the one hand, for the sentential form we denote the labels at the
leaves and ignore the internal nodes. On the other hand, for the left parse
of a derivation tree the productions applied to the internal nodes visited
are denoted while the leaves are ignored (except they are labelled with a
nonterminal, in which case we have to add a skip rule.) It is natural to
combine both, to form a single tree formalism, where neither the internal
nodes nor the leaves are ignored. The sentential form generated by a tree is
easily obtained by cancellation of the internal nodes, and the number of trees
generating a sentential form represents its ambiguity no matter whether it
consists of terminals only or of a mixture of terminals and nonterminals. The
usual derivation relation for context-free grammars can easily be transformed
into a tree derivation relation. We just consider the productions themselves as
symbols. A production [A, α] is applied by replacing an occurrence of A by a
string consisting of the applied production, as the first letter, followed by the
right-hand side of the production. By this encoding of trees into words, tree
sets become formal languages. The replacement is context-free, and the first
symbol of the replaced string characterises the applied production. Hence,
the set of derivation trees ∆G of an arbitrary context-free grammar G is a very
simple language, according to the definition in [2]. Very simple languages are
a subclass of LL(1) languages which in turn are a subclass of deterministic
context-free languages. Thus, we can apply language theoretic results to
deal with derivation trees. For instance pumping lemmata for context-free
languages apply also to derivation tree sets of context-free grammars. It is
even useful to consider the tree generation formalism independently from a
given context-free grammar. The task of a context-free grammar G then is
to filter out its derivation trees among all the trees generated by the tree
expansion relation.

Many important observations on ambiguity can be made independent
from a given context-free grammar. In fact, ambiguity can be seen as a
property of tree sets. The ambiguity of a context-free grammar G is then just



26 CHAPTER 2. PRELIMINARIES

the ambiguity of G’s derivation trees. This approach allows to analyse the
ambiguity of subsets of derivation trees. This turns out to be very useful, for
example it turns out that a context-free grammar is exponentially ambiguous
if and only if its set of pumping trees is ambiguous (see Chapter 8.) It is also
used in the proof of Theorem 8.8, which essentially shows that the loss of
information induced by an arbitrary length preserving homomorphism can
be turned into inherent ambiguity in some sense.

2.2.2 Tree Strings

Trees labelled with elements of a finite alphabet Γ are presented by strings
of symbols over the infinite alphabet Γ ∪ (Γ × Γ∗). But not each strings
over such an infinite alphabet represent a tree. Some represent a forest while
other strings are meaningless. In order to define trees and forests, it is useful
to define a derivation relation on arbitrary tree strings first. Intuitively,
this derivation allows to transform a leaf into an internal node with leaves
attached to it.

Definition 2.6 Let Γ be a non-empty finite alphabet, called leaf alphabet.
The infinite alphabet of internal symbols PΓ over Γ is defined by PΓ := Γ×Γ∗.
We denote internal symbols in brackets, i.e., we write [A, α] for the pair
(A, α) ∈ PΓ. The infinite tree alphabet TΓ over Γ is defined by TΓ := Γ∪PΓ.
Elements of T ∗

Γ are called tree strings.

The internal symbols represent internal nodes of trees, where the first
component is the label of the node itself and the second is the sequence of
labels of its children.

Definition 2.7 We define the tree expansion or tree derivation →Γ of a
non-empty finite alphabet Γ by:

∀A ∈ Γ, α ∈ Γ∗, τ1, τ2 ∈ T ∗
Γ : τ1Aτ2 →Γ τ1[A, α]ατ2.

Let τ, τ ′ ∈ T ∗
Γ such that τ

∗
→Γ τ ′, then we call τ ′ an expansion of τ and τ a

cut of τ ′.

Note that in the definition above the pair [A, α] is a single symbol of TΓ.
Thus, |τ1[A, α]ατ2| = |τ1Aτ2|+ |α|.

Intuitively the relation→Γ in the definition above expands a leaf labelled
A by turning it into an internal node [A, α] designated to have |α| many
children, labelled from left to right with the symbols forming α. The children
are actually attached to the internal symbol by writing α to the right of it.
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For a unique tree representation it would have been sufficient to denote the
arity |α| instead of α itself within internal nodes, but our redundant notation
later turns out to be convenient, since it allows to identify the internal node
[A, α] with the “production” [A, α] applied to the expanded leaf.

Definition 2.8 The set of tree strings derived from a tree string τ ∈ T ∗
Γ is

defined as:

∆τ
Γ := {ρ ∈ T ∗

Γ | τ
∗
→Γ ρ}

We drop the subscript Γ of →Γ , PΓ, TΓ, and ∆τ
Γ whenever it is clear from

the context.

2.2.3 Roots

In this section it is shown that for each tree string τ there is a unique ir-
reducible tree string ↑(τ) with respect to the tree reduction, which is the
inverse of the tree expansion relation. We will call ↑(τ) the root of τ . In fact,
we show the stronger result that the tree reduction is convergent, i.e., any
possible reduction is a first step on a finite path to the unique irreducible
element.

Definition 2.9 The tree reduction of Γ is the inverse of the tree expansion
relation →Γ , and we denote it by ←Γ, that is, ←Γ:= (→Γ )−1.

As for the relation →Γ we drop the subscript of ←Γ if it is clear from the
context. For the rest of Section 2.2.3 let Γ be an arbitrary finite alphabet.

Observation 2.10 Let τ1, τ2 ∈ T ∗ and i ∈ N. We have

τ1
i
→ τ2 ⇒ |τ1|P + i = |τ2|P .

Proof. The statement can be shown by a trivial induction on i. Obviously,
the statement is true for i = 0. For i > 0 the statement immediately follows
from the fact that each step of the tree derivation introduces exactly one
internal node. �

Observation 2.10 implies that the tree reduction consumes an internal
symbol in each step. This immediately yields:

Observation 2.11 The tree reduction is noetherian.
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The next lemma shows that the tree reduction is locally confluent. Read-
ers with background in String Rewriting Systems may know that it is suffi-
cient to consider the so called critical pairs of the canonical string rewriting
system induced by the relation ←Γ. Since we have not introduced String
Rewriting Systems and critical pairs the proof of Lemma 2.12 is written
such, that it can be understood without this preknoledge. Implicitly the
proof shows that the set of critical pairs is empty: In Case 1 of the proof
one sees that no component of a critical pair can be a prefix of the other,
since the first letter already specifies the length. In Case 2 one can see that
no other overlapping is possible since each component contains exactly one
internal symbol, which forms the beginning of the string.

Lemma 2.12 The tree reduction is locally confluent.

Proof. Let u, v, w ∈ T ∗ such that u ← v and u ← w. Then there are
l1, r1, l2, r2 ∈ T ∗, A1, A2 ∈ Γ, and α1, α2 ∈ Γ∗ such that v = l1A1r1, w =
l2A2r2, and u = l1[A1, α1]α1r1 = l2[A2, α2]α2r2.

Case 1 l1 = l2.

u =
l1 [A1, α1]α1r1

l2 [A2, α2]α2r2
⇒ u =

l1 [A1, α1] α1 r1

l2 [A2, α2] α2 r2

In case l1 = l2 the symbols [A1, α1] and [A2, α2] are at the same position
and therefore equal. Thus, A1 = A2 and α1 = α2 follows. This in turn
implies r1 = r2. Thus, v = l1A1r1 = l2A2r2 = w. Let z := v. Then
v

∗
← z and w

∗
← z is trivial.

Case 2 l1 6= l2. Without loss of generality we assume |l1| < |l2|. Then
l1[A1, α1] is a prefix of l2. Remember [A1, α1] is a single symbol.

u =
l1 [A1, α1] α1r1

l2 [A2, α2] α2 r2

Since [A2, α2] is an internal symbol and α1 does not contain internal
symbols l2 = l1[A1, α1]α1τ for some τ ∈ T ∗. Thus, r1 = τ [A2, α2]α2r2.
Hence, u = l1[A1, α1]α1τ [A2α2]α2r2.

u =
l1 [A1, α1] α1 r1

l1 [A1, α1] α1 τ [A2, α2] α2 r2

l2 [A2, α2] α2 r2

Then v = l1A1τ [A2, α2]α2r2 and w = l2A2r2 = l1[A1, α1]α1τA2r2. With
the next reduction step we can get z := l1A1τA2r2 from each of the
words v and w.
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In both cases we found a common descendant (a common ancestor with
respect to the expansion relation) of v and w. Hence, ← is locally confluent.

�

In fact we have shown a stronger result: Strings u and v obtained by
a local seperation, i.e. u and v are obtained in one reduction step from a
common word w, can be merged by the application of a single reduction step
to u and v, respectively. This property is known as strong confluence.

Lemma 2.13 The tree reduction is convergent.

Proof. The tree reduction is noetherian by Observation 2.11. Therefore, it
remains to show that it is also confluent. By Lemma 2.12 the tree reduction
is locally confluent. Thus, confluence follows by [7, Theorem 1.1.13]. �

Definition 2.14 Let ρ be a tree string. The root of ρ denoted by ↑(ρ) is the
unique irreducible tree string τ such that ρ ∈ ∆τ .

Due to Lemma 2.13 roots are well defined. Note that τ ∈ ∆↑(τ) holds for
each tree string τ ∈ T ∗. Moreover, the root mapping is idempotent, i.e.,
↑(↑(τ)) = ↑(τ) for each τ ∈ T ∗.

Definition 2.15 The single step tree transformation is the relation:

↔Γ:=→Γ ∪ ←Γ

Again the subscript Γ is dropped whenever it is clear from the context.
Now by [7, Theorem 1.1.7] confluence is equivalent to the Church-Rosser

property. Hence, the tree reduction has the Church-Rosser property. Ac-
cording to the definition of the root this implies:

Observation 2.16 The root of a tree string is preserved by cuts and expan-
sions, i.e., for two tree strings τ1, τ2 we have:

(τ1
∗
↔ τ2)⇔ (↑(τ1) = ↑(τ2)).

2.2.4 Trees, Forests and their Visualisation

As already said, tree strings are meant to represent trees and forests. But not
all of them have a meaningful interpretation. In this section we introduce the
corresponding subsets. Moreover, it is shown how trees can be transformed
from a tree string representation into a graphical tree representation and vice
versa.
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Definition 2.17 Let Γ be a finite alphabet. Each symbol X ∈ TΓ of the tree
alphabet over Γ has a corresponding left-hand side `Γ(X) and a corresponding
right-hand side rΓ(X) defined by:

`Γ(X) :=

{
X if X ∈ Γ
A if X = [A, α] ∈ P

rΓ(X) :=

{
X if X ∈ Γ
α if [A, α] ∈ P

The alphabet Γ forming the subscript of ` and r is always identical to the
subscript of the tree alphabet TΓ where the argument X is taken from. There-
fore, in the sequel the subscript of ` and r is always omitted. The arity of X
is 0 if X ∈ Γ and |r(X)| otherwise.

Definition 2.18 Let Γ be a finite alphabet. A string ρ ∈ T ∗ is

� a tree if ↑(ρ) ∈ Γ.

� a forest if ↑(ρ) ∈ Γ∗.

The set of trees over Γ is defined by ∆Γ := ∪A∈Γ∆A
Γ . We drop the subscript

Γ when it is clear from the context.
Let ρ ∈ ∆ be a tree. The interval [1, |ρ|] is the corresponding set of nodes

and we refer to an i in this interval as the node i or the i-th node of ρ. The
root node is the node 1. If i is a node of ρ then ρ[i] is its parse label. The
node i is a leaf if ρ[i] is in Γ, and it is an internal node if ρ[i] is in P . The
label of the i-th node is `(ρ[i]). The left-hand side and the right-hand side
of the i-th node of ρ are `(ρ[i]) and r(ρ[i]), respectively. The arity of the i-th
node of ρ is the arity of ρ[i].

Note that we have not excluded internal nodes with arity 0. This is some-
what unusual, but a natural way to model what is known as ε-productions.
So for each A ∈ Γ we can distinguish the trees A and [A, ε]. Both consist of
a single node labelled A and having arity 0. But for the tree A this node is
a leaf while it is an internal node for the tree [A, ε]. As a consequence the
first tree can be expanded by the tree expansion relation, while the second
has no more leaf left for an expansion.

Trees can also be represented in a graphical way. Such a representation
is easily accessible but it is harder to handle formally. Therefore, we will use
the graphical representation only to visualise ideas, while formal proofs are
developed by the use of tree strings.

Let A = ρ0 → ρ1 → · · · → ρn be a tree expansion with trees ρo, . . . ρn ∈
∆A for some n ∈ N and some A ∈ Γ. The corresponding trees in their
graphical representation are easily obtained as follows: First we draw ρ0

by writing an A. Now assume we have already drawn ρi−1 for some i ∈
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Figure 2.2: Graphical tree derivation.

[1, n]. Then there are uniquely defined τ1, τ2 ∈ T ∗
Γ , B ∈ Γ, and α ∈ Γ∗ such

that ρi−1 = τ1Bτ2 and ρi = τ1[B, α]ατ2. Now let j be by one larger than
the number of symbols from Γ in τ1, i.e., j := |πΓ(τ1)| + 1. The current
leaf is the j-th proper leaf counted from the left-hand side of the graphical
representation of ρi−1, where a leaf is called proper if it is not labelled with
ε. We write α beneath the current leaf of ρi−1 and connect each symbol of α
to the j-th leaf by a line. In case α = ε we write ε beneath the current leaf
connected by a single line.

Example 2.19 Let Γ = {A, B, C, D}. Then we can derive the tree

ρ := [A, BCB][B, BD]BD[C, ε][B, A]A ∈ ∆A.

One of the corresponding tree derivations is:

A → [A, BCB]BCB

→ [A, BCB]B[C, ε]εB = [A, BCB]B[C, ε]B

→ [A, BCB][B, BD]BD[C, ε]B

→ [A, BCB][B, BD]BD[C, ε][B, A]A

The graphical representation of this tree derivation is shown in Figure 2.2.
The internal nodes of ρ are 1, 2, 5, and 6. The leaves are 3, 4, and 7. Note
that node 5 with parse label [C, ε] is an internal node, with arity 0. The
appended ε is formally not a leaf. It is used to distinguish a leaf from an
internal node with arity 0.

The tree ρ in the example above could have been derived by several other
sequences of trees. If we only have the final tree string ρ we cannot recover
the way we obtained ρ but we still have all the information necessary to draw
the graphical form of ρ. Assume that ρ is an arbitrary tree string. By the
following algorithm we find out whether ρ is a tree, and if it is, we draw the
graphical representation of it:
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We start by writing down `(ρ[1]) which we consider as the “current”
node. Then we go through ρ symbol by symbol from left to right. If the
left-hand side of the considered symbol in ρ does not agree with the label of
the current node then ρ is not a tree. Otherwise if the considered symbol in
ρ is an internal symbol [A, α] then we write α underneath the current node
and draw a line from each symbol of α to the current node. Again if α = ε,
we write ε underneath the current node and connect the current node and
ε by a single line. In case the considered symbol of ρ is a leaf, we proceed
with the next symbol of ρ and shift the current position in the graphical
representation to the next proper leaf in a depth first left to right search. In
this search we do not consider positions labelled ε as leaves. If all the symbols
of ρ are consumed or we cannot find a new current position since we run out
of leaves in the graphical representation the algorithm stops. The tree string
ρ is a tree if and only if both termination criteria are satisfied simultaneously.
If the tree string runs out while we still have a current leaf in the graphical
representation then ρ is a prefix of a tree. If we run out of current nodes while
ρ is not completely consumed the consumed prefix of ρ was a tree. In this
case ρ may be a forest. We can check this by restarting the algorithm with
the remaining tree string each time a tree has been successfully consumed.

As already mentioned above we use graphical representations for intuitive
explanations while in formal proofs we only use string representations. Thus,
there is no need to prove the correctness of the algorithm above. But we
proceed with an example of its application:

Example 2.20 Let Γ = {A, B, C, D}. We consider again the tree of Exam-
ple 2.19:

ρ := [A, BCB][B, BD]BD[C, ε][B, A]A ∈ ∆A.

We apply the algorithm described above to generate its graphical representa-
tion. This process is depicted in Figure 2.3. Beneath a symbol of ρ one can
find the corresponding intermediate tree with the current node underlined.

Conversely we can obtain the string representation of a tree by going
through a graphical representation in a depth first left to right order. For
each internal node we write down the corresponding internal symbol while
for a leaf we write down the corresponding label.

2.2.5 Properties of Trees and Forests

In order to work with tree strings it is necessary to become familiar with
their basic properties and introduce some additional notions as subtrees and
embedded trees. Most of the facts proved here are quite obvious but very
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Figure 2.3: Generating the graphical presentation of a tree from a tree string.

important to keep in mind. Statements marked as Observations may be
used without reference in later sections. However, within Section 2.2.5 we
reference all their applications, to become familiar to them.

Throughout Section 2.2.5 we consider Γ as an arbitrary finite alphabet.
Therefore, we drop all subscripts of entities which are parametrised by an
alphabet, like PΓ, TΓ, and ∆Γ and write P , T , and ∆ instead.

Basic Properties

We begin with some observations covering most elementary properties of
roots, trees, and forests. Some of them are self-evident. Despite that at least
sketches of their proofs are provided for the sake of completeness. The reader
may skip some of them without loss of understanding.

Observation 2.21 Let τ, τ1, τ2, ω1, ω2 ∈ T ∗, α, β ∈ Γ∗, and i ∈ N.

(i) ω1
i
→ ω2 ⇒ τ1ω1τ2

i
→ τ1ω2τ2.

(ii) ↑(τ) = ε ⇔ τ = ε.

(iii) ∆α∆β = ∆αβ.

(iv) The set of forests over Γ is a monoid with the unit ε generated by the
trees over Γ. The corresponding operation is the concatenation on T .
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Proof.

(i) The statement can be shown by a trivial induction on i. Obviously, it
is true for i = 0. For i > 0 the statement immediately follows from
the fact that, by definition, each step of a tree expansion can also be
performed in an extended context.

(ii) Obviously, τ = ε ⇒ ↑(τ) = ε. On the other hand τ 6= ε ⇒ ↑(τ) 6=
ε, since a reduction step never erases a string completely. Hence, the
statement follows by a trivial induction on the length of the reduction
from τ to ↑(τ).

(iii) Let ρ ∈ ∆α∆β. Then ρ = ρ1ρ2 for some ρ1 ∈ ∆α and ρ2 ∈ ∆β. Then

by (i) we have αβ
∗
→ ρ1β

∗
→ ρ1ρ2 = ρ implying that ρ ∈ ∆αβ.

Now let ρ ∈ ∆αβ. Then αβ
i
→ ρ for some i ∈ N. We prove that

ρ ∈ ∆α∆β by induction on i. For i = 0 the statement is trivial.
Assume the statement has been proved for some i ∈ N. Consider the

case αβ
i+1
→ ρ. By the inductive hypothesis αβ

i
→ ρ1ρ2 → ρ for some

ρ1 ∈ ∆α and ρ2 ∈ ∆β. The last step in this derivation expands a single
symbol regardless of the context in which it occurs. This symbol either
belongs to ρ1 or to ρ2. Without loss of generality we assume that it
belongs to ρ1. Then ρ1ρ2 → ρ′

1ρ2 = ρ for some ρ′
1 ∈ T ∗. Obviously, the

last step is also possible in the absence of the context ρ2, i.e., ρ1 → ρ′
1.

Hence, ρ′
1 ∈ ∆α implying ρ ∈ ∆α∆β.

(iv) Let ρ1 ∈ ∆α and ρ2 ∈ ∆β then ρ1ρ2 ∈ ∆α∆β (iii)
= ∆αβ. Hence, the

concatenation of two forests is a forest. Obviously, ε is the unit and

↑(ε)
(ii)
= ε ∈ Γ∗. Hence, ε is a forest. It remains to show that each

forest is represented by a finite product of trees. Let ρ be a forest over
Γ. Then for some k ∈ N and X1, . . .Xk ∈ Γ we have ρ ∈ ∆X1···Xk .
By iterated applications of (iii) we verify that ∆X1···Xk = ∆X1 · · ·∆Xk .
Hence, ρ is a sequence of trees.

�

Note that Observation 2.21 (iv) justifies to write the set of all forests by
∆∗. We will see later that ∆∗ is the free monoid over ∆.

Observation 2.22 Let τ, τ1, τ2, τ3 ∈ T ∗, and α ∈ Γ∗. Then we have:

(i) ↑(τ1τ2τ3) = ↑(τ1↑(τ2)τ3).

(ii) ↑(α) = α.
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(iii) ↑(ατ) = α↑(τ).

Proof. (i) Immediate consequence of Observation 2.16.

(ii) With |α|P = 0 and Observation 2.10 we obtain that α is irreducible,
i.e., ↑(α) = α.

(iii) Assume α↑(τ) is reducible. Then α↑(τ) = ω1[B, β]βω2 for some
ω1, ω2 ∈ T ∗, B ∈ Γ, and β ∈ Γ∗. Now the strings α and ↑(τ) are irre-
ducible. This is due to (ii) and the definition of the root, respectively.
Hence, [B, β]β, which can be reduced to B is neither an infix of α nor
an infix of ↑(τ), i.e., ω1 is a proper prefix of α and ω2 is a proper suffix
of ↑(τ).

This situation can be illustrated as follows:

α ↑(τ)
ω1 [B, β] β ω2

Thus, under our assumption [B, β] lies within α, which is impossible,
since α ∈ Γ∗ and [B, β] /∈ Γ. Therefore, the assumption is false and
we obtain that α↑(τ) is irreducible, i.e., α↑(τ) = ↑(α↑(τ)). Finally, we

observe ↑(ατ)
(i)
= ↑(α↑(τ)) = α↑(τ).

�

Bottom Up Tree Description and Noetherian Induction

The tree expansion replaces a leaf by an internal node with new appended
leaves. This “context-free” top down rewriting is very similar to the usual
derivation relation for context-free grammars. There is however an equivalent
way to consider trees in a bottom up manner, i.e., one can add a single
production atop a forest to create a tree. Sometimes this representation
allows convenient proofs by noetherian induction.

Definition 2.23 Let ρ and ρ′ be trees over Γ such that ρ = τ1ρ
′τ2 for some

τ1, τ2 ∈ T ∗. Then ρ′ is a subtree of ρ. It is a proper subtree of ρ if τ1τ2 6= ε.

Obviously, the subtree relation is well founded. Hence, it admits proofs
by noetherian induction:

Observation 2.24 To prove that a predicate R holds for each tree ρ ∈ ∆ it
is sufficient to show that the truth of R for each proper subtree of ρ implies
the truth of R for ρ.
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In order to use noetherian induction we need to know more about the
distribution of subtrees within trees.

Observation 2.25 Let ρ ∈ ∆ be a tree. Then

(i) ρ is irreducible if and only if ρ ∈ Γ.

(ii) ρ is reducible if and only if ρ = [↑(ρ), α]τ for some α ∈ Γ∗ such that
τ ∈ ∆α. 2

(iii) ρ is reducible if and only if ρ = [↑(ρ), X1 · · ·Xk]ρ1 · · · ρk for some k ∈ N,
X1, . . . , Xk ∈ Γ, and ρi ∈ ∆Xi , for each i ∈ [1, k].

Proof. (i) By Definition 2.18 we have ↑(ρ) ∈ Γ. Hence, ρ can only be
irreducible if ρ ∈ Γ. On the other hand if ρ ∈ Γ then ρ is irreducible
by Observation 2.22(ii).

(ii) By Definition 2.18 we have ↑(ρ) ∈ Γ. Thus, ρ is obviously reducible if ρ

is of the form [↑(ρ), α]τ , which implies ↑(ρ)→ ω
∗
→ ρ, for some ω ∈ T ∗.

Now ↑(ρ) ∈ Γ implies ω = [↑(ρ), α]α for some α ∈ Γ∗. Moreover,
[↑(ρ), α] cannot be expanded and remains the first symbol during a
derivation of ρ from ω. Hence, a trivial induction on the length of the
derivation yields ρ = [↑(ρ), α]τ for some τ ∈ ∆α.

(iii) Immediate consequence of Observations 2.21(iv) and 2.25(ii).
�

Sometimes it is not necessary to be as specific as in Observation 2.25.
Since ε is a forest (Observation 2.21(iv)), an inspection of Observation 2.25
yields a weaker but less technical fact:

Corollary 2.26 Each tree consists of a single symbol followed by a sequence
of proper subtrees, i.e., ∆ ⊆ T∆∗.

Note that ∆ 6= T∆∗, e.g., [A, B]A ∈ T∆∗ \∆ for A, B ∈ Γ.

Forests are Free over Trees

Here we show that no nonempty suffix of a tree can ever be a proper prefix of
a tree. This implies that forests are free monoids over trees. Therefore, the
decomposition of reducible trees according to Observation 2.25(iii) is unique.
We already know that a forest can only be generated by a sequence of trees
whose roots form the root of the forest.

2Note that this implies that the root is the label of the root node.



2.2. TREES AND FORESTS 37

Lemma 2.27 Each suffix of a tree is a forest.

Proof. We prove the statement by noetherian induction. We assume that
ρ ∈ ∆ is an arbitrary tree such that each suffix of each proper subtree is a
forest. Let τ ∈ T ∗ be a suffix of ρ. If τ = ρ then τ is a tree and therefore also
a forest according to Definition 2.18. It remains to prove the statement for
proper suffices τ of ρ. According to Corollary 2.26 and Observation 2.21(iv)
we get ρ = Xρ1 · · ·ρk for some X ∈ T , and some ρ1, . . . , ρk ∈ ∆ which are
proper subtrees of ρ. Since τ is a proper suffix of ρ, we have τ = τ ′ρi+1 · · · ρk

for some i ∈ [1, k] and some suffix τ ′ of ρi. Then τ ′ is a forest by the
inductive hypothesis. On the other hand ρi+1 · · ·ρk is a forest too. Thus, by
Observation 2.21(iii) the string τ is a forest. �

Lemma 2.27 turns out to be essential for the understanding of forest
factorisations. Now it is a matter of taste whether one prefers an algorithmic,
or a more succinct but less constructive algebraic approach to finish the
proof that ∆∗ is free over ∆. We proceed in the later way. In an appended
paragraph on page 38 the reader who prefers the first way finds a good
algorithm to factorise forests. Such a reader is recommended to continue
there, and return later to read Lemma 2.28, Corollary 2.29, and Corollary
2.30, which will be evident by then without the algebraic proof.

Lemma 2.28 No proper prefix of a tree is a nonempty suffix of a tree, i.e.,
if τ1ω ∈ ∆ and ωτ2 ∈ ∆ for some τ1, ω, τ2 ∈ T ∗ then either ω = ε or τ2 = ε.

Proof. Let τ1, ω, τ2 ∈ T ∗ such that τ1ω ∈ ∆ and ωτ2 ∈ ∆. Since ω is a suffix
of the tree τ1ω and τ2 is a suffix of the tree ωτ2, Lemma 2.27 implies that
ω and τ2 are forests. Moreover, ↑(ωτ2) = A for some A ∈ Γ since ωτ2 ∈ ∆
is a tree. By definition ω ∈ ∆↑(ω) and τ2 ∈ ∆↑(τ2). Hence, by Observation
2.21(iii) we have ωτ2 ∈ ∆↑(ω)∆↑(τ2) = ∆↑(ω)↑(τ2), i.e., A = ↑(ωτ2) = ↑(ω)↑(τ2).
Hence, ↑(ω) = ε or ↑(τ2) = ε and by Observation 2.21(ii) we finally get ω = ε
or τ2 = ε. �

Corollary 2.29 No proper prefix of a tree is a tree.

Proof. Let ω ∈ ∆ be a tree which is a (not necessarily proper) prefix of a tree
ωτ2 ∈ ∆ for some τ2 ∈ T ∗. Setting τ1 := ε we have τ1ω ∈ ∆ and ωτ2 ∈ ∆.
Then Lemma 2.28 implies ω = ε or τ2 = ε. Since ω ∈ ∆ we have ω 6= ε
(Corollary 2.26). Hence, τ2 = ε and therefore ω is not a proper prefix of ωτ2.

�

Since forests are generated by trees (Observation 2.21(iv)) and trees are
a prefix code for forests according to Corollary 2.29 we get:

Corollary 2.30 The set of forests ∆∗ is the free monoid over the set of trees
∆ with the unit ε.
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Factorising Forests

In Section 2.2.4 we already suggested an algorithm (without a proof) to
factorise a forest by drawing the corresponding graphical representation. This
method was also capable to detect whether or not a tree string is a valid
forest. If we already know that a tree string is a forest there is however a
much simpler way to split the forest into the corresponding sequence of trees.
Due to their close relation to balanced parenthesis we can detect the first
tree of a forest as the first prefix having weight 1 according to an appropriate
weight function w for the symbols in T .

Definition 2.31 The function w : T ∗ → Z is a homomorphism where the
operation on Z is the usual addition on integers. That is, the function w
sums up weights of symbols in T , which are defined as follows:

w(X) :=

{
1 if X ∈ Γ

1− |r(X)| if X ∈ P.

Remember r(X) is the right-hand side of the internal symbol X. For each
χ ∈ T ∗ we call w(χ) the weight of χ.

Obviously, irreducible trees have weight 1. The proof of the next Lemma
shows that the weight is preserved by tree expansions.

Lemma 2.32 Each tree has weight 1, i.e., w(ρ) = 1 for each ρ ∈ ∆.

Proof. Let ρ ∈ ∆. Then for some A ∈ Γ and some i ∈ N we have A
i
→ ρ.

We prove w(ρ) = 1 by induction on i. For i = 0 the statement is trivial.
Assume the statement is true for each tree with a derivation of length i.

Assume A
i+1
→ ρ. Then for some [B, β] ∈ P and some τ1, τ2 ∈ T ∗ we have

A
i
→ τ1Bτ2 → τ1[B, β]βτ2 = ρ. By the inductive hypothesis w(τ1Bτ2) = 1.

Thus, w(ρ) = w(τ1)+w([B, β])+w(β)+w(τ2) = w(τ1)+(1−|β|)+|β|+w(τ2) =
w(τ1) + 1 + w(τ2) = w(τ1) + w(B) + w(τ2) = w(τ1Bτ2) = 1. �

Thus, intuitively, the mapping w applied to a forest τ “counts” the num-
ber of trees “in” τ , i.e. w(τ) = |↑(τ)|.

Lemma 2.33 Any proper prefix τ of a tree ρ ∈ ∆ has a weight smaller than
1, i.e., w(τ) < 1

Proof. If τ is a proper prefix of ρ then ρ = ττ ′ for some τ ′ ∈ T+. But
then τ ′ is a non-empty product of trees by Lemma 2.27 and Observation
2.21(ii). Thus, w(τ ′) ≥ (1). Therefore, w(τ) = w(τ) + w(τ ′) − w(τ ′) =

w(ττ ′)− w(τ ′) = w(ρ)− w(τ ′)
2.32
= 1− w(τ ′) < 1. �
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Lemma 2.32 and Lemma 2.33 imply that the shortest prefix with weight
1 marks the end of the first tree in a forest. Therefore, to factorise a forest
into its sequence of trees it suffices to compute the weights of all prefixes
incrementally from left to right.

We can consider Lemma 2.32 and Lemma 2.33 as an alternative proof for
Corollary 2.29 and Corollary 2.30. Moreover, as we have seen in the proof of
Lemma 2.33 each non-empty suffix of a tree has a weight of at least 1 and
can therefore not be a proper prefix of a tree (Lemma 2.33). Thus, we can
also prove Lemma 2.28 by considering weights of strings.

Substructures of Trees

Definition 2.34 Let ρ ∈ T ∗
Γ . The frontier or yield mapping is the projec-

tion ↓Γ := πΓ, i.e., the frontier or yield of ρ is ↓Γ(ρ).

In the sequel we drop the subscript of ↓Γ because Γ is always implicitly given
by the domain of the string on which the mapping is applied. For the tree
of Example 2.20 we obtain:

↓(ρ) = ↓
(
[A, BCB][B, BD]BD[C, ε][B, A]A

)
= BDA.

The frontier is the result of reading the leaves from left to right. In the
graphical representation of a tree the frontier is located at the bottom. That’s
the reason why the symbol for the frontier mapping “↓” points downward.
For the same reason the symbol for the root mapping “↑” points upward.

Definition 2.35 A phrase of ρ ∈ ∆ is an interval [i, j] such that ρ[i, j] is a
subtree of ρ. This subtree is called the tree belonging to phrase [i, j]. Then
the word ρ[1, i − 1] · ↑(ρ[i, j]) · ρ[j + 1, |ρ|] ∈ ∆ is called the remainder tree
obtained by truncation of the phrase [i, j].

Whenever we apply tree notions to a phrase [i, j] of a tree ρ we mean to apply
them to the tree ρ[i, j] belonging to [i, j]. For instance we may talk about
the root or frontier of the phrase [i, j] of ρ and mean ↑(ρ[i, j]) and ↓(ρ[i, j]),
respectively.

Observation 2.36 Let ρ ∈ ∆ and i ∈ [1, |ρ|]. Then there is a unique j ∈
[i, |ρ|] such that [i, j] is a phrase.

Proof. Since each suffix of a derivation tree is a forest (Lemma 2.27), each
non empty suffix of a tree consists of at least one tree (Observation 2.21(ii)
and Observation 2.21(iv)). Since trees are a prefix code for forests (Corollary
2.29) the end of the first tree is uniquely defined. �
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As an immediate consequence of observation 2.36 we obtain:

Corollary 2.37 Each derivation tree ρ ∈ ∆ has exactly |ρ| phrases.

Observation 2.36 implies that the following definition is well defined.

Definition 2.38 The i-th phrase of a derivation tree ρ for an i ∈ [1, |ρ|] is
[i, j] for the uniquely defined j ∈ N such that [i, j] is a phrase of ρ. The tree
ρ[i, j] is called the tree attached to node i.

Note that the number of subtrees of a tree may be smaller than the number of
phrases. This happens when the same subtree is attached to different nodes.

Definition 2.39 Let ρ ∈ ∆ and i, j ∈ [1, |ρ|]. The node i is an ancestor of j
and j is a descendant of i if the j-th phrase is a subset of the i-th phrase. In
case i is an ancestor (descendant) of j, we call i a proper ancestor (a proper
descendant) if i 6= j. We say that i and j are related if i is an ancestor or
descendant of j. They are called independent if the i-th and j-th phrase are
disjoint.

As an immediate consequence of Lemma 2.28 we obtain:

Observation 2.40 If i and j are two nodes of a tree then they are either
related or independent.

Definition 2.41 Let ρ ∈ ∆ and i, j ∈ [1, |ρ|]. The node i is called parent of
j and j is called child of i if i is the shortest proper ancestor of j.

Observation 2.42 Each node of a tree has at most one parent.

Proof. Assume to the contrary that a node i of a tree has two different parents
j and k. Then the j-th and the k-th phrases both contain i hence j and k are
not independent. On the other hand both phrases have the same number of
elements and they are different. Thus, they are not comparable with respect
to the subset relation. Hence, they are not related either, which contradicts
Observation 2.40. �

Note that the node 1 does not have a parent. However, [1, |ρ|] is obviously
a phrase if ρ is a tree. Therefore, each node except 1 has a proper ancestor.
Similarly each node which is not a leaf has at least one child.

The path to a node i in a tree ρ is obtained by replacing the subtree
attached to i by ε and reducing all phrases which do not overlap with i.
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Definition 2.43 Let ρ ∈ ∆ be a tree. The path to the node i is:

↑(τ1) [↑(ρ[i, j]), ε] ↑(τ2)

where ρ = τ1ρ[i, j]τ2 and ρ[i, j] ∈ ∆ is the tree attached to node i.

A path is a tree such that each node has at most one child which is not a
leaf. A straight forward proof shows:

Observation 2.44 The mapping of a node to its path is injective.

Definition 2.45 Let i be a node of a tree ρ and j a node of a tree ρ′. Then
we say that the i-th node of ρ is equivalent to the j-th node of ρ′ if the path
to i in ρ and the path to j in ρ′ coincide.

Let P be a property of nodes. The node µ is the first ancestor of ν with
property P if no proper descendant of µ which satisfies P is an ancestor of
ν. The first common ancestor of two nodes ν1 and ν2 is the first ancestor of
ν1 which is an ancestor of ν2. A node ν is a child of a node µ if µ is the first
proper ancestor of ν.

2.2.6 Tree Languages

We already defined trees and forests as subsets of strings over a tree alphabet
TΓ which in turn is defined by an alphabet Γ. In this sense trees and forests
are languages over the alphabet TΓ, which is not finite if Γ 6= ∅. In this
section we extend the already defined notions of cuts and subtrees to tree
languages and introduce the notion of embedded trees.

Definition 2.46 A tree language L over Γ is a subset of ∆Γ.

Definition 2.47 Let L ⊆ ∆. Then

subtree(L) := {ρ ∈ ∆ | ∃ρ′ ∈ L : ρ is a subtree of ρ′}.

cut(L) := {ρ ∈ ∆ | ∃ρ′ ∈ L : ρ is a cut of ρ′}.

embedded(L) := cut(subtree(L)).

A single tree ρ ∈ ∆ is treated as the singleton set {ρ}, e.g., we write cut(ρ)
for cut({ρ}). A tree ρ′ ∈ ∆ is embedded in a tree ρ ∈ ∆ if ρ′ ∈ embedded(ρ).

Note that embedded(L) is the least set of trees L′ ⊆ ∆ which contains L and
is closed under cuts and subtrees, i.e., it is the least set with the property:

L ⊆ L′ and cut(L′) = L′ and subtree(L′) = L′.
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Example 2.48 Let Γ = {A, B, C, D, S}. The tree

ρ = [S, AB][A, CAC]C[A, D]DCB

has the following set of subtrees:

{B, C, D, [A, D]D, [A, CAC]C[A, D]DC, ρ}.

According to Definition 2.7 the set of ρ’s cuts is:

{ρ, [S, AB][A, CAC]CACB, [S, AB]AB, S}

All cuts and subtrees of ρ are trees embedded in ρ. In addition, ρ contains
the two embedded trees A and [A, CAC]CAC, both of which are cuts of the
subtree [A, CAC]C[A, D]DC.

2.3 Context-Free Grammars and Languages

2.3.1 Basic Notations

Now that we have a tree generation formalism we introduce context-free
grammars as tools to filter out the relevant trees. The generated language is
then filtered out of the raw material of trees by the frontier mapping ↓.

Definition 2.49 A context free grammar is a quadruple G = (N, Σ, P, S),
where the sets N and Σ are two disjoint finite alphabets called nonterminals
and terminals, respectively, P ⊆ N × (N ∪ Σ)∗ is a finite alphabet called
productions, rules, or internal symbols and S ∈ N is the start symbol. The
tree alphabet of G is TG := N ∪Σ∪P . Note that TG is a finite subset of the
infinite alphabet TN∪Σ. Let A ∈ N . We define:

� ∆G := ∆S
N∪Σ ∩ (P ∪ Σ)∗ the set of G’s derivation trees.

� L(G) := ↓(∆G) the language generated by G. A word w ∈ Σ∗ is said
to be generated by G if w ∈ L(G).

� cut(∆G) the set of G’s sentential derivation trees.

� SG := ↓(cut(∆G)) the set of sentential forms generated by G.

� ΛG := {ρ ∈ embedded(∆G) | ↓(ρ) ∈ Σ∗↑(ρ)Σ∗} the set of G’s pumping
trees. The link node of a pumping tree λ ∈ ΛG is the root node if
λ consists of one node only, otherwise it is the unique leaf which is
labelled by a nonterminal. (Note that Σ ⊆ ΛG.)
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Definition 2.50 A language L ⊆ Σ∗ over some finite alphabet Σ is context-
free if L = L(G) for some context-free grammar G.

Two context-free grammars G1 and G2 are called equivalent if L(G1) =
L(G2).

The set of derivation trees of G is the set of trees which are an expansion
of the start symbol where only productions in P have been applied and each
leaf is labelled with a terminal. The language generated by G is the set of
frontiers of the derivation trees. The sets of sentential derivation trees and
sentential forms are defined analogously to derivation trees and the generated
language but the former may still contain nonterminals.3

Due to the topic of this thesis we are rarely interested in sentential forms
without any access to the tree which generates them. But in these rare cases
it is convenient to use the classical derivation relation on sentential forms:

Definition 2.51 Let G = (N, Σ, P, S) be a context-free grammar. We define

the derivation relation
∗
⇒G of G as the reflexive and transitive closure of the

single step derivation relation ⇒G which is defined by:

∀α, γ ∈ (N ∪ Σ)∗, [B, β] ∈ P : αBγ ⇒G αβγ.

2.3.2 Short Notation

In the sequel we often abbreviate the definition of a context-free grammar
by specifying its production set only. In these cases the nonterminal and
terminal sets will consist of Roman letters and Arabic digits only. The set of
nonterminals is implicitly given by the symbols which occur on the left-hand
side of some production. The remaining symbols occurring on the right-hand
sides of productions are the terminals. The start symbol is the left-hand side
of the first production occurring in the notation of the production set. We
abbreviate A→ α1, . . . , A→ αk by A→ α1| · · · |αk. Lists of productions for
different nonterminals are separated by “, ” or a new line.

Example 2.52 The context-free grammar:

G := ({S, A}, {a, b}, {(S, AA), (A, aAa), (A, bAb), (A, a), (A, b), (A, ε)}, S)

can be written as:

G := (S → AA, A→ aAa | bAb | a | b | ε)

3Terminal or nonterminals can only occur as leaves in a tree, since the parse label of
an internal node is always a production.
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2.3.3 Production Types

Let G = (N, Σ, P, S) be a context-free grammar. A production [A, α] ∈ P
can also be denoted as A→ α or [A→ α]. It is called a

� chain production if α ∈ N .

� terminal production if α ∈ Σ∗.

� ε-production if α = ε.

� Greibach production if α ∈ ΣN ∗.

� linear production if α ∈ Σ∗(N ∪ {ε})Σ∗

� right linear production if α ∈ Σ∗(N ∪ {ε}).

The grammar G is ε-free if no tree in ∆G \ {[S, ε]} contains ε-productions, it
is in Greibach normal form, linear, or right linear, if no tree in ∆G \ {[S, ε]}
contains a production which is not a Greibach production, a linear produc-
tion, or a right linear production, respectively. A context-free language L is
linear or regular if there is a linear or right linear context-free grammar G′

such that L = L(G′), respectively. Otherwise they are called non-linear or
non-regular, respectively.

It is well known that the class of regular languages is a proper subclass
of the class of linear languages which is in turn a proper subclass of the class
of context-free languages.

In standard textbooks one can find several algorithms to transform
context-free grammars such that the resulting grammars have some desir-
able properties. For instance, each context-free grammar for which ε 6∈ L(G)
has an equivalent grammar in Greibach normal form. Now each grammar
in Greibach normal form is ε-free and it does not have chain productions.
Algorithms to eliminate ε-productions and chain productions and to gen-
erate a Greibach normal form grammar in case ε /∈ L(G) can be found
in [17, Chapter 4]. For ε ∈ L(G) we first generate an appropriate gram-
mar G′ = (N ′, Σ′, P ′, S ′) for the language L(G) \ {ε}. By adding a new
nonterminal S ′′ one easily obtains an appropriate grammar G′′ for L(G).4

4{G′′ = (N ′ ∪ {S′′}, Σ′, P ′ ∪ {S′′ → ε} ∪ {S′′ → α | S′ → α ∈ P ′}, S′′). Note that it
might be the case that S ′ cannot be generated by G′′ anymore.
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2.3.4 Properties of Production Sets

There are also some desirable properties which do not concern the form but
the cooperation of productions: A symbol X ∈ N ∪ Σ is useful if there
are τ1, τ2 ∈ T ∗

G and p ∈ TG with the property `(p) = X and τ1pτ2 ∈ ∆G.
Otherwise X is useless. A context-free grammar is reduced if it does not
contain useless symbols. Useless symbols can easily be detected and elimi-
nated [17, Chapter 4.4]. By definition a symbol is not useless if it occurs in
a derivation tree. Hence, the elimination of useless symbols does not affect
the set of derivation trees. Since ambiguity is about the structure of the
set of derivation trees context-free grammars which are not reduced are not
interesting for us. Moreover, for a reduced context-free grammar we have
embedded(∆G) = ∆N∪Σ ∩ T ∗

G, i.e., each tree which can be formed using only
terminals, nonterminals and productions is a tree which is embedded in some
derivation tree.

The grammar G is cycle-free if for all ρ ∈ embedded(∆G) we have ↑(ρ) =
↓(ρ) implies ρ = ↑(ρ), otherwise it is cyclic, and a tree ρ with ↑(ρ) = ↓(ρ) 6= ρ
is a cyclic tree. Finally, we call G proper if it is cycle-free and reduced. If not
stated otherwise throughout this thesis we assume context-free grammars to
be proper.

2.3.5 Derivation Trees are Very Simple

Definition 2.53 5 A context-free grammar G = (N, Σ, P, S) is very simple
if it is in Greibach normal form and each terminal is generated by a uniquely
defined production, i.e., ∀a ∈ Σ : |P ∩ N × aN ∗| = 1. A language L is very
simple if L = L(G) for some very simple grammar G.

Obviously, each very simple grammar is an LL(1) grammar.6 Each LL(1)
grammar generates a deterministic context-free language which is a well
known proper subclass of context-free languages [17].

Lemma 2.54 For an arbitrary context-free grammar G = (N, Σ, P, S) the
set of derivation trees ∆G is a very simple language.

Proof. Let Σ̄ := {ā | a ∈ Σ} be a new alphabet which is a copy of Σ,
i.e., (N ∪ Σ) ∩ Σ̄ = ∅ and |Σ| = |Σ̄|. Let h : (N ∪ Σ)∗ → (N ∪ Σ̄)∗ be a
homomorphism defined by h(A) = A for A ∈ N and h(a) = ā for a ∈ Σ.

G′ := (N ∪ Σ̄, Σ ∪ P, P ′ ∪ {ā→ a | a ∈ Σ}, S)

P ′ := {A→ [A, α]h(α) | [A, α] ∈ P}

5Very simple grammars are also defined in [2].
6LL(k) grammars are common in parsing theory, see [1] for a definition.
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Obviously, G′ is very simple. To prove L(G′) = ∆G it suffices to show that
the set of sentential forms of G′ and the set of sentential derivation trees of G
coincide, i.e. we have to show that h−1(SG′) = cut(∆(G)). The equation can
be divided into two inclusions, each of which can be shown by an elementary
induction on the number of internal symbols in a tree belonging to cut(∆G′)
and cut(∆(G)), respectively. �

By essentially the same technique we obtain:

Lemma 2.55 For an arbitrary context-free grammar G = (N, Σ, P, S) the
set of sentential derivation trees cut(∆G) is a very simple language.

Proof. Let Σ̄ be defined as in Lemma 2.54. Moreover, let N̄ be a copy of N
in the same way as Σ̄ is a copy of Σ. Let h : (N ∪ Σ)∗ → (N̄ ∪ Σ̄)∗ be a
homomorphism defined by h(X) = X̄ for each X ∈ N ∪ Σ.

G′′ := (N̄ ∪ Σ̄, TG, P ′ ∪ {X̄ → X | X ∈ N ∪ Σ}, S̄)

P ′ := {Ā→ [A, α]h(α) | [A, α] ∈ P}

Obviously, G′′ is very simple. The proof that L(G′′) = cut(∆G) is analogous
to the one of Lemma 2.54. �

Lemma 2.54 and Lemma 2.55 show that we can apply known results on
very simple languages to the set of derivation trees or sentential derivation
trees of any context-free grammar. In particular derivation tree sets and
sentential derivation tree sets satisfy each pumping lemma for context-free
or deterministic context-free languages.

2.3.6 Parikh Suprema

Definition 2.56 Let G = (N, Σ, P, S) be a context-free grammar. The
Parikh supremum of G is defined by: sup(G) := sup(cut(∆G)), i.e, for termi-
nals and nonterminals it is the maximal number of occurrences in a sentential
form and for productions the maximal number of occurrences in a derivation
tree. A symbol X ∈ P ∪N ∪ Σ is bounded for G if sup(G)(X) 6= ω. Other-
wise X is unbounded for G. We often call a symbol bounded or unbounded
without mentioning the corresponding context-free grammar if it is clear from
the context. We call a bounded symbol X ∈ P∪N ∪ Σ a bounded production,
bounded nonterminal, or bounded terminal, if X is a production, nontermi-
nal, or terminal, respectively. Analogously we define unbounded productions,
unbounded nonterminals, and unbounded terminals. The set of bounded and
unbounded productions are denoted by P<ω and Pω, respectively.
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2.3.7 Pumping Trees

In this section we show two observations which can be seen as parts of the
proof of the well known pumping lemma due to Bar-Hillel [4]. Our aim is
not to present an alternative proof for the pumping lemma but to use the
more elementary observations later.

Observation 2.57 Let ρ ∈ ∆G be a derivation tree. If embedded(ρ)∩ΛG 6= ∅
then there are τ1, τ2, ω, τ4, τ5 ∈ T ∗

G such that ρ = τ1τ2ωτ4τ5, ω ∈ subtree(∆G),
τ2↑(ω)τ4 ∈ ΛG, and τ1τ

n
2 ωτn

4 τ5 ∈ ∆G for each n ∈ N.

Proof. If a pumping tree λ is embedded in a derivation tree ρ then by defini-
tion λ is obtained from a subtree ρ′ of ρ by cutting off a single subtree ω such
that ↑(ρ′) = ↑(ω). Thus, there are τ1, τ2, τ4, τ5 ∈ T ∗

G such that ρ = τ1τ2ωτ4τ5,
ρ′ = τ2ωτ4, and λ = τ2↑(λ)τ4. It is easily seen by induction on n that
↑(ρ′) = ↑(ω) permits the iteration τ1τ

n
2 ωτn

4 τ5 ∈ ∆G for each n ∈ N. �

Observation 2.58 For each context-free grammar G the set of derivation
trees which does not contain embedded pumping trees is finite, i.e.,

∃kG ∈ N : |{ρ ∈ ∆G | embedded(ρ) ∩ ΛG = ∅}| ≤ kG.

Proof. According to Observation 2.25 each reducible tree consists of a pro-
duction followed by a forest. Let m := max{|r(p)| | p ∈ P} be the maximum
number of symbols on the right-hand side of a production. One can easily
show that each derivation tree whose length is larger than j :=

∑|N |+1
i=0 mi =

m|N|+2−1
m−1

has a node with more than |N | many different ancestors. Hence,
two of them have the same left-hand side which gives rise to an embedded
pumping tree. Clearly the number of derivation trees with length lower than
j is bounded by some constant kG. �

Definition 2.59 The pumping constant cG of a context-free grammar G is
defined by cG := |w|+ 1, where w ∈ Σ∗ is a longest word such that w = ↓(ρ)
for some ρ ∈ ∆G not containing embedded pumping trees, i.e., embedded(ρ)∩
ΛG = ∅. The pumping constant cL of a context-free language L is the least
pumping constant which a context-free grammar generating L can have, i.e.,

cL := min{cG | G context-free and L = L(G)}.

Observation 2.58 guarantees that the pumping constants of context-free
grammars and languages are well defined positive integers.

Even though this is not their main purpose we sketch how the pumping
lemma by Bar-Hillel can be proved from the previous two observations:
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Since there is only a finite number of derivation trees which does not contain
pumping trees (Observation 2.58) there is a longest word with this property.
Each derivation tree ρ for a longer word w has embedded pumping trees.
We can erase all the cyclic trees from ρ to obtain a derivation tree ρ′ with
↓(ρ′) = w but without embedded cyclic trees. Now ρ′ still contains at least
one pumping tree λ which cannot be cyclic. Hence, at least one terminal
is generated by λ. By the use of Observation 2.57 the pumping lemma of
Bar-Hillel immediately follows.

2.3.8 Types of Productions and Their Properties

In this section G = (N, Σ, P, S) is an arbitrary proper context-free grammar,
X, Y ∈ N ∪ Σ, and a, b, c ∈ Σ. Definition 2.56 already partitioned the set of
productions into two classes, namely bounded and unbounded productions.
The following observation shows how they relate to pumping trees.

Observation 2.60 A production is bounded if and only if it is not contained
in any pumping tree, i.e., p ∈ P is bounded if and only if for each ϑ ∈ ΛG

we have p /∈ ~ϑ.

Proof. For each pumping tree ϑ ∈ ΛG by definition there is a derivation tree
ρ such that ϑ ∈ embedded(ρ). By Observation 2.57 each production p ∈ P

which is in ϑ (i.e., p ∈ ~ϑ) cannot be bounded.

Now let us consider a production p ∈ P such that p /∈ ~ϑ for any pump-
ing tree ϑ ∈ ΛG. Let ρ ∈ ∆G be an arbitrary derivation tree. According
to Observation 2.57 we can erase all the pumping trees of ρ and obtain a
derivation tree ρ′ ∈ ∆G, which does not contain embedded pumping trees.
By definition ρ′ contains the same number of occurrences of the production
p as ρ, that is |ρ|p = |ρ′|p. By Observation 2.58 the number of derivation
trees without embedded pumping trees is finite. Hence, there is one such
tree τ with the maximum number kp of occurrences of the production p, i.e.,
kp = |τ |p. Then |ρ|p = |ρ′|p ≤ |τ |p = kp, and thus p is bounded. Note that kp

only depends on p but not on the choice of ρ. �

Definition 2.61 Let ρ ∈ ∆ \ Γ be a reducible tree then the first symbol ρ[1]
is called the dominating production of ρ.

Definition 2.62 A production p = [A, α] ∈ P is called a pumping pro-
duction if it is the dominating production of some pumping tree, i.e., ∃ρ ∈
ΛG : p = ρ[1]. Otherwise it is called a descending production. The set of
pumping productions and descending productions are denoted by P= and P<,
respectively.
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Figure 2.4: Pumping tree rotation.

A pumping production is contained in some pumping tree by definition.
Therefore, Observation 2.60 implies that each pumping production is un-
bounded. Similarly Observation 2.60 implies that bounded productions are
descending since they do not occur in any pumping tree. Thus, we partition
productions into three disjoint classes: Pumping productions, descending
productions which occur in some pumping trees, and bounded productions
which do not occur in any pumping tree.

Pumping trees can be rotated in the following sense: The link node and
the root node of each pumping tree are labelled with the same symbol. If
we identify them we obtain a directed graph which has exactly one cycle
with attached trees. We can consider each node on this cycle as a pearl
of a necklace. By cutting through an arbitrary pearl we always obtain a
pumping tree. This rotation of pumping trees is visualised in Figure 2.4. In
the leftmost image of Figure 2.4 an edge between the link node and the root
is added to obtain a cycle. Then we duplicate some node (labelled with B)
between the link node and the root node. To keep the cycle we connect the
duplicates by an edge. This situation is depicted in the middle. Finally, we
identify the former link node and root node and remove the edge between
them. This leads to the rightmost image. By removing the new edge we
obtain a rotated version of the original pumping tree. Clearly we could have
avoided to introduce the new edge which is only added to keep the picture
of pearls moving around a necklace. The pumping tree rotation is handled
in the following observation formally:

Observation 2.63 Let τ1, τ2, τ4, τ5 ∈ T ∗
G and A ∈ N such that τ1τ2Aτ4τ5 ∈

ΛG and τ2Aτ4 ∈ embedded(∆G). Then we have τ2τ1Bτ5τ4 ∈ ΛG, where B :=
↑(τ2Aτ4).

Proof. Let τ1, τ2, τ4, τ5 ∈ T ∗
G and A ∈ N such that τ1τ2Aτ4τ5 ∈ ΛG and
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τ2Aτ4 ∈ embedded(∆G). Moreover, let B := ↑(τ2Aτ4). Then by Observation
2.16 we obtain:

A = ↑(τ1τ2Aτ4τ5) = ↑(τ1↑(τ2Aτ4)τ5) = ↑(τ1Bτ5).
(i) ⇒ ↑(τ2τ1Bτ5τ4) = ↑(τ2↑(τ1Bτ5)τ4) = ↑(τ2Aτ4) = B.

(i)

Thus, τ2τ1Bτ5τ4 has only one nonterminal in the frontier and this one coin-
cides with the root. Since G is reduced, any tree which can be generated with
the letters in P ∗

G is an embedded tree. Therefore, we obtain τ2τ1Bτ5τ4 ∈ ΛG.
�

Observation 2.64 For each pumping tree each proper ancestor of the link
node has a pumping production as its parse label. For each descending pro-
duction p which is unbounded there is a pumping tree such that p is the parse
label of some node µ such that the first common ancestor of µ and the link
node is the root node.

Proof. Due to the pumping tree rotations (Observation 2.63) each ancestor
of the link node has a pumping production as its parse label. According to
Observation 2.60 the production p is contained in some pumping tree λ. Let
µ be a node of λ with the parse label p, i.e., λ[µ] = p. Let ν be the first
common ancestor of µ and the link node. Then according to Observation
2.63 we can rotate λ such that ν is moved to the top of the tree. �

Type Computation

We have divided the set of productions into three types. Namely pumping
productions, bounded productions, and unbounded descending productions.
The type of a production is a property which is not local in the sense that
it often cannot be decided without knowledge about other productions. In
contrast to that, the decision whether a production is linear or in Greibach
form only requires to consider the production itself. The non-local aspects
required to decide the non-local properties above are covered in the so called
condensation of the dependency graph, which can be viewed as a partial
order on an equivalence relation on the set of terminals and nonterminals. It
turns out that this partial order can be computed efficiently with respect to
the size of the context-free grammar G.

Definition 2.65 We say X is a potential ancestor of Y , denoted by X ` Y ,
if there exists a derivation tree ρ ∈ ∆G and i, j ∈ [1, |ρ]| such that i is an
ancestor of j in ρ and `(ρ[i]) = X and `(ρ[j]) = Y . The set of potential
ancestors of Y is denoted by ∇Y , i.e., ∇Y := {A ∈ N ∪ Σ | A ` Y }.
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For a reduced context-free grammar the relation ` can be computed easily
as the reflexive and transitive closure of the relation

`1:= {(A, X) ∈ N × (N ∪ Σ) | ∃[A, α] ∈ P : X ∈ ~α}.

The relation `1 can be read from P directly. If we consider the terminals
and nonterminals as nodes and the pairs of `1 as edges of a directed graph
we obtain the well known dependency graph.7

Lemma 2.66 A production p = [A, α] ∈ P is a pumping production if and
only if its right-hand side contains a symbol which is a potential ancestor of
the symbol on the left-hand side, i.e., ∃B ∈ ~α : B ` A.

Proof. Let p = [A, α] ∈ P . Firstly we consider the case B ` A for some
B ∈ ~α. Since G is reduced there is a ρ ∈ subtree(∆G) such that p is the
dominating production. Then one child of the root node of ρ is the root
node of a tree ρ′ ∈ subtree(ρ) such that ↑(ρ′) = B. Hence, ρ = pτ1ρ

′τ5 for
some τ1, τ5 ∈ (P ∪ Σ)∗. Since B is a potential ancestor of A there is a tree
τ ∈ subtree(∆G) which has a subtree τ ′ ∈ subtree(τ) such that ↑(τ) = B and
↑(τ ′) = A. Thus, for some τ2, τ4 ∈ (P ∪ Σ)∗ we have τ = τ2τ

′τ4. According
to Lemma 2.16 and by the fact that G is reduced we can write

A = ↑(ρ) = ↑(pτ1ρ
′τ5) = ↑(pτ1↑(ρ′)τ5) = ↑(pτ1Bτ5) = ↑(pτ1ττ5)

= ↑(pτ1τ2τ
′τ4τ5) = ↑(pτ1τ2↑(τ ′)τ4τ5) = ↑(pτ1τ2Aτ4τ5)

Moreover, ↓(pτ1τ2Aτ4τ5) ∈ Σ∗AΣ∗. Hence, pτ1τ2Aτ4τ5 ∈ ΛG and p is a
pumping production.

Secondly we consider the case ∀B ∈ ~α : ¬(B ` A). Then for a ρ ∈
subtree(∆G) such that p is the dominating production there can be no node
except the root node which can be labelled by A. Hence, there is no pumping
tree which is dominated by p. Hence, p is not a pumping production. �

Using Lemma 2.66 we can easily provide an efficient algorithm to detect
whether a production p is a pumping production:

(i) Compute the relation `1.

(ii) Compute `, which is the reflexive and transitive closure of `1.

(iii) Examine whether there is a nonterminal B on the right-hand side of p
which is a potential ancestor of the symbol `(p) on the left-hand side,
i.e., whether B ` `(p)

7Note that in the literature often only nonterminals are considered as nodes of the
dependency graph.
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Due to Lemma 2.66 this algorithm is correct.
Now we know how to find out whether a production is a pumping or

descending production and we know that pumping productions are not
bounded. It remains to distinguish unbounded and bounded descending
productions. To check whether a production is bounded we have to find out
whether or not it can occur in any pumping tree. Since the set of pumping
trees is either empty or infinite we cannot expect to examine all the pumping
trees directly. However, it is possible to construct and inspect the finite
number of cuts of pumping trees which have the root in their frontier and
which do not contain other embedded trees with this property. It can be
shown that it is sufficient to consider these trees. But their number may be
exponential with respect to the size of the grammar. Fortunately we can
do better than this. We start our development of a better algorithm by
observating some basic properties of descending productions:

Observation 2.67 If a descending production p is the dominating produc-
tion of some subtree of a derivation tree ρ ∈ subtree(∆G) then the root node
is the only node labelled by `(p), i.e., ∀i ∈ [2, |ρ|] : ρ[i] 6= p.

Proof. Let p ∈ P dominate a tree ρ ∈ subtree(∆G) and ρ has a node µ 6= 1
such that ρ[µ] = p. Then by Observation 2.36 we have ρ = pτ1pτ2τ3 for some
τ1, τ2, τ3 ∈ (P ∪ Σ)∗ such that pτ2 ∈ subtree(ρ). But then cutting off the
tree pτ2 at the node |pτ1|+ 1 yields the pumping tree pτ1`(p)τ3 ∈ ΛG. Thus,
p is the dominating production of a pumping tree and therefore a pumping
production. Hence, a descending production p cannot be the dominating
production of a subtree ρ′ ∈ subtree(∆G) which has a node µ 6= 1 such that
ρ[µ] = p. In other words ∀i ∈ [2, |ρ|] : ρ[i] 6= p. �

Observation 2.68 Let p ∈ P be a bounded production and A := `(p). Then
sup(SG)(A) = sup(∆G)(p), i.e., the maximum number of A’s which can oc-
cur in a sentential form equals the maximum number of occurrences of the
production p in any derivation tree.

Proof. Let α ∈ SG be an arbitrary sentential form. Then α is the frontier of
some sentential derivation tree ρ ∈ cut(∆G). One can expand each occurrence
of an A in the frontier by the production p. Since G is reduced the resulting
tree ρ′ is also a cut of a derivation tree, i.e., ρ′ ∈ cut(∆G). Hence, there is
a derivation tree ρ′′ ∈ ∆G such that ρ′ ∈ cut(ρ′′). Then ρ′′ has at least |ρ|A
many occurrences of p, i.e. ,sup(SG)(A) ≤ sup(∆G)(p).

On the other hand let τ1ωτ2 ∈ embedded(∆G) such that p = ω[1]. Note
that A = `(p). By Observation 2.67 we know that ω does not contain
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any occurrence of p except the dominating one, i.e. |ω|p = 1. There-
fore, |τ1ωτ2|p = |τ1↑(ω)τ2|p + 1. Again by Observation 2.67 we obtain that
|τ1ωτ2|A = |τ1↑(ω)τ2|A − 1. Hence, |τ1ωτ2|F = |τ1↑(ω)τ2|F for F := {A, p}.
A derivation tree ρ ∈ ∆G has no nonterminal in the frontier, i.e., |ρ|N = 0.
By the invariance shown above cutting off all the subtrees dominated by p
yields a tree ρ′ ∈ cut(∆G) such that |ρ′|A = |ρ|p. Hence, sup(SG))(A) ≥
sup(∆G)(p). This completes the proof. �

As an immediate consequence of Observation 2.68 and Observation 2.60
we obtain:

Lemma 2.69 A production p is bounded if and only if it is descending and
its left-hand side `(p) is bounded.

We have already seen an efficient algorithm to detect whether a production
is a pumping or a descending production. According to Lemma 2.69 we
can efficiently detect whether a production is bounded provided we have an
efficient algorithm detecting bounded nonterminals. Thus, we now examine
when a symbol is bounded.

It is not the case that each X ∈ N ∪ Σ which is the label of a node in
a pumping tree is unbounded. Note that only nodes whose parse label is X
are relevant for sup(SG)(X), i.e., only leaves labelled X are relevant. For
instance consider the context-free grammar:

S → aSb | ε

In the pumping tree ϑ := [S, aSb]aSb we find the tree symbols a, b, and S.
But S obviously occurs only at most once in any sentential form, while a and
b are unbounded. An iteration of ϑ always consumes and reproduces an S.
In this sense the link node S is the pump itself and the symbols a and b are
the pumped objects. Pumping increases the number of pumped objects but
not necessarily the number of pumps. A symbol is unbounded if and only if
it is the label of some node in a pumping tree which is not an ancestor of
the link node. Then pumping leads to independent copies of such a node.
In the sequel we develop an algorithm to decide this property efficiently. We
start with the definition of an equivalence relation on the nonterminals and
terminals.

Definition 2.70 We say that X and Y are equivalent denoted by X ≡ Y if
X ` Y and Y ` X. For each X ∈ N ∪ Σ the corresponding equivalence class
is denoted by:

[X] := {Y ∈ N ∪ Σ | X ≡ Y }.



54 CHAPTER 2. PRELIMINARIES

Since ` is reflexive and transitive so is `−1. The intersection of relations
which are reflexive and transitive yield a relation which again is reflexive and
transitive. Hence, ≡ = ` ∩ `−1 is reflexive and transitive. Finally, ≡ is sym-
metric by definition. Thus, we have verified that ≡ is in fact an equivalence
relation. Note that the equivalence classes correspond to strong components
of the dependency graph, and terminals form singleton equivalence class. It
is well known that strong components can be computed in linear time with
respect to the size (the sum of nodes and edges) of a graph.

Since each symbol B on the right-hand side of a production p has the
left-hand side as a potential ancestor, i.e. `(p) ` B, we can restate Lemma
2.66 in the following way:

Lemma 2.71 A production p = [A, α] ∈ P is a pumping production if and
only if its right-hand side contains a symbol which is in the same equivalence
class as the left-hand side, i.e., ∃B ∈ ~α : [A] = [B].

Lemma 2.71 shows that to compute whether a production is a pumping
production or not it is sufficient to precompute the equivalence classes.

This is just a first application of the equivalence relation ≡. More impor-
tantly this relation will turn out to be crucial to prove an easily checkable
necessary and sufficient criterion for bounded productions.

Definition 2.72 The set of equivalence classes is defined by:

NG := {[X] | X ∈ N ∪ Σ}

On NG the relation ` is defined by [X] ` [Y ] if X ` Y .

Observation 2.73 The relation ` on NG is a well defined partial order.

Proof. To see that ` is well defined on NG it suffices to show that for each
X ′ ∈ [X] and each Y ′ ∈ [Y ] we have X ` Y ⇒ X ′ ` Y ′. Since X ′ ∈ [X]
we have X ′ ` X similarly Y ′ ∈ [Y ] implies Y ` Y ′. Thus, if X ` Y holds
we have X ′ ` X ` Y ` Y ′. By the transitivity of ` this implies X ′ ` Y ′.
Hence, ` is well defined on NG. Clearly ` is reflexive and transitive on NG.
Moreover, by definition [A] ` [B] and [B] ` [A] implies [A] = [B]. Hence, `
is also antisymmetric on A. Therefore, ` is a partial order on NG. �

Again we can consider the relation ` on equivalence classes as edges of a
directed graph. The nodes of this graph G are the equivalence classes. The
graph G is called the condensation of the dependency graph, i.e., we have
condensed each strong component of the dependency graph into a single
node.

Now we define the distance of two symbols X and Y as the longest path
in the condensation graph from [X] to [Y ]. Formally that is:



2.3. CONTEXT-FREE GRAMMARS AND LANGUAGES 55

Definition 2.74 Let X ∈ N ∪ Σ and Y ∈ ∇X . Then the distance from Y
to X is defined by:

dist(Y, X) := max
{
i ∈ N | ∃Z0, . . . Zi ∈ NG : ∀j ∈ [1, i] :

Zj−1 ` Zj and Zj−1 6≡ Zj and Y ∈ Z0 and X ∈ Zi

}
.

Definition 2.75 Let X, Y ∈ N ∪ Σ be symbols and let

kX := max{|r(p)|∇X
| p ∈ P}.

Thus, kX is the maximal number of symbols on the right-hand side of a
production which are potential ancestors of X. The X-weight of Y is

wX(Y ) :=

{

0 if Y /∈ ∇X

k
dist(Y,X)
X otherwise.

We extend wX to a homomorphism wX : (N ∪ Σ)∗ → N.

Definition 2.76 A symbol X ∈ N ∪ Σ is pumpable if there is a pumping
production p such that at least two symbols on the right-hand side of p are in
∇X , i.e., |r(p)|∇X

> 1. A production p with this property is called a witness
of the pumpability of X.

Lemma 2.77 Let p ∈ P be a production which is not a witness for the
pumpability of X. Then the X-weight of the left-hand side of p is at least as
large as the X-weight of its right-hand side, i.e.,

wX(`(p)) ≥ wX(r(p)).

Proof.

Case 1: `(p) /∈ ∇X . In this case no symbol on the right-hand side of p is in
∇X . Hence, wX(r(p)) = wX(`(p)) = 0.

Case 2: `(p) ∈ ∇X

Case 2.1: p is descending. In this case all the symbols on the right-
hand side of p which are in ∇X , which are at most kX many, have
a strictly lower distance to X than `(p). Hence, for z := π∇X

(r(p))
we have:

wX(`(p)) = k
dist(`(p),X)
X = kX · k

dist(`(p),X)−1
X

≥
∑

A∈~z

k
dist(`(p),X)−1
X ≥

∑

A∈~z

k
dist(A,X)
X ≥ wX(z)

= wX(r(p)).
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Case 2.2: p is pumping but |r(p)|∇X
≤ 1. Let α := r(p). Since p is

a pumping production there is a nonterminal B ∈ ~α∩ [`(p)]. Then
B ∈ ∇X and dist(`(p), X) = dist(B, X). In addition, |r(p)|∇X

≤ 1
implies that there is only one occurrence of B in ~α and all the other
symbols in ~α have an X-weight of 0. Hence:

wX(`(p)) = wX(B) = wX(r(p)).

There is no other case such that p is not a witness for the pumpability of X.
�

Lemma 2.78 A symbol X is pumpable if and only if it is not bounded.

Proof. If X is pumpable then there is a production p ∈ P witnessing this
property. Now we take the embedded tree ρo := pr(p) which has only one
internal node. On the right-hand side of p, i.e., at the frontier of ρ0, we find an
occurrence of a nonterminal Y which is a potential ancestor of X, i.e., there
is a tree ρ1 ∈ embedded(∆G) such that ↑(ρ1) = Y and X ∈ ~ρ1. Moreover,
there is a different occurrence of a nonterminal B in the right-hand side of p,
i.e., a different leaf at the frontier of ρ0, such that B is a potential ancestor
of `(p), i.e., the root of ρ0. Therefore, there is a tree ρ2 ∈ embedded(∆G) such
that B = ↑(ρ2) and `(p) ∈ ~ρ2. That means that we can attach ρ1 and ρ2 to
different nodes of ρ0. Let ρ ∈ embedded(∆G) be the result of this operation.
Now we have as well `(p) = ↑(ρ) and X in the frontier. Since X may be a
nonterminal, ρ may not be a pumping tree, but clearly we can iterate ρ in
the same way we did in Observation 2.57 resulting in arbitrary many copies
of X. Since G is reduced, each iterated version of ρ can be found embedded
in some derivation tree.

If X is not pumpable then none of the productions is a witness for the
pumpability of X. Thus, by Lemma 2.77 the X-weights of sentential forms
cannot increase during a derivation. Hence, there can be no sentential form
with an X-weight higher than wX(S). Since the X-weight of X is 1 we
obtain that wX(S) is an upper bound for the number of X occurrences in a
sentential form. �

In the sequel we will use the notion pumpable symbol as a synonym for
non-bounded symbols, without explicitly referencing the previous lemma.

Definition 2.79 A context-free grammar G = (N, Σ, P, S) is called nonter-
minal bounded if there is a constant k ∈ N such that no sentential form
contains more than k nonterminals, i.e., ∀ρ ∈ cut(∆G) : |πN(ρ)| ≤ k. If G
is nonterminal bounded then the least upper bound for the number of nonter-
minals which can appear in a sentential form (max{|πN (ρ)| | ρ ∈ cut(∆G)})
is called the width of G.
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At first glance it is not completely obvious how to check whether a context-
free grammar is nonterminal bounded or not. The following Lemma provides
a necessary and sufficient criterion which is easily checkable.

Lemma 2.80 A context-free grammar G = (N, Σ, P, S) is nonterminal
bounded if and only if each pumping production is linear.

Proof. Let G be an arbitrary context-free grammar such that each pumping
production is linear. Since terminals are never potential ancestors of non-
terminals the right-hand side of a linear production contains at most one
potential ancestor of an arbitrary nonterminal. Hence, no linear production
can ever be a witness for the pumpability of any nonterminal. This implies
that no nonterminal is pumpable. According to Lemma 2.78 this means that
each nonterminal is bounded. Therefore, G is nonterminal bounded.

On the other hand, a non-linear pumping production p contains two dis-
tinct occurences of nonterminals A and B such that A ∈ [`(p)].8 Since
B ∈ ∇B this means that B is pumpable and according to Lemma 2.78 not
bounded. Hence, G cannot be nonterminal bounded. �

Nonterminal bounded grammars can be seen as a generalisation of linear
context-free grammars. A linear context-free grammar is obviously nonter-
minal bounded with width 1. In the literature one also finds the definition of
ultralinear grammars. They coincide with nonterminal bounded grammars
[16, page 184, Exercise 3]. The definition of ultralinear grammars is based
on the existence of a partition of the nonterminals in a linear ordered hierar-
chy of equivalance classes. A symbol on the right-hand side of a production
cannot be higher in the hierarchy than the symbol on the left-hand side, and
if it is on the same level then the production is linear [16, Section 5.7, page
181]. This definition resembles the criterion for nonterminal bounded gram-
mars in Lemma 2.80, but it does not provide a hint which hierarchy could
be useful. Therefore, it is more obvious how to check our criterion since it is
basesd on the fixed partial order induced by ` on the equivalence classes of
nonterminals.

When we discuss the results of Earley’s work [11] in chapter 5 we will
come across metalinear grammars which lie between linear and nonterminal
bounded grammars, therefore we define them here:

Definition 2.81 A context-free grammar G = (N, Σ, P, S) is metalinear if
the start symbol does not occur on the right-hand side of any production and

8Note that the occurences of A and B are distinct. This does not imply A 6= B.
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each production with a left-hand side other than the start symbol is linear,
i.e., for N ′ := N \ {S} we have:

P ⊆ ({S} × (N ′ ∪ Σ)∗) ∪ (N ′ × Σ∗(N ′ ∪ {ε})Σ∗).

A language is metalinear if it is generated by some metalinear grammar.

It is easily seen that a language is metalinear if and only if it lies in the
closure of linear context-free languages under union and concatenation.

2.4 Asymptotic Notations

Let R+ denote the set of positive real numbers.

Definition 2.82 Let f : N→ R+ be a total function. We define:

� O(f) := {g : N→ R+ | ∃c ∈ R+ : ∃n0 ∈ N : ∀n > n0 : g(n) ≤ c · f(n)}.

� Ω(f) := {g : N→ R+ | f ∈ O(g)}.

� Θ(f) := O(f) ∩ Ω(f).

� ω(f) := Ω(f) \Θ(f).9

� o(f) := O(f) \Θ(f).

The reader is assumed to be familiar with these notions.
When we draw the graph of a function in such a way that the domain is

depicted horizontally and the range vertically then a function g is in O(f)
if a vertical stretch of f by a constant factor c is sufficient to exceed the
function g for all but a finite number of arguments. For our application a
horizontal stretch turns out to be more natural, which motivates the following
definition:

Definition 2.83 Let f : N→ R+ be a total function. We define:

� OT (f) := {g : N→ R+ | ∃c ∈ N : ∃n0 ∈ N : ∀n > n0 : g(n) ≤ f(c · n)}.

� ΩT (f) := {g : N→ R+ | f ∈ OT (g)}.

� ΘT (f) := OT (f) ∩ ΩT (f).

9Note that we use the Greek letter ω also in other contexts where it means a tree string
or a non-bounded component of a Parikh vector. The respective meaning is always clear
from the context.
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� ωT (f) := ΩT (f) \ΘT (f).

� oT (f) := OT (f) \Θ(f).

The superscript T is meant to remind to the transposition operation for
matrices. There the role of rows and columns are swapped. Similarly here
we swap the vertical stretch by a horizontal one.

Compared to the notations in Definition 2.82, the notations of Definition
2.83 turn out to be finer with respect to functions which grow slowly, while
it is the other way round for functions which grow fast.

Example 2.84

� ΘT (1) 6= ΘT (2) while Θ(1) = Θ(2).

� ΘT (log n) 6= ΘT (log(n2)) while Θ(log n) = Θ(log(n2))

� ∀k ∈ R+ : Θ(nk) = ΘT (nk)

� ΘT (2n) = ΘT (22n) while Θ(2n) 6= Θ(22n)

A frequent outcome of ambiguity investigations for a context-free language L
is, that each context-free grammar generating L has at least k ∈ N derivation
trees for some word. But the length of the shortest word with at least k
derivation trees can only be specified up to a constant factor depending
on the chosen context-free grammar G. Usually this constant factor is the
pumping constant of G. On the other hand for a fixed length n we can
always find a context-free grammar generating all the words up to length
n with only one derivation tree. Roughly speaking, sometimes it is easy to
determine the length of the shortest word with a fixed ambiguity, up to a
constant factor, while it is impossible to prove ambiguity for words of fixed
length. Therefore, the transposed versions of the asymptotic notations turn
out to be more suitable for ambiguity considerations.

2.5 Ambiguity

We can regard trees as circuits with the root as an input line and the leaves
as output lines. The tree expansion allows to “plug” the root A of a tree into
a leaf of another, provided that the leaf is of the “appropriate type”, i.e., it is
labelled with A. For the question how trees can be connected only the roots
and frontiers are relevant, while the internal structure can be considered as
a black box. Thus, if we want to know how a tree can be connected with
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other trees we can avoid to consider its internal structure and concentrate
on its interface, which is described by a pair consisting of the root and the
frontier. Note that the root of a tree over a finite alphabet Γ is an element of
Γ and the frontier is an element of Γ∗. Hence, an interface is an element of
PΓ. From this point of view we can consider the production set of a context-
free grammar as the set of interfaces of atomic embedded trees. Formally we
define the interface of a tree as follows:

Definition 2.85 The interface of a tree string ρ ∈ T ∗
Γ is the pair

lΓ(ρ) := [↑(ρ), ↓(ρ)].

The subscript Γ of lΓ is dropped in the sequel because it is always im-
plicitly given by the strings on which we apply this function. Throughout
Section 2.5 we assume that Γ is a finite leaf alphabet.

If a set of trees L contains two trees with the same interface i then i does
not uniquely specify a tree of L. In this case we call i ambiguous in L. This is
a generalisation of the classical ambiguity notion for context-free grammars
to arbitrary tree sets. What is the use of this generalisation? It allows
to decompose the set of derivation trees into subsets, which can be analysed
separately for their ambiguity. We will exploit this strategy in 7.4 extensively.
Sometimes it also allows to express facts very intuitively and succinctly. For
instance, later it will be shown that a grammar is exponentially ambiguous
if and only if its subset of pumping trees is ambiguous.

2.5.1 Ambiguity of Tree Languages

In the sequel let L ⊆ ∆Γ over a finite alphabet Γ. The ambiguity of an
interface i ∈ PΓ is infinite if there are infinitely many trees in L with the
interface i. Otherwise the ambiguity of i is the number of trees in L with the
interface i.

Definition 2.86 The ambiguity series of L is the function dL : PΓ → N∪ω
defined by:

dL(i) := |{τ ∈ L | i = l(τ)}|

The ambiguity of an interface i ∈ PΓ is dL(i).

The ambiguity series of a tree language maps a natural number n to the
ambiguity of the most ambiguous interface whose right-hand side has length
at most n.
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Definition 2.87 The ambiguity function of L is the function d̂L : N→ N∪ω
defined by:

d̂L(n) := max{dL(i) | i ∈ PΓ and r(i) ∈ Γ≤n}

A tree language L ⊆ ∆Γ is unambiguous if dL(i) ≤ 1 for all i ∈ PΓ, it is
ambiguous otherwise.

By definition d̂L is a non-decreasing function.

Definition 2.88 We define the predicate U on tree languages as follows:

∀L ⊆ ∆Γ : U(L) :⇔ L is unambiguous.

In Chapter 7 this definition turns out to be particularly useful. It allows
to analyse the ambiguity of subsets of derivation trees or embedded trees
of a context-free grammar. It also helps to explain results in a succinct
way. For instance we will find out that a cycle-free context-free grammar is
exponentially ambiguous if and only if its set of pumping trees is ambiguous.

2.5.2 Ambiguity of Context-Free Grammars

Throughout Section 2.5.2 let G = (N, Σ, P, S) be a context free grammar.
Usually the ambiguity of a word w ∈ Σ∗ generated by a context-free

grammar G = (N, Σ, P, S) is defined as the number of derivation trees with
the frontier w. Since the root of each derivation tree is labelled S, we can
also consider the ambiguity of w as the number of derivation trees with
interface [S, w]. Moreover, we consider the set of G’s derivation trees as a
formal language over TN∪Σ. Thus, we can generalise the notion of ambiguity
from words to interfaces and from derivation tree sets to arbitrary formal
languages over a tree alphabet.

Definition 2.89 The interface power series of G is the function dG :=
dcut(∆G), i.e., the interface ambiguity of G is the interface ambiguity of the
set of G’s embedded trees.

We also use the name dG for the function where the root component of the
interface is fixed to be the start-symbol. Which function is meant is clear
from the type of argument. This technique is known as overloading in some
programming languages.

Definition 2.90 The ambiguity power series is the mapping dG : (N ∪ Σ)∗

→ N ∪ ω defined by dG(α) := dG([S, α]).
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Mappings like dG are presented as formal sums in several textbooks. For
instance we can write d as

∑

w∈Σ∗ d(w)w. This habit inspires the name
“ambiguity power series” even though we seldom use formal sums in this
thesis.

Definition 2.91 The ambiguity function of G is the mapping d̂G := d̂∆G
,

i.e., the ambiguity function of G is the interface ambiguity function of G’s
derivation trees. We say that G is d̂G-ambiguous.

The ambiguity function d̂ : N → N maps each n in N to the ambiguity
of the most ambiguous word of length up to n. Note that by definition
the ambiguity of sentential forms containing nonterminals is not taken into
account for the ambiguity function.

Definition 2.92 Let f : N → N be a function. The grammar G is S(f)-
ambiguous if d̂G ∈ S(f), where S(f) is one of the sets O(f), OT (f), o(f),
oT (f), Ω(f), ΩT (f), ω(f), ωT (f),Θ(f), or ΘT (f).

Definition 2.93 A context-free grammar G

� is k-ambiguous or ambiguous of degree k for a k ∈ N if d̂G ∈ ΘT (k),
i.e., if d̂G is bounded by k but not by k − 1.

� is unambiguous if it is 1-ambiguous or 0-ambiguous otherwise it is
ambiguous. The class of unambiguous context-free grammars is denoted
by UCFG.

� has finite ambiguity or finite degree of ambiguity if it is O(1)-
ambiguous. Otherwise we say that G has infinite ambiguity or infinite
degree of ambiguity. The class of context-free grammars with finite
degree of ambiguity is denoted by FCFG.

� has polynomially bounded ambiguity if d̂G ∈ O(nk) for some k ∈ N.
The class of context-free grammars with polynomially bounded ambigu-
ity is denoted by PCFG.

� is exponentially ambiguous if d̂G ∈ ΘT (2n). The class of context-free
grammars with exponential ambiguity is denoted by ECFG.

Note that a context-free grammar is 0-ambiguous if and only if L(G) = ∅.
As indicated by Example 2.84 the superscript T in the definition of ECFG

is essential. In contrast to that the sets O(nk) and OT (nk) coincide. Thus,
in the definition of PCFG, we could have replaced O by OT .
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2.5.3 Ambiguity of Context-Free Languages

Definition 2.94 Let f : N → R+ be a monotone function. A context-free
language L is:

� O(f)-, OT (f)-, o(f)-, or oT (f)-ambiguous if it is generated by a
context-free grammar which is O(f)-, OT (f)-, o(f)-, or oT (f)-am-
biguous, respectively.

� Ω(f)-, ΩT (f)-, ω(f)-, or ωT (f)-ambiguous if it is only generated by
context-free grammars which are Ω(f)-, ΩT (f)-, ω(f)-, or ωT (f)-
ambiguous.

� Θ(f)-ambiguous or ΘT (f)-ambiguous if it is O(f)- and Ω(f)-am-
biguous, or OT (f)- and ΩT (f)-ambiguous, respectively.

In contrast to the OT and ΩT notations the O and Ω notations are very
rough for low ambiguities and at the same time too precise for exponential
ambiguity. For example a context-free grammar is Θ(1)-ambiguous if and
only if it has finite degree of ambiguity. To distinguish different degrees of
ambiguity we need the ΘT notation. As defined above a context-free grammar
is k-ambiguous for a k ∈ N if and only if it is ΘT (k)-ambiguous. Moreover, we
will see later that exponentially ambiguous languages are ΘT (2n)-ambiguous
but not Θ(f)-ambiguous for any function f . Even though each context-free
grammar for an exponentially ambiguous language L is Θ(2c·n)-ambiguous
for some constant c > 0, for a fixed constant c > 0 we can always find
a context-free grammar which is Θ(2c′·n)-ambiguous where c′ ≤ c. Since
Θ(2c1·n) 6= Θ(2c2·n) for c1 6= c2 we cannot specify a minimum with respect to
the Θ notation. It is unknown whether there are also context-free languages
which are not ΘT (f)-ambiguous for any function f .

Definition 2.95 A context-free language L is

� unambiguous if it is generated by an unambiguous context-free gram-
mar.

� finitely ambiguous, if it is generated by a grammar with finite (degree
of) ambiguity.

� of polynomially bounded ambiguity if it is generated by a context-free
grammar with polynomially bounded ambiguity.

� ambiguous of degree k, if it is generated by a k-ambiguous but not by
any k − 1-ambiguous context-free grammar.



64 CHAPTER 2. PRELIMINARIES

� ambiguous, if it is only generated by ambiguous context-free grammars.

� infinitely ambiguous if it is only generated by context-free grammars
with infinite (degree of) ambiguity.

� exponentially ambiguous if it is only generated by exponentially am-
biguous context-free grammars.

The classes of unambiguous context-free languages, languages with finite am-
biguity, languages with polynomially bounded ambiguity, and languages with
exponential ambiguity are denoted by UCFL, FCFL, PCFL, and ECFL, re-
spectively. As for context-free grammars we use the notions finite degree of
ambiguity, infinite degree of ambiguity, and ambiguous of degree k synony-
mously to finite ambiguity, infinite ambiguity, and k-ambiguous, respectively.

It is well known that each context-free grammar can be generated by a gram-
mar in Greibach normal form. Furthermore, it is obvious that each grammar
in Greibach normal form is OT (2n)-ambiguous. (For each derivation tree
of a Greibach normal form grammar G = (N, Σ, P, S) the number of inter-
nal nodes and leaves coincide. Thus, a word of length n has at most |P |n

derivation trees.) Hence, each exponentially ambiguous language is ΘT (2n)-
ambiguous

In Section 7.4 we will see that each context-free language is either in
PCFL or in ECFL. For each context-free language L and each n ∈ N it
is possible to find a context-free grammar which generates L in such a way
that the shortest ambiguous word is longer than n. Thus, for an ambiguous
language we cannot present a least ambiguity function in the naive way. But
up to a constant factor in the word length this is often possible:

Definition 2.96 Let L be a context-free language and f : N→ N a function.
The language L is f -ambiguous if

(i) there is a context-free grammar G such that L = L(G) and f = d̂G and

(ii) for each context-free grammar G′ such that L = L(G′) there exists a
c ∈ N such that f(n) ≤ d̂G′(c · n) for all n ∈ N \ {0}.

We implicitly identify the constant k ∈ N with the corresponding constant
function.

Note that a language is unambiguous if it is 1-ambiguous or 0-ambiguous.

Definition 2.97 A function f : N → N is an inherent ambiguity function
if there is a context-free language L such that L is f -ambiguous.
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Note that each inherent ambiguity function is an ambiguity function and
therefore it is non-decreasing. Moreover, if L is f -ambiguous then L is f ′-
ambiguous for each monotone function f ′ such that:

(i) {n ∈ N | f(n) = 0} = {n ∈ N | f ′(n) = 0}

(ii) ∃k ∈ N : ∀n > k : f(n) = f ′(n).

In Chapter 8 we will see that each ambiguity function of a cycle-free context-
free grammar G is an inherent ambiguity function, i.e., there is a context-free
language L which is d̂G-ambiguous. But it is not clear whether each context-
free language is f -ambiguous for some function f .

2.5.4 Inherent Properties of Context-Free Languages

There is a tendency to avoid to talk about tree properties when consider-
ing context-free languages. For instance the pumping lemma is most of-
ten denoted without any reference to derivation trees, despite the fact that
tree structures are crucial for its understanding. Moreover, the Lemma gets
slightly weaker by eliminating the knowledge about the tree structure which
is gathered in the proof. The result is an abstract lemma which is almost
harder to understand than its proof. There are some good reasons to avoid
to mention trees in pumping lemmata and one often heard bad reason: “By
eliminating the tree property we get a pure language property.” But why
is a property which is shared by all the sets of derivation trees for all the
context-free grammars generating a context-free language not considered as
a language property? Inherent ambiguity is nothing else than an unavoidable
property of the derivation tree sets of all the context-free grammars gener-
ating a fixed context-free language. Inherent ambiguity is considered as a
difficult topic. The author believes that some of the difficulties are due to a
sometimes unconscious refusal to accept properties of tree sets as language
properties.

At first glance it is somewhat confusing to combine properties of trees and
context-free languages since a language does not contain derivation trees or
sets of derivation trees. On the other hand, the power set 2N does not contain
a single integer, despite that nobody would deny that 2N has something to
do with N. We just have to descend one more level to see integers. It is
pretty much the same for context-free languages and derivation trees:

Definition 2.98 Let L be a context-free language. The class of L’s deriva-
tion tree sets is:

∆L := {∆G | G is a context-free grammar such that L = L(G)}
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Note that ∆L is not a set but a class since the nonterminal sets of the context-
free grammars in the definition are arbitrary finite alphabets. By considering
only those context-free grammars for L whose nonterminal set is a subset of
a fixed infinite set we could have restricted ∆L to a set of derivation tree
sets. But there is no need to avoid a class which is not a set.

Definition 2.99 Let L be a context-free language. A property is inherent
for the language L, if it is satisfied for each element of ∆L.

Inherent ambiguity is just a special inherent property of a context-free lan-
guage.

A well known inherent property is non-linearity of context-free languages.
Each derivation tree set in ∆L for a context-free but non-linear language has
the property that it contains a tree with at least two independent internal
nodes. For a context-free language which is not nonterminal bounded we can
find for each k ∈ N a tree in each derivation tree set of ∆L such that there
are more than k many pairwise independent internal nodes.

2.6 Comparison with Classical Notations

In standard textbooks the ambiguity of a word is defined by its number of
leftmost derivations. This is probably done to avoid the introduction of a
tree formalism. It is well known that each derivation tree has a corresponding
leftmost derivation. For the sake of completeness this fact is shown here for
the tree formalism used in this thesis. In fact, we prove a somewhat stronger
result which characterises the set of embedded trees which corresponds to a
leftmost derivation. The notion of the language generated by the grammar
also deviates from the classical one. But in this case the equivalence of our
definition and the classical one is a direct consequence of the equivalence of
the ambiguity notions for terminal strings.

For the rest of Section 2.6 we assume that G = (N, Σ, P, S) is an arbitrary
context-free grammar.

2.6.1 Classical Notation

Here we introduce definitions of standard textbooks. In case the notion is
already defined in this thesis we add a prime to mark the classical formalism.

Definition 2.100 The language generated by G is

L′(G) :=
{

w ∈ Σ∗
∣
∣
∣ S

∗
⇒G w

}

.
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Definition 2.101 For each u ∈ Σ∗, β ∈ (N ∪ Σ)∗, and [A, α] ∈ P we define
the leftmost derivation by:

uAβ
[A,α]
⇒G,lm uαβ

We extend this definition of the one step derivation in the natural way to
several derivation steps. Then instead of the applied productions the sequence
of applied productions π ∈ P ∗ is denoted atop the arrow Such a sequence π
is called left parse.

Definition 2.102 Let w ∈ Σ∗ be a terminal word. The ambiguity of w is
d′

G(w) := |{π ∈ P ∗ | S
π
⇒lm w}|

It is well known that each word in L′(G) has at least one leftmost derivation.
Hence, L′(G) = {w ∈ Σ∗ | d′(w) ≥ 1}. Similarly L(G) = {w ∈ Σ∗ | d(w) ≥
1}. Therefore, L(G) = L′(G) if d = d′. This equality is proved in Section
2.6.2

2.6.2 Ambiguity of Sentential Forms

First we show that the rightmost inner symbol of a tree can always be re-
duced:

Observation 2.103 Let Γ be a finite alphabet and ρ ∈ ∆Γ \Γ a tree over Γ.
Then ρ = τ [A, α]αβ for some τ ∈ T ∗, [A, α] ∈ PΓ, and β ∈ Γ∗.

Proof. Since ρ ∈ ∆Γ \ Γ its derivation has at least one step. If it has exactly
one step then the resulting tree has the form [A, α]α for some [A, α] ∈ PΓ.
This string satisfies the requirements above for τ = β = ε. Otherwise there

is a tree derivation of the form A
+
→ τ ′[A′, α′]β ′ → ρ where τ ′ ∈ T ∗

Γ , [A′, α′] ∈
PΓ, and β ′ ∈ Γ∗. If the last expansion is applied to a symbol within the prefix
τ ′ then ρ = τ [A′, α′]β ′ for some τ ∈ T ∗

Γ , which has the required form. On
the other hand if the last expansion is τ ′′A′′β ′′ → τ ′′[A′′, α′′]α′′β ′′ for some
τ ′′, β ′′ ∈ T ∗

Γ and [A′′, α′′] ∈ PΓ, where |τ ′′| > |τ ′| then β ′′ ∈ Γ∗ follows such
that the resulting tree has the required form in this case also. �

Now we introduce the set of trees which have a corresponding leftmost
derivation.

Definition 2.104 The set of leftmost embedded trees is:

leftmost(∆G) := embedded(∆G) ∩ (P ∪ Σ)∗P (N ∪ Σ)∗.

An element of leftmost(∆G) is a leftmost embedded tree.
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The projection of a leftmost tree on its productions is a left parse:

Lemma 2.105 ∀ρ ∈ leftmost(∆G) : ↑(ρ)
πP (ρ)
⇒lm ↓(ρ).

Proof. Let ρ ∈ leftmost(∆G). Then |ρ|P ≥ 1. If |ρ|P = 1 then ρ = [A, α]α

for some [A, α] ∈ P . Obviously, A
[A,α]
⇒lm α. Moreover, A = ↑(ρ), α = ↓(ρ),

and πP (ρ) = [A, α]. Hence, ↑(ρ)
πP (ρ)
⇒lm ↓(ρ) follows. Assume that for some

integer n ≥ 1 the statement is proved for all ρ′ ∈ leftmost(∆G) such that
|ρ′|P = n. Now we consider the case |ρ|P = n + 1. By Observation 2.103 we
have ρ = τ [A, α]αβ for some τ ∈ (P ∪N ∪ Σ)∗, [A, α] ∈ P , and β ∈ N ∪ Σ∗.
Since the prefix τ of ρ is followed by a production and ρ ∈ leftmost(∆G)

we have τ ∈ (P ∪ Σ)∗ which implies ↓(τ) ∈ Σ∗. But we also have ↑(ρ)
∗
→

τAβ → τ [A, α]αβ = ρ. Now τAβ contains only n productions. Therefore,

by the inductive hypothesis ↑(τAβ)
πP (τAβ)
⇒lm ↓(τAβ). Since ↑(τAβ) = ↑(ρ),

πP (τAβ) = πP (τ), and ↓(τAβ) = ↓(τ)Aβ we can write this as ↑(ρ)
πP (τ)
⇒lm

↓(τ)Aβ. Moreover, ↓(τ)Aβ ⇒lm ↓(τ)αβ = ↓(ρ) since ↓(τ) ∈ Σ∗. Hence,

↑(ρ)
πP (τ)[A,α]
⇒lm ↓(ρ). Finally, πP (τ)[A, α] = πP (ρ) implies ↑(ρ)

πP (ρ)
⇒lm ↓(τ)αβ =

↓(ρ) which completes the proof. �

Lemma 2.106 The mapping πP restricted to leftmost(∆G) is injective.

Proof. Let ρ1, ρ2 ∈ leftmost(∆G) such that πP (ρ1) = πP (ρ2). We prove by
induction on the number of productions contained in ρ1 that this equality
implies ρ1 = ρ2. If |ρ1|P = 1 then ρ1 = ρ2 follows immediately. Assume
the statement has been proved for |ρ1|P = n ≥ 1. If |ρ1|P = n + 1 then
by Observation 2.103 we have ρ1 = τ [A, α]αβ and ρ2 = τ ′[A′, α′]α′β ′ for
some [A, α], [A′, α′] ∈ P and β, β ′ ∈ (N ∪ Σ)∗. Node |τ | + 1 of ρ1 and
node |τ ′| + 1 of ρ2 is the last node labelled with a production respectively.
Now productions are not erased by πP . Using πP (ρ1) = πP (ρ2) this leads
us to πP (τ) = πP (τ ′), [A, α] = [A′, α′] and πP (β) = πP (β ′). By reducing
[A, α]α to A we obtain the trees ρ′

1 := τAβ and ρ′
2 := τ ′Aβ ′. Since πP (ρ′

1) =
πP (τ)Aπ(β) = πP (τ ′)Aπ(β ′) = πP (ρ′

2) and ρ′
1 has one production less than ρ1

by the inductive hypothesis we get ρ′
1 = ρ′

2. That is τAβ = τ ′Aβ ′. If τ or τ ′

would contain a nonterminal then ρ1 or ρ2 would not be in (P∪Σ)∗P (N ∪ Σ)∗.
This is impossible since ρ1 and ρ2 are leftmost embedded trees. Hence, the
A to the right of τ and τ ′ is the leftmost nonterminal, respectively. Thus,
τ = τ ′ and β = β ′. Therefore, ρ1 = τ [A, α]β = τ ′[A′, α′]α′β ′ = ρ2 which
completes the proof. �

To show that the projection on the productions restricted to leftmost
trees is surjective onto the left parses, it is sufficient to prove the following
observation:
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Observation 2.107 Let α ∈ (N ∪ Σ)∗, π ∈ P+, and A ∈ N . Then A
π
⇒lm

α implies:

∃ρ ∈ leftmost(∆G) : A
∗
→ ρ and ↓(ρ) = α.

Proof. The statement is proved by induction on the length of the left parse
π. For |π| = 1 it is trivial. Assume the statement is true for |π| = n ≥ 1.
If |π| = n + 1 then π = π′p for some π′ ∈ P ∗ and p ∈ P . Moreover, for

some α′ ∈ (N ∪ Σ)∗ we have A
π′

⇒lm α′ p
⇒lm α. By the inductive hypothesis

there is a ρ′ ∈ leftmost(∆G) such that A
∗
→ ρ′ and ↓(ρ′) = α′. Now ρ′

is α′ with some interleaved productions. Thus, we know that ρ′ → ρ for
some ρ ∈ embedded(∆G) such that ↓(ρ) = α. Since the leftmost nonterminal
of ρ′ is replaced we even have ρ ∈ leftmost(∆G). Hence, we conclude with

A
∗
→ ρ ∈ leftmost(∆G) and ↓(ρ) = α. �

Finally, we have to show that dG = d′
G.

Theorem 2.108 ∀w ∈ Σ∗ : dG(w) = d′
G(w).

Proof. By definition ∆G ⊆ leftmost(∆G). Let w ∈ Σ∗. By Lemma 2.105 the
restriction of the mapping πP to {ρ ∈ ∆G | ↓(ρ) = w} is a mapping into

{π ∈ P ∗ | S
∗
⇒lm w}. By Lemma 2.106 this mapping is injective. Moreover,

by Observation 2.107 it is surjective. Hence:

d(w) = |{ρ ∈ ∆G | ↓(ρ) = w}| = |{π ∈ P ∗ | S
∗
⇒lm w}| = d′

G(w).

�

Thus, we have shown that our definitions and the classical ones agree
whenever both can be applied. In particular we have seen a one-to-one
correspondence between leftmost derivations and leftmost embedded trees.
However, it is possible to generalise the leftmost derivation in such a way
that there is a one-to-one correspondence to all trees in embedded(∆G) \ Σ.
Such a generalisation can be found in [32]. For this generalised left parse the
corresponding bijection is a homomorphism which erases terminals, maps
nonterminals to a single “skip”-symbol s, and preserves productions. In case
of a purely terminal string no s symbols occur and the generalised left parse
coincides with the classical one. The use of a generalised leftmost derivation
is a potential alternative to the use of a tree formalism, but experience shows
that it is less convenient.
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2.7 Chomsky-Schützenberger Revisited

The Chomsky-Schützenberger theorem [9] states that each context-free lan-
guage L can be written as L := h(D(Γ)∩R) where D(Γ) is the Dyck language
over a set of parenthesis types Γ, h is a homomorphism, and R a regular set.
More specific, h is a projection and R = SF ∗ where S is a special symbol
and F a finite set. The usual proof exploits the fact that each context-free
language can be generated by a grammar in Greibach normal form or by the
use of a Pushdown automaton. [2].

With our formalism context-free languages are defined by a projection on
the set of derivation trees. Moreover, trees are closely related to parenthesis
expressions. Thus, our formalisms are already close to the characterisation of
Chomsky-Schützenberger. To deepen the understanding of this relationship,
in the sequel an easy alternative proof of the theorem is presented. For a
given context-free language L an appropriate set of the form D(Γ) ∩ R can
be obtained from the set of derivation trees of any context-free grammar
generating L essentially by the application of a homomorphism 10. Thus, for
this approach the Greibach normal form is not required and an appropriate
finite set F for a language L is directly obtained from the productions of any
context-free grammar generating L. Moreover, in contrast to the classical
approach, terminals and nonterminals are treated in a uniform way which
simplifies the access of the theorem. The proof deepens the understanding
of both, the derivation tree formalism, and the Chomsky-Schützenberger
theorem, by presenting it from a new point of view. But the results are not
needed later and can therefore be omitted without loss of understanding in
later chapters.

Firstly we define Dyck languages, i.e., sets of parenthesis expressions over
a set of parenthesis types.

Definition 2.109 For an arbitrary alphabet Γ we define Γ̄ := {ā | a ∈ Γ}
such that |Γ| = |Γ̄| and Γ ∩ Γ̄ = ∅. Thus, Γ̄ is a copy of the alphabet Γ.
The Dyck language over Γ is D(Γ) := L(GΓ) where GΓ is the context-free
grammar

GΓ := S → āSaS | ε for each a ∈ Γ.

A word in D(Γ) is called a parenthesis expression over Γ.

Note that according to this definition symbols with a bar are left parenthesis
while original symbols are right parenthesis.

10A leading left parenthesis for the start symbol has to be added to the homomorphic
image of the derivation trees.
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If α, β ∈ (Γ ∪ Γ̄)∗ for some alphabet Γ and γ ∈ D(Γ), then αγβ ∈ D(Γ)
if and only if αβ ∈ D(Γ). In the sequel we exploit this well known fact
implicitly.

Throughout Section 2.7 let G := (N, Σ, P, S) be a context-free grammar
and V := N ∪ Σ ∪ {$}, where $ is a symbol not in N ∪ Σ. For w ∈ V ∗

we define w̄ := g(w), where g : V ∗ → V̄ ∗ is the homomorphism defined by
g(a) = ā for each a ∈ V .

Definition 2.110 The homomorphism h : (N ∪ Σ∪P )∗ → V ∪ V̄ is defined
by:

h(X) :=

{

X if X ∈ N ∪ Σ

`(X)$̄$r(X)
R

if X ∈ P

For instance if [A, X1 · · ·Xk] ∈ P where k ∈ N and ∀i ∈ [1, k] : Xi ∈ N ∪ Σ
then

h([A, X1 · · ·Xk]
︸ ︷︷ ︸

X

) = A
︸︷︷︸

`(X)

$̄$ X̄k · · · X̄1
︸ ︷︷ ︸

r(X)
R

.

Observation 2.111 L(G) = πΣ(S̄h(∆G)).

Proof. Since ∆G does not contain nonterminals we have ↓(∆G) = πN∪Σ(∆G)
= πΣ(∆G). Now h(a) = a for each a ∈ Σ and h(p) does not contain a terminal
symbol for any p ∈ P . Therefore, πΣ(h(α)) = πΣ(α) for each α ∈ (P ∪ Σ)∗.
Since ∆G ⊆ (P ∪ Σ)∗ we finally get:

L(G) = ↓(∆G) = πΣ(∆G) = πΣ(h(∆G)) = πΣ(S̄h(∆G)).

�

To complete the proof of Chomsky Schützenberger’s theorem we show
that S̄h(∆G) can be written as D(Γ) ∩ R for appropriate choices of the
alphabet Γ and the regular set R.

Lemma 2.112 S̄h(cut(∆G)) ⊆ D(V ).

Proof. The statement is proved by the number of productions in a tree ρ ∈
cut(∆G). If ρ has no productions then ρ = S and we have S̄h(ρ) = S̄S ∈
D(V ). Assume ρ ∈ cut(∆G) is a tree with n ≥ 1 productions and the
statement is true for all trees in cut(∆G) with less than n productions. Then
by Observation 2.103 we have ρ = τ [A, α]αβ for some τ ∈ T ∗

G, β ∈ (N ∪ Σ)∗,
and [A, α] ∈ P . This implies ρ′ = τAβ ∈ cut(∆). Since ρ′ has one production
less than ρ by the inductive hypothesis S̄h(ρ′) = S̄h(τ)Aβ ∈ D(V ) follows.
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Finally, we prove that S̄h(ρ) ∈ D(V ) by showing that h(ρ) is h(ρ′) with a
parenthesis expression inserted in front of the suffix β:

h(ρ) = h(τ)h([A, α])αβ = h(τ) A$̄$ᾱR

︸ ︷︷ ︸

h([A,α])

αβ = h(τ)A $̄$ᾱRα
︸ ︷︷ ︸

∈D(V )

β.

�

Lemma 2.113 S̄h(cut(∆G)) ⊇ D(V ) ∩ S̄(N ∪ Σ ∪ h(P ))∗.

Proof. Let α ∈ D(V ) ∩ S̄(N ∪ Σ ∪ h(P ))∗. We prove α ∈ S̄h(cut(∆G)) by
induction on the number of $ symbols in α. If α contains no $ symbols
then α ∈ S̄(N ∪ Σ)∗. Thus, the leading occurrence of S̄ is the only left
parenthesis. Now α ∈ D(V ) implies α = S̄S = S̄h(S) ∈ S̄h(cut(∆G)). Now
assume α has n occurrences of $ symbols and the statement is true for all
β ∈ D(V ) ∩ S̄(N ∪ Σ ∪ h(P ))∗ with less than n occurrences of $ symbols.
The last $ symbol belongs to a h(p) for some p ∈ P , i.e., α = τB$̄$β̄Rγ
for some τ ∈ (V ∪ V̄ )∗, B → β ∈ P , and γ ∈ (N ∪ Σ)∗. Since α ∈ D(V )
this implies γ = βδ for some δ ∈ (N ∪ Σ)∗. Thus, α = τB $̄$β̄Rβ

︸ ︷︷ ︸

∈D(V )

δ implies

α′ := τBδ ∈ D(V )∩S̄(N ∪ Σ∪h(P ))∗. But α′ has only n−1 many $ symbols.
Hence, α′ ∈ S̄h(cut(∆G)). Let ρ′ ∈ cut(∆G) such that α′ ∈ S̄h(ρ′). Let δ′ be
the shortest suffix of ρ′ such that βB is a suffix of ρ′. Assume δ′ contains a
production. Then δ′ = τ ′′pδ′′ for some τ ′′ ∈ T ∗

G, p ∈ P and δ′′ ∈ (N ∪ Σ)∗.
Since h(p) does not contain any element of N ∪ Σ we conclude that βB is a
suffix of h(δ′′). But δ′′ is shorter than δ′ in contradiction to the choice of δ′.
Hence, δ′ cannot contain a production. But then δ′ ∈ (N ∪ Σ)∗ which implies
that h(δ′) = δ′. Therefore, δ′ = Bδ. This implies that ρ′ = τ ′Bδ for some
τ ′ ∈ T ∗

G such that h(τ ′) = τ . Thus, ρ := τ ′[B, β]βδ ∈ cut(∆G). Therefore,
S̄h(ρ) = h(τ ′)h([B, β])βδ = τB$̄$β̄Rγ = α. Hence, α ∈ S̄h(cut(∆G)). Since
α was an arbitrary element of D(V ) ∩ S̄(N ∪ Σ ∪ h(P ))∗ the claim of the
lemma holds. �

Lemma 2.114 S̄h(∆G) = D(V ) ∩ S̄F ∗, where F := Σ ∪ h(P ).

Proof. Since ∆G ⊆ cut(∆G) we get S̄h(∆G) ⊆ D(V ) by the use of Observa-
tion 2.112. Moreover, h(∆G) ⊆ F ∗ follows immediately from ∆G ⊆ (P ∪Σ)∗.
Thus, S̄h(∆G) ⊆ D(V ) ∩ S̄F ∗.

Now let γ ∈ D(V ) ∩ S̄F ∗. Then Lemma 2.113 implies that γ = S̄h(ρ)
for some ρ ∈ cut(∆G). Assume ρ /∈ ∆G then ρ = αAβ where α, β ∈ T ∗

G and
A ∈ N . Now h(ρ) = h(α)Ah(β). But h(β) ∈ {ε} ∪ (N ∪ Σ)(V ∪ V̄ )∗. Thus,
the occurrence of A in front of the suffix h(β) is not followed by $̄$. But
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h(ρ) ∈ S̄F ∗ and each nonterminal in a word belonging to S̄F ∗ is followed by
$̄$. This contradicts the assumption ρ /∈ ∆G. Hence, ρ ∈ ∆G, which implies
γ ∈ S̄h(∆G). Since this argument applies for any γ ∈ D(V )∩ S̄F ∗ we obtain
D(V ) ∩ S̄F ∗ ⊆ S̄h(∆G). �

As an immediate consequence of Lemma 2.111 and Lemma 2.114 we ob-
tain:

Theorem 2.115 L(G) = πΣ(D(V ) ∩ S̄F ∗), where F := Σ ∪ h(P ).

This is the theorem of Chomsky-Schützenberger. We can simplify the set F
a bit by erasing the $ parenthesis:

Definition 2.116 Let Γ := N ∪ Σ ∪ N̄ ∪ Σ̄, h′ : (N ∪ Σ ∪ P )∗ → Γ∗ a
homomorphism defined by h′(X) := πΓ(h(x)) for each X ∈ N ∪ Σ ∪ P , and
F ′ := Σ ∪ h′(P ).

Theorem 2.117 L(G) = πΣ(D(N ∪ Σ) ∩ S̄F ′∗)

Proof. Obviously, for each α ∈ D(V )∩S̄F ∗ we have πΓ(α) ∈ D(N ∪ Σ)∩S̄F ′∗

and πΣ(α) = πΣ(πΓ(α)). Thus, πΣ(D(V ) ∩ S̄F ∗) ⊆ πΣ(D(N ∪ Σ) ∩ S̄F ′∗).
On the other hand if β ∈ D(N ∪ Σ) ∩ S̄F ′∗ then by insertion of $̄$ to

the right of each nonterminal in β we obtain an α ∈ D(V ) ∩ S̄F ∗ such that
πΓ(α) = β. Again πΣ(α) = πΣ(β) holds, which implies πΣ(D(N ∪ Σ) ∩
S̄F ′∗) ⊆ πΣ(D(V ) ∩ S̄F ∗). Thus, according to Theorem 2.115 we obtain:

L(G) = πΣ(D(V ) ∩ S̄F ∗) = πΣ(D(N ∪ Σ) ∩ S̄F ′∗).

�

Example 2.118 Assume G : S → AB, A → aAb | ε, B → bB | ε. By
Theorem 2.117 we get L(G) = πΣ(D(N ∪ Σ) ∩ S̄F ′∗, where N := {S, A, B}
and Σ := {a, b}. Then

F ′ := {a, b, SB̄Ā,
︸ ︷︷ ︸

h′([S,AB])

Ab̄Āā,
︸ ︷︷ ︸

h′([A,aAb])

A,
︸︷︷︸

h′([A,ε])

BB̄b̄,
︸ ︷︷ ︸

h′([B,bB])

B
︸︷︷︸

h′([B,ε])

}.

For instance we consider the word α ∈ D(N ∪ Σ) ∩ S̄F ′∗ for which πΣ(α) =
abb. The pairing of parenthesis is pointed out by underlines while the factori-
sation according to F ′ is reflected by the spacing:

α = S̄ S
︸ ︷︷ ︸

B̄ Ā A
︸ ︷︷ ︸

b̄ Ā ā a
︸︷︷︸

A
︸ ︷︷ ︸

b

︸ ︷︷ ︸

B

︸ ︷︷ ︸

B̄ b̄ b
︸︷︷︸

B
︸ ︷︷ ︸
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In the proof of Theorem 2.117 we have eliminated the $ symbols used before.
One can already avoid the $ symbols in the previous lemmata and observa-
tions by using h′ instead of h. But the presence of $ symbols simplifies the
proofs of Lemma 2.113 and Lemma 2.114. For ε-free grammars the proofs
need only slight modifications. For grammars with ε-productions we have to
take into account that h′ does not map cut(∆G) injectively since a nontermi-
nal A and a production A → ε have the same image under h′. This makes
the argumentation somewhat more tricky and confusing. But it can be done.

The main difference between this construction and the classical one is
that we keep right parenthesis of terminals instead of left ones. Now a left
parenthesis ā of a terminal a can be placed properly within a sequence of
left parenthesis such that the corresponding terminal a occurs after satura-
tion of the left parenthesis to the right of the corresponding ā occurrence.
This helps to position terminals properly. The classical approach keeps left
parenthesis for terminals. Therefore, the positioning of the corresponding
right parenthesis is useless and they are appended immediately to the right
of the corresponding left parenthesis for the sole syntactic reason to keep
the balance. Thus, the parenthesis for terminals does not contribute to the
control of their positioning. This lack of control is compensated by the use
of the Greibach normal form.



Chapter 3

Some Ambiguity Functions

To get a glimpse of the nature of ambiguity functions this chapter provides
particular simple examples of context-free grammars with a variety of differ-
ent ambiguity functions. In the second section we discuss which additional
ambiguity functions can be achieved.

3.1 Right Linear Ambiguity functions

Let us start with the definition of right linear grammars and ambiguity func-
tions:

Definition 3.1 A context-free grammar G = (N, Σ, P, S) is right linear if

P ⊆ N × Σ∗(N ∪ {ε}).

An ambiguity function is right linear if it is the ambiguity function of a right
linear grammar.

For an arbitrary integer k > 0 we present right linear grammars G1, G2,
and G3 with the following finite, polynomial, and exponential ambiguities:

grammar d̂G(n) class L(G)

G1 k ΘT (k) ( Θ(1) {ε}

G2

(
n

k

)
Θ(nk) = ΘT (nk) aka∗

G3 kn Θ(kn) ( ΘT (2n) a∗

In the formulas above n represents the length of the words. The following ex-
amples are all right linear context-free grammars over a single letter alphabet.
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Clearly the generated languages are regular and therefore unambiguous.1 In
this sense the ambiguity functions of the context-free grammars presented
here are artificial for the corresponding languages. However, in Chapter 8 we
will show that any ambiguity function of a cycle-free context-free grammar G
is the inherent ambiguity function of some context-free language L 6= L(G)
which can be constructed from G. In this sense the trivial examples pre-
sented here, already contain essential features of inherent finite, polynomial,
and exponential ambiguities.

In the sequel we represent context-free grammars by their production sets
according to the convention in Section 2.3.2.

3.1.1 Finite Degree of Ambiguity

Example 3.2
G1 := S → A1 | . . . | Ak

A1 → ε
...

Ak → ε

The grammar G1 has start symbol S and generates only the single word ε.
The set of derivation trees is ∆G1 = {[S, Ai][Ai, ε] | i ∈ [1, k]} Thus, we
have d̂G1(0) = k. Since no other word is generated by G1 and d̂G1(n) is the
ambiguity of the most ambiguous word of length at most n we have d̂G1(n) = k
for each n ∈ N.

3.1.2 Polynomial Ambiguity

Example 3.3
G2 := A1 → aA1 | aA2

...
Ak → aAk | aAk+1

Ak+1 → aAk+1 | ε

The grammar G2 generates all the words over the singleton alphabet {a} with
at least k many a’s. Each derivation starts with A1 and each nonterminal Ai

for i ∈ [1, k] generates a sequence of a’s until it switches to Ai+1. Finally Ak+1

terminates the derivation after also producing a possibly void sequence of a’s.
Hence, a derivation tree is characterised by a vector (n1, . . . , nk, n) ∈ Nk+1,
where for each i ∈ [1, k] the integer ni is the position of the last terminal

1An unambiguous grammar for a regular language R is immediately obtained from a
deterministic finite automaton accepting R.
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generated by a production with the nonterminal Ai on the left-hand side and
n is the length of the word. For a word of length n each vector which satisfies:
1 ≤ n1 < n2 < · · · < nk ≤ n corresponds to a derivation tree. By the ordering
it is sufficient to know the set of positions {ni | i ∈ [1, k]}. Hence, the number
of derivation trees for a word of length n equals the number of subsets of the
interval [1, n] with k elements, which is

(
n

k

)
. Hence, d̂G2(n) =

(
n

k

)
∈ Θ(nk).

3.1.3 Exponential Ambiguity

Example 3.4

G3 := Ai → aA1 | · · · | aAk | ε for each i ∈ [1, k] (A1 start symbol).

The grammar G3 generates each word in a∗. For a given n ∈ N the word an

has the following set of derivation trees

{ [A1, aX1]a[X1, aX2]a · · · [Xn−1, aXn]a[Xn, ε] |
∀i ∈ [1, n] : Xi ∈ {A1, . . . , Ak} }.

Thus, we can choose for each of the n nonterminals X1, . . . , Xn independently
a nonterminal from the set {A1, . . . , Ak}. This yields d̂G3(n) = kn.

3.2 Other Ambiguity Functions

Cyclic context-free grammars can have an infinite number of derivation trees
for a single word. The highest possible degree of ambiguity is obtained by
the following context-free grammar:

G := S → S | ε.

The grammar G generates the empty word, which is the shortest word at
all, with infinitely many derivation trees. To the contrary, the ambiguity
functions of cycle-free context-free grammars are exponentially bounded.2

Since each context-free language can be generated by a cycle-free context-free
grammar3 super exponential ambiguity cannot be inherent for any context-
free language.

2For cycle-free context-free grammars the number of nodes of a derivation tree is linear
with respect to the length of their frontier [16, Theorem 12.2.1]. Since the trees of G are
denoted by a finite alphabet the number of trees of a given length m is bounded by km

for some k ∈ N. If we sum up all the trees up to length m this geometric series is still
bounded by c · km for some c ∈ N. Hence, d̂G(n) ∈ 2O(n).

3It is well known that each context-free language not containing the empty word is
generated by a grammar in Greibach Normal Form, thus by a cycle-free grammar. The
generation of the empty word can be added without introducing a cycle.
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In Chapter 7 it will be shown that there is no ambiguity function in
2o(n) ∩ nω(1) (= oT (2n) ∩ nω(1)).

It can be easily seen that sublinear ambiguities cannot be obtained with
right linear grammars over a single letter alphabet. Thus, examples of
infinite but sublinear ambiguity are necessarily more complicated than the
examples presented in this chapter. However, in Chapter 6 we will see that
sublinear ambiguity can be achieved with linear context-free grammars over
two terminal letters. In fact, there are even rational trace languages with
sublinear ambiguity.



Chapter 4

Closure Properties of
Ambiguity Classes

Ambiguity classes are rather fragile with respect to natural operations. For
instance the class of unambiguous context-free languages (UCFL) is not
closed under any of the operations union, concatenation, Kleene star, length
preserving homomorphisms, and projections. They are not even closed under
concatenation with a two word set [16, Theorem 7.4.4]. Some rather weak
closure properties can be found in [16]. For instance UCFL is closed under
intersection with regular sets, union of disjoint sets, or concatenation and
quotient with singletons. The strongest result which can be found in [16,
Theorem 7.4.2] is the closure under inverse gsm mappings.

The class FCFL of context-free languages with finite degree of ambigu-
ity is closed under all the operations named above. In addition, FCFL is
obviously closed under union. But it is hard to figure out further closure
properties of FCFL. In contrast to that PCFL has a certain robustness
against several operations.

In this chapter we consider the ambiguity costs of several operations in
more detail. As an outcome of this analysis we will find that PCFL is closed
under union, concatenation and a restricted form of substitution, called
bounded substitution. We also consider the ambiguity costs of bounded
contractions which are special cases of bounded substitutions.

The costs of bounded substitutions and bounded contractions depend on
the Parikh suprema of the affected symbols. Therefore, the question arises
how to compute this quantity. An algorithm for the computation of Parikh
suprema is presented, which is efficient with respect to the size of a context-
free-grammar generating the language.
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4.1 Operations with Language Constraints

This simple operation can cause such a huge ambiguity since it manipulates
an unbounded number of symbols. Therefore, we define operations which are
only permitted for special languages.

Definition 4.1 Let Σ and Γ be finite alphabets. A substitution σ : Σ∗ → 2Γ∗

is bounded for a language L ⊆ Σ∗ if for each a ∈ Σ which is not bounded
σ(a) = {a} holds. The projection πΓ(L) is a bounded contraction of the
language L if Σ \ Γ contains bounded symbols only.

Definition 4.2 Let L1, L2 ⊆ Σ∗. Then L1L2 is an unambiguous concatena-
tion if for each w ∈ L1L2 there is a unique u ∈ L1 such that w ∈ uL2

4.2 Closure Properties of PCFL.

Lemma 4.3 Let G1 = (N1, Σ1, P1, S1) and G2 = (N2, Σ2, P2, S2) be cycle-
free context-free grammars. Then for L(G1) ◦ L(G2) where ◦ is one of the
binary relations of union, unambiguous concatenation, or concatenation we
can find a context-free grammar G whose ambiguity function is bounded by the
expression found in the table below. Moreover, if a ∈ Σ1 is bounded then for
k = sup(L(G1), a) we can find a context-free grammar G such that L(G) =
πΣ\{a}L(G1) or a context-free grammar G with L(G) = L(G1)[a/L(G2)] such
that the ambiguity of G is bounded by the expression in the table below:

operation ambiguity

union d̂G(n) ≤ d̂G1(n) + d̂G2(n)

unambiguous concatenation d̂G(n) ≤ d̂G1(n)d̂G2(n)

concatenation d̂G(n) ≤ nd̂G1(n)d̂G2(n)

cancellation of a symbol d̂G(n) ∈ O(nkd̂G1(n + k))

bounded single symbol substitution d̂G(n) ∈ O(n2kd̂G1(n + k)(d̂G2(n))k)

Proof. Without loss of generality we can assume that N1 ∩ N2 = ∅. Then
the grammar

G = (N1 ∪N2 ∪ {S}, Σ1 ∪ Σ2, P1 ∪ P2 ∪ {[S, S1], [S, S2]}, S)

obviously has the property L(G) = L(G1) ∪ L(G2) and d̂G(n) ≤ d̂G1(n) +
d̂G2(n) for each n ∈ N. To obtain the concatenation we construct the gram-
mar

G = (N1 ∪N2 ∪ {S}, Σ1 ∪ Σ2, P1 ∪ P2 ∪ {[S, S1S2]}, S)
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In general a word of length n can be split at n + 1 many positions in two
factors. Hence, we can estimate d̂G(n) by a Cauchy product. For each n ∈ N

we obtain:

d̂G(n) ≤
n∑

i=0

d̂G1(i)d̂G2(n− i) ≤
n∑

i=0

d̂G1(n)d̂G2(n) = nd̂G1(n)d̂G2(n).

In case the concatenation of L(G1) and L(G2) is unambiguous, each word
has at most one valid factorisation and we obtain for each n ∈ N:

d̂G(n) = max{d̂G1(i)d̂G2(n− i) | 0 ≤ i ≤ n} ≤ d̂G1(n)d̂G2(n).

To obtain a context-free grammar G such that L(G) = πΣ\{a}L(G1), we erase
any occurrence of the symbol a from the right-hand side of a production of
G1, i.e., for Σ′ = Σ1 \ {a} we choose the context-free grammar:

G = (N1, Σ
′, {[A, πΣ′(α)] | [A, α] ∈ P}, S1).

Since a is bounded by k, a word w ∈ πΣ′(L(G1) can be the image of words in
L(G1) which have at most k many occurrences of a′s shuffled into w. Thus,
we obtain:

d̂G(n) ≤
k∑

i=0

(
n + i

i

)

d̂G1(n + i) ∈ O(nkd̂G1(n + k))

Finally, to obtain a context-free grammar G with L(G) = L(G1)[a/L(G2)], we
replace any occurrence of the symbol a on the right-hand side of a production
of G1 by S2 and add all the productions and symbols of G2. Thus, for the
homomorphism h : Σ∗

1 → ((Σ1 \ {a}) ∪ {S2})∗ defined by h(x) = x for
x ∈ Σ1 \ {a} and h(a) = S2 we obtain the context-free grammar:

G = (N1 ∪N2, (Σ1 \ {a}) ∪ Σ2, {[A, h(α] | [A, α] ∈ P1} ∪ P2, S1).

Now each word w ∈ L(G1)[a/L(G2)] consists of a word in L(G1) where up to
k many words belonging to L(G2) have been inserted. Each inserted word has
a beginning and an end which can range over w. For a given factorisation
of w the ambiguity which is caused by the use of the productions in the
modified version of P1 (with a replaced by S2) is bounded by d̂G1(n + k),
while each inserted word is produced by the productions in P2 leading to a
contribution of d̂G2(n) each. Thus,

d̂G(n) ∈ O(n2kd̂G1(n + k)(d̂G2(n))k).

. �
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Corollary 4.4 Let G1 = (N1, Σ1, P1, S1) and G2 = (N2, Σ2, P2, S2) be cycle-
free context-free grammars such that L(G1)L(G2) is an unambiguous con-
catenation of L(G1) and L(G2).

Then for L(G1)L(G2) we can find a context-free grammar G whose am-
biguity function is bounded by

d̂G(n) ∈ ΘT
(
(d̂G1 · d̂G2)(n)

)

Proof. According to Lemma 4.3 we have d̂G(n) ∈ OT
(
(d̂G1 · d̂G2)(n)

)
. It

remains to show that d̂G(n) ∈ ΩT
(
(d̂G1 · d̂G2)(n)

)
holds. If we construct G

from G1 and G2 as described in the proof of Lemma 4.3 we can substitute
n by 2n in an equation proved there for unambiguous concatenations, which
leads to:

∀n ∈ N : max{d̂G1(i)d̂G2(2n− i) | 0 ≤ i ≤ 2n} = d̂G(2n).

In addition, we have d̂G1(n)d̂G2(n) ∈ {d̂G1(i)d̂G2(2n − i) | 0 ≤ i ≤ 2n}. Let
f : N→ N be defined by f(n) = d̂G(2n) for each n ∈ N. Then we obtain

f(n) = d̂G(2n) ≥ d̂G1(n)d̂G2(n) = (d̂G1 · d̂G2)(n) ∈ ΩT ((d̂G1 · d̂G2)(n)).

Since d̂G(n) ∈ ΩT (f(n)) holds by definition we finally obtain that d̂G(n) ∈
ΩT (f(n)) ⊆ ΩT ((d̂G1 · d̂G2)(n)). �

Lemma 4.5 Let Σ and Γ be two disjoint alphabets, let G = (N, Σ∪Γ, P, S) be
a context-free grammar, and let πΣ be a bounded contraction for the language
L(G). Then there is a context-free grammar G′ such that L(G′) = πΣ(L) and
d̂G′ ∈ O(nk · d̂G(n + k)), where k := sup(L(G))(Γ).

Proof. Let Σ, Γ, and G be defined as mentioned above. We prove the state-
ment by induction on |Γ|. If |Γ| = 0 then the statement is trivial. Now
assume the statement is true for some n ∈ N. Let |Γ| = n + 1. According to
Lemma 4.3 we can cancel a symbol a ∈ Γ and yield a context-free grammar
G′′ such that L(G′′) = πΣ∪Γ′(L) and d̂G′′ ∈ O(nk1 · d̂G(n + k1)), where k1 :=
sup(L(G))(a) and Γ′ = Γ \ {a}. Since |Γ′| = n by the inductive hypothesis
there is a grammar G′ such that L(G′) = πΣ(L) and d̂G′ ∈ O(nk2 ·d̂G′′(n+k2)),
where k2 := sup(L(G))(Γ′). Thus, for k := k1+k2 = sup(L(G))(Γ) we obtain:

d̂G′ ∈ O
(
nk2 · d̂G′′(n + k2)

)
⊆ O

(
nk · d̂G(n + k)

)
.

�

Corollary 4.6 The language class PCFL is closed under bounded substitu-
tion, bounded contraction, concatenation, and union.
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Proof. Each language in PCFL is generated by at least one context-free gram-
mar with a polynomially bounded ambiguity. Thus, for the union and the
concatenation we can estimate d̂G1 and d̂G2 in Lemma 4.3 with polynomials.
Which leads to a polynomial. A bounded contraction of a language L ⊆ Σ∗

which has polynomially bounded ambiguity can be simulated by at most |Σ|
many cancellations of a symbol. Hence, we obtain the product of at most |Σ|
many polynomials. Note that polynomials are homogeneous functions, which
implies that for each k ∈ N and each polynomial p(n) the function q : N→ N

defined by q(n) := p(n + k) has the property q(n) ∈ O(p(n)). A bounded
substitution can also be divided in a sequence of single symbol substitutions.
But we have to be cautious since a bounded substitution replaces all symbols
in parallel. Thus, in contrast to a sequence of single symbol substitutions we
cannot substitute a symbol which has emerged by a previous substitution.
We can always simulate the parallel substitution by renaming the symbols
with a sequence of single symbol substitutions such that none of the new
symbols occurs in a substituted word. (Note that the renaming does not
change the ambiguity.) Thus, we obtain again at most |Σ| many products of
polynomials. Again we exploit that polynomials are homogeneous. �

4.3 Semiring Closure of UCFL

In this section we introduce the semiring closure of unambiguous context-
free languages which is the closure under union and concatenation denoted
UCFL[∪, ·]. Clearly UCFL[∪, ·] is a subset of PCFL. In this Section we will
see that the inclusion is proper. This is interesting for two reasons:

� We will see in Section 5.1.5 that Earley’s algorithm is capable to parse
any language in the semiring closure of unambiguous context-free lan-
guages in quadratic time, i.e., for a language L ∈ UCFL[∪, ·] there is
always a corresponding context-free grammar G such that L = L(G)
and G is parsed by the Earley parsing algorithm [11, 1] in quadratic
time. If PCFL and UCFL[∪, ·] coincided no language in PCFL would
require more than quadratic parsing time (by the use of Earley’s algo-
rithm.) This would be a nice result.

� In Chapter 7 we will see that PCFL is closed under bounded substitu-
tion. But the whole class PCFL can already be obtained as the closure
of UCFL under bounded contractions. It is obvious that UCFL[∪, ·] is a
subclass of the closure of UCFL under bounded contraction. But is it a
strict subclass or is the closure of UCFL under union and concatenation
already sufficient to obtain each language in PCFL?
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Definition 4.7 If X is a language class then X[∪] and X[·] denote the clo-
sure of X under union and concatenation, respectively. X[·,∪] denotes the
closure under union and concatenation. X[·,∪] is called the semiring closure
of X.

Definition 4.8 Let {a, b, c, #} be an alphabet. We define L� := L[$/Lp]
where L := {an#$$#an | n ∈ N} and Lp := {u ∈ {b, c}∗ | u = uR} is the
language of palindromes.

The language L� already occurred as Example 2.2 to demonstrate the use of
single symbol substitutions defined in Definition 2.1

Lemma 4.9 L� ∈ PCFL.

Proof. Let L1 := {ai#$$#ai | i ∈ N}. Obviously, L1, Lp ∈ UCFL and the
substitution [$/Lp] is bounded. By Lemma 4.6 this implies L� = L1[$/Lp] ∈
PCFL. �

Lemma 4.10 L� /∈ UCFL[∪, ·].

Proof. Assume L� ∈ UCFL[∪, ·]. By the distributive laws this is equivalent
to L� ∈ UCFL[·][∪]. Thus, for some k, ` ∈ N, U1, . . . , U` ∈ UCFL, and
L1, . . . , Lk ∈ UCFL[·] \ UCFL we have L� = (∪`

i=1Ui) ∪ (∪k
i=1Li). Let us

consider Li for an arbitrary i ∈ {1, . . . , k}. Now for some minimal m ∈ N we
can write Li = Ũ1 · · · Ũm where Ũ1, . . . , Ũm ∈ UCFL. Since Li is ambiguous
we have m > 1. Each word in L� contains exactly two #’s. Therefore,
∀j ∈ {1, . . . , m} : ∀u, v ∈ Ũj : |u|# = |v|#. Assume the words in Ũ1 do not
contain a # then Ũ1 only contains words of the form a∗. Recall that for each
w ∈ Li = Ũ1 · · · Ũm the number of a’s to the left of the first # must match
the number of a’s to the right of the second #. Therefore, Ũ1 must be a
singleton. But then Ũ1 · Ũ2 is unambiguous contradicting the minimal choice
of m. Thus, each word in Ũ1 must contain the first #. Similarly we obtain
that each word in Ũm must contain the second #. This implies that the
words in Ũ1 and Ũm consist of words of the forms a∗#{b, c}∗ and {b, c}∗#a∗,
respectively. Again, if the number of a’s would not be fixed we could compose
words with non matching “a” blocks. Hence, Li ⊆ ani#{b, c}∗#ani for some
ni ∈ N. We define n = max{ni | i ∈ {1, . . . , k}}+1. Let R := an#{b, c}∗#an.
Then L� ∩R = ((∪`

i=1Ui) ∪ (∪k
i=1Li)) ∩R = ((∪`

i=1Ui) ∩ R) ∪ ((∪k
i=1Li) ∩ R)

= (∪`
i=1Ui)∩R = ∪`

i=1(Ui∩R). Since unambiguous languages are closed under
intersection with regular sets [16], this implies L�∩R ∈ UCFL[∪]. Moreover,
unambiguous languages are closed under cancellation of singletons [16]. By
cancellation of an# from the left-hand side and #an from the right-hand
side, we obtain LpLp ∈ UCFL[∪]. But this is false since in [10] it has been
proved that LpLp has infinite ambiguity. Therefore, L� /∈ UCFL[∪, ·]. �
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As an immediate consequence of Lemmas 4.6, 4.9 and 4.10 we obtain:

Theorem 4.11 UCFL[∪, ·] ( PCFL.

4.4 Computations of Parikh Suprema

Our estimation for the amount of ambiguity caused by bounded contractions
and bounded substitutions in Lemma 4.3 crucially depends on the Parikh
suprema of the affected symbols. If we are only interested in the question
whether this amount of ambiguity is polynomially bounded or not, due to
Corollary 4.6 it is sufficient just to know whether a symbol is bounded or
not. How this question can be decided can be found in Section 2.3.8. But the
degree of a polynomial which bounds the ambiguity of a context-free language
crucially depends on Parikh suprema. Therefore, the question arises how we
can determine Parikh suprema of symbols. In this section we present an
efficient algorithm to compute them.

Lemma 4.12 Let X ∈ N ∪ Σ. Then sup(G)(∇X) = sup(G)(X).

Proof. Since each element of ∇X can generate at least one occurrence of
X, we obtain sup(G)(∇X) ≤ sup(G)(X). On the other hand X ∈ ∇X .
Therefore, sup(G)(X) ≤ sup(G)(∇X) is trivial. Thus, the claim follows. �

We develop a polynomial time algorithm which takes a pair, consisting
of a reduced grammar G = (N, Σ, P, S) and an alphabet Γ ⊆ N ∪ Σ (in
a binary encoding), as the input and computes sup(G)(Γ). The algorithm
works as follows: In the sequel we denote the pumping productions of G as P=

and the descending productions as P<ω. First we compute directlyPumpable
:= {X ∈ N ∪ Σ | ∃p ∈ P= : |r(p)|[X] > |`(p)|[X]}. Then we compute
Pumpable := {Y | X ∈ directlyPumpable ∧ X ` Y }. It is easily seen that
Pumpable is the set of pumpable symbols. The set Γ ⊆ N ∪ Σ is not bounded
if and only if at least one X ∈ Γ is not bounded. Hence, we can determine
by the algorithm above whether Γ is bounded or not. If Γ is not bounded
then sup(G)(Γ) = ω. Otherwise we proceed as follows: First we construct G′

by erasing all productions p where `(p) is a pumpable symbol and by erasing
all occurrences of pumpable symbols in right-hand sides of productions. By
Lemma 4.12 no bounded symbol can ever be generated by a pumpable sym-
bol. Hence, G′ is reduced. Again by Lemma 4.12 the bound is an invariant
w.r.t. the equivalence ≡. Hence, we can replace each occurrence of a symbol
by its equivalence class and obtain grammar G′′. The remaining pumping
productions all have the form [X] → [X] and can be eliminated to obtain
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G′′′. It is easily seen that sup(G)(Γ) = sup(G′′′)(Γ′) for Γ′ := {[X] | X ∈ Γ}.
Since the grammar G′′′ has descending productions only, ∆(G′′′) is finite. Ob-
viously, we can explore all the trees in ∆(G′′′) to compute Parikh suprema in
exponential time. But we can also use memoization to compute the Parikh
bound efficiently. Let Ñ , Σ̃, P̃ , S̃ be such that G′′′ = (Ñ , Σ̃, P̃ , S̃). In the
sequel we allow terminals or productions as start symbols. In case of a termi-
nal a ∈ Σ the generated language is the singleton {a}, in case of a production
p ∈ P it is any word which can be derived from the right-hand side r(p) of
the production. Formally, we define the languages generated by grammars
having terminals or productions as their start symbols as follows: For p ∈ P
we define L((Ñ , Σ̃, P̃ , p)) := L((Ñ ∪̇{S ′}, Σ̃, P̃ ∪ {S ′ → r(p)}, S ′)) where
S ′ /∈ N ∪ Σ is a new nonterminal. For a ∈ Σ we define L((Ñ , Σ̃, P̃ , a)) := {a}.
Furthermore, we define Gµ := (Ñ , Σ̃, P̃ , µ) for each µ ∈ Ñ ∪ Σ̃ ∪ P̃ . Finally,
for each ν ∈ Ñ we define Pν := {p ∈ P̃ | `(p) = ν}. We compute for each
µ ∈ P̃ ∪ Ñ ∪ Σ̃ the Parikh supremum of Γ′ in the grammar (Ñ , Σ̃, P̃ , µ).
For µ ∈ Σ̃ ∪ Γ′ the task is trivial. Starting with the terminals we compute
sup(G′′′)(Γ′) bottom up by the use of the equation:

sup(Gµ)(Γ′) =







0 if µ ∈ Σ̃ \ Γ′

1 if µ ∈ Γ′

max{sup(Gp)(Γ
′) | p ∈ Pµ} if µ ∈ Ñ \ Γ′

∑k
i=1 sup(GXi

)(Γ′) if µ = [A, X1 · · ·Xk] ∈ P.

To talk about the complexity of the algorithm we need a reasonable measure
of the size of a context-free grammar. We choose the accumulated length of
right-hand sides of all productions.

We want to compute sup(G′′′)(Γ′) = sup(GS̃)(Γ′). The dependency graph
of G′′′ is a directed acyclic graph. Hence, we can compute sup(GS̃)(Γ′) by a
naive recursion based on the equation above. This would lead to an exponen-
tial worst case running time since many suprema would be computed several
times. We can use memoization to avoid this redundancy: Let V := P̃∪Ñ∪Σ̃.
For each element of µ ∈ V we store in an array whether we have already
computed sup(Gµ). If this is the case we have stored the computed value in
another array. At the beginning all elements of V are marked as not yet com-
puted. We compute the supremum of elements in V by using the equation
above recursively start with sup(GS̃)(Γ′). Each time we need a supremum
for an element of V in such a computation we first check whether we already
know it. Only if the supremum is unknown we go into the recursion. If we
have computed a supremum we store that information and the corresponding
value. Since there are no cycles in the dependency graph of G′′′ we only make
on recursive call for each element of V . Since all the operations of one call
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can be executed in constant time, we get a linear time bound. It remains
to consider the time to compute G′′′. One way to do this is to compute
the relation ` first which is the transitive closure of the dependency graph.
Once ` is computed the remaining constructions can be done in linear time.
Therefore, the computation of Parikh suprema is efficient.

4.5 Conclusion

As we have seen PCFL is closed under union, concatenation, bounded con-
tractions and bounded substitutions. We have also seen how to compute
Parikh suprema which is crucial to estimate how much ambiguity is added
by the latter two operations.

Finally, with respect to the operations of regular expressions the class
PCFL fits nicely into the hierarchy depicted below:

∪ · ∗
UCFL – – –
FCFL + – –
PCFL + + –
context-free + + +

Here “∪” is the union, “·” is the concatenation, and “∗” is the Kleene-
star-operation. The symbols “+” and “–” indicate whether or not a language
class is closed under the corresponding operation.
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Chapter 5

Ambiguity and Parsing

Parsing of context-free languages is a classical and important topic. Since
this thesis is on ambiguity we will not go too deep into the theory of parsing.
However, this chapter is dedicated to this subject to show some connections
between parsing and ambiguity.

In Section 5.1 we revisit the well known parsing algorithm for general
context-free languages due to Earley [11]. This algorithm has the nice prop-
erty that it parses general context-free grammars in O(n3), while reduced
unambiguous context-free grammars are parsed in O(n2). In both cases n
is the length of the input string, while we consider the size of the grammar
as a constant. Earley already showed that only a special form of ambigu-
ity, called direct ambiguity, is expensive for the algorithm. In particular he
showed that a context-free grammar with bounded direct ambiguity only re-
quires quadratic parsing time. Note that each linear context-free grammar
has bounded direct ambiguity.

We introduce an even more restricted form of ambiguity which we call
immediate ambiguity. This form of ambiguity is at most linear with respect
to the length of the words.1 We will see that Earley’s algorithm requires
O(n2 · imG(n)) time to parse a context-free grammar G. Here imG is the
analogon of the ambiguity function for immediate ambiguity, i.e., for each
n ∈ N : imG(n) is the largest immediate ambiguity of a word with length at
most n. We also show that imG(n) ≤ d̂G(n + kG) holds for reduced context-
free grammars, where kG ∈ N is a constant only depending on G. Thus,
for reduced context-free grammars with infinite but sublinear ambiguity we
obtain an Earley parsing time which is less than cubic. In Chapter 6 we will

1Direct ambiguity can be as large as O(nk−1), where k is the maximal number of
nonterminals on the right-hand side of a production. A context-free grammar has bounded
direct ambiguity if and only if it has bounded immediate ambiguity, even though the least
upper bound may be lower for immediate ambiguity.

89
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see that this is by no means a statement on an empty set. Indeed the results of
Chapter 6 immediately imply the existence of an infinite hierarchy of context-
free grammars with sublinear ambiguity. The ambiguity can be as low as
any computable divergent total non-decreasing function. Thus, we can prove
an “almost” quadratic Earley parsing time for many infinitely ambiguous
context-free grammars just by considering their ambiguity function.

We can extend the upper bounds from context-free grammar classes to
context-free language classes in the obvious way:

Definition 5.1 A language class can be Earley parsed in time f : N→ N if
each language in the class is generated by at least one context-free grammar
which is parsed in O(f) steps by the Earley algorithm.

Earley showed that quadratic time is sufficient for metalinear grammars
either, even though they do not have bounded direct ambiguity in general.
The proof for the quadratic parsing time of metalinear languages can be
immediately transferred to the closure of the class of languages with bounded
direct ambiguity under union and concatenation.2

In Section 5.2 we use a result from [28] to show that each bounded marker
language L can be parsed in logarithmic time on a CREW-PRAM with
O(n6+k) many processors, where k is the so called marking constant of L. In
case L has a linear witness, O(n2+k′

) many processors are sufficient, where
k′ ≥ k is the so called linear marking constant for L. Obviously, the latter
result is no improvement in case k′ ≥ k + 4. But often k = k′ holds. In
Chapter 7 we will see that the class of bounded marker languages and the
class of languages with polynomially bounded ambiguity (PCFL) coincide.

5.1 Earley Parsing Revisited

Like the Cocke-Younger-Kasami algorithm3 (CYK-algorithm), the Earley al-
gorithm uses dynamic programming to avoid exponential time. In the orig-
inal form the CYK-algorithm parses Chomsky normal form grammars4 in
cubic time using a fixed table of quadratic size. The Earley algorithm parses
any context-free grammar with at most cubic time and quadratic space. But
in contrast to the CYK-algorithm the time and space requirements depend

2A language has bounded direct ambiguity if it is generated by a context-free grammar
with bounded direct ambiguity.

3The first publication of the CYK-algorithm was due independently to Kasami [19]
and Younger [36]. It can also be found in several textbooks, for instance [1, 17]. In these
textbooks more information on Cocke’s contribution is provided.

4A grammar G = (N, Σ, P, S) is in Chomsky normal form if P ⊆ N ×N 2 ∪ Σ.



5.1. EARLEY PARSING REVISITED 91

on the parsed grammar. For instance the algorithm parses reduced linear
grammars and unambiguous grammars in quadratic time without any modi-
fications and LR(0) grammars in linear time and space. The original version
[11] also allowed look ahead strings such that LR(k) grammars can be parsed
in linear time and space. A good presentation for the Earley algorithm with-
out look ahead can be found in the textbook [1, Section 4.2.2].

The basic idea can be sketched as follows: For a given context-free gram-
mar and a given input string one can define “valid tree predicates”. They
represent partial tree structures which can occur in a derivation tree whose
frontier matches a certain prefix of the input string. There are trivial initial
valid tree predicates matching the empty prefix. Moreover, there are three
rules of inference which are applicable to valid tree predicates and yield new
valid tree predicates. The set of valid tree predicates turns out to be the
closure of the initial tree predicates under these rules of inference. Earleys
algorithm essentially computes this closure. A word is in the language if and
only if the corresponding set of valid tree predicates contains tree predicates
of a special form which matches the whole input string. In case that such a
tree predicate exists one can compute a derivation tree in at most quadratic
time from the set of valid tree predicates. (Again special cases like LR(k)
grammars can be handled faster.) To see how this can be done the reader is
referred to [1, Algorithm 4.6]. The proof that the set of valid tree predicates
is the closure of the initial tree predicates under the three rules of inference
mentioned above can be found in [1, Theorem 4.9].

In Section 5.1.1 we define valid tree predicates and the rules of inference.
We do not care for the question how to compute the valid tree predicates
efficiently there. For such details the reader is referred to [1, Section 4.2.2].

Section 5.1.2 provides some information concerning appropriate data
structures and the handling of grammars which contain ε-productions. It is
meant as a supplementation of the comments in [1]. Moreover, we will formu-
late the relevant aspects for the parsing by an abstraction named duplicate.
Except for this concept the understanding of details of the implementation
is not required to follow the subsequent reasoning.

In Section 5.1.3 we characterise this crucial aspect in a more mathematical
way as the number of so called “completer” proofs for a valid tree predicate.
By this characterisation we get rid of all the details of the implementation.
Thus, the understanding of the implementation details in Section 5.1.2 is
not required here. Finally, we introduce the concept of immediate ambiguity
mentioned above, which is a refinement of Earley’s direct ambiguity. We show
that the parsing time of the Earley algorithm is bounded by O(n2 · imG(n)).

In Section 5.1.4 we show that immediate ambiguity is indeed a special
form of ambiguity for reduced context-free grammars. For them imG(n) ≤
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d̂G(n+kG) holds, where kG ∈ N is a constant only depending on G. This leads
to a general upper bound of O(n2 · d̂G(n + kG)) for the Earley parsing time.
This estimation is poor for grammars with at least linear ambiguity, since
it does not improve the known cubic time bounds, but for grammars with
sublinear ambiguity it is a substantial improvement, which can be obtained
without analysing the rather technical immediate ambiguity.

In Section 5.1.5 we observe that Earley’s proof for the quadratic parsing
time of metalinear languages can be extended to the closure of languages
with bounded direct ambiguity under union and concatenation.

5.1.1 Valid Tree Predicates

Definition 5.2 Let G = (N, Σ, P, S) be a context-free grammar. A dotted
production is a triple (A, α, β) ∈ N × ((N ∪ Σ)∗)×2 such that A→ αβ ∈ P .
We denote a dotted production (A, α, β) by A→ α • β. In case α or β is the
empty word an explicit denotation of ε is not required, we can just omit the
respective word. For instance we may write A→ α• instead of A→ α•ε. The
set of dotted productions is denoted by P •. Let a1, . . . , an ∈ Σ for some n ∈ N

and let w := a1 · · ·an. A tree predicate is a triple (A→ α•β, i, j) ∈ P •×N2.
The set of valid tree predicates for the grammar G and the word w is defined
by:

validG(w) :=

{
(A→ α • β, i, j) ∈ P • × N2 |

∃γ ∈ (N ∪ Σ)∗ : S
∗
⇒ a1 · · ·aiAγ and α

∗
⇒ ai+1 · · ·aj

}

The set of initial tree predicates is:

initialG := {(S → •β, 0, 0) | ∃β ∈ (N ∪ Σ)∗ : S → β ∈ P}

It is easily seen that initialG ⊆ validG(w) for each w ∈ Σ∗. Since the number
of dotted productions does not depend on the length of the words and the
last two components of a valid tree predicate are non negative integers lower
than n + 1, the number of valid tree predicates is bounded by O(n2). There
is at most one of the three rules of inference named scanner, predictor, and
completer applicable to a valid tree predicate of the form (A, α • β, i, j).
Which one depends on the form of β:

β ∈ rule of inference

aj+1(N ∪ Σ)∗ scanner
(Σ \ {aj+1})(N ∪ Σ)∗ non

N(N ∪ Σ)∗ predictor
ε completer
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Provided a rule of inference is applied to a valid tree predicate, the result
is a valid tree predicate or a set of valid tree predicates. For arbitrary A ∈
N, α, β ∈ (N ∪ Σ)∗, and i, j ∈ N we define:

scannerG,w(A→ α • aj+1β, i, j) := (A→ αaj+1 • β, i, j + 1)

predictorG,w(A→ α •Bβ, i, j) := {(B → •γ, j, j) | B → γ ∈ P}

completerG,w(A→ α•, i, j) :=

{
(B → γA • δ, k, j) |

(B → γ • Aδ, k, i) ∈ validG(w)

}

The idea of the Earley algorithm is to start with initialG and compute the
closure of this set under the three rules of inference. We denote the resulting
set of tree predicates by SG,w.

For technical reasons the Earley algorithm usually does not store valid
tree predicates. Instead it adds so-called states [11] or items [1] to numbered
lists. A state or item is a tree predicate with the last component stripped.
A state (A → α • β, i) is added to the list with number j if and only if
(A→ α • β, i, j) ∈ SG,w.

The scanner is the only rule of inference which modifies the last compo-
nent of a tree predicate. Hence, one can start by adding the initial states,
which are initial tree predicates stripped off the last component, to list num-
ber 0 and complete this list by predictor and completer calls. Once a list is
completed one can create a new list by scanning the items of the last com-
pleted list (,i.e., apply the scanner to them whenever possible). Then the
new list is again closed under predictor and completer calls. It turns out that
SG,w = validG(w) which is shown in [11] and also in the well known textbook
[1, Theorem 4.9]. By inspecting the definition, it is easily seen that w ∈ L(G)
if and only if a tree predicate of the form (S → α•, 0, n) ∈ validG(w), i.e., the
item [S → α•, 0] is eventually added to the n-th list. This criterion can be
checked easily by going through the n-th list of items once it is completed.
If such an item can be found one can obtain a right parse of an appropri-
ate derivation tree by the use of [1, Algorithm 4.6] which runs in at most
quadratic time [1, Theorem 4.12].

5.1.2 Efficient Implementation

There are some pitfalls to avoid for an efficient implementation. As indicated
we create the item lists one by one. The first list with number 0 is initialised
by initialG. Then we complete the 0-th list. To complete the j-th list one can
go through the items of the j-th list one by one and apply an inference rule
whenever possible. The new items generated are appended to the appropriate
list, i.e., the j-th list in case of a predictor or completer call or the (j + 1)-th
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list in case of a scanner call. Eventually we reach the end of the j-th list.
Then we go on with list j +1, which is already initialised by the scanner calls
which have been applied to the items on the j-th list.

In case the grammar does not have ε-productions, and we are satisfied
with a O(n3) time complexity in any case a straightforward implementation
of the algorithm described in the previous paragraph will be fine.

In case the grammar does not have ε-productions a completer call to
an item of the form (A, α•, i) on the j-th list can only occur when i < j.
Then the i-th list is already complete and the inference rule can easily be
performed by going through the i-th list. Otherwise an item (A, α•, j) can
occur on list j. The corresponding completer call should go through the j-th
list which is currently under construction. Hence, some relevant items may
not be created by then. One way to solve this problem is to precompute the
nullable symbols, i.e. the nonterminals which can derive the empty word.
Then a new rule of inference is added which applied to an item where the
dot is in front of a nullable symbol creates an item where the dot is advanced
by one symbol to the right. Thus, this new inference rule combines prediction
and completion for nullable symbols. There are other strategies which do not
involve the invention of a new rule of inference. For instance one can set a
pointer at the current end of the list and store which nonterminals have been
completed so far. When all the other work is done on that list we resume
there and complete items which have been added since the pointer has been
set.

If we want to guarantee that the predictor works in constant time we
have to take into account that there may be several items on the current
list with the dot in front of the same nonterminal. Therefore, if we are not
careful we may create duplicate items. One can easily avoid that by an array
which has a bit for each nonterminal. The values are initialised with false.
A bit is set to true if a predictor call is applied to an item where the dot
is immediately in front of the corresponding nonterminal. A predictor call
only appends items if a prediction for the corresponding nonterminal on the
current list has not occurred before.

Finally, we have to consider the completer. First of all with a similar
tabular method as the predictor we should avoid the creation of duplicate
items. This time we spend a bit for each possible item with the dot immedi-
ately in front of a nonterminal (Since we only have to store this information
for the list under construction O(n) space is sufficient.) Since the number
of items created is not bounded by a constant the completer cannot work
in constant time. The straightforward strategy to execute the completion of
an item (A → α•, i) on list j is to go through the i-th list and search for
items where the dot is in front of the A and create an item where the dot
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is advanced by one. This strategy would take O(n) time since the i-th list
has O(i) entry’s and i ≤ n. Since the scanner does not require more than
constant time, in any reasonable implementation, the completer is the most
expensive inference rule. Since we have at most O(n2) items and we do not
spend more than O(n) for each inference rule we reach an upper bound of
O(n3) for the time complexity.

Now we can distribute the costs of a completer call to the items created.
Sometimes this may not improve our estimation, since we may create a sin-
gle item and still go through a list with Θ(n) entry’s. But we can avoid
to consider items where the symbol following the dot is not the required
nonterminal. To achieve this each list can be divided into an array of sub-
lists, where the symbol behind the dot (or ε in case the dot is at the right
end) decides in which sublist an item is placed. Then to complete an item
we can enter the sublist containing items with the dot in front of the right
nonterminal. Now we can charge the costs of a completion to the generated
items. But if the grammar is ambiguous we may try to create items which
were already produced before. These items are charged several times with
constant completion costs. Thus, the time complexity of Earley’s algorithm
tEarley(n) ∈ O(n2 · (1 + duplicateG(n)), where duplicateG(n) is the maximum
number of trials to create an item while parsing a word of length at most n.
It is easily seen that duplicateG(n) ≤ 1 for unambiguous context-free gram-

mars thus proving an O(n2) time complexity for their parsing. In Section
5.1.3 we develop upper bounds for duplicateG(n).

5.1.3 Immediate and Direct Ambiguity

As mentioned in Section 5.1.2 the maximum number of trials duplicate(n) to
add an item to a list is crucial for the time complexity of Earley’s algorithm.
We can express duplicate(n) in a mathematically more satisfying way without
considering the implementation details by the number of “completer proofs”
for tree predicates. In the sequel let G = (N, Σ, P, S) be a reduced context-
free grammar, a1, . . . , an ∈ Σ for some n ∈ N, and w := a1 · · ·an. Moreover,
let ϑ := (A→ αB • β, i, j) ∈ validG(w) where B ∈ N .

Definition 5.3 A completer proof for ϑ is a pair of valid tree predicates of
the form:

((B → γ•, k, j), (A→ α •Bβ, i, k))

We denote the number of completer proofs for ϑ by duplicateG,w(ϑ).
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Since the only variables in a completer proof for ϑ are γ and k, we easily
observe that:

duplicateG,w(ϑ) =

∣
∣
∣
∣

{
(k, γ) ∈ N× (N ∪ Σ)∗ |

α
∗
⇒ ai · · ·ak and γ

∗
⇒ ak+1 · · ·aj and B → γ ∈ P

}∣
∣
∣
∣
.

Since there is only a constant number of choices for γ this component
is not important for the asymptotic behaviour of the time complexity. In
other words, it is sufficient to consider the number of ways the generation
of ai · · ·aj is distributed between the string α and the nonterminal B. Since
G is reduced each distribution is embedded in some derivation tree. To deal
with this particular form of ambiguity we define:

Definition 5.4 Let “•” be a symbol not in N ∪ Σ. Let α ∈ (N ∪ Σ ∪ {•})∗

and w ∈ Σ∗. Then the marked ambiguity of the pair (α, w) is defined by:

markG(α, w) := |{z ∈ (Σ ∪ {•})∗ | w = πΣ(z) and α
∗
⇒ z}|

For n ∈ N we define markG(α, n) := max{markG(α, w) | w ∈ Σ≤n}.

The marked ambiguity counts in how many ways the generation of a word
can be shared among the strings separated by the marker symbol “•”. For
α ∈ (N ∪ Σ)∗, the following relations hold:

markG(α •B, ai · · ·aj) ≤ duplicateG,w(ϑ) ≤ |P | ·markG(α •B, ai · · ·aj)
markG(α •B, ai · · ·aj) ≤ markG(α •B, j − i) ≤ markG(α •B, n).

Thus, duplicateG,w(ϑ) ≤ |P | ·markG(α•B, n) holds independently of i, j, and
w. The only restriction is that |w| ≤ n. In other words: For each i′, j ′ ∈ N

and v ∈ Σ≤n we have duplicateG,v(A→ αB •β, i′, j ′) ≤ |P | ·markG(α •B, n).

Definition 5.5

predict prefixG :=

{
α ∈ (N ∪ Σ)∗N |

∃A ∈ N, β ∈ (N ∪ Σ)∗ : A→ αβ ∈ P

}

imG(n) := max{markG(α •B, n) | B ∈ N and αB ∈ predict prefixG}

Lemma 5.6
tEarley(n) ∈ O(n2 · (1 + imG(n)))

Proof. As was said at the end of Section 5.1.2 we have

tEarley(n) ∈ O(n2 · (1 + duplicateG(n)).
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For some B ∈ N there is a tree predicate (A → αB • β, i, j) ∈ validG and
some w ∈ Σ≤n such that the number of completer proofs is duplicateG(n).
Then

duplicateG(n) = duplicateG,w(A→ αB • β, i, j)
≤ |P | ·markG(α •B, n) ≤ |P | · imG(n).

Therefore, duplicateG(n) ∈ O(imG(n)) which completes the proof �

Corollary 5.7 A reduced linear context-free grammar G = (N, Σ, P, S) has
quadratic Earley parsing time. (Linear means that P ⊆ N×Σ∗(N∪{ε})∗Σ∗.)

Proof. For a reduced linear context-free grammar predict prefixG ⊆ Σ∗N .
But a terminal string w ∈ Σ∗ cannot derive anything else then w itself.
Therefore, imG(n) ≤ 1 for each n ∈ N. Thus, the statement follows with
Lemma 5.6. �

The previous corollary is already proved by Earley in [11]. Instead of
immediate ambiguity Earley introduced direct ambiguity. The notion of
direct ambiguity can also be found in the more available textbook of Harrison
[16], in a slightly modified way. For a context-free grammar G = (N, Σ, P, S)
Harrison defines the direct ambiguity of a pair (p, w) ∈ P × Σ∗ such that it
coincides with markG(X1 •X2 • · · · •X`, w), where X1, . . . , X` ∈ N ∪ Σ and
X1 · · ·X` = r(p). Thus, the degree of ambiguity with respect to a production
is the number of different factorisations induced by all the symbols on the
right-hand side. A context-free grammar G has bounded degree of direct
ambiguity if there is an upper bound which holds for any pair of the form
P × Σ∗. According to Harrison the corresponding degree is the least such
upper bound. Earley defines direct ambiguity based on interfaces. The
direct ambiguity of an interface (A, w) ∈ N × Σ∗ coincides with the sum of
direct ambiguities of the form (p, w) where p is a production with left-hand
side A. The grammar G has bounded degree of direct ambiguity if there is
an upper bound for all interfaces. According to Earley the corresponding
degree of direct ambiguity is the least upper bound of the direct ambiguities
of all interfaces. Note that we have provided two definitions for the bounded
degree of direct ambiguity, once from Earley’s and once from Harrison’s point
of view. These two definitions lead to different definitions of the finite degree
of direct ambiguity, but they agree on the question whether the degree of
direct ambiguity is finite or not. Hence, for the definition of the class of
languages which can be generated by a context-free grammar with a bounded
degree of direct ambiguity BDCFL the differences are irrelevant. Similarly
imG is a bounded function if and only if G has bounded degree of direct
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ambiguity. In Lemma 5.6 one can replace the immediate ambiguity by direct
ambiguity, and for grammars with bounded degree of direct ambiguity this
is no loss of information. Things are different for unbounded immediate
ambiguity. Immediate ambiguity is by definition in O(n). Thus, Lemma 5.6
is a refinement of the cubic time bound for the general case. In contrast to
that, direct ambiguity can be as large as Θ(nj−1) where j is the maximum
number of nonterminals on the right-hand side of a production. Therefore,
a version of Lemma 5.6 with direct ambiguity is not necessarily a refinement
of the cubic time result, except for grammars in Chomsky Normal Form.
(The definition of Chomsky Normal Form can be found in almost in any
textbook on language theory, for instance [17].) Immediate ambiguity is
more suitable since the number of completer proofs only depends on the
factorisation induced by the particular nonterminal over which the dot is
advanced and its prefix, without any need to split this prefix any further.

5.1.4 Sublinear Ambiguity and Parsing Time

Even though immediate ambiguity is very suitable to describe the time com-
plexity of Earley’s algorithm, it is a very technical notion which is not likely
to have many other applications. Can we use more natural parameters of a
context-free grammar to achieve a subcubic parsing time? We already know
that unambiguous context-free grammars are parsed in quadratic time while
in general the time complexity is cubic. We will see in Chapter 6 that there
are context-free grammars with divergent ambiguity functions in O(log∗). It
is natural to expect that “almost constant” functions should be parseable in
“almost” quadratic time. In fact, we can show that:

Lemma 5.8 For each reduced context-free grammar G a constant kG ∈ N

can be computed such that:

∀n ∈ N : imG(n) ≤ d̂G(n + kG).

Proof. Let G = (N, Σ, P, S) be the considered context-free grammar and
α ∈ predict prefixG. Since G is reduced Σ∗αΣ∗∩SG 6= ∅. Thus we can define
the smallest number of terminal which has to be attached to the left and
right of α to obtain a sentential form:

kα := min
{

|β| − |α|
∣
∣
∣β ∈ Σ∗αΣ∗ ∩ SG

}

kG := max{kα | α ∈ predict prefixG}.

For each n ∈ N there are B ∈ N , δ ∈ (N ∪ Σ)∗ and v ∈ Σ≤n such that

imG(n) = markG(δ •B, v) and δB ∈ predict prefixG.
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Since G is reduced there is a tree ρ ∈ cut(∆G) and words u, w ∈ Σ∗ such that
lG(ρ) = [S, uδBw] and |uw| ≤ kG. Thus,

imG(n) ≤ dG(uvw) ≤ d̂G(|uvw|) ≤ d̂G(n + kG).

�

As an immediate consequence of Lemma 5.6 and Lemma 5.8 we obtain:

Theorem 5.9 For each reduced context-free grammar G there is a constant
kG ∈ N such that the parsing time of G is bounded by:

tEarley(n) ∈ O(n2 · d̂G(n + kG)).

Unfortunately, the constant kG is added in Theorem 5.9 to the argument of
d̂G and not to the image. Therefore, we cannot replace d̂G(n + kG) by d̂G(n)
without any homogeneity assumptions on d̂G. But we talk about arbitrary
ambiguity functions of cycle-free context-free grammars. Therefore, we do
not know much more about d̂G than the fact that they are non-decreasing
and at most exponentially ambiguous. Before we define a weak restriction
which is sufficient we want to define a notation:

Definition 5.10 Let f, g : N → N be functions and k1, k2 ∈ N constants.
The expressions f(n + k1) ∈ O(g(n + k2)) and O(f(n + k1)) ⊆ O(g(n + k2))
mean that the functions f̃ : N→ N defined by f̃(n) = f(n+k1) and g̃ : N→ N

defined by g̃(n) = g(n+k2) satisfy f̃ ∈ O(g̃). The free variable n denotes the
parameters of the function.

The advantage of the definition above is that it allows to handle functions for
which we have not assigned a name. We could have also used the λ-calculus
for this purpose. But for our rather specialised application the notation
above is more intuitive and sufficient.

Definition 5.11 A function f : N→ N is pointwise exponentially bounded
if f(n + 1) ∈ O(f(n)).

If f is pointwise exponentially bounded then obviously f(n+k) ∈ O(f(n))
for each k ∈ N. Readers familiar with semihomogenous functions, which are
frequently used in the literature, may note that that each semihomogenous
function is pointwise exponentially bounded, but there are pointwise expo-
nentially bounded functions which are not semihomogenous.
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Figure 5.1: Graph of jump

As the name indicates super exponential functions like 22n

are not point-
wise exponentially bounded. But there are also exponentially bounded func-
tions which are not pointwise exponentially bounded. The function jump :
N→ N defined by:

jump(n) := (max{i ∈ N | i! ≤ n or i = 1})!

is such an example. It is depicted in Figure 5.1. One immediately observes
that jump(n) ≤ n for each n > 0. Moreover, for an arbitrary divergent
non-decreasing function g the function jump ◦ g ∈ O(g) but jump ◦ g is
not pointwise exponentially bounded. The function h : N → N defined by
h(n) := (log∗(n))! is another example which is not pointwise exponentially
bounded.5

Lemma 5.12 If G is O(f)-ambiguous for a pointwise exponentially bounded
function f : N→ N, then imG(n) ∈ O(f(n)).

Proof. By Lemma 5.8 we know that there is a constant kG such that we have:

∀n ∈ N : imG(n) ≤ d̂G(n + kG).

Since d̂G ∈ O(f) we obtain d̂G(n + kG) ∈ O(f(n + kG)). Moreover, O(f(n +
kG)) ∈ O(f) since f is pointwise exponentially bounded. Hence:

imG(n) ∈ O(d̂G(n + kG)) ⊆ O(f(n + kG)) ⊆ O(f(n)).

�

5The function log∗ : N→ N is defined by log∗(1) := 1 and log∗(n) := 1+ log∗(blog(n)c)
for n > 1, where for each x ∈ R the value bxc is the greatest integer lower then or equal
to x.
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Theorem 5.13 If G is O(f)-ambiguous for a pointwise exponentially bound-
ed non-decreasing function f : N→ N we obtain:

tEarley(n) ∈ O(n2 · f(n)).

Proof. By Lemma 5.6 we have tEarley(n) ∈ O(n2 · (1 + imG(n))). By Lemma
5.12 this implies tEarley(n) ∈ O(n2 · (1+ f(n))). Since G is reduced L(G) 6= ∅
implying f(n) > 0 for all but finitely many n ∈ N. Therefore,

tEarley(n) ∈ O(n2 · f(n)).

�

Theorem 5.13 is a proper generalisation of previous known results for
context-free grammars with a pointwise exponentially bounded ambiguity
function f(n) ∈ ω(1) ∩ o(n).

5.1.5 The Cost of Semiring Closures

The parsing time of Earley’s algorithm consists of two parts:

(i) The number of valid tree predicates (O(n2)).

(ii) The number of completer proofs for a valid tree predicate (O(n)).

To improve the time bound of Earley’s algorithm for special grammar classes
we have only considered the number of completer proofs so far. We have
not used the fact that there are grammar classes where the total number of
valid tree predicates is less than quadratic. But there are relevant grammar
classes where this is the case. Earley showed for instance, that reduced LR(0)
grammars have at most O(n) many valid tree predicates. In fact, he even
showed the same upper bound for LR(k) grammars. But to achieve this result
one has to use Earley’s original version, which in contrast to the presentation
in [1], exploits look ahead strings to reduce the number of completer proofs.6

Moreover, LR(k) grammars are unambiguous which implies that there is
at most one completer proof for each valid tree predicate. Hence, Earley’s
algorithm works in O(n) time for each LR(k) grammar if it uses a look
ahead of k symbols. In particular it also works in O(n) time for each LR(0)
grammar, even in versions without look ahead.

6For each look ahead k ∈ N one can define a corresponding number of completer proofs
for each valid tree predicate. Since the handling of look ahead strings goes beyond the
scope of this thesis, we have only defined the number of completer proofs for a look ahead
of 0 symbols.
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Earley also showed that metalinear grammars are parsed in quadratic
time. At first glance this is somewhat surprising since metalinear grammars
may have Θ(n) many completer proofs for some valid tree predicates and
Θ(n2) many valid tree predicates at the same time. The trick is, that we can
distribute the total costs on the dotted productions occurring in the valid
tree predicate. For each dotted production with a nonterminal immediately
to the left of the dot we may compute the number of corresponding items
and completer proofs separately. The most expensive dotted production
dominates the parsing time.

For a metalinear grammar G = (N, Σ, P, S) we observe that the produc-
tions which have the start symbol on the left-hand side can only be used
as the very first production. Therefore, the first integer component of the
corresponding tree predicates is always 0. This implies that there are at most
O(n) many such valid tree predicates. Even if they have Θ(n) many com-
pleter proofs, in total they only require O(n2) time for their computation.
All the other dotted productions belong to linear productions. There may be
Θ(n2) many of them but each valid tree predicate which has such a dotted
production as the first component has at most one completer proof. Again
this only contributes O(n2) time to the computation. Hence, the total time
to compute the set of valid tree predicates is O(n2). The costs to retrieve a
parse is also bounded by O(n2). Thus, the parsing time is at most quadratic
(O(n2)).

We generalise this technique and obtain:

Theorem 5.14 Let f : N → N be a non-decreasing function, such that
f(n) > 0 for some n ∈ N. Moreover, let Cim(f) be the class of context-
free languages whose immediate ambiguity is bounded by O(f). Then each
language in the closure of Cim(f) under union and concatenation (Cim(f)[·,∪])
can be parsed with the Earley algorithm in time:

tEarley(n) ∈ O(f(n) · n2).

Proof. Let f : N → N be a non-decreasing function, such that f(n) > 0 for
some n ∈ N. Since concatenations are distributive over unions it is sufficient
to consider finite unions of finite products of languages in Cim(f). Let us
first consider the parsing time of finite products of languages in Cim(f), i.e.,
languages in the class Cim(f)[·]. Assume L ∈ Cim(f)[·]. Then we can write
L = L1 · · ·Lk for some k ∈ N and L1, . . . Lk ∈ Cim(f). For each i ∈ [1, k]
there is a context-free grammar Gi = (Ni, Σi, Pi, Si) such that Li = L(Gi) and
imGi

∈ O(f). Without loss of generality we can assume that the nonterminal
sets of the grammars are pairwise disjoint. That is, for each i, j ∈ [1, k] such
that i 6= j we have Ni ∩ Nj = ∅. Let S be a symbol not in ∪i∈[1,k]Ni. Now
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we define N := ∪i∈[1,k]Ni, Σ := ∪i∈[1,k]Σi, and P = ∪i∈[1,k]Pi, which we use
to define the following grammar:

G = (N ∪ {S}, Σ, P ∪ {[S, S1 · · ·Sk]}, S)

The production [S, S1 · · ·Sk] can only occur as the dominating production of
a derivation tree. Hence, each valid tree predicate of the form (S, α • β, i, j)
has the property i = 0. Thus, there can be at most O(n) many such valid
tree predicates. Moreover, each valid tree predicate has at most O(n) many
completer proof. Thus, the production [S, S1 · · ·Sk] causes costs of at most
O(n2).

Let α ∈ (N ∪ Σ)∗ and B ∈ N ∪ {S} such that αB ∈ predict prefixG.
Then B 6= S since S does not occur on any right-hand side of a production
of G. Moreover, there is a unique i ∈ [1, k] such that αB ∈ predict prefixGi

.
Furthermore, for each n ∈ N we have

markG(α •B, n) = markGi
(α •B, n) ≤ imGi

(n) ∈ O(f)..

For a valid tree predicate of the form (A, αB•γ, i, j) the number of completer
proofs is bounded by:

markG(α •B, j) ≤ markG(α •B, n) ∈ O(f).

The number of valid tree predicates of the form (A, αB • γ, i, j) is bounded
by O(n2). Thus, these valid tree predicates contribute O(f(n) ·n2) time with
respect to the Earley algorithm. Since no type of valid tree predicates caused
more than quadratic parsing time we obtain that each language L ∈ Cim(f)[·],
which is the concatenation of finitely many languages in Cim(f), can be parsed
by the Earley algorithm in time

tEarley(n) ∈ O(f(n) · n2).

If L ∈ Cim(f)[·][∪] then for some m ∈ N there are languages L1, · · · , Lm ∈
Cim(f)[·] such that L = ∪i∈[1.m]Li. Thus, for each i ∈ [1, m] there is a
context-free grammar Gi, such that L(Gi) = Li and Gi can be parsed in time
O(f(n) · n2) by the Earley algorithm. Without loss of generality we assume
that the nonterminal sets of the grammars are pairwise disjoint. Now we
define N := ∪i∈[1,k]Ni, Σ := ∪i∈[1,k]Σi, and P = ∪i∈[1,k]Pi, which we use to
define the following grammar:

G = (N ∪ {S}, Σ, P ∪ {[S, S1], . . . , [S, Sm]}, S)

The productions [S, S1], . . . , [S, Sm] can only occure as the dominating pro-
duction of a derivation tree. With a similar reasoning as above we see that
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these productions does not contribute more than O(n2) time to the parsing
time of Earley’s algorithm. With the productions with S on the left-hand side
the Earley algorithm switches into a parallel parsing of the “subgrammars”
Gi for i ∈ [1, m]. Thus, the resulting parsing time is:

O(n2) + m · O(f(n) · n2) = O(f(n) · n2).

�

Corollary 5.15 Let f : N → N be a non-decreasing and pointwise expo-
nentially bounded function, such that f(n) > 0 for some n ∈ N. Moreover,
let C(f) be the class of context-free languages whose ambiguity is bounded by
O(f). Then each language in the closure of C(f) under union and concate-
nation (C(f)[·,∪]) can be parsed with the Earley algorithm in time:

tEarley(n) ∈ O(f(n) · n2).

Proof. Using Theorem 5.14 it is sufficient to show that C(f) ⊆ Cim(f). Let
L ∈ C(f). Then there is a context-free grammar G which is O(f)-ambiguous.
Since f is pointwise exponentially bounded we can apply Lemma 5.12 and
obtain imG(n) ∈ O(f). Thus L ∈ Cim(f) proving C(f) ⊆ Cim(f). �

Corollary 5.16 The languages in the closure of BDCFL under union and
concatenation can be parsed in quadratic time by the Earley algorithm, where
BDCFL is the class of languages which are generated by a context-free gram-
mar with bounded direct ambiguity.7

5.2 Parallel Recognition

5.2.1 Bounded Marker Languages

Definition 5.17 A language L ⊆ Σ∗ is a bounded marker language if there
is an unambiguous context-free language L′ ⊆ (Σ ∪̇Γ)∗ such that πΣ is a
bounded contraction for L′ such that πΣ(L′) = L. If L is a bounded marker
language and L′ has the properties described above then L′ is a witness for
the bounded marker language L. The marking constant of the witness L′ for
L is the maximal number of symbols which can be erased, i.e., sup(L′)(Γ).
The marking constant of L is the least marking constant of a witness for L.
The class of bounded marker languages is denoted by BMCFL.

7A grammar G has bounded direct ambiguity if and only if it has bounded immediate
ambiguity. i.e., there is a constant k ∈ N such that for all n ∈ N we have imG(n) ≤ k.
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Observation 5.18 A bounded marker language L with the marking constant
k is at most O(nk)-ambiguous.

Proof. Let L ⊆ Σ∗ be a bounded marker language with the marking constant
k. Then there is a witness L′ ⊆ (Σ ∪̇Γ)∗ with a marking constant k, i.e.,
k = sup(L′)(Γ). The projection πΣ is a bounded contraction for the language
L′. Since L′ is a witness for L there is an unambiguous context-free grammar
G such that L(G) = L′. Note that d̂G(n) ≤ 1 holds for each n ∈ N. According
to Lemma 4.5 there is a context-free grammar G′ such that L(G′) = πΣ(L′) =
L and for k := sup(L(G′))(Γ) we have:

d̂G′ ∈ O(nk · d̂G(n)) ⊆ O(nk).

�

Observation 5.18 implies that BMCFL ⊆ PCFL. At first glance BMCFL
might appear to be an artificial subclass of PCFL but we will see later that
PCFL = BMCFL. Thus, a context-free language has polynomially bounded
ambiguity if and only if it is a bounded marker language. Clearly after the
proof that PCFL = BMCFL (Theorem 7.39) the notion of bounded marker
languages becomes superfluous. But to avoid forward references we do not use
the equality of PCFL and BMCFL until then, which requires the temporarily
use of two notions for the same thing.

5.2.2 Recognition of Bounded Marker Languages

Theorem 5.19 The word problem of a bounded marker language L with
the marking constant mL can be solved by a CREW-PRAM with O(nmL+6)
processors in time O(log(n)).8

Proof. Let L ⊂ Σ∗ be a bounded marker language with a marking constant
mL and let L′ ⊆ (Σ ∪̇Γ)∗ be a witness for L with marking constant mL. For
a given word w ∈ Σ∗ we define:

insert(w) := {z ∈ (Σ ∪ Γ)∗ | w = πΣ(z) and |w|+ mL ≥ |z|}.

Thus, insert(w) is the set of words which are obtained from inserting at
most mL many symbols from Γ into w. Then w ∈ L(G) if and only if
insert(w) ∩ L′ 6= ∅.

8CREW is short for concurrent read exclusive write. A PRAM is a parallel (P) random
access machine (RAM).
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In [28] Rossmanith and Rytter showed that an unambiguous context-free
grammar can be recognised in time log(n) on a CREW-PRAM with O(n6)
processors. To determine whether a word w is in L(G) we can allocate a
group of O(n6) processors for each element of insert(w) which are in total
O(nmL · n6) = O(nmL+6) many processors. Each group of O(n6) processors
has the task to determine whether its corresponding element of insert(w) is in
L′. Since L′ is unambiguous, the algorithm of Rossmanith and Rytter can be
applied for each group of O(n6) processors independently. Since we have not
made copies of w with inserted markers we have to explain how a processor
can determine the i-th symbol of its designated word w′ in constant time.
(The time does not depending on the length of w but on on the constant mL.)
Each processor knows by its number how to create its designated word w′ by
an insertion of markers into w, i.e., it knows the at most mL many markers
and their position in w′. When a processor is asked for the i-th position of
its designated word w′ then there are two cases to consider:

(i) If w′[i] is a marker then the processor can find out the corresponding
symbol in constant time just by using its number, without access to
the positions where w is stored.

(ii) If w′[i] is not a marker then the processor computes in constant time
the number of markers j to the left of position i and reads w[i − j]
concurrently.

Each group of O(n6) processors examines generates a single bit answering the
question whether or not its designated word belongs to L′. The computation
of these bits takes logarithmic time. Now it remains to compute a logical
“or” on all these bits which can be done by a tree of “or” circuits with fan-in
two and O(log(nmL) = O(log(n)) depth. The input w is in L if and only if
we get true as the result and the total running time is logarithmic. �

The following statement has been shown in [28, Theorem 6].

Theorem 5.20 Each context-free language which is generated by a context-
free grammar which is unambiguous and linear can be recognised in O(log(n))
time on a CREW-PRAM with O(n2) processors.

Unfortunately, the authors of [28] wrote down Theorem 6 in the somewhat
misleading way: “Each unambiguous linear cfl can be recognized in O(log n)
time with n2 processors.” That they mean that this happens on a CREW-
PRAM is clear from the context. It is also clear from their construction that
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they need a single grammar which is at the same time linear and unambigu-
ous. But by their statement one might be tempted to believe that it is suffi-
cient to have a context-free language which is generated by a linear context-
free grammar G1 and by an unambiguous context-free grammar G2. This
interpretation should not be confused with the statement of Theorem 5.20.
In fact, it can be shown that the language L := {aibajbakba` | i = j or k = `}
is linear context-free and unambiguous context-free, but each unambiguous
context-free grammar generating it is non-linear and each linear context-free
grammar generating it is ambiguous.

Theorem 5.21 Let L be a bounded marker language L which has a witness
L′ having the marking constant m. In addition, we require that the witnes
L′ is generated by a context-free grammar which is unambiguous and linear.
Then the word problem for L can be solved by a CREW-PRAM with O(n2+m)
processors in time O(log(n)).

Proof. Let L, L′, and m satisfy the conditions required to imply the truth of
the “then” portion. Then we can apply Theorem 5.20 to show that L′ can
be recognised in O(log(n)) time on a CREW-PRAM with O(n2) processors.
This can be used to prove the statement analogously to the proof of Theorem
5.19. �

Note that Theorem 5.21 is not necessarily an improvement compared to
Theorem 5.19 even in cases where both Theorems are applicable. This is
due to the fact that the constant m in Theorem 5.21 can be larger than the
marking constant for the considered language L. The context-free language
L := {aibajbakba` | i = jor k = `} is unambiguous and linear, but it cannot
be generated by a context-free grammar which is unambiguous and linear at
the same time. Hence mL = 0, while 1 is a lower bound for the marking
constant of an arbitrary witness of L.
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Chapter 6

Sublinear Ambiguity

In this chapter it is shown that for each computable divergent total non-
decreasing function f : N → N there is a context-free grammar G with a
divergent ambiguity function g below f . This proves that extremely slowly
growing ambiguity functions exist. For instance there is a context-free gram-
mar G with infinite ambiguity below log∗. In Chapter 8 we will see (Theorem
8.1) that each of these ambiguity functions is inherent for some context-free
language.

6.1 The idea of the construction

It is well known that for each Turing machine M the corresponding set of
valid computations can be represented as the intersection of two context-
free languages. These two languages are of the Form I(#R)∗ and (L#)∗F ,
respectively. Here I is the set of initial configurations and F the set of
final configurations. The languages L and R generate pairs of configurations
separated by a “#” symbol, such that the right configuration is obtained in
one step of M from the left one. Moreover, exactly one of the configurations
of such a pair is written in reverse. In case of L the right configuration is
reversed, while for R it is the left one. Essentially this representation of
valid computations is usually used to prove that each recursively enumerable
language is the homomorphic image of the intersection of two context-free
languages [3, 13, 17]. In this paper we use similar ingredients. For each Turing
machine M we construct context-free grammars generating languages of the
form (L{#})∗F({#}R)∗, where F is an unambiguous context-free subset
of M ’s configurations. It turns out that the ambiguity function of these
grammars is dominated by the ambiguity of the words which lie in F(#R)∗∩
(L#)∗F . A word w within this set represents a segment of a computation of

109
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the Turing machine M which starts and ends in a configuration belonging to
F . Moreover, the ambiguity of w is the number of times a configuration which
belongs to F and which is preceded by an even number of configurations
occurs in w. Since we are free in the choice of the underlying Turing machine
M and the unambiguous context-free set F , we have a strong tool to design
very slowly growing divergent ambiguity functions. Roughly speaking, it is
sufficient to find candidates for M and F , such that computations of M
containing many configurations in F cannot be too short.

6.2 Preliminaries

6.2.1 Turing Machines

The reader is assumed to be familiar with single tape Turing machines as
defined in [17]. For simplicity we consider deterministic machines. A con-
figuration of a Turing machine consists of the tape content, the state of the
Turing machine and the position of the head. It is denoted by a word con-
sisting of the shortest string which represents the coherent portion of the
tape which covers all the non blank cells and the position of the tape head.
The head is denoted immediately to the left of the tape cell the machine
reads in the next step. For each Turing machine M the corresponding set
of configurations is denoted by IDM . The relation `M contains all the pairs
of configurations (ida, idb) ∈ IDM × IDM where idb is obtained from ida by a
single step of M .

6.2.2 Convention

Throughout this chapter Σ is an arbitrary finite non-empty alphabet in this
chapter and the symbol # is not in Σ.

6.3 Block Correlation Languages

As a tool to design divergent ambiguity functions with a very low growth
rate we introduce block correlation languages.

Definition 6.1 Let R ⊆ Σ∗ × Σ∗ be a relation. Then

L(R) := {u#vR | (u, v) ∈ R} and R(R) := {uR#v | (u, v) ∈ R}.1

1Note that the letter R is used here with two meanings. As a superscript it denotes the
reversal of the corresponding word. Otherwise it represents the relation R. This situation
will occur frequently througout this chapter.
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The relation R is (unambiguous) context-free if L(R) and R(R) are both
(unambiguous) context-free languages.

It can be shown that L(R) is (unambiguous) context-free if and only if
R(R) is (unambiguous) context-free. But instead of proving this statement
for arbitrary R it is easier to check both languages for the relations considered
below.

Definition 6.2 Let R ⊆ Σ∗ × Σ∗ be an unambiguous context-free relation,
and F ⊆ Σ∗ an unambiguous context-free language. The block correlation
language over the relation R and the set F is defined by:

L(R,F) :=
(
L(R)#

)∗
F

(
#R(R)

)∗
.

If L(R,F) is a block-correlation language then F is called the corresponding
language of free blocks.

Definition 6.3 For a block correlation language L(R,F) over a relation R ⊆
Σ∗ × Σ∗ and a set F ⊆ Σ∗, a canonical grammar is a context-free grammar

G :=
(
{S, A} ∪̇NL ∪̇NR ∪̇NF , Σ ∪ {#}, P ∪ PL ∪ PR ∪ PF , S

)
,

where GL := (NL, Σ ∪ {#}, PL, SL), GR := (NR, Σ ∪ {#}, PR, SR), and
GF := (NF , Σ, PF , SF) are unambiguous context-free grammars generating
L(R), R(R), and F , respectively. Moreover, P is defined by:

P := {S → SL#S, S → SFA, A→ A#SR, A→ ε}.

Note that GL, GR, and GF have pairwise disjoint sets of nonterminals. More-
over, these nonterminal sets do not contain the symbols S and A. This is
expressed by the dot on the union symbols.

Let G be a canonical grammar which generates a block correlation lan-
guage L(R,F) with all the sets and symbols named as above and let G′ :=
({S, A}, {SL, SR, SF , #}, P, S). Obviously, the grammar G′ is unambiguous
and generates the regular language (SL#)∗SF(#SR)∗. A given derivation
tree ρ of G generating a word w can always be trimmed in a unique way to
obtain a derivation tree ρ′ of G′. Let α be the frontier of ρ′. If we know α we
can retrieve ρ′ since G′ is unambiguous. Moreover, except for the first and
last symbol, each occurrence of SL, SR and SF in α is immediately preceded
and followed by a “#” symbol. Furthermore, each string of terminals gen-
erated by SL or SR contains exactly one “#” symbol and a terminal string
generated by SF never generates a “#” symbol. Therefore, each occurrence
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of the symbols SL, SR and SF in α can be uniquely matched with the infix
of w it generates. This is sufficient to complete the remainder of ρ uniquely
since the grammars GL, GR, and GF are unambiguous. Thus, if we know w
and α we can uniquely retrieve the whole derivation tree ρ. But this does
not mean that G is necessarily unambiguous since w does not determine α in
general. We can only deduce the length of α ∈ (SL#)∗SF(#SR)∗, but there
may be several permissible position for SF . We consider the “#” symbols
as markers factorising w into blocks. Thus, SF generates exactly one block
which will be called the free block in the sequel. The free block is preceded
and followed by strings of the form

(
L(R)#

)∗
and

(
#R(R)

)∗
, respectively.

(In particular this implies that the free block is preceded and followed by an
even number of blocks.) The number of derivation trees for w coincides with
the number of decompositions of w satisfying the requirements stated above.
This number of decompositions is the canonical ambiguity of w in L(R, F ).
More formally we define it as follows:

Definition 6.4 Let L be a block correlation language over a relation R ⊆
Σ∗ × Σ∗ and a set F ⊆ Σ∗. Then the canonical ambiguity series d : (Σ ∪
{#})∗ → N is defined by:

dL(w) := |{i ∈ N | w ∈
(
L(R)#

)i
F

(
#R(R)

)∗
}|.

With this definition we can summarise the previous considerations by the
following lemma:

Lemma 6.5 Let G be a canonical grammar generating a block correlation
language L over a relation R ⊆ Σ∗ × Σ∗ and a set F ⊆ Σ∗. Then the
ambiguity function of G and the canonical ambiguity function of L are equal,
i.e. d̂G = dL.

Example 6.6 Let Σ = {a} and R := {(ai, a2i) | i ∈ N}. Here L(R) = R(R)
since Σ is unary. To compute the ambiguity of a word w in a canonical
grammar for the block correlation language L(R, Σ∗) we consider each pair
of consecutive blocks in w separated by a “#” symbol. From left to right we
draw alternating arcs below and above consecutive pairs of blocks starting with
an arc below the leftmost pair. An arc is drawn with a solid line if the pair
is in relation, i.e., the number of a’s in the right block is twice the number
of a’s in the left one. Otherwise the arc is dotted. Let us consider the word
depicted in Figure 6.1. By definition the free block is preceded and followed
by an even number of blocks. Such a block is a candidate for the free block
if all the arcs below the word to its left and all the arcs above the word to
its right are solid. These criteria are satisfied for exactly those blocks of w
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# # # # # # # #w := a7 a14 a7 a14 a28 a10 a20 a40 a80

Figure 6.1: A word in the block correlation language of Example 6.6.

written in boxes. Therefore, the word w has exactly two derivation trees for
any canonical grammar generating L(R, Σ∗).

Note that there are unambiguous block correlation languages whose canonical
ambiguity series is larger than 1 for some words:

Example 6.7 Consider the unambiguous context-free relation R := {(ai, a) |
i ∈ N} over the unary alphabet Σ = {a}. Then it is easily seen that
L := L(R, Σ∗) = (a∗#a#)∗a∗(#a∗#a)∗, which is regular, and therefore un-
ambiguous context-free. Despite that, dL((a#)2ia) = i + 1 for each i ∈ N.

Definition 6.8 Let G be a context-free grammar over Σ. Then the support
of d̂G is the set:

supportG := {w ∈ L(G) | ∀u ∈ Σ<|w| : dG(u) < dG(w)}

Thus, a word w is in the support of the ambiguity function of a context-
free grammar G if it is a shortest word with ambiguity at least dG(w). To
determine the ambiguity function d̂G of G it is sufficient to consider the
words in supportG and their corresponding ambiguities. More precisely, the
ambiguity function d̂G is uniquely determined by the set:

{(|w|, dG(w)) ∈ N× N | w ∈ support(G)}.

But how do the words in the support of a canonical grammar for a block
correlation language look like? It turns out to be necessary for them that
each pair of consecutive blocks is correlated. In the notation of Example 6.6
this means that a word in the support of a canonical grammar never has a
“dotted” arc connecting consecutive blocks. Before showing this formally, we
define:

Definition 6.9 Let R ⊆ Σ∗×Σ∗ be a relation and F ⊆ Σ∗ a formal language.
Then

val(R,F) :=

{

w0#wR
1 # · · ·#w2n

∣
∣
∣
∣

w0, w2n ∈ F ∧
∀i ∈ {0, . . . , 2n−1} : (wi, wi+1) ∈ R

}

.
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It is easily seen that val(R,F) =
(
L(R)#

)∗
F ∩ F

(
#R(R)

)∗
for each

relation R and each language F over Σ.

Theorem 6.10 Let G be a canonical grammar of some block correlation
language L(R,F). Then

supportG ⊆ val(R,F).

Proof. Let w ∈ L(R,F)\val(R,F). By definition w ∈
(
L(R)#

)∗
F

(
#R(R)

)∗
.

Since val(R,F) =
(
L(R)#

)∗
F ∩F

(
#R(R)

)∗
we know that w /∈

(
L(R)#

)∗
F

or w /∈ F
(
#R(R)

)∗
. If w /∈ F

(
#R(R)

)∗
then w ∈

(
L(R)#

)+
F

(
#R(R)

)∗
.

But then cancellation of the first two blocks in w yields a shorter word
w′ ∈ L(R,F). Moreover, dL(w) = dL(w′). According to Lemma 6.5 this
implies dG(w′) = dG(w). Thus, w is not in the support of dG. Analogously if
w /∈

(
L(R)#

)∗
F we can cancel the last two blocks to obtain a shorter word

w′ with the same ambiguity as w which implies that w is not in the support
of dG in this case either. Thus, (L(R,F) \ val(R,F)) ∩ supportG = ∅. But
supportG ⊆ L(R,F). Hence, supportG ⊆ val(R,F). �

Note that in the proof above we do neither state that the word w′ obtained
from the cancellation of a block pair is in supportG nor that it is in val(R,F).
But since w′ ∈ L(R,F) we can iterate the cancellation of block pairs either
from left or right until eventually a word in val(R,F) with the same ambi-
guity as the original word is reached. (For the word w in Example 6.6 this
procedure would yield a7#a14#a28.) Since w has a finite number of blocks
such an iteration terminates.

If we apply Theorem 6.10 to the language L(R, Σ∗) of Example 6.6 we see
that the support of each canonical grammar G for this language only contains
words where the number of a’s is doubled from block to block. That is the
shortest word with ambiguity i + 1 is a20

#a21
# · · ·#a22i

for an arbitrary
i ∈ N. Since the length grows exponentially with the ambiguity we see
that d̂G is logarithmic for each canonical context-free grammar generating
L(R, Σ∗). In fact, L(R, Σ∗) is even inherently ambiguous of logarithmic
degree. For a similar language logarithmic ambiguity has been shown in [33].
The language there is even a linear context-free language. In Section 6.6
we will introduce a block permutation spiral which transforms suitable block
correlation languages in linear context-free languages. Up to a renaming of
the symbols and a block separator symbol (here #) behind the last block the
example in [33] is spiral(L(R, Σ∗)).

How can we get a divergent ambiguity function with a sublogarithmic
growth rate? One trial may be to force an even stronger growth of the
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length of related blocks. But this approach doesn’t work as the following
lemma shows:

Lemma 6.11 Let R ⊆ Σ∗ × Σ∗ be a relation and L(R) a context-free lan-
guage with the pumping-constant n. Then

∀x, y ∈ Σ∗ :
((

(x, y) ∈ R ∧ ∀z ∈ Σ<|y| : (x, z) /∈ R
)
⇒ n(|x|+ 1) ≥ |y|

)

.

Proof. We prove this statement by induction on |y|. For |y| ≤ n it is trivial.
Now assume for some m ≥ n the statement holds for all y ∈ Σ≤m. Let
y ∈ Σm+1. For each x ∈ Σ∗ we have to check the implication stated above.
The nontrivial case is the one where the left-hand side of the statement is
satisfied. In this case x#yR ∈ L(R) and we can mark the rightmost |y|
symbols of this word. According to Ogden’s Lemma [25, 17] we can pump
down x#yR into a word of the form x′#y′ ∈ L(R). Now |y′| < |y| ≤ |y′|+ n.
Due to the minimality of y we obtain that |x′| + 1 ≤ |x|. Hence, we finally
get:

|y| = |y| − |y′|+ |y′| ≤ n + |y′| ≤ n + n(|x′|+ 1) ≤ n + n|x| = n(|x|+ 1).

�

Since 2|x| ≥ |x|+ 1 for x 6= ε, Lemma 6.11 immediately implies:

∀x, y ∈ Σ+ :
((

(x, y) ∈ R ∧ ∀z ∈ Σ<|y| : (x, z) /∈ R
)
⇒ 2n|x| ≥ |y|

)

.

Hence, we cannot force consecutive blocks to grow faster than by a constant
factor, except for the very first step. Therefore, sublogarithmic ambiguity
cannot be obtained by this method. Obviously, we can prove a version of
Lemma 6.11 with L(R) replaced by R(R) in an analogous way.

6.4 Valid Computations

In Example 6.6 the language for the free blocks is Σ∗. Therefore, no candidate
for the free block can be excluded in this case. As we have seen there is no
hope to achieve sublogarithmic ambiguity just by increasing the growth rate
of the blocks any further.

The new idea is to find an unambiguous context-free relation R and an
unambiguous context-free language F such that in an infinite chain of words
w0, w1, . . . such that (wi, wi+1) ∈ R for each i ∈ N there are infinitely many
words with even index belonging to the free block language F . But with
rising index the blocks in F occur less frequently.
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Let M be a Turing machine. For each F ⊆ IDM the words in val(`M ,F)
represent computations which start and end in configurations belonging to
F . It is easily seen that `M is an unambiguous context-free relation for
each Turing machine M (even if M is nondeterministic). In fact, L(`M) and
R(`M) are even deterministic and linear context-free languages. Therefore,
by application of Theorem 6.10 we obtain:

Corollary 6.12 Let M be a Turing machine and let F ⊆ IDM be an unam-
biguous context-free language. Then L(`M ,F) is a block correlation language.
Moreover, if G is a canonical grammar generating L(`M ,F) then

supportG ⊆ val(`M ,F).

Even though L(`M ,F) is a large superset of val(`M ,F) we don’t need
to care for the words in L(`M ,F) \ val(`M ,F) since they don’t contribute
to the ambiguity function of G. Therefore, Corollary 6.12 provides a strong
tool to design ambiguity functions. For instance let M be a Turing machine
and F ⊆ IDM the set of configurations of M where M is in the initial state.
Let G be a canonical grammar generating L(`M ,F). Then only the words in
val(`M ,F) are relevant for the computation of the ambiguity function, i.e.,
the words representing computations which start and end in configurations
containing the initial state of M . The ambiguity of such a word is just
the number of occurrences of the initial state in w at positions preceded by
an even number of configurations. By the choice of F we can induce an
additional unambiguous context-free constraint on the initial configuration.

6.5 The Design of slowly Growing Divergent

Ambiguity Functions

At the end of Section 6.4 we presented an idea for the construction of a block
correlation language LM whose definition depends on an underlying Turing
machine M . The ambiguity of a canonical grammar for LM becomes small
if M waits very long until it reenters the initial state. (Here waiting means
that the machine enters a finite loop with the sole purpose of inducing a long
computation.) Thus, the frequency of the occurrences of the initial state in
a computation is roughly speaking inverse to the ambiguity of a canonical
grammar for the resulting block correlation language.

Unfortunately, the inverse of a divergent non-decreasing function f : N→
N is never a function if f is total and sublinear. Instead it is a relation. Before
we develop a Turing machine construction in Section 6.5.2 in Section 6.5.1
we define the pseudo inverse of f in order to handle the inverse relationship
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Figure 6.2: Example of a divergent non-decreasing function and its pseudo
inverse.

between the initial state frequency and the resulting ambiguity. The pseudo
inverse of f can be seen as the best possible divergent non-decreasing function
which approximates the relation f−1.

6.5.1 Pseudo Inversion of Ambiguity Functions

Definition 6.13 Let f : N → N be a divergent non-decreasing function.
Then the pseudo inverse of f is the divergent non-decreasing function f−1 :
N→ N defined by:

f−1(n) := min{j ∈ N | n < f(j)}

The definition above has a very simple graphical interpretation. In Figure
6.2 there are three graphs depicted. The filled circles of the leftmost one
represent a divergent non-decreasing function f .2 Two consecutive plateaus
are connected by a chain of vertical circles which are not filled. The chain
starts immediately and strictly underneath the left end of the higher plateau
and ends on the level of the lower plateau. The graph in the middle is the
transposition of the first one and the filled circles represent the inverse of f
when we consider f as a relation. But the inverse relation is not a function.
Finally, empty circles are changed into filled ones and vice versa which yields
the rightmost graph. The filled circles in this graph represent the pseudo
inverse f−1 of f according to Definition 6.13. Thus, the pseudo inverse is a
divergent non-decreasing function which preserves the shape of the inverse
relation of f as good as possible. A function f is the ambiguity function of
a cycle-free context-free grammar G if and only if for each n ∈ N the value
f−1(n) is the length of a shortest word whose ambiguity exceeds n.

2f := blog(n + 1)c2
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It is easy to literally see the truth of the following two observations by
considering Figure 6.2. Formal proofs are added only for the sake of com-
pleteness and can be skipped easily without loss of understanding.

Observation 6.14 Let f : N → N be a divergent non-decreasing function.
Then

(f−1)−1 = f.

Proof. Let y, n ∈ N and S := {z ∈ N | y < f(z)}. First we claim that

n < f−1(y)⇔ f(n) ≤ y.

The “if” and “only if” portions of this claim are proved in the next two lines:

“only if:” n < f−1(y) ⇒ n < min S ⇒ n /∈ S ⇒ f(n) ≤ y

“if:” f(n) ≤ y < f(min S) = f(f−1(y).

Hence,

{z ∈ N | n < f−1(z)} = {z ∈ N | f(n) ≤ z}

and for each n ∈ N we obtain:

(f−1)−1(n) = min{z ∈ N | n < f−1(z)} = min{z ∈ N | f(n) ≤ z} = f(n).

Thus, (f−1)−1 = f follows. �

Observation 6.15 Let f, g : N → N be two divergent non-decreasing func-
tions. Then

∀n ∈ N : f(n) ≤ g(n) ⇒ g−1(n) ≤ f−1(n)

Proof. Let x, y ∈ N such that y < f(x) holds. Then f(x) ≤ g(x) > y holds,
which implies:

{z ∈ N | y < f(z)} ⊆ {z ∈ N | y < g(z)}.

Thus, for each y ∈ N we have:

g−1(y) = min{z ∈ N | y < g(z)}
≤ min{z ∈ N | y < f(z)} = f−1(y)

�
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6.5.2 Turing Machine Construction

Now we construct suitable Turing machines by the use of Corollary 6.12.

Lemma 6.16 Let f : N→ N be a computable divergent total non-decreasing
function. Then there is a Turing machine M and an unambiguous context-
free set F ⊆ IDM with the following properties: For each n ∈ N\{0} there is
a word w ∈ val(`M ,F) which contains n occurrences of configurations in F ,
and the shortest word with this property has a length of at least f(n− 1) +1.
Moreover, each occurrence of a configuration in F is preceded by an even
number of configurations.

Proof. Let g : N → N be defined by g(n) := f(n + 1) for each n ∈ N.
Then g is obviously a computable divergent total non-decreasing function.
Let M ′ be a Turing machine which computes g. Without loss of generality
we assume that {0, 1} is the input alphabet of M ′ and that non negative
integers are encoded in binary. Let q0 be the initial state of M . We further
assume that the state sets of M and M ′ are disjoint. The set F contains
all the configurations of the form q0q

′
0n$nR. Here $ is a tape symbol of M

which is not a tape symbol of M ′ and q′0 is the initial state of M ′ and at the
same time a tape symbol of M . Finally, n is a binary encoded non negative
integer. For convenience we identify binary encodings and the corresponding
non-negative integers. Note that F is an unambiguous context-free language.
The machine M never corrupts the initial format, i.e., if τ ∈ IDM is reached
from a configuration in F then by erasing the state of M from τ we obtain a
string of the form u1$u2 ∈ IDM ′$N, here N means the set of binary encodings
of non negative integers. We refer to u1 and u2 by calling them the first or
second segment of τ . Note that u1 contains a state of M ′. The string obtained
from u1 by erasing this state is called the tape of the first segment. Let M
be in the configuration q0q

′
0n1$n

R
1 ∈ F . Then M goes through the following

infinite loop:

(i) Switch to a state q1 6= q0 which starts the simulation of M ′.

(ii) Simulate M ′ on the first segment until it halts. This eventually happens
since the function g computed by M ′ is total.

(iii) Wait one step and then decrement the tape of the first segment stepwise
until it is 0. This is an idle loop (which loops g(n1) times when step
(iii) is called for the first time. With the wait step the Turing machine
requires at least g(n1) + 1 steps to do that.)

(iv) Increment the second segment in its reverse coding (which yields (n1 +
1)R when step (iv) is called for the first time.)
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(v) Overwrite the first segment by q′0n, where n is the reversal of the second
segment, (q′0n = q′0(n1 + 1) when step (v) is called for the first time),
place the head at the position of q′0. If the last time the machine M was
in q0 is an odd number of steps ago enter q0 immediately, otherwise wait
one step before entering q0. The parity of a step can easily be stored
within the finite control of the Turing machine M . This action returns
M into the initial situation. Thus, it performs a kind of “goto (i)”
command.

Moreover, we require that the Turing machine M is programmed in such a
way that it does not enter the state q0 except for the cases where this is
explicitly mentioned above.

If a word w ∈ val(`M ,F) contains n occurrences of configurations in F
for some n ∈ N \ {0} then steps (i) to (v) have been called at least n − 1
times each. The value computed in the last call of step (ii) was g(n1 +n−2),
where n1 is the argument for which g is computed the first time. Since g is
non-decreasing we have g(n1 +n−2) ≥ g(n−2) = f(n−1), and the machine
needs at least g(n1 + n − 2) ≥ f(n − 1) steps in the idle loop executed in
the last call of point (iii) which is denoted in w. Hence, w contain at least
f(n− 1) + 1 many configurations each of which requires at least one symbol
to be denoted.

Finally, since the first configuration of a word in val(`M ,F) is in F and M
always makes an even number of steps before reentering a configuration in F ,
each of these configurations is preceded by an even number of configurations.
This completes the proof. �

Note that M , started on a configuration in F runs forever and passes an
infinite number of times through a configuration in F . The set val(`M ,F)
contains finite infixes of infinite runs of M .

The estimation in the previous proof is rather wasteful, but simple to
understand. Since we are not looking for a result on the density of ambiguity
functions here, we can afford to use such a rough estimation.

Theorem 6.17 Let f : N → N be a computable divergent total non-
decreasing function. Then there is a context-free grammar G such that
d̂G(n) ≤ f−1(n) for each n ∈ N.

Proof. By Lemma 6.16 there is a Turing machine M and an unambiguous
context-free language F such that a shortest word in val(`M ,F) with n
occurrences of a configuration in F has length at least f(n − 1) + 1 for
n ∈ N \ {0}. Moreover, each of these occurrences is preceded by an even
number of configurations. Therefore, according to Lemma 6.5 these words
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have n derivation trees in a canonical grammar G generating L(`M ,F) and
by Corollary 6.12 we do not need to consider other words in L(`M ,F). In
other words the shortest words generated by G whose ambiguity exceeds n
have length at least f(n) + 1. Thus d̂G(n) ≤ f−1(n) for each n ∈ N. �

Theorem 6.18 If f is a computable divergent total non-decreasing function
then there is a cycle-free context-free grammar G such that d̂G is a divergent
function satisfying d̂G(n) ≤ f(n) for all n ∈ N.

Proof. Let f be a computable divergent total non-decreasing function. Let
g := f−1. Obviously g is also a computable divergent total non-decreasing
function. According to Theorem 6.17 and Observation 6.14 there is a context-
free grammar G such that d̂G(n) ≤ g−1(n) = ((f−1)−1)(n) = f(n) for each
n ∈ N. �

6.6 Linearisation

We can obtain the result of Theorem 6.18 even with a more restricted type
of grammars. More specific instead of cycle-free context-free grammars we
can use linear cycle-free context-free grammars with a so-called unambiguous
turn position. In order to understand properly what that means and how
this result is achieved we need a few definitions.

6.6.1 Linear Grammar with Unambiguous Turn Posi-
tion

Definition 6.19 A linear context-free grammar G = (N, Σ, P, S) has eras-
ing termination if

P ⊆ N × (Σ∗NΣ∗ ∪ {ε})

Obviously, each linear context-free grammar can be transformed into an
equivalent linear context-free grammar which has erasing termination. One
just needs to add a new nonterminal A to the right-hand side of each inap-
propriate production and add the production A→ ε.

Definition 6.20 Let G = (N, Σ, P, S) be a context-free grammar with eras-
ing termination and w ∈ L(G). Then n ∈ N is a turn position of w according

to G if there are w1 ∈ Σn and w2 ∈ Σ∗ such that S
∗
⇒ w1Aw2 ⇒ w for some

A ∈ N . Obviously, this implies w = w1w2. Therefore, we call w1 the left
portion of the turn n of w and w2 the right portion of the turn n of w.
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Definition 6.21 A linear context-free grammar G = (N, Σ, P, S) with eras-
ing termination has an unambiguous turn position if each word w ∈ L(G)
has a unique turn position according to G. Let w ∈ L(G) where G is a lin-
ear context-free grammar with unambiguous turn position. Then the left and
right portion of w according to G is the left and right portion of the unique
turn of w according to G, respectively.

The name “turn” is motivated by one-turn push down automata, which are
a machine model for linear context-free languages. One-turn pushdown au-
tomata are usual pushdown automata except for the fact that they allow
only one turn from pushing to popping, i.e. they work in two phases. In
the first phase the content of the pushdown does not shrink, in the second
phase the content does not grow. A linear context-free grammar with erasing
termination can easily be transformed into a one-turn pushdown automaton
such that the left portion of a turn position of a word w is the input read
during the pushing phase of some successful computation τ of w, while the
right portion of the turn position is read during the popping phase of the
computation τ . One-turn push down automata are a special case of finite-
turn push down automate which allow a finite number of turns from pushing
to popping and vice versa. This type of restriction for the way to work with a
pushdown is also called “reversal bounded” in the literature [3]. Finite-turn
pushdown automata are the machine model corresponding to nonterminal
bounded context-free languages [16, Section 5.7, Exercise 7 page 212].

Definition 6.22 A linear context-free language has a fixable turn position
if it is generated by some linear context-free grammar with unambiguous turn
position.

An example for a language which does not have a fixable turn position is
{aibjck | i = j or j = k} while {aibjck | i = j or i = k} has a fixable turn
position.

6.6.2 Spiral Permutation

As we have seen in Example 6.7 there are special cases of block correla-
tion languages which are regular. But typically a block correlation language
L(R,F) over R ⊆ Σ∗×Σ∗ and F ⊆ Σ∗ is not nonterminal bounded and hence
in particular not linear context-free. But if R and F are not too complicated
then the nonlinearity is often just due to the fact that L(R,F) is defined by
a concatenation of languages. This is problematic since linear languages are
not closed under concatenation. But if we have a linear context-free gram-
mar G with an unambiguous turn position, we can insert a second linear
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# # # # # # # #spiral(w) := a7 a7 a28 a20 a80 a40 a10 a14 a14

Figure 6.3: Linearisation of the word in Figure 6.1 on page 113.

language between the left and right portions of all the words in L(G) and
the resulting language will again be linear. Thus, provided the relation R is
not too complicated we can often obtain a linear context-free language with
a fixable turn position just by a permutation of the blocks in L(R,F). The
permutation spiral defined below can be computed recursively.

Definition 6.23 Let L := Σ∗(#Σ∗#Σ∗)∗. Then the function spiral : L→ L
is defined by spiral(w) := w for each w ∈ Σ∗ and spiral(w0#w1#w) :=
w0#spiral(w)#w1 for w0, w1 ∈ Σ∗ and w ∈ L.

Note that each word in L is separated by the “#” symbols uniquely into an
odd number of blocks. Hence, spiral is well defined and total. Moreover, it
is easily seen to be a bijection on L.

The mapping spiral sorts one parity with ascending block numbers to the
left and the other parity with descending block numbers to the right:

Example 6.24 Let n ∈ N, wi ∈ Σ∗ for each i ∈ [0, 2n]. Then for the word
w := w0#w1# · · ·#w2n we have:

spiral(w) = w0#w2# · · ·#w2n−2#w2n#w2n−1#w2n−3# · · ·#w3#w1.

The mapping spiral permutes blocks in such a way that a line connecting
neighbouring blocks from left to right is transformed into a spiral from the
outside to the centre. One can see that by comparing Figure 6.1 on page 113
and Figure 6.3 on page 123. This behaviour of spiral motivates its name.
Note that the correlation between blocks which are connected by a solid line
on top of the word is from right to left, e.g., the second block in Figure 6.3
is connected with a dotted line to the rightmost block, since the left block is
not twice as long as the right one. Instead it is the opposite way round. One
can also see that all the correlations on top of a word and below the word
can be checked by a single linear language, respectively.
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As earlier mentioned, it is well known that each recursively enumerable
set is the homomorphic image of the intersection of two context-free lan-
guage. In the corresponding proofs the intersection of the two languages is
essentially the set of valid computations of a Turing machine. At the begin-
ning of Section 6.1 an informal description of the set of valid computations
for an arbitrary Turing machine M has been provided. Let us denote this
set by valM . This characterisation of recursively enumerable sets has been
strengthened in [3] by showing that it is sufficient to use linear context-free
grammars. The essential idea is to show that spiral(valM) is the intersection
of two linear context-free languages. If the relation R ⊆ Σ∗ × Σ∗ is simple
enough and F ⊆ Σ∗ is a regular set then spiral(L(R,F) is generated by a
linear context-free grammar with unambiguous turn position whose ambigu-
ity function is the canonical ambiguity of L(R,F). The transition relation
`M of an arbitrary Turing machine M turns out to be “simple enough”. But
we still have to specify when a relation is simple enough.

6.6.3 Linear Block Correlation Languages

Definition 6.25 A relation R ⊂ Σ∗×Σ∗ is simple if there is an unambiguous
context-free grammar G = (N, Σ, P, S) such that L(G) = L(R) and P ⊆
N × (Σ∗NΣ∗ ∪ {#}).

Definition 6.26 Let R ⊆ Σ∗×Σ∗ be a simple relation and F ⊆ Σ∗ a regular
language. The linear block correlation language over the relation R and the
set F is spiral(L(R,F)). If spiral(L(R,F)) is a block-correlation language
then F is called the corresponding language of free blocks.

Definition 6.27 A linear canonical grammar for a linear block correlation
language L over a relation R ⊆ Σ∗ × Σ∗ and a set F ⊆ Σ∗ is a context-free
grammar:

G :=
(
{F} ∪̇NL ∪̇NR ∪̇NF , Σ ∪ {#}, P, SL

)
,

where GL := (NL, Σ ∪ {#}, PL, SL), GR := (NR, Σ ∪ {#}, PR, SR), and
GF := (NF , Σ, PF , SF) are unambiguous context-free grammars generating
the languages L(R), (L(R))R, and F , respectively. Moreover:

PL ⊆ NL × (Σ∗NLΣ∗ ∪ {#})

PR ⊆ NR × (Σ∗NRΣ∗ ∪ {#})

PF ⊆ NF × Σ∗(NF ∪ {ε})
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Finally, the set of productions can be partitioned in four subsets:

P := (PL ∪ PR ∪ PF) \ (NL ∪NR)× {#} (i)

∪ {A→ #SL# | A→ # ∈ PL} ∪ {A→ #SR# | A→ # ∈ PR} (ii)

∪ {A→ u#SR | ∃u ∈ Σ∗ : A→ u ∈ PF} (iii)

∪ {SL → SF , F → ε} ∪ {A→ F# | A→ # ∈ PR} (iv)

Now we check that each linear block correlation language has a linear canon-
ical grammar. Since linear canonical grammars are defined over a simple
relation a grammar GL with the properties described in Definition 6.27 can
be constructed for each linear block correlation language. An appropriate
grammar GR can be obtained by renaming the nonterminal belonging to GL
and reversing the right-hand side of each production. Finally, GF which is
right-linear exists since we require F to be regular for linear block correlation
languages.

Now let G be a linear canonical grammar of some linear canonical block
correlation language. Obviously, G is a linear context-free grammar. In the
definition of P point (i) is the set of all productions of the three grammars
GL, GR, and GF which have at least one nonterminal on the right hand side.
The productions of the form (ii) allow to insert a block pair at the position
where the “#” symbol should be produced. Hence, instead of concatenating
block pairs we insert them. The productions in (iii) and (iv) allow to switch
from the GL to GF and from GF to GR. Moreover, SR → F#, F → ε
guarantee that G has erasing termination. Furthermore, G has unambiguous
turn position. The left portion of each word is the longest prefix of the word
which contain half of the “#” symbols.

With a lengthy but straightforward proof one can see that a linear canon-
ical grammar generates the corresponding linear block correlation language.

It is possible to adapt all our proofs for block correlation languages and
prove analogous facts for linear block correlation languages. Typically we
just have to apply the spiral mapping to our constructions and adjust our
argumentation accordingly. Except for the proof of Lemma 6.16 the adjust-
ments are completely straightforward but somewhat awkward to write down.
Let R ⊆ Σ∗×Σ∗ be a simple relation and F ⊆ Σ∗ a regular set. Furthermore,
let G be a canonical grammar for the block correlation language over R and
F and let Gspiral be a linear canonical grammar over R and F . Then for each
word w ∈ Σ∗ we have:

dG(w) = dGspiral
(spiral(w)).

This is due to the fact that a fixed permutation of blocks cannot change the
number of choices for the position of the free block. The candidates for a
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free block are those blocks to the left of the inner end of the spiral drawn in
Fig 6.3 which have only solid lines below pairs which lie closer to the outside
of the spiral and which have only solid lines on top of pairs which are close
to the middle. In the proof of Theorem 6.10 the cancellation of the leftmost
and rightmost pairs of blocks translates into cancellations of the outermost
and innermost pairs of blocks, respectively. Since the transition relation `M

of an arbitrary Turing machine is simple we can also do our Turing machine
construction. There is only one obstacle in the proof of Lemma 6.16. There
we have used configurations of the form q0q

′
0n$nR as the free block language,

which form a non-regular set. But linear block correlation languages only
allow regular languages for the free block language. We can solve this problem
by the use of a regular language F ′ which contains the prefixes of F until
the $ symbol. Fortunately the erased segment is redundant. It is easy to
modify the Turing machine M such that it starts by appending a reversed
copy of the integer which is found to the left of the $ symbol. Then M works
as described in the proof of Lemma 6.16. But before reentering the state q0

the second segment is erased. The remaining statements can be transformed
in a straightforward way. Thus, we get:

Theorem 6.28 If f is a computable divergent total non-decreasing function
then there is a cycle-free linear context-free grammar G with unambiguous
turn position such that d̂G is a divergent function satisfying d̂G(n) ≤ f(n)
for all n ∈ N.

6.7 Rational Trace Language Generation

In the introduction of [5] the authors observe that the results on sublinear
ambiguity in [33] can be transferred to the ambiguity of the generation of
rational trace languages. This can also be done for the stronger results of
this chapter. This section introduces trace languages briefly and explains
informally how the results are transferred.

6.7.1 Preliminaries

We essentially adopt the definitions of [6, Chapter 5]. For the sake of self
containedness we repeat them here with slight notational differences. Note
that we use the word “ambiguity” instead of “multiplicity”. An independence
alphabet is a pair (Σ, I) such that Σ is a finite alphabet and I ⊆ Σ2 is a
symmetric and irreflexive relation on Σ. The trace monoid M(Σ, I) defined
by an independence alphabet (Σ, I) is the quotient Σ∗/≡I

of the free monoid
Σ∗ with respect to the smallest congruence ≡I such that ab ≡I ba for each
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pair (a, b) ∈ I. A trace language is a subset of a trace monoid. Let ϕ : Σ∗ →
M(Σ, I) be the canonical homomorphism. For each w ∈ Σ∗ we denote ϕ(w)
by [w]I . For a language L ⊆ Σ∗ we define [L]I := {[w]I | w ∈ L}. We say
that a trace language T ⊆ M(Σ, I) is generated by a language L ⊆ Σ∗ if
T = [L]I . A trace language is rational if it is generated by some regular set.

Let M := M(Σ, I) for some independence alphabet (Σ, I) and let L ⊆
Σ∗. The ambiguity power series of L with respect to the trace monoid M
is the mapping dL,M : M(Σ, I) → N defined by dL,M(t) := |{w ∈ L | t =
[w]I}|. The ambiguity function of L with respect to the trace monoid M
is the mapping d̂L,M : N → N defined by d̂L,M(n) := max{dL,M(t) | t ∈
M(Σ, I) and |t| = n}.

6.7.2 Sublogarithmic Ambiguity of Trace Language
Generation

In Section 6.6 we have shown that we can obtain very slowly growing infinite
ambiguities even for linear context-free grammars with unambiguous turn
position. That is we could strengthen Theorem 6.18 to Theorem 6.28. In this
section we transfer the result to the ambiguity of a rational trace language
generation.

Let us consider an arbitrary canonical linear grammar G = (N, Γ, P, S) for
a linear block correlation language over a simple relation R ⊆ Σ+×Σ+. Let
Γ̄ := {ā | a ∈ Γ} be a disjoint copy of the symbols in Γ. For a word w ∈ Γ∗ we
define w̄ in the natural way as h(w), where h : Γ∗ → Γ̄∗ is the homomorphism
defined by h(a) := ā for each a ∈ Γ. Let G′ := (N, Γ ∪ Γ̄, P ′, S) where
P ′ := {A→ uv̄RB | A→ uBv ∈ P} ∪ (P ∩ (N × {ε})). Obviously, L(G′) is
regular. By definition no block can ever be empty since R ⊆ Σ+ × Σ+. The
words of L(G′) can be divided in blocks separated by the string ##̄. But
then L(G′) contains only one block which is generated without interleaved
symbols from Σ̄. This block corresponds to the free block of G. Therefore,
G′ is unambiguous which implies that d̂G = d̂L,M , where M :=M(Γ, I) and
I := Γ × Γ̄ ∪ Γ̄ × Γ. Since Turing machine configurations contain at least
one symbol our construction does not require empty blocks. Therefore, we
obtain:

Theorem 6.29 If f is a computable divergent total non-decreasing function
then there is a regular language L ⊆ (Σ ∪ Σ̄) where Σ̄ is a disjoint copy of
Σ, I := Σ × Σ̄ ∪ Σ̄ × Σ, and M := M(Σ, I) such that d̂L,M is a divergent

function satisfying d̂L,M(n) ≤ f(n) for all n ∈ N.
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6.8 Conclusion

We have seen that for each computable divergent total non-decreasing func-
tion there is an inherent ambiguity function which falls below f . We have
not examined which functions are indeed ambiguity functions. Seemingly
there are no substantial gaps below linear ambiguity, in contrast to the gap
between exponential and polynomially bounded ambiguity. But how can we
characterise the “density” of ambiguity functions formally? To examine this
question one could improve the estimation in this chapter. There is no need
to use single steps of Turing machines as a means of computation. Instead we
can allow unambiguous context-free relations to perform single steps. Clearly
for the computational power this is unimportant but it provides more control
over the length of the computations, which is crucial to control the ambiguity
in our construction.

By the results of this chapter it is obvious that for each context-free gram-
mar G1 with a divergent ambiguity function we can find another context-free
grammar G2 with a divergent ambiguity function such that for any c ∈ N we
have dG1(n) ≥ dG2(cn) for all but finitely many n ∈ N. A natural question is
whether there is a context-free language L such that a similar property holds
for all the context-free grammars generating L. If this is the case L would
not have an inherent ambiguity function. Are there context-free languages
which do not have an inherent ambiguity function?



Chapter 7

The Gap Theorem

7.1 Introduction

In this chapter we will see that there is a gap between exponential and polyno-
mially bounded ambiguity. That is, each ambiguity function of a context-free
grammar is either in O(nk) for some k ∈ N or in ΩT (2n) (= 2Ω(n)). For in-
stance a function in Θ(2

√
n) cannot be an ambiguity function for any context-

free grammar. For cycle-free context-free grammars we even obtain an overall
upper bound of OT (2n). A similar gap has recently been found for census
functions, which counts the number of word of a given length [18]. The gap
for ambiguity functions is due to fundamental structural differences between
polynomially bounded and exponentially ambiguous context-free grammars.
These differences are expressed by two intuitive but undecidable necessary
and sufficient criteria separating the classes of context-free grammars with
polynomially bounded ambiguity and with exponential ambiguity. One cri-
terion states that a context-free grammar G can be at most polynomially
ambiguous if we can obtain an unambiguous grammar G′ by the insertion of
markers into the right-hand sides of bounded productions. The other crite-
rion states that a context-free grammar is exponentially ambiguous if its set
of pumping trees is ambiguous. Thus, each criterion is designed to prove a
certain type of ambiguity when satisfied. For both criteria it is hard to figure
out the consequences of their violation in terms of ambiguity. But we do not
need technical and less insightful computations for the ambiguity of gram-
mars which violate a criterion. Instead we will just prove that each cycle-free
context-free grammar satisfies at least one of the two criteria. Clearly no
cycle-free context-free grammar can satisfy both criteria since its ambiguity
cannot be exponential and polynomially bounded at the same time. Hence,
each cycle-free context-free grammar satisfies exactly one of the two criteria.

129
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Thus, the two criteria turn out to be complementary. This fact implies the
necessity of both criteria. Moreover, it proves a gap between polynomially
bounded and exponential ambiguity. The necessity of the criterion for poly-
nomially bounded ambiguity also implies that each language L ∈ PCFL,
i.e., each context-free language with polynomially bounded ambiguity, is a
bounded marker language. Since BMCFL ⊆ PCFL has been shown in Ob-
servation 5.18 we obtain that the class of bounded marker languages and the
class of context-free language with polynomially bounded ambiguity coincide,
i.e. BMCFL = PCFL. Thus, the results obtained in Section 5.2 for bounded
marker languages also hold for each context-free language with polynomially
bounded ambiguity.

It is well known that ambiguity of a context-free grammar is undecidable.
One might tend to believe that the task of deciding whether a context-free
grammar is ambiguous or not becomes easier if we get the promise that it
is extreme with respect to ambiguity, i.e., it is either unambiguous or expo-
nentially ambiguous. But there is a subclass of provably extreme context-
free grammars for which unambiguity is undecidable. However, for a given
context-free grammar G, by an efficient algorithm, we can compute a con-
stant kG ∈ N such that the ambiguity-function of G is either exponential or
in O(nkG). We will see that the sufficient criterion for polynomially bounded
ambiguity also gives rise to some closure properties and a good estimation of
the polynomial degree of a context-free grammar with polynomially bounded
ambiguity.

7.2 Sufficient Criterion for ECFG

In this section we prove that a cycle-free context-free grammar G is exponen-
tially ambiguous if its set of pumping trees ΛG is ambiguous. In other words,
there are two different derivation trees with a common interface such that
the frontier contains at least one node labelled with the same nonterminal
as the root. If this criterion is satisfied we can pump up the ambiguity by
concatenating these trees and choose randomly in each step the first or the
second one. Thus, the number of combinations grows exponentially with re-
spect to the length of the frontiers obtained by this method. This proof idea
is rather intuitive but we have to take two technical problems into account:

� We have to prove that different combinations of different pumping trees
with the same frontier never yield the same tree. For this purpose we
show in Section 7.2.1 that the set of pumping trees with a fixed root
is a free monoid over so-called prime pumping trees. In Section 7.2.2
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we use these algebraic results to prove that two pumping trees with a
common interface are the generators of a free submonoid.

� Pumping trees always contain a nonterminal in their frontier. But the
ambiguity of a context-free grammar is defined by the number of deriva-
tion trees for terminal strings only. There are examples of unambiguous
grammars (on the terminal strings) with exponential ambiguity in the
sentential forms. In Section 7.6.1 we show that the ambiguity of sen-
tential forms of pumping trees can be carried over to terminal strings
for cycle-free context-free grammars without useless symbols. There-
fore, the ambiguity of pumping trees is relevant for the ambiguity of
the underlying context-free grammar.

The sufficient criterion for exponential ambiguity presented here is a gen-
eralisation of the decidable ambiguity criterion found in [20]. With our gen-
eralisation we lose decidability which will be shown in 7.5, but the criterion
presented here turns out to be also necessary for exponential ambiguity which
will be shown in 7.4. In fact, violation of this criterion leads to a polynomial
upper bound for the ambiguity, which can be effectively constructed from
the grammar.

Let G = (N, Σ, P, S) be an arbitrary proper context-free grammar
throughout this section.

7.2.1 The Free Monoid of Pumping Trees

An A-pumping tree for a nonterminal A is a derivation tree with the root
A and exactly one leaf labelled A. We concatenate two A-pumping trees
by identifying the root of the second one with the link of the first. This
yields a pumping tree that inherits the root from the first and the link from
the second pumping tree. Throughout section 7.2.1 we assume that A is a
nonterminal of G. We now define pumping trees and their concatenation
formally.

Definition 7.1 The set of A-pumping trees is

ΛA
G := {ρ ∈ embedded(∆G) | A = ↑(ρ) and ↓(ρ) ∈ Σ∗AΣ∗}

An A-pumping tree ϑ ∈ ΛA
G is said to be proper if ϑ 6= A.

Definition 7.2 Let ϑ1, ϑ2 ∈ ΛA
G be pumping trees. Then ϑ1 = τ1Aτ ′

1 and
ϑ2 = τ2Aτ ′

2 for some τ1, τ
′
1, τ2, τ

′
2 ∈ (P ∪Σ)∗. The concatenation � of ϑ1 and

ϑ2 is defined by:
ϑ1 � ϑ2 := τ1τ2Aτ ′

2τ
′
1.
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Note that τ1, τ ′
1, τ2, and τ ′

2 are uniquely determined in the definition above
since A /∈ P ∪ Σ. The operation symbol � is often omitted when we deal
with A-pumping trees. However, the concatenation of pumping trees must
not be confused with the concatenation of the corresponding tree strings.

Observation 7.3 Let ϑ, ϑ1, ϑ2 ∈ ΛA
G. Then |ϑ1 � ϑ2| = |ϑ1| + |ϑ2| − 1.

Moreover, |ϑ| = 1 if and only if ϑ = A.

Theorem 7.4 (ΛA
G,�) is a monoid with right cancellation.1

Proof. Let ϑi = τiAτ ′
i for i ∈ {1, 2, 3} and ϑ = τAτ ′ be A-pumping trees.

Obviously, ϑ12 := ϑ1 � ϑ2 = τ1τ2Aτ ′
2τ

′
1 has the root A and the property

↓(ϑ12) ∈ Σ∗↑(ϑ12)Σ
∗. Moreover, ϑ12 inherits the property to be an embedded

tree from ϑ1 and ϑ2. Thus, ϑ12 is an A-pumping tree. Moreover, A is the
unit A-pumping tree, i.e., A � ϑ = ϑ = ϑ � A. Moreover, (ϑ1 � ϑ2)� ϑ3 =
τ1τ2Aτ ′

2τ
′
1�ϑ3 = τ1τ2τ3Aτ ′

3τ
′
2τ

′
1 = ϑ1�τ2τ3Aτ ′

3τ
′
2 = ϑ1�(ϑ2�ϑ3). Hence, � is

associative. Therefore, ΛA
G is a monoid with the operation � and the unit A.

To show that the monoid has right cancellation we assume ϑ1 � ϑ = ϑ2 � ϑ.
Then τ1τAτ ′τ ′

1 = τ2τAτ ′τ ′
2. Since this string contains only one A we observe

τ1τ = τ2τ and τ ′τ ′
1 = τ ′τ ′

2. Thus, by the cancellation rules on strings we get
τ1 = τ2 and τ ′

1 = τ ′
2 which implies ϑ1 = ϑ2.

Definition 7.5 A pumping tree ϑ ∈ ΛA
G \ {A} is prime if and only if it is

not the product of two proper pumping trees. That is:

∀ϑ1, ϑ2 ∈ ΛA
G \ {A} : ϑ1 � ϑ2 6= ϑ.

The set of prime pumping trees is denoted by λA
G.

Lemma 7.6 Each ϑ ∈ ΛA
G can be written as a finite product of prime A-

pumping trees.

Proof. Assume to the contrary that ϑ ∈ ΛA
G is a shortest A-pumping tree

which cannot be written as a product of prime pumping trees. Then clearly
ϑ /∈ λA

G. Hence, ϑ = ϑ1 � ϑ2 for some ϑ1, ϑ2 ∈ ΛA
G \ λA

G. By Observation
7.3 we have |ϑ1| > 1 and |ϑ2| > 1 which again by Observation 7.3 implies
|ϑ1| < |ϑ| and |ϑ2| < |ϑ|. Hence, by the minimality of ϑ we obtain that ϑ1

1It also has left cancellation, a fact we do not use in the sequel. To understand left
cancellation assume ϑ � ϑ1 = ϑ � ϑ2, where ϑ1, ϑ2 and ϑ are defined as in the proof
of Theorem 7.4. Then ττ1Aτ ′

1τ
′ = ττ2Aτ ′

2τ
′ and ϑ1 = ϑ2 follows immediately by the

cancellativity of strings.
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and ϑ2 both can be written as a finite product of prime A-pumping trees.
But then ϑ can be written as the product of these products contradicting the
assumption that ϑ cannot be written as a finite product of prime A-pumping
trees. �

Lemma 7.7 An A-pumping tree ϑ ∈ ΛA
G \{A} is prime if and only if it does

not have A-pumping subtrees other than A and ϑ, i.e., subtree({ϑ}) ∩ ΛA
G =

{A, ϑ}.

Proof. For the if portion of the statement we consider an A-pumping tree ϑ
which is not prime. Then ϑ is the product of two A-pumping trees ϑ1, ϑ2 ∈
ΛA

G \ {A}. By definition of the product � the A-pumping tree ϑ2 is a subtree
of ϑ1 � ϑ2. Hence, a non prime A-pumping tree ϑ always has a subtree not
in {A, ϑ}. Therefore, an A-pumping tree ϑ′ which does not have A-pumping
subtrees other than A and ϑ′ itself is prime. For the only if portion we
consider an A-pumping tree ϑ with a proper subtree ϑ2 ∈ ΛA

G \ {A}, i.e.
ϑ2 /∈ {A, ϑ}. Then ϑ = τϑ2τ

′ for some τ, τ ′ ∈ (P ∪ Σ)∗ such that ττ ′ 6= ε.
But then ϑ1 := τ↑(ϑ2)τ

′ = τAτ ′ ∈ ΛA
G \ {A} and ϑ = ϑ1� ϑ2. Thus, ϑ is not

a prime A-pumping tree. Therefore, a prime A-pumping tree ϑ′ cannot have
A-pumping subtrees other than A and ϑ′. �

Theorem 7.8 Each A-pumping tree χ ∈ ΛA
G \ λA

G has a unique prime fac-
torisation, that is, ∃!k ∈ N : ∃!θ1, . . . , θk ∈ λA

G : χ = θ1 � · · · � θk.

Proof. Assume to the contrary that χ ∈ ΛA
G is a shortest A-pumping tree

which does not have a unique prime A-pumping tree factorisation. By Lemma
7.6 then the tree χ has at least two prime A-pumping tree factorisations. If
the rightmost prime A-pumping trees θ1 and θ2 of two different prime A-
pumping tree factorisations of χ would coincide then right cancellation of θ1

would yield an A-pumping tree shorter than χ which does not have a unique
prime A-pumping tree factorisation, contradicting the assumed minimality
of χ. Hence, the rightmost prime A-pumping trees θ1 and θ2 of two different
prime A-pumping tree factorisations of χ cannot coincide. Now θ1 and θ2

both are subtrees of χ containing the unique occurrence of A in χ. Therefore,
their phrases are not independent, which implies that one of them is a subtree
of the other one. But then, by Lemma 7.7, the larger one is not a prime A-
pumping tree. �

From Theorem 7.4 and 7.8 we immediately obtain the following theorem.

Theorem 7.9 ΛA
G is a free monoid over λA

G.



134 CHAPTER 7. THE GAP THEOREM

Thus, we can apply [16, Corollary of Theorem 1.3.3 and Theorem 1.3.4] and
obtain:

Theorem 7.10 Let ϑ1, ϑ2 ∈ ΛA
G. Then

(i) ϑ1ϑ2 = ϑ2ϑ1 ⇒ ϑ1 = ϑk and ϑ2 = ϑl for some ϑ ∈ ΛA
G and some

k, l ∈ N.

(ii) ϑ1ϑ2 6= ϑ2ϑ1 ⇒ {ϑ1, ϑ2}∗ is a free submonoid of ΛA
G.

7.2.2 Free Submonoids

We show that two different pumping trees ϑ1, ϑ2 ∈ ΛA
G with a common frontier

are the generators of a free submonoid. First we show that ϑ1, ϑ2 do not
commute:

Lemma 7.11 Let ϑ1, ϑ2 ∈ ΛA
G. Then

↓(ϑ1) = ↓(ϑ2) and ϑ1 6= ϑ2 ⇒ ϑ1ϑ2 6= ϑ2ϑ1

Proof. Assume ↓(ϑ1) = ↓(ϑ2) and ϑ1 6= ϑ2 and ϑ1ϑ2 = ϑ2ϑ1. Then by
Theorem 7.10 we have ϑ1 = ϑk and ϑ2 = ϑl for some ϑ ∈ ΛA

G and some
k, l ∈ N0. Now ϑ1 6= ϑ2 implies ϑ 6= A and l 6= k. For some v, x ∈ Σ∗ we have
↓(ϑ) = vAx. Thus, vkAxk = ↓(ϑ1) = ↓(ϑ2) = vlAxl. Since k 6= l this implies
v = x = ε. Finally, ϑ 6= A and l(ϑ) = [A, A] contradicts the cycle-freeness
of G. Hence, ↓(ϑ1) = ↓(ϑ2) and ϑ1 6= ϑ2 implies ϑ1ϑ2 6= ϑ2ϑ1 �

Notation 7.12 For ϑ1, ϑ2 ∈ ΛA
G and n ∈ N the n-fold iteration of the pump-

ing tree concatenation � is denoted by {ϑ1, ϑ2}n. It must not be confused
with the n-fold concatenation of the strings in {ϑ1, ϑ2} over TG. The latter
thing is never meant when we refer to pumping trees. Therefore, {ϑ1, ϑ2}n

contains trees not forests consisting of n trees.

As an immediate consequence of Lemma 7.11 and Theorem 7.10 we obtain

Corollary 7.13 Let ϑ1, ϑ2 ∈ ΛA
G; n ∈ N; and ↓(ϑ1) = ↓(ϑ2). Then

ϑ1 6= ϑ2 ⇒ ∀n ∈ N : |{ϑ1, ϑ2}
n| = 2n.

Note that for two different pumping trees ϑ1, ϑ2 ∈ ΛA
G with a common

frontier w1Aw2 and n ∈ N each element of {ϑ1, ϑ2}n has the same frontier
wn

1Awn
2 . Moreover, the length of the frontier is linear in n. Therefore, Corol-

lary 7.13 implies that ambiguous pumping tree sets are always exponentially
ambiguous. Hence:

Observation 7.14 The set of pumping trees ΛG is extreme with respect to
ambiguity, i.e., ΛG is either unambiguous or exponentially ambiguous.
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7.2.3 The Pumping Tree Criterion

Note that exponential ambiguity of the set of embedded trees of a proper
context-free grammar G̃ does not imply that G̃ is ambiguous.

Example 7.15 Let G̃ := S → SaAA | ε, A → ε. For each i ∈ N we have
amG̃([S, S(aA)i)] = 2i. The corresponding set of embedded trees is:

{[S, SaAA]}iS{aA[A, ε], a[A, ε]A}i ⊆ cut(ΛG̃)

Despite that, the set cut(ΛG̃) is exponentially ambiguous the grammar G̃ is
unambiguous since aj has the unique derivation tree:

[S, SaAA]j[S, ε](a[A, ε][A, ε])j.

for each j ∈ N.

By definition the ambiguity of a context-free grammar G is determined
by the ambiguity of ∆G. We have shown that ΛG is exponentially ambigu-
ous if it is ambiguous (Observation 7.14.) The previous example shows that
exponential ambiguity of ∆G is not a trivial consequence of the exponential
ambiguity of ΛG. In the sequel we will carefully examine when a senten-
tial form α containing nonterminals is more ambiguous then any terminal
word generated by α. It will turn out that this cannot happen for senten-
tial forms which are the frontiers of pumping trees of a proper context-free
grammar. This will complete the prove that a proper context-free grammar
is exponentially ambiguous if its set of pumping trees is ambiguous.

We start with some technical lemmata on tree strings. It states that
whenever we get the same tree by attaching a tree ρ to the nonterminal A
in the frontier of two A-pumping trees ϑ1, ϑ2 ∈ ΛG then ϑ1 = ϑ2 follows,
provided ρ has a non-empty frontier not beginning with A.

Lemma 7.16 Let Γ be an alphabet and T := TΓ. Moreover, let τ1, τ2, τ
′
1, τ

′
2 ∈

T ∗ and ω ∈ ∆A for some A ∈ Γ. Then
(
τ1ωτ2 = τ ′

1ωτ ′
2 and ↓(τ1Aτ2) = ↓(τ ′

1Aτ ′
2) and ↓(ω) ∈ (T \ {A})T ∗)

⇒ τ1 = τ ′
1.

Proof. Assume τ1 6= τ ′
1 holds while the left-hand side of the statement above

is true. Since τ1ωτ2 = τ ′
1ωτ ′

2, either τ1 is a prefix of τ ′
1 or vice versa. Without

loss of generality we assume the first. By Lemma 2.28 the two occurrences of
ω in τ1ωτ2, starting at position |τ1|+1 and |τ ′

1|+1, respectively, do not overlap.
Hence, τ ′

1 = τ1ωτ for some τ ∈ T ∗. Now ↓(τ1Aτ2) ∈ {↓(τ1)}{A}T ∗. On the
other hand ↓(τ ′

1Aτ ′
2) = ↓(τ1ωτAτ ′

2) ∈ {↓(τ1)}{↓(ω)}T ∗. But {↓(τ1)}{A}T ∗

and {↓(τ1)}{↓(ω)}T ∗ are disjoint, since ↓(ω) ∈ (T \{A})T ∗. This contradicts
↓(τ1Aτ2) = ↓(τ ′

1Aτ ′
2). Therefore, our assumption is false. �
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Now we show that attaching a tree with a non-empty purely terminal
frontier to two different trees with the same frontier at the same position
within the frontier yields different trees.

Lemma 7.17 Let G = (N, Σ, P, S) be a context-free grammar. Moreover,
let τ1,τ2,τ

′
1,τ

′
2 ∈ T ∗

G, A ∈ N , and ω ∈ subtree(∆G) such that ↓(ω) ∈ Σ+ and
↑(ω) = A. Then

(
τ1Aτ2 6= τ ′

1Aτ ′
2 and ↓(τ1Aτ2) = ↓(τ ′

1Aτ ′
2)

)
⇒ τ1ωτ2 6= τ ′

1ωτ ′
2.

Proof. Assume to the contrary τ1ωτ2 = τ ′
1ωτ ′

2 and τ1Aτ2 6= τ ′
1Aτ ′

2 and
↓(τ1Aτ2) = ↓(τ ′

1Aτ ′
2). Since ω ∈ ∆A

N∪Σ and ↓(ω) ∈ (T \ {A})T ∗
N∪Σ, we obtain

τ1 = τ ′
1 by Lemma 7.16. Finally, cancellation of τ1ω from the equation

τ1ωτ2 = τ ′
1ωτ ′

2 leads to τ2 = τ ′
2, contradicting τ1Aτ2 6= τ ′

1Aτ ′
2. �

Now we define the set of cut of derivation trees not containing void sym-
bols in their frontier. Formally we define:

Definition 7.18

∆̃G := {ρ ∈ cut(∆G) | ↓(ρ) does not contain void nonterminals.}

Lemma 7.19 There is a homomorphism h on T ∗
G such that h maps ∆̃G

injectively to ∆G.

Proof. For each non void A ∈ N we choose a tree ρA ∈ subtree(∆G) such
that l(ρA) ∈ {A × Σ+}. Such a tree exists since G is reduced and A is not
void. Using Lemma 7.17 we can show the injectivity of h restricted to ∆̃G by
an induction on the number of nonterminals in the frontier of the considered
trees in ∆̃G. �

Definition 7.20 A nonterminal A is void if {u ∈ Σ∗ | A
∗
→G u} = {ε}.

In other words, a nonterminal is void if it cannot generate any other string
then the empty word.

Lemma 7.21 If ¬U(ΛA
G) then A is not a void symbol.

Proof. If there are ϑ1, ϑ2 ∈ ΛA
G such that ϑ1 6= ϑ2 and ↓(ϑ1) = ↓(ϑ2) then A

is not a void symbol, i.e., ∃u ∈ Σ+ : A
∗
→G u.

Obviously, ϑ1 6= ϑ2 implies ϑ1 6= A or ϑ2 6= A. Without loss of generality
we assume ϑ1 6= A. Hence, ↓(ϑ1) = w1Aw2 for some w1, w2 ∈ Σ∗. Since
G is cycle-free we observe w1w2 6= ε. Since G has no useless symbols there
is a ρ ∈ subtree(∆G) such that ↑(ρ) = A. For some τ1, τ2 ∈ T ∗

G we have
ϑ1 = τ1Aτ2. Then τ1ρτ2 ∈ subtree(∆G) such that ↓(τ1ρτ2) = w1↓(ρ)w2 6= ε.
Therefore, A is not a void symbol. �
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Theorem 7.22 The grammar G is exponentially ambiguous if it has an am-
biguous set of pumping trees, i.e.,

¬U(ΛG) ⇒ G ∈ ECFG.

Proof. It is easily seen that d̂G(n) ∈ 2O(n) for any cycle-free context-free
grammar. (See footnote 2 in Section 3.2 for details.) It remains to show that
d̂G(n) ∈ ΩT (2n).

If ¬U(ΛG) then there are ϑ1, ϑ2 ∈ ΛA
G such that ϑ1 6= ϑ2 and ↓(ϑ1) =

↓(ϑ2). Since A is not useless for some τ1, τ2 ∈ TG we have ρ := τ1Aτ2 ∈
cut(∆G) such that ↓(ρ) ∈ Σ∗AΣ∗. By Lemma 7.21 the nonterminal A is not
void.

Now let n ∈ N. By Corollary 7.13 we have |{ϑ1, ϑ2}n| = 2n. The set
{ϑ1, ϑ2}n consists of A-pumping trees all having the same frontier. We define:

∆̄G :=
{
τ1τ

′
1Aτ ′

2τ2 | τ
′
1Aτ ′

2 ∈ {ϑ1, ϑ2}
n
}
.

We observe that |∆̄G| = 2n. Since the trees in ∆̄G only contain one non-
terminal and this nonterminal is not void we have ∆̄G ⊆ ∆̃G. According to
Lemma 7.19 there is a homomorphism h on T ∗

G such that h(∆̄G) ⊆ ∆G and
|h(∆̄G)| = |∆̄G| = 2n. Moreover, all the trees in h(∆̄G) have the same purely
terminal frontier with a length of Θ(n). This implies d̂G(n) ∈ ΩT (2n). �

7.3 Sufficient Criterion for PCFG

Definition 7.23 Let G = (N, Σ, P, S) be a proper context-free grammar. Let
Pω and P<ω be the corresponding sets of unbounded and bounded productions,
respectively. For a production p = [A, u0A1u1 · · ·Ak−1uk−1Akuk] ∈ P where
k ∈ N, A, Ai ∈ N and u0, ui ∈ Σ∗ for i ∈ [1, k] we define the mapping
mark : P → (N × (N ∪ Σ ∪ P )∗) by:

markG(p) :=

{

[A, pu0A1pu1 · · ·Ak−1puk−1Akpuk] if p ∈ P<ω

p otherwise.

The skeleton grammar s(G) of G is defined by:

s(G) := (N, Σ ∪ P<ω,mark(P ), S).

Example 7.24

G := S → AA, A→ aAa | bAb | ε
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The language L(G) consists of all words over {a, b} which are the result of
the concatenation of two even length palindromes. The bounded productions
are P<ω := {[S, AA], [A, ε]}. The production [S, AA] occurs once in each
derivation tree and [A, ε] twice.

s(G) := S → [S, AA]A[S, AA]A[S, AA], A→ aAa | bAb | [A, ε].

Lemma 7.25 s(G) ∈ UCFG ⇒ d̂G(n) ∈ O(nk), for k = sup(L(s(G)))(P ).

Proof. The grammar s(G) is obtained from G = (N, Σ, P, S) by inserting
bounded productions of G as terminal marker symbols. It is easily seen that
the partition of the production set of a context-free grammar in bounded
and unbounded productions is not affected by the insertion or cancellation
of terminals in right-hand sides of productions. Hence, there is a maximal
number of marker symbols which can occur in a word of L′ := L(s(G)).
This upper bound is k := sup(L′)(P ). Since L′ is unambiguous and πΣ is a
bounded contraction of L′ which yields πΣ(L′) = L(G) we see that L(G) is
a bounded marker language with L′ as a witness with marking constant k.
According to Observation 5.18 this implies d̂G(n) ∈ O(nk) �

The next example shows how Lemma 7.25 can be used.

Example 7.26 We consider the grammar G of Example 7.24. It is easily
seen that s(G) is unambiguous. The production

S → [S, AA]A[S, AA]A[S, AA]

produces 3 markers and is used once while the production [A, ε] produces one
marker and is used twice. Therefore,

k := sup(L(s(G)))(P ) = sup(L(s(G)))(P<ω) = 1 · 3 + 2 · 1 = 5.

Hence, by Lemma 7.25 we have d̂G(n) ∈ O(n5).

The estimation of Example 7.26 is not sharp. In fact, it can be shown
that d̂G(n) ∈ O(n) (see Example 7.53). The advantage of Lemma 7.25 is
that it provides an upper bound for the polynomial degree of a grammar
with polynomially bounded ambiguity, without a need to understand the
generated language.
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B

ρ

α↑(ρi)β
ρi
γ

Figure 7.1: Expanding subtrees of pumping trees to pumping trees.

7.4 Gap Theorem

As an immediate consequence of the definitions we obtain:

Observation 7.27 Let Γ be an alphabet. Let L1, L2 ⊆ ∆Γ be tree languages.
Then

L1 ⊆ L2 ⇒
(
U(L2) ⇒ U(L1)

)
.

Definition 7.28 A tree ρ ∈ embedded(∆G) is an unbounded production tree
if it doesn’t contain a bounded production and its frontier contains at most one
nonterminal. Moreover, if the frontier contains a nonterminal then it belongs
to the equivalence class of the root, i.e., the set of unbounded production trees
is:

4ω G := {ρ ∈ embedded(∆G) | ρ ∈ (Pω ∪ Σ)∗([↑(ρ)] ∪ {ε})(Pω ∪ Σ)∗}.

Within Section 7.4 we assume that G = (N, Σ, P, S) is an arbitrary proper
context-free grammar.

Lemma 7.29 U(ΛG) ⇒ U
(
subtree(ΛG)

)
.

Proof. Assume U(ΛG) holds and ρ1, ρ2 ∈ subtree(ΛG) such that l(ρ1) =
l(ρ2). We have to show that ρ1 = ρ2 in this case. By definition there is a

pumping tree τ1ρ1τ2 ∈ ΛG for some τ1, τ2 ∈ T ∗
G. Now τ1ρ1τ2

∗
← τ1↑(ρ1)τ2 =

τ1↑(ρ2)τ2
∗
→ τ1ρ2τ2 implies ↑(τ1ρ1τ2) = ↑(τ1ρ2τ2) by Observation 2.16. On

the other hand, ↓(τ1ρ1τ2) = ↓(τ1)↓(ρ1)↓(τ2) = ↓(τ1)↓(ρ2)↓(τ2) = ↓(τ1ρ2τ2).
Hence, τ1ρ1τ2 and τ1ρ2τ2 have the same interface. But then τ1ρ2τ2 ∈ ΛG.
Therefore, τ1ρ1τ2 = τ1ρ2τ2 follows by U(ΛG). Finally, by cancellation we
obtain ρ1 = ρ2 which completes the argument. Figure 7.1 illustrates the tree
τ1ρiτ2 for an i ∈ {1, 2}, where α = ↓(τ1), β = ↓(τ2), and γ = ↓(ρi). Moreover
αγβ ∈ Σ∗{B}Σ∗. �

Note that the opposite implication U(ΛG) ⇐ U(subtree(ΛG)) also holds.
This can be proved by the use of Observation 7.27 since ΛG ⊆ subtree(ΛG).
But we don’t need this fact in the sequel.
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ρ′

u1Xu3↑(ρ′)v
ρ
w

or
ρ′

u↑(ρ′)v1Xv3

ρ
w

Figure 7.2: Expanding a tree only containing unbounded productions to a
pumping tree.

Lemma 7.30 4ω G ⊆ subtree(ΛG).

Proof. Let ρ ∈ 4ω G.
Case 1: The root ↑(ρ) of ρ is not a bounded symbol. Then X := ↑(ρ) is
pumpable. Hence, by definition there is a derivation tree ρ′ ∈ embedded(∆G)
such that for α := X↑(ρ′) the relation ~α ⊆ ~ρ′ holds, i.e., ρ′ ∈ {τ1Xτ2↑(ρ′)τ3,
τ1↑(ρ′)τ2Xτ3} for some τ1, τ2, τ3 ∈ (P ∪Σ)∗. In any case one occurrence of X
can be replaced by ρ.2 The resulting tree, either τ1ρτ2↑(ρ′)τ3 or τ1↑(ρ′)τ2ρτ3,
is a pumping tree, since it has an occurrence of ↑(ρ′) in the frontier. Figure
7.2 illustrates the resulting tree.

Case 2: The root ↑(ρ) of ρ is a bounded symbol. Let ν be a deepest node
labelled with a symbol in [↑(ρ)], i.e., non of its descendants is in [↑(ρ)].
(Obviously such a node exists, since the root node is labelled with a symbol
in [↑(ρ)].) Assume ν is an internal node, i.e., ρ[ν] = p ∈ P . By the choice
of ν the production p is descending. Moreover, `(p) is bounded since `(p) ∈
[↑(ρ)]. Thus, p is a bounded production, which implies ρ /∈ 4ω G. This is
a contradiction. Hence, our assumption is false and ν is a leaf. Therefore,
~ρ ∩ [↑(ρ)] 6= ∅. Let B ∈ ~ρ ∩ [↑(ρ)]. Then B ` ↑(ρ). Therefore, there is a
tree ρ′ = τ1↑(ρ)τ2 ∈ embedded(∆) such that ↑(ρ′) = B and ↓(ρ′) ∈ Σ∗↑(ρ)Σ∗.
Thus, τ1ρτ2 ∈ ΛG, i.e., ρ ∈ subtree(ΛG). �

As an immediate consequence of Lemma 7.29, Lemma 7.30, and Obser-
vation 7.27 we obtain:

Theorem 7.31 U(ΛG) ⇒ U(4ω G).

Obviously, U(4ω ) and ¬U(4ω ) are closed under deletion and insertion of
terminals in bounded productions. Now Theorem 7.31 states that for the
generation of polynomially bounded ambiguity, bounded productions are es-
sential. If we insert sufficiently many markers in bounded productions to
destroy their capacity to cause ambiguity then the resulting grammar should

2There may be more than one occurrence of X since X = ↑(ρ) is not ruled out.
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be unambiguous. This is exactly what we are about to do. Note that we
will use productions of the original grammar as marker symbols in the con-
structed grammar.

Lemma 7.32 Let ρ ∈ subtree(∆G). If ρ contains a node ν labelled with a
bounded symbol A then each ancestor of ν is labelled with a bounded symbol.

Proof. If ν ′ is an ancestor of ν labelled with B then B generates A (i.e.
B ` A). Thus, by Lemma 4.12 we have supG(B) ≤ supG(A). Hence, B is a
bounded symbol. �

Lemma 7.33 Let ρ ∈ subtree(∆G). Let ν1 and ν2 be two nodes labelled with
a bounded symbol where neither one is an ancestor of the other. Then there is
a node ν < min{ν1, ν2} such that the parse label of ν is a bounded production.

Proof. Let ν be the first common ancestor of ν1 and ν2. Then ν ≤
min{ν1, ν2}. Since neither one is an ancestor of the other ν < min{ν1, ν2}.
By Lemma 7.32 the node ν and two distinct children of ν are labelled with
bounded symbols. But among the descendants of a pumping production
there is at most one bounded symbol. Therefore, the parse label of ν must
be a descending production. Thus, we obtain that the parse label of ν is a
bounded production. �

Lemma 7.34 Each subtree ρ of a derivation tree which contains a bounded
production (i.e., ρ ∈ {µ ∈ subtree(∆G) | ~µ ∩ P<ω 6= ∅}) has a unique de-
composition ρ = ξpτχ where p ∈ P<ω is a bounded production, such that
pτ ∈ subtree(∆G), ξ`(p)χ ∈ 4ω , and ↑(ξ`(p)χ) is bounded.

Proof. Let ρ ∈ {µ ∈ subtree(∆G) | ~µ ∩ P<ω 6= ∅}. Then ρ contains at least
one bounded production. For each internal node µ in ρ there is a uniquely
defined decomposition ρ = ξpτχ such that |ξ| = µ − 1, pτ ∈ subtree(∆G),
and ξ`(p)χ ∈ embedded(∆G). Our task is to find the appropriate µ. Since
ξ cannot contain a bounded production but p is a bounded production, the
only possible candidate for µ is the smallest integer i such that ρ[i] is a
bounded production. Now we choose the uniquely defined ξ ∈ (N ∪ Σ∪Pω)∗,
τ, χ ∈ (N ∪ Σ ∪ P )∗, and p ∈ P<ω with the property ρ = ξpτχ, ρ′ := ξ`(p)χ,
and pτ ∈ subtree(∆G). Obviously, ρ′ ∈ {ρ′′ ∈ embedded(∆G) | ρ′′ ∈ (Pω ∪
Σ)∗N(P ∪ Σ)∗}. Assume that there is a node µ′ in the χ portion of ρ′

whose parse label is a bounded production. Let µ := |ξ| + 1. Since µ < µ′

the node µ′ cannot be an ancestor of µ. On the other hand, µ is a leaf
and is therefore no ancestor of µ′. Thus, by Lemma 7.33 there is a node
ν < µ whose parse label is a bounded production, which is a contradiction
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to our choice of µ. That implies χ does not contain bounded productions.
Therefore, ρ′ ∈ {µ ∈ embedded(∆G) | µ ∈ (Pω ∪ Σ)∗N(P<ω ∪ Σ)∗}. Assume
`(p) /∈ [↑(ρ′)]. Then there is a first ancestor ν of µ such that µ /∈ [ν]. Since
ν is an ancestor of µ we have ν < µ. The node µ is the leftmost node with
a bounded production as its parse label. Hence, ν’s parse label is not a
bounded production. By Lemma 2.69 this implies that ν is labelled with an
unbounded symbol or its parse label is a pumping production. Since ν is
an ancestor of the node µ which has a bounded label, according to Lemma
7.32, the node ν is labelled by a bounded symbol. Hence, its parse label is
a pumping production. By definition the child ν ′ of ν which is an ancestor
of µ is labelled with a nonterminal B which is not equivalent to the label of
ν. Therefore, according to Lemma 2.71 another child of ν is labelled with a
nonterminal C in the equivalence class of the label of ν. Let D be the label of
µ. Then {C, B} ∈ ∇D. Thus, D is pumpable. But then µ is not labelled with
a bounded symbol according to Observation 2.78, which is a contradiction.
Hence, the assumption is false and `(p) ∈ [↑(ρ′)] follows. Thus, ξ`(p)χ ∈ 4ω G

and ↑(ξ`(p)χ) is bounded. �

Lemma 7.35 U(4ω G) ⇒ s(G) ∈ UCFG.

Proof. Observe that p ∈ P is an unbounded production of G if and only if
markG(p) is an unbounded production of s(G). Moreover, Pω = P ′

ω which
implies 4ω G = 4ω s(G). For U(4ω G) we must show that arbitrary ρ1, ρ2 ∈ ∆s(G)

have common interfaces only if ρ1 = ρ2. We prove this by induction on
|ρ1|P<ω

. The basis is that ρ1 ∈ 4ω s(G). Now ↓(ρ1) does not contain any
symbols in P<ω. Since each production in h(P<ω) generates symbols in P<ω

and l(ρ1) = l(ρ2) we obtain that ρ2 is in 4ω s(G) too. By the observation
above ρ1, ρ2 ∈ 4ω G. Hence, U(4ω G) implies ρ1 = ρ2. Assume the claim has
been proved for all ρ ∈ ∆s(G) with at most n bounded productions. Let ρ1

contain n + 1 bounded productions. By Lemma 7.34 for i ∈ {1, 2} we can
uniquely decompose ρi = ξi h(pi) τiχi such that ρ′

i := ξil(h(pi))χi ∈ 4ω s(G),
h(pi) ∈ P

′

<ω, and h(pi)τi ∈ ∆s(G). Since all bounded productions happen to
occur in h(pi)τi, it follows that p1 and p2 generate the leftmost and rightmost
occurrences of symbols from P<ω in ↓(ρ1) and ↓(ρ2), respectively. By l(ρ1) =
l(ρ2) this implies p := p1 = p2 and l(ρ′

1) = l(ρ′
2). Now ρ′

1, ρ
′
2 ∈ 4ω s(G)

implies ρ′
1, ρ

′
2 ∈ 4ω G. Since U(4ω G) this implies ρ′

1 = ρ′
2. Now p is both

a terminal of s(G) and a bounded production of G. Thus, h(p) = (A →
pu0A1pu1 · · ·Akpuk) for some k ∈ N, and for each j ∈ {1, . . . , k} we have
A, Aj ∈ N and uj ∈ Σ∗. Then τi = τi,1 · · · τi,k has, for each i ∈ {1, 2}, a
unique decomposition in k derivation trees τi,1, . . . , τi,k ∈ ∆s(G) such that
Aj = ↑(τi,j). Since h(p) is a descending production it cannot occur in any
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τi,j. Hence, their yields cannot contain p. Therefore, we can uniquely retrieve
the yield of each τi,j from ↓(ρi), i.e., for each j ∈ {1, . . . , k} we have ↓(τ1,j) =
↓(τ2,j). Hence, l(τ1,j) = l(τ2,j) for each j ∈ {1, . . . , k}. But since they do
not contain h(p) they contain at most n bounded productions. Therefore,
by the inductive hypothesis τ1,j = τ2,j for each j ∈ {1, . . . , k}. This finally
implies ρ1 = ρ2. �

Now we gather some previous results to show that we have several necessary
and sufficient criteria for PCFG:

Theorem 7.36 G ∈ PCFG ⇔ G /∈ ECFG ⇔ U(ΛG) ⇔ U(4ω G) ⇔ s(G) ∈
UCFG.

Finally, we establish the gap between ECFG and PCFG

Proof. G ∈ PCFG
T7.22
⇒ U(ΛG)

T7.31
⇒ U(4ω G)

L7.35
⇒ s(G) ∈ UCFG

L7.25
⇒ G ∈

PCFG. �

Theorem 7.37 d̂G = ΩT (2n) or d̂G = O(nk), where k = sup(L(s(G)))(P<ω)
and P<ω is the set of G’s bounded productions.

Proof. If ¬U(ΛG) then G ∈ ECFG by Theorem 7.22, i.e., d̂G = ΩT (2n). If
U(ΛG) then s(G) ∈ UCFG follows by Theorem 7.36. Thus, by Lemma 7.25
we obtain d̂G(n) = O(nk). �

Note that the value of k in the theorem above can be computed in polynomial
time with respect to the size of the grammar.

Corollary 7.38 Each cycle-free context-free grammar is either in ECFG or
PCFG.

Finally, we can establish a close relationship between UCFG and PCFG:

Theorem 7.39 The class of languages with polynomially bounded ambiguity
PCFL, the class of bounded marker languages BMCFL and the closure of
unambiguous languages UCFL under bounded contraction coincide.

Proof. By definition BMCFL is a subset of the closure of UCFL under
bounded contractions. By Corollary 4.6 the closure of UCFL under bounded
contractions is a subset of PCFL. To see that PCFL ⊆ BMCFL we take an
arbitrary L ∈ PCFL and show that L ∈ BMCFL holds. Since L ∈ PCFL
we can choose a context-free grammar G = (N, Σ, P, S) ∈ PCFG such that
L = L(G). Then G ∈ U(4ω ) holds by Theorem 7.36. By Lemma 7.35 this
implies L(s(G)) ∈ UCFL. Obviously, L = πN∪Σ(L(s(G))) and πN∪Σ is a
bounded contraction for L(s(G)). Hence, L is a bounded marker language.

�
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Since PCFL = BMCFL by Theorem 7.39 we can transfer the notions of
witnesses and marking constants to languages in PCFL.

Moreover, we can restate the results for the parallel parsing of bounded
marker languages, Theorem 5.19 and Theorem 5.21, for languages with poly-
nomially bounded ambiguity:

Corollary 7.40 The word problem of a language L ∈ PCFL with the mark-
ing constant mL can be solved by a CREW-PRAM with O(n6+mL) processors
in time O(log(n)).

Corollary 7.41 Let L ∈ PCFL and L which has a witness L′ having the
marking constant m. Moreover, let there be an unambiguous and linear
context-free grammar G′ with L(G′) = L′. Then the word problem for L can
be solved by a CREW-PRAM with O(n2+m) processors in time O(log(n)).

Note that for each G ∈ PCFL the marking constant of L(G) cannot be
higher than sup(L(s(G))(P ). Thus, provided we know a context-free gram-
mar which generates L with polynomially bounded ambiguity we can effi-
ciently compute an upper bound for the marking constant, which is at the
same time an upper bound for the degree of a polynomial which bounds the
ambiguity of G.

7.5 Undecidability of PCFG

Definition 7.42 A cycle-free context-free grammar is extreme with respect
to its ambiguity if it is unambiguous or exponentially ambiguous.

Theorem 7.43 There is a class of cycle-free linear context-free grammars
with unambiguous turn position which are provably extreme with respect to
their ambiguity, but for which it is not decidable whether they are ambiguous.

Proof. Let Γ := {A, B, C, S} and Σ := {a, b, c, d, #} be alphabets. Let
x1, . . . , xn, y1, . . . yn ∈ {a, b}+. And let

P1 := {S → A, S → B}

∪ {A→ xjAdcj | 1 ≤ j ≤ n} ∪ {B → yjBdcj | 1 ≤ j ≤ n},

P2 := {A→ xjdcj | 1 ≤ j ≤ n} ∪ {B → yjdcj | 1 ≤ j ≤ n},

P̄2 := {A→ xjCdcj | 1 ≤ j ≤ n} ∪ {B → yjCdcj | 1 ≤ j ≤ n}

∪ {C → ε}.

In [16, Theorem 8.4.5] it is shown that the grammar G1 := ({S, A, B}, Σ, P1∪
P2, S) is ambiguous if and only if the instance ((x1, . . . , xn),(y1, . . . yn)) of the
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Post Correspondence Problem has a solution.3 The same argument applies
for the grammar G2 := ({S, A, B, C}, Σ, P1 ∪ P̄2, S) which has erasing termi-
nation (see Definition 6.19). Now consider G3 = ({S, A, B, C}, Σ, P1 ∪ P̄2 ∪
{C → #S#}, S). It is easily seen that the production C → #S# does not
introduce ambiguity. But if G1 is already ambiguous then ¬U(ΛG3) holds.
Hence, G3 is extreme, but it is not decidable whether it is unambiguous or
exponentially ambiguous. �

According to Theorem 7.36, in order to witness exponential ambiguity
one only has to find two different pumping trees with a common interface.
For an arbitrary context-free grammar G let 〈G〉 denote a reasonably simple
encoding of G. For instance use the encoding in [17, Chapter 8.1, page 178].
Then we have

Theorem 7.44 The set {〈G〉 | G ∈ ECFL} is recursively enumerable.

Proof. Construct a nondeterministic Turing machine which guesses two
pumping trees and checks whether they are different and have a common
interface. Accept if this is the case. Reject otherwise. �

Another way to proof the previous theorem would be to guess an interface
with the appropriate form for a pumping tree and check whether their are at
least to pumping trees with this interface.

To check whether a context-free grammar G is exponentially ambiguous
a deterministic simulation of the latter approach seems to be more efficient.
Further heuristics to prove exponential ambiguity are discussed in the next
section.

7.6 Heuristics to Prove Exponential Ambigu-

ity

We have seen that a proper context-free grammar is exponentially ambiguous
if and only if it has two different pumping trees with a common interface.
We also know that this criterion is undecidable. As usual this problems is
not hard to decide for each individual instance. There are some heuristics
which can help to examine special cases. In section 7.6.1 we consider cuts
of pumping trees, which can often lead to smaller witnesses for exponential
ambiguity. In Section 7.6.2 we show that we can sometimes divide a grammar

3The undecidability of the ambiguity problem for context-free grammars is originally
proved in [9, 8]
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ϑ := S

a S A

ε

A

ε

ρ1 := S

a S A

ε

A

ρ2 := S

a S A A

ε

We have ϑ ∈ ΛG̃ and {ρ1, ρ2} ⊆ cut(ϑ). Moreover l(ρ1) = [S, aSA] = l(ρ2).

Figure 7.3: Two different cuts of a pumping tree with a common interface.

G in several smaller ones such that G is exponentially ambiguous if and
only if one of the smaller grammars is exponentially ambiguous. In Section
7.6.3 some heuristics are provided which are helpful to find pumping trees to
witness exponential ambiguity.

7.6.1 Cuts of Pumping Trees

A pair of different pumping trees with a common interface serves as a witness
for ¬U(ΛG) and thus for exponential ambiguity. What about witnesses for
¬U(cut(ΛG))? They are often by far smaller and therefore easier to find.
But do they imply exponential ambiguity in general? The answer is no. To
see that let us revisit the grammar of Example 7.15. In Figure 7.3 we see
two different cuts ρ1 and ρ2 of a pumping tree with the common interface
aSA. Despite their difference, they are both cuts of the same pumping tree
ϑ. In fact the set ΛG = {([S, aSAA]a)iS[A, ε]2i | i ∈ N.} of pumping trees
is unambiguous, while the set cut(ΛG) is exponentially ambiguous as shown
in Example 7.15. The loss of ambiguity in ΛG is due to the fact that A is a
void nonterminal, i.e., a nonterminal which cannot generate something else
then the empty word. Thus we cannot exploit pairs of cuts of pumping trees
as witnesses of exponentially ambiguity in general. But we just need a very
weak additional restriction to use them. With the help of Lemma 7.17 we
can easily show

Theorem 7.45

¬U({ρ ∈ cut(ΛG) | ↓(ρ) does not contain void symbols.}) ⇒ ¬U(ΛG).

While ε-productions often help to design a context-free grammar, void
nonterminals can always be eliminated from a grammar in a trivial way
yielding a smaller equivalent grammar. Therefore, void nonterminals almost
never occur in practical examples This makes the following corollary fre-
quently helpful:

Corollary 7.46 ¬U(cut(ΛG)) ⇒ ¬U(ΛG).
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7.6.2 Divide and Conquer on Grammars

We have seen that a context-free grammar G is exponentially ambiguous if
and only if the set of embedded trees without bounded productions is ambigu-
ous (Theorem 7.36). Hence we can consider G without bounded productions.
The elimination of bounded productions may cause a decomposition of the
dependency graph in several connected components. Each component can be
considered as a smaller grammar to examine. This division in several smaller
context-free grammars may simplify the proof of exponential ambiguity.

Lemma 7.47 Let G = (N, Σ, P, S) be a proper context-free grammar and
Nr := {B ∈ N | B = S or ∃p ∈ P<ω : |r(p)|B > 0}. Then G ∈ PCFG if
and only if for all A ∈ Nr the context-free grammar GA := (N, Σ ∪ Ñ , Pω ∪
P ′, A) ∈ UCFG is unambiguous (but not necessarily reduced), where Ñ :=
{X̃ | X ∈ N} is a copy of the nonterminals such that Ñ ∩ N = ∅, and
P ′ := {A→ Ã | A ∈ N}.

Proof. If G /∈ PCFG then U(4ω G) is false. Thus, there are two different
trees ρ1, ρ2 ∈ 4ω (G) with l(ρ1) = l(ρ2). By the definition of Nr there must
be some A ∈ Nr such that A ` ↑(ρ1) and all the productions applied to
ρ1 and ρ2 are in the production set of GA. Hence, ρ1, ρ2 ∈ embedded(GA).
If ρ1 and ρ2 still contains nonterminals we can replace them by the use of
productions in P ′. This yields two derivation trees ρ′

1 and ρ′
2. Since ρ1 and

ρ2 do not contain productions in P ′ we can retrieve ρ1 and ρ2 from ρ′
1 and

ρ′
2, respectively. Hence, ρ′

1 6= ρ′
2 holds which implies that GA is ambiguous.

On the other hand, if GA is ambiguous for some A ∈ Nr then we can find
two different derivation trees ρ1 and ρ2 which generate the same word. After
cutting off all the subtrees of the form [A, Ã]Ã, where A ∈ Nr, we obtain two
different trees ρ′

1 and ρ′
2 which still have a common frontier. Moreover, they

both lie in 4ω G. Thus, U(4ω G) is false which implies that G /∈ PCFG.

�

The previous lemma splits a context-free grammar G = (N, Σ, P, S) into |Nr|
many grammars. In fact we can often consider a smaller number of grammars.
It can be easily seen that it is sufficient to consider the grammars with start
symbols in {A ∈ Nr | ∀B ∈ Nr : ¬(B `GB

A}. To see that observe that for
A, B ∈ Nr such that B `GB

A the grammar GB has all the derivation trees
of GA as embedded trees. Hence the examination of GB already contains an
examination of GA.
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7.6.3 Other Heuristics

The following sufficient criterion for ¬U(ΛG) depends only on the interfaces
of two pumping trees. It is not necessary to consider their internal structure.

Corollary 7.48 Let G = (N, Σ, P, S) be a proper context-free grammar.

∃ϑ1, ϑ2 ∈ ΛA
G; v, x ∈ Σ+; k, l, m, n ∈ N :

↓(ϑ1) = vkAxl ∧ ↓(ϑ2) = vmAxn ∧ lm 6= kn

}

⇒ ¬U(ΛG)

Proof. If the left-hand side is satisfied then ↓(ϑ1ϑ2) = vk+mAxl+n = ↓(ϑ2ϑ1).
Assume ϑ1ϑ2 = ϑ2ϑ1. By Theorem 7.10 then ϑ1 = ϑp and ϑ2 = ϑq for
some p, q ∈ N where ↓(ϑ) = v̄Ax̄ for some v̄, x̄ ∈ Σ+. This implies k · |v| =
p · |v̄| ∧ l · |x| = p · |x̄| ∧ m · |v| = q · |v̄| ∧ n · |x| = q · |x̄|. By multiplication
we obtain k · |v| · n · |x| = p · |v̄| · q · |x̄| = l · |x| ·m · |v|. Since |v| · |x| > 0
we obtain by division kn = lm which is a contradiction. Hence, ϑ1ϑ2 6= ϑ2ϑ1

and ¬U(ΛG) follows. �

Example 7.49 Let G :=
(
S → a2Sb3 | a5Sb7 | ε

)
. Let ϑ1 := [S, a2Sb3]a2Sb3

and ϑ2 := [S, a5Sb7]a5Sb7. Then for A := S, v := a, x := b, k = 2, l = 3,
m = 5, and n = 7 we have ϑ1, ϑ2 ∈ λA

G, ↓(ϑ1) = vkAxl and ↓(ϑ2) = vmAxn.
Moreover, lm = 15 6= 14 = kn. Therefore, according to Corollary 7.48 the
grammar G is exponentially ambiguous.

Even though Corollary 7.48 is a quite elementary consequence of Theorem
7.22 it is useful to have it in mind when searching for a proof for exponential
ambiguity since the repetitive pattern of the frontiers of ϑ1 and ϑ2 is easily
observed by a human. Then one has to verify the inequation lm 6= kn. If
the considered grammar is exponentially ambiguous it is quite likely that the
inequation holds by chance for the first considered pair of pumping trees.

Finally, we prove a decidable sufficient criterion for exponential ambiguity,
which is a proper generalisation of the ambiguity criterion presented in [20]
even for grammars in Chomsky normal form.

Corollary 7.50 A proper context-free grammar G = (N, Σ, P, S) is expo-
nentially ambiguous if it contains a nonterminal which is left- as well as
right recursive. Formally that is:

(
∃A ∈ N ; v, x ∈ Σ+ : A

+
→G vA ∧ A

+
→G Ax

)
⇒ ¬U(ΛG).

Proof. If G is cycle-free and A ∈ N is as well left- and right recursive, then
there are ϑ1, ϑ2 ∈ ΛA

G such that ↓(ϑ1) = vA and ↓(ϑ2) = Ax for some
v, x ∈ Σ+. Thus, for k := n := 1 and l := m := 0 we have ↓(ϑ1) = vkAxl,
↓(ϑ2) = vmAxn, and lm = 0 6= 1 = kn. Therefore, by Corollary 7.48 we
obtain ¬U(ΛG). �
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Example 7.51 Consider the following context-free grammars each of which
generates the set of balanced parenthesis:

G1 :=
(
S → (S)S | ε

)
G2 :=

(
S → S(S)S | ε

)
G3 :=

(
S → SS | (S) | ε

)
.

The grammars G1 is easily seen to be unambiguous. For the grammar G2 the
start symbol S is as well left- and right recursive due to the single production
S → S(S)S. Similarly G3 has a left- and right recursive start symbol due to
the production S → SS. Therefore, by Corollary 7.50 the grammars G2 and
G3 are exponentially ambiguous.

Chomsky Normal Form examples which do not satisfy the criterion in [20]
but which can be proved to be exponentially ambiguous by Corollary 7.50
are:

Example 7.52

G1 := (S → AS | SA, A→ a)

G2 := (S → SA | BS | c, A→ SA | a, B → BS | b)

For both G1 and G2 the start symbol is obviously left- as well as right re-
cursive. Therefore, they are exponentially ambiguous by Corollary 7.50. But
neither G1 nor G2 satisfies the sufficient ambiguity criterion of [20] for differ-
ent reasons: The grammar G1 does not have any so-called “closed production
set”. Therefore, there is no closed production set with the required proper-
ties. The second grammar has several closed production sets, but none of
them contains both productions S → SA and S → BS which leads to a
violation of the criterion of [20]. A proof of this fact can be found in [31].

7.7 Estimation of Polynomial upper Bounds

While in general it is undecidable whether a context-free grammar is in PCFG
it might be decidable in many special cases. In case we know that a context-
free grammar G = (N, Σ, P, S) is in PCFG we can compute a k ∈ N such
that d̂G ∈ O(nk). An appropriate candidate for k is the maximal number
of marker symbols belonging to P which show up in words generated by
the skeleton grammar s(G),i.e., sup(L(s(G)))(P ). Since there are grammars
with sublinear ambiguity one cannot expect that this estimation is sharp. In
fact, the marking of s(G) is rather abundant in order to guarantee that we
eliminate each possible ambiguity.

In many cases we can cancel markers from bounded productions of the
grammar s(G) and the resulting grammar is still unambiguous. According
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to Lemma 4.5 the number of markers of such a modified grammar is still
an upper bound for the degree of the polynomial which is an upper bound
for the ambiguity of G. In fact, it is even not necessary that the modified
grammar is unambiguous. A finite degree of ambiguity is sufficient.

There cannot be an algorithm which decides which markers of s(G) are
required and which are superfluous. Otherwise we would know whether we
need at least one marker or not. This would mean to decide for a grammar
G ∈ PCFG whether it is unambiguous or not. It is well known that it is
undecidable whether a general context-free grammar is unambiguous. Since
the standard construction only handles grammars whose degree of ambiguity
is bounded by 2, it is undecidable whether or not a context-free grammar
G ∈ PCFG is unambiguous.

Despite that there are several cases where we can save some markers. As
usual one can invest a lot of effort to handle special cases of an undecidable
problem and improve the algorithms an infinite number of times. Therefore,
we do not go into detail here. But in the sequel we sketch one improvement
without a proof of its correctness.

One can modify the grammar G such that each bounded nonterminal
occurs at most once in a sentential form. To obtain that we can make copies
of bounded nonterminals and their productions. Then the resulting grammar
is marked. How this can be done in general is sketched as follows:

For each occurrence of a bounded symbol in the frontier of a sentential
derivation tree we can move up the path of its ancestors. Each time we
hit a node parse labelled with a bounded production we can denote this
production and the number of the child where we came from. It can be shown
that this procedure yields a history which cannot be equal for two different
occurrences of a leaf labelled with a bounded nonterminal. Moreover, since
we only consider bounded productions in the history its length is bounded
by a constant only depending on G. This can be used to attach to each
bounded symbol its history. The productions for these nonterminals with a
history are the same as for the original nonterminal except for the fact that
they propagate their history to those of their children which are labelled with
bounded symbols. In case of a bounded production the history is appended
in an appropriate way. The construction above yields a grammar G′ with
the same ambiguity power series as G with respect to words over terminals.
If we have thus achieved a grammar with the same ambiguity as G such that
each bounded nonterminal appears at most once in a sentential form then
the cancellation of a single marker reduces the number of markers in a word
at most by one symbol. This provides a better control of the marking process
and may help to save some markers.

Now we revisit the grammar of Example 7.24 to demonstrate the im-
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provements mentioned above:

Example 7.53 Let G be the grammar of Example 7.24:

G := S → AA, A→ aAa | bAb | ε

The corresponding skeleton grammar is:

s(G) := S → [S, AA]A[S, AA]A[S, AA], A→ aAa | bAb | [A, ε].

Note that [S, AA] and [A, ε] are terminal symbols of s(G). We have seen in
Example 7.26 that the grammar s(G) leads to an estimation of d̂G ∈ O(n5).
For convenience we rename the marker symbols and obtain the grammar:

G1 := S → #A#A#, A→ aAa | bAb | $.

Obviously, we can eliminate the first and last marker of the production
S → #A#A# without changing the ambiguity, since they always form the
first and last symbol of the generated word. We obtain the unambiguous
context-free grammar:

G2 := S → A#A, A→ aAa | bAb | $.

The grammar G2 improves the estimation to d̂G ∈ O(n3). By inspecting the
language we see that it is sufficient to know where the first palindrome ends
and the second begins. Thus, we avoid to mark the middle of the palindromes.
We obtain the unambiguous context-free grammar:

G3 := S → A#A, A→ aAa | bAb | ε.

The grammar G3 improves the estimation to d̂G ∈ O(n). Even though we will
not beat the estimation based on G3 we consider another idea to show how
we avoid bounded symbols which show up several times. We can also decide
to mark the middle of the palindromes, while we drop the marker separating
the two palindromes. This leads us from G2 to the unambiguous context-free
grammar G4:

G4 := S → AA, A→ aAa | bAb | $

Obviously, with G4 we obtain an estimation of d̂G ∈ O(n2). Now we may dis-
cover that it is sufficient to mark the middle of only one palindrome. Know-
ing the middle of one palindrome the other palindrome and its middle are
uniquely determined. But the production A → $ marks the middle of both
palindromes.
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We can avoid that by splitting the nonterminal A into one nonterminal
A1 for the generation of the first palindrome and one nonterminal A2 for the
second palindrome:

G′ := S → A1A2, A1 → aA1a | bA1b | ε, A2 → aA2a | bA2b | ε.

The index 1 of A1 stores the information that A1 is the left child of the
production S → AA. Similarly the index 2 of A2 stores the information that
we have entered the right child. We have not added the production [S, AA]
itself in the history of the nonterminals, because this is not necessary for this
simple example. We also see how the history (here just the index 1 or 2) is
propagated to the descendants. This attached history avoids two occurrences
of the same bounded nonterminal in a single sentential form. Obviously, G′

has the same ambiguity as G. Now we mark the grammar G′:

s(G′) := S → #A1#A2#, A1 → aA1a | bA1b | $1, A2 → aA2a | bA2b | $2.

We have already renamed [S, A1A2] by #, [A1, ε] by $1, and [A2, ε] by $2

Clearly the estimation of d̂G by the use of s(G′) has not changed in compar-
ison to the one based for s(G). The advantage of s(G′) is that it allows to
decide for each copy of the nonterminal A whether we want to keep the mark-
ers below. That is, we can decide for each palindrome separately whether we
want to mark its middle, or not. This leads us to the unambiguous context-
free grammars G5 and G6 which both yield the estimation d̂G ∈ O(n).

G5 := S → A1A2, A1 → aA1a | bA1b | ε, A2 → aA2a | bA2b | $2.

G6 := S → A1A2, A1 → aA1a | bA1b | $1, A2 → aA2a | bA2b | ε.

7.8 Grammar Parameters and Ambiguity

Two parameters of a context-free grammar are the maximum number of
nonterminals on the right-hand side of a production and the total number of
nonterminals. It is easier to obtain them than to compute Parikh suprema
which require more insight into the structure of the productions.

Theorem 7.54 Let G = (N, Σ, P, S) be a context-free grammar. Let m :=
|N | and j := max{|r(p)|N | p ∈ P}, i.e., m is the number of nonterminals
and j the maximal number of nonterminals which occur on the right-hand
side of a production. Then d̂G ∈ ΩT (2n) ∪ O(nk), where k = 2 jm−1

j−1
− 1.
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Proof. By Theorem 7.37 it is sufficient to show that k ≥ sup(L(s(G)))(P<ω),
where P<ω is the set of G’s bounded productions. It is easily seen that the
highest number of markers is reached by the context-free grammar:

Gm,j := ({A1, . . . , Am}, {a}, Pm,j, Am),

where Pm,j := {Ai+1 → Aj
i | i ∈ [1, . . . , m − 1]} ∪ {A1 → a}. The grammar

produces a single word with a unique derivation tree. For each i ∈ [1, m]
there are jm−i many occurrences of the nonterminal Ai. If we consider s(G)
we see that the productions for the nonterminals labelled by A1 only cause
one marker each, while the others cause j + 1-markers to occur. In total we
obtain:

sup(L(s(G)))(P<ω) = jm−1 + (j + 1) ·
m−1∑

i=1

ji−1 = jm−1 +

m−1∑

i=1

ji +

m−1∑

i=1

ji−1

= 2jm−1 + 2
m−2∑

i=1

ji + 1 = 2
m−1∑

i=0

ji − 1 = k.

�

In Theorem 7.54 we have seen an upper bound for the degree of the
polynomial of a polynomially bounded grammar G which only depends on
the number of nonterminals n and the number of nonterminal which can
occur on the right hand side of a production j. But is this upper bound
sharp, i.e., are there any context-free grammars which reach the polynomial
upper bound provided by Theorem 7.54? We consider the case n = j = 1.
Then the context-free grammar is linear and has one nonterminal only. Such
a grammar is called a minimal linear grammar.

Yuji Kobayashi [21] provided the grammar GKob for the following lemma.
He also sketched the corresponding proof:

Lemma 7.55 The following minimal linear context-free grammar is Θ(n)
ambiguous:

GKob := S → abSbaba | aSa | babaSab | b

Proof. Firstly we show that the following relationship holds:

∀n ∈ N : dGKob
(ab)3n+1a = n + 1.
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To see that, we choose arbitrary i, j ∈ N such that i + j = n. (There are
n + 1 many choices to do that.) Now we get:

S
i
⇒ (ab)iS(ba)2i

⇒ (ab)iaSa(ba)2i

j
⇒ (ab)ia(ba)2jS(ab)ja(ba)2i

⇒ (ab)ia(ba)2jb(ab)ja(ba)2i

= (ab)i(ab)2jab(ab)j(ab)2ia

= (ab)3n+1a.

Hence, d̂GKob
(n) ∈ Ω(n).

The grammar GKob is in PCFG if and only if s(GKob) is unambiguous. The
grammar s(GKob) is obtained from GKob by replacing the production S → b
by S → [S, b]b. The string [S, b]b just serves as a marker. We can replace it
by # without changing the ambiguity. Hence, by Theorem 7.36 the grammar
GKob is in PCFG if and only if the following grammar is unambiguous:

G := S → abSbaba
︸ ︷︷ ︸

1

| aSa
︸︷︷︸

2

| babaSab
︸ ︷︷ ︸

3

| #.

Let w ∈ L(G). From the left and right ends of w we move into the middle
until we find two consecutive symbols which are equal. Then a vertical bar
is drawn between these two symbols. Then we repeat the process recursively
for the word between the bars until we hit the # symbol. This may yield for
instance:

ab|baba|abababa|a|aba#ababa|a|abababa|ab|baba.

A tree can be denoted by the sequence of applied productions, which is
unique, since G is linear. Consecutive a’s result when we switch from pro-
duction 2 or 3 to production 1 or 2 in a derivation. Two consecutive b’s are
the result of a change from production 1 to 3. Note that consecutive termi-
nals of the same type always emerge simultaneously on both sides of the start
symbol (or the #-symbol in the last step). We proof the unambiguity of G
by induction on the number of vertical bars which occur to the left of the
#-symbol. Firstly we consider an arbitrary word w ∈ L(G) without vertical
bars. According to what we have said above each derivation of w is of one
of the three forms 1∗23∗4, 1+4, or 3∗4. If w begins with a b or a # each
derivation of w can only be of the form 3∗4. In this case we can uniquely
deduce the number of applied rules from the length of w. That is w has the
unique derivation 3i4, where i = |w|−1

6
. If w begins with an a the derivation

of w can only be of the form 1∗23∗4 or 1+4. In this case each derivation of w



7.8. GRAMMAR PARAMETERS AND AMBIGUITY 155

has the form 1+4 if the symbol immediately to the left of the # in w is a b.
Then the only possible derivation is 1i4, where i = |w|−1

6
. If the first symbol

of w is a b and the symbol immediately to the left of the # in w is an a then
each derivation for w has the form 1∗23∗4. Note that the productions 1 and
3 generate 6 terminals each, while the remaining two productions generate
exactly 3 terminals. Hence, we obtain that each derivation of w has the
form 1i23j4, where i + j = |w|−3

6
. Now let u be the longest prefix of w not

containing the # symbol. Then each derivation of w has the form 1i23j4,
where |u| = 2i + 4j. Both equations are only satisfied for i = 2k − m and

j = m − k, where m := |u|
2

and k := |w|−3
6

. Hence, the derivation of w is
unique in this case either. Now assume unambiguity has been shown for each
word in L(G) which has n bars to the left of the # symbol. Let w be a word
in L(G) with n + 1 bars on each side of the #-symbol. Now we consider
the prefix of w until the leftmost bar and the suffix until the rightmost bar.
Then this prefix and suffix can only be produced by a derivation of one of
the three forms 1∗23∗4, 1+4, or 3∗4. The unique derivation of this portion
of w can be deduced in the same way as for a word without vertical bars,
provided the whole string between the outermost vertical bars is handled as
if it is a single #. Thus, we know the beginning of the derivation until the
outermost bars. The rest of the derivation produces a word with one bar less
on each side of the #. Hence, its derivation is uniquely determined by the
inductive hypothesis. Since G is unambiguous and contains only one marker
we obtain GKob ∈ PCFG. Therefore, according to Theorem 7.54 we obtain
d̂GKob

∈ Θ(n). �

For arbitrary n, j ∈ N the grammar Gn,j in Theorem 7.54 is a nontermi-
nal bounded grammar with the maximal possible width, which a context-free
grammar with n nonterminals and at most j nonterminals on the right-hand
side of each production can have. But the price is that each nonterminal
belongs to a singleton class with respect to the equivalence relation defined
in Definition 2.70. The difficult part of the question, whether the bound
of Theorem 7.54 is sharp is whether a minimal linear grammar can have an
“ambiguous turn position of infinite degree” without being exponentially am-
biguous. This question is solved positive by Lemma 7.55. Now we can com-
bine the grammars Gn,j and GKob to a generalised version of the Kobayashi
grammar:

Ĝn,j := ({A1, . . . , An}, {a, b}, Pn,j, An}.

P̂n,j :=

{

{A1 → abA1baba | aA1a | babaA1ab | b} for n = 1

{An → abAnbaba | aAna | babaA1ab | An−1} ∪ P̂n−1,j for n > 1
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It can be shown that for each n, j ∈ N the grammar s(Ĝn,j) is unambigu-

ous. The markers in s(Ĝn,j) allow to uniquely determine for each occurrence

of a nonterminal in a derivation of s(Ĝn,j) which portion of the word is gen-
erated to its left and right, before a descending production is applied. But
Ĝn,j has the productions of the Kobayashi grammar for each nonterminal.
This means that we can apply essentially the reasoning of the previous proof
to show that s(Ĝn,j) is unambiguous. It can also be shown that each marker

of s(Ĝn,j) can occur at a number of positions in a words of the form (ab)∗a

which is proportional to its length. Thus, it can be shown that d̂Ĝn,j
∈ Θ(nk)

where k := 2 jn−1
j−1
−1, which means that the bound of Theorem 7.54 is sharp.



Chapter 8

Universal Inherence

At the beginning of [17, 4.7] one can read: “It is easy to exhibit ambiguous
context-free grammars [. . .]. What is not so easy to do is to exhibit a context-
free language for which every CFG is ambiguous.”

In this chapter we will see that for each cycle-free context-free grammar
G there is a context-free language L having the same ambiguity as G. The
proof is constructive. Hence, this result turns the “not so easy” part into the
easier one. Therefore, to prove that a context-free language with a certain
ambiguity function f exists it is sufficient to find a cycle-free context-free
grammar with ambiguity function f . Since each ambiguity function for a
context-free language is by definition an ambiguity function for some context-
free grammar we can formulate the main result of this chapter as follows:

Theorem 8.1 The set of ambiguity functions for cycle-free context-free
grammars and the set of inherent ambiguity functions coincide.

8.1 Preliminaries

For an arbitrary set of trees ∆ ⊂ ∆Γ over an alphabet Γ and a word w ∈ Γ∗

we define ∆(w) := {ρ ∈ ∆ | ↓(ρ) = w}.
The set of mappings from a monoid M to a set S is denoted S〈〈M〉〉. An

element s ∈ S〈〈M〉〉 is a formal power series. For m ∈ M the value s(m)
is called coefficient of m. A formal power series can be represented by a
formal sum s :=

∑

m∈M s(m)m. For s ∈ N〈〈Σ∗〉〉 we define ŝ : N → N by
ŝ(n) := max{s(w) | w ∈ Σ≤n}.

Let G = (N, Σ, P, S) be a context-free grammar. The terminals of an
embedded tree ρ ∈ embedded(∆G) \ Σ can be retrieved from the remaining
symbols, i.e., the restriction of the projection πP∪N to embedded(∆G) \ Σ is
injective. Therefore, we define the parse of an embedded derivation tree ρ ∈

157
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embedded(∆G) \ Σ, as a more compact tree representation, by parseG(ρ) :=
πP∪N(ρ). The reader familiar with the notion of left parses may note that
parse(ρ) and the left parse of ρ coincides for all derivation trees. But in
contrast to the left parse, which is only defined for embedded derivation trees
of the form (P ∪Σ)∗(N ∪Σ)∗, our parse notion is a unique representation for
all embedded derivation trees, but those in Σ. We extend the parse notion
in the natural way to sets and observe:

Lemma 8.2 For each context-free grammar G the sets ∆G, embedded(∆G),
parseG(∆G), and parseG(embedded(∆G)) are unambiguous context-free lan-
guages.

A very good presentation of Ogden’s Lemma can be found in [16, pp185–
191]. By Observation 2.57 the result of the pumping tree iteration, implicitly
described in the proof of Ogden’s Lemma, does not only lead to an iteration
of factors on the generated words, but also on the corresponding derivation
trees. Translating these observations into our notation we immediately obtain
the following version of Ogden’s Lemma:

Lemma 8.3 For each context-free grammar G = (N, Σ, P, S) there is an
integer n ∈ N such that for each ρ ∈ ∆G and any choice of at least n marked
positions in ρ there are α, β, γ, δ, η ∈ T ∗

G and a nonterminal X ∈ N such
that:

(i) ρ = αβγδη.

(ii) (α and β and γ) or (γ and δ and η) contain at least one marked posi-
tion.

(iii) βδ contains at most n marked positions.

(iv) αβiγδiη ∈ ∆G and αβiXδiη, βiγδi, βiXδi ∈ embedded(∆G) for all
i ∈ N.

A tuple ϑ = (|α|+ 1, |αβ|, |αβγ|+ 1, |αβγδ|) satisfying the conditions above
is called a pumping phrase and βγδ the subtree corresponding to ϑ. Note
that ρ ∈ ∆G implies ↓(ρ) ∈ L(G). Therefore, if we only mark leaves in ρ we
obtain Ogden’s iteration Lemma for cf languages. The advantage of pumping
derivation trees instead of their frontiers is that they have a unique phrase
structure even if the generated words are ambiguous. As we will see this
additional information can be useful if we generate a sequence of derivation
trees by applications of Ogden’s iteration Lemma with intermediate shifts of
the marked positions.
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8.2 The Hiding Theorem

In this section it is shown how the loss of information induced by a length
preserving homomorphism can be turned into inherent ambiguity.

For the remainder of this section we define Σ := {b1, . . . , bk} for some
k ≥ 1, and let Γ and {a, #} be two alphabets such that all three alphabets
are pairwise disjoint. Furthermore, let L ⊆ Σ∗ be an unambiguous context-
free language and h : Σ∗ → Γ∗ be a length preserving homomorphism. Each
time a p ∈ N is used in the sequel we implicitly define q := p! + p.

Next we define a system of languages which has an “inherent capacity”
to hide information:

Definition 8.4 For arbitrary j ∈ N we write 〈j〉 := aj#. For i ∈ [1, k] we
define:

Li := {ε} ∪ {〈j0〉 · · · 〈jk〉 | j0, . . . , jk ∈ N and j0 = ji}.

All the languages defined in the previous definition are unambiguous.

Definition 8.5 We define:

� The formal power series sh,L(w) := |h−1(w) ∩ L|. 1

� The substitution σh : Σ∗ → 2(Γ∪{a,#})∗ given by
σh(bi) := {h(bi)}Li for all i ∈ [1, k].

� The homomorphism fillp : Γ∗ → (Γ ∪ {a, #})∗ defined by
fillp(X) := X〈q〉k+1 for all X ∈ Γ.

� The homomorphism codeh,p : Σ∗ → (Γ ∪ {a, #})∗ defined by
codeh,p(bi) := h(bi)〈p〉〈q〉i−1〈p〉〈q〉k−i for all i ∈ [1, k].

Words in σh(L) can be broken into blocks and subblocks. A block is an
element of σh(bi) for some i ∈ [1, k]. They are numbered from left to right
beginning with 1. The blocks are uniquely determined since they have the
form Γ(a∗#)k+1 and do not end before the end of the word or the beginning
of the next block. A subblock is a word of a∗# not immediately preceded by
an a-symbol. The subblocks are numbered from left to right beginning with 0.

The main idea of this Chapter is outlined as follows: For each w ∈ Γ∗

the coefficient sh,L(w) is the number of words in L which are mapped by h
onto w. Thus, it can be seen as the degree of information hiding induced

1Formal power series are often denoted as formal sums. In this notation we would
write: sh,L :=

∑

w∈Γ∗ |h−1(w) ∩ L| · w.



160 CHAPTER 8. UNIVERSAL INHERENCE

by h on L. The mapping codeh,p is injective since the mapped symbol is
coded in the blocks of a- and #-symbols following the image under h. Now
for each u ∈ Σ∗ both codeh,p(u) and (fillp ◦ h)(u) are elements of σh(u).
Thus, σh(u) contains at the same time words which allow to retrieve u and
words which hide all information about u but h(u). Let G be an arbitrary
context-free grammar generating σh(L) and let u ∈ L. We will see that
for large enough p ∈ N the set ∆G contains a derivation tree with frontier
(fillp ◦ h)(u) obtained by pumping a derivation tree with frontier codeh,p(u).
Assume w = h(u1) = h(u2) for two different words u1, u2 ∈ L. Then there
are derivation trees ω1 and ω2, both having the frontier fillp(w) obtained
by pumping up trees with frontiers codeh,p(u1) and codeh,p(u2), respectively.
The main point of Theorem 8.8 is to show that these trees cannot coincide.
Thus, the “information hiding” which h induces from the “outside” of L is an
inherent feature of σh(L) “carried out” by the “internal pumping structure”
of σh(L).

As an immediate consequence of the definition we observe:

Observation 8.6

(i) ∀u ∈ Σ∗ : σh(u) ∩ Γ∗ = {h(u)} and

(ii) {h(bi)}Li = σh(bi) is an unambiguous context-free language for all i ∈
[1, k].

For each i ∈ [1, k] let Gi = (Ni, Γ ∪ {a, #}, Pi, bi) be an unambiguous
context-free grammar generating σh(bi). Further let GL = (NL, Σ, PL, S) be
an unambiguous context-free grammar generating L, such that N1, . . . , Nk,
and NL are pairwise disjoint. Now we define the following grammar:

Definition 8.7

G(h, L) := (NL ∪ (∪i∈[1,k]Ni), Γ ∪ {a, #}, PL ∪ (∪i∈[1,k]Pi), S).

Note that L(G(h, L)) = σh(L).

Theorem 8.8 The substitution σh has the following properties:

(i) For all v ∈ (Γ ∪ {a, #})∗ we have
sh,L(πΓ(v)) = dG(h,L)(πΓ(v)) ≥ dG(h,L)(v).

(ii) For each context-free grammar G′ such that σh(L) = L(G′) there is a
constant p ∈ N such that sh,L(w) ≤ dG′(fillp(w)) for all w ∈ Γ∗.
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The proof of Theorem 8.8 contains all the definitions and lemmas until
Theorem 8.17.

Proof of Theorem 8.8 (i): Each derivation tree ρ ∈ ∆G(h,L) consists
of a tree ρ′ ∈ ∆GL

⊆ cut(∆G(h,L)) appended by subtrees belonging to
∪i∈[1,k]∆Gi

⊆ subtree(∆G(h,L)). In fact, ρ′ is uniquely determined by ρ and
plays a crucial role in the sequel. Therefore, we define:

Definition 8.9 The GL remainder of a derivation tree ρ ∈ ∆G(h,L), denoted
by rem(ρ), is the uniquely defined derivation tree in ∆GL

obtained from ρ by
truncation of all phrases [j, j ′] for which ρ[j, j ′] ∈ ∪i∈[1,k]∆Gi

.

Observation 8.10 For all ρ ∈ ∆G(h,L) the statement ↓(ρ) ∈ σh((↓◦rem)(ρ))
is true.

Proof. The expression σh((↓ ◦ rem)(ρ)) describes the set of words in σh(L)
which are frontiers of those derivation trees in ∆G(h,L) having the GL remain-
der rem(ρ). Obviously, ρ is such a tree. Therefore, ↓(ρ) ∈ σh((↓ ◦ rem)(ρ)).

�

Lemma 8.11 For w ∈ Γ∗ we have (↓ ◦ rem)(∆G(h,L)(w)) ⊆ h−1(w) ∩ L.

Proof. Let ρ ∈ ∆G(h,L)(w) for some w ∈ Γ∗. By definition rem(ρ) ∈ ∆GL
.

Thus, u := (↓ ◦ rem)(ρ) ∈ L. It remains to show that u ∈ h−1(w). By
Observation 8.10 we obtain w = ↓(ρ) ∈ σh((↓ ◦ rem)(ρ)) = σh(u). Since
w ∈ Γ∗ we obtain w ∈ σh(u) ∩ Γ∗. Then w = h(u) follows by Observation
8.6. This implies h−1(w) = (h−1 ◦ h)(u) 3 u. �

Lemma 8.12 For arbitrary v ∈ (Γ ∪ {a, #})∗ the restriction of rem to the
set ∆G(h,L)(v) is injective.

Proof. Let rem(ρ) = rem(ρ′) for some ρ, ρ′ ∈ ∆G(h,L)(v) and let n = |rem(ρ)|.
We can retrieve rem(ρ) from ρ and ρ′ by truncation of all those phrases
which correspond to subtrees with roots in Σ. Let ρ1, . . . , ρn ∈ ∪i∈[1,k]∆Gi

and ρ′
1, . . . , ρ

′
n ∈ ∪i∈[1,k]∆Gi

be these subtrees for ρ and ρ′ in a left to right
order, respectively. For all i ∈ [1, n] we observe ↑(ρi) = ↑(ρ′

i). Thus, ρi and
ρ′

i both must be generated by the same grammar Gji
for some ji ∈ [1, k].

Since ρi and ρ′
i generate the i-th block of v we have ↓(ρi) = ↓(ρ′

i) as well.
Then ρi = ρ′

i since Gji
is unambiguous. Since rem(ρ) = rem(ρ′) and ρi = ρ′

i

for each i ∈ [1, n] we obtain ρ = ρ′. �
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Definition 8.13 For each i ∈ [1, k] we define the unique derivation tree
ωi ∈ ∆Gi

with the frontier ↓(ωi) = h(bi). This tree exists, since h(bi) ∈
σh(bi) = L(Gi). Moreover, it is unique since Gi is unambiguous. The ho-
momorphism append : ∆GL

→ ∆G(h,L) is defined by append(p) = p if p ∈ PL

and append(bi) = ωi for i ∈ [1, k].

Note that for all ρ ∈ ∆GL
we have (↓ ◦ append)(ρ) = (h ◦ ↓)(ρ). Since

ρ = rem(ρ) and the GL remainder is invariant under appending trees we
observe that append is injective.

Lemma 8.14 For w ∈ Γ∗ we have h−1(w) ∩ L = (↓ ◦ rem)(∆G(h,L)(w)).

Proof. By Lemma 8.11 we have h−1(w)∩L ⊇ (↓ ◦ rem)(∆G(h,L)(w)) for each
w ∈ Γ∗. Let u ∈ h−1(w)∩L for some w ∈ Γ∗. Since u ∈ L there is a ρ ∈ ∆GL

with u = ↓(ρ). Since all the symbols and productions of GL are contained
in G(h, L) we obtain ρ ∈ cut(∆G(h,L)). Let ρ′ := append(ρ) ∈ ∆G(h,L).
Obviously, ρ = rem(ρ′). Therefore, u = ↓(ρ) = ↓(rem(ρ′)) = (↓ ◦ rem)(ρ′). It
remains to show that ↓(ρ′) = w. Since u ∈ h−1(w) we have h(u) = w and
eventually ↓(ρ′) = ↓(append(ρ)) = (↓ ◦ append)(ρ) = (h ◦ ↓)(ρ) = h(↓(ρ)) =
h(u) = w. �

Lemma 8.15 The equation sh,L(w) = dG(h,L)(w) holds for all w ∈ Γ∗.

Proof. Since sh,L(w) = |h−1(w) ∩ L| and dG(h,L)(w) = |∆G(h,L)(w)| it is suffi-
cient to show that the restriction of (↓◦rem) to ∆G(h,L)(w) is a bijection onto
h−1(w) ∩ L. By Lemma 8.14 we already know that it is onto h−1(w) ∩ L. It
remains to show that it is injective. Let (↓ ◦ rem)(ρ) = (↓ ◦ rem)(ρ′) for some
ρ, ρ′ ∈ ∆G(h,L)(w). Since rem(ρ), rem(ρ′) ∈ ∆GL

and GL is unambiguous,
rem(ρ) = rem(ρ′) follows. By Lemma 8.12 this implies ρ = ρ′. Hence, the
restriction of (↓ ◦ rem) to ∆G(h,L)(w) is injective. �

Now we only have to investigate the influence of the projection πΓ on the
ambiguity function to finish the proof of Theorem 8.8 (i).

Lemma 8.16 The inequality dG(h,L)(πΓ(v)) ≥ dG(h,L)(v) holds for all v ∈
(Γ ∪ {a, #})∗.

Proof. Since dG(h,L)(v) = |∆G(h,L)(v)| and dG(h,L)(πΓ(v)) = |∆G(h,L)(πΓ(v))|,
it suffices to show that the restriction of (append ◦ rem) to the set ∆G(h,L)(v)
is an injection into the set ∆G(h,L)(πΓ(v)). First we show that this mapping
is into ∆G(h,L)(πΓ(v)). If ∆G(h,L)(v) = ∅ this is trivial, otherwise let ρ ∈
∆G(h,L)(v). Since rem(ρ) ∈ ∆GL

we obtain (↓ ◦ rem)(ρ) ∈ L ⊆ Σ∗. Thus,
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we can write (↓ ◦ rem)(ρ) = bj1 · · · bjn
for some j1, . . . , jn ∈ [1, k] and some

n ∈ N. By Observation 8.10 we obtain:

πΓ(↓(ρ)) ∈ πΓ(σh((↓ ◦ rem)(ρ))) ⊆ πΓ(σh(bj1 · · · bjn
))

⊆ πΓ(h(bj1){a, #}∗ · · ·h(bjn
){a, #}∗) = {h(bj1 · · · bjn

)}.

By the use of v = ↓(ρ) this implies:

πΓ(v) = πΓ(↓(ρ)) = h(bj1 · · · bjn
) = h((↓ ◦ rem)(ρ))

= (h ◦ ↓)(rem(ρ)) = (↓ ◦ append)(rem(ρ)) = ↓((append ◦ rem)(ρ)).

Therefore, (append ◦ rem)(ρ) ∈ ∆G(h,L)(πΓ(v)). It remains to show that the
restriction of (append◦rem) to ∆G(h,L)(v) is injective. This follows by Lemma
8.12 and the observation that append is injective. �

Lemma 8.15 and Lemma 8.16 immediately imply Theorem 8.8 (i). �

Proof of Theorem 8.8 (ii): Assume G′ is a context-free grammar such
that L(G′) = σh(L), p is the maximum of 3 and the pumping constant of G′,
q := p! + p, and w ∈ Γ∗. Obviously, codeh,p(h

−1(w) ∩ L) ⊆ σh(L). In case
h−1(w) ∩ L = ∅ the inequality of Theorem 8.8 (ii) is trivially satisfied. Now
assume h−1(w)∩L 6= ∅. Let u ∈ h−1(w)∩L, n := |u| and let j1, . . . , jn ∈ [1, k]
be defined such that u = bj1 · · · bjn

. Then we have:

codeh,p(u) = h(bj1)〈p〉〈q〉
j1−1〈p〉〈q〉k−j1 · · ·h(bjn

)〈p〉〈q〉jn−1〈p〉〈q〉k−jn.

We say that an interval of a derivation tree lies within a subblock (block)
if the corresponding nodes do not contain any leaf belonging to another
subblock (block). We prove by induction that for each i ∈ [0, n] there is a
derivation tree ρi ∈ ∆G′ such that

↓(ρi) = (fillp ◦ h)(u[1, i]) · codeh,p(u[i + 1, n])

and for each m ∈ [1, i] the derivation tree ρi has a pumping phrase allowing
to pump the same number of a-symbols into the 0-th subblock and the jm-th
subblock of block m jointly. For i = 0 we only have to show that codeh,p(u) =
↓(ρ0) for some ρ0 ∈ ∆G′ . This follows by codeh,p(u) ∈ σh(L) = L(G′).
Assume the statement is true for i − 1. Then there is a derivation tree
ρi−1 ∈ ∆G′ with the required phrase structure and the sentential form:

↓(ρi−1) = (fillp ◦ h)(u[1, i− 1]) · codeh,p(u[i, n]).

The i-th block of this word has the form

codeh,p(u[i]) = h(bji
)〈p〉〈q〉ji−1〈p〉〈q〉k−ji.
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The 0-th subblock of the i-th block in ↓(ρi−1) is underlined to indicate that
the leaves of ρi−1 forming the a-symbols of this subblock are marked. Accord-
ing to Ogden’s Lemma 8.3 we have ρi−1 = αβγδη for some α, β, γ, δ, η ∈ T ∗

G′

such that αβ lγδlη ∈ ∆G′ for each l ∈ N. Moreover, βδ must contain at least
one marked position and at least one of the intervals τβ := [|α|+1, |αβ|] and
τδ := [|αβγ|+ 1, |αβγδ|] lies within the 0-th subblock of block i. Let τ := τδ

if τβ has this property and τ := τβ otherwise.
By the choice of p and q, the insertion of at most p many a-symbols into

a subblock 〈p〉 yields a subblock shorter than 〈q〉. We will implicitly apply
this argument in the sequel.

Assume τ is not within the i-th block, i.e., it is outside or it overlaps with
block i and some neighbouring blocks. Let i′ = i+c where c is the number of
Γ symbols in β if τ = τβ and i′ := i otherwise. Then block i′ of ↓(αβ2γδ2η)
equals block i of ↓(αβγδη), except for a proper insertion of at most p many
a-symbols in the 0-th subblock of block i′. Therefore, within block i′ the 0-th
subblock does not agree with any other subblock.

Now assume τ lies within block i. Then it cannot contain a #-symbol
because otherwise the i-th block of ↓(αβ2γδ2η) would contain more than k+1
subblocks. Hence, each of τβ and τδ lie within one subblock of the i-th block,
respectively. We can easily verify that ↓(αβ2γδ2η) does not contain more
than 2p occurrences of a-symbols in the 0-th subblock of block i in this case.
This implies that τβ lies within the 0-th subblock and τδ within the ji-th
subblock of block i and 1 ≤ |↓(β)| = |↓(δ)| ≤ p. Thus, l = p! · |↓(β)|−1 + 1
is an integer and the derivation tree ρi := αβlγδlη has the property ↓(ρi) =
(fillp ◦ h)(u[1, i]) · codeh,p(u[i + 1, k]). Now ρi contains a pumping phrase
allowing to pump the same number of a-symbols into the 0-th subblock and
into the ji-th subblock of block i jointly. Moreover, the pumping phrases of ρi

to the left of block i are the same as in ρi−1, which completes the induction.
Eventually for i = n we obtain a derivation tree ρn with the frontier

↓(ρn) = (fillp ◦ h)(u) = fillp(w) and the claimed phrase structure starting
from an arbitrary word of codeh,p(h

−1(w) ∩ L). It remains to show that
two trees obtained in this way beginning with different words in h−1(w) ∩ L
cannot coincide. Let u1, u2 ∈ h−1(w) ∩ L be two different words and let
ω1 and ω2 be the corresponding derivation trees obtained by the pumping
sequence described above. Then ω1 and ω2 both generate fillp(w). Assume
ω1 = ω2. Since the two trees are equal we drop the index and define ω := ω1.
Since h is length preserving we observe |u1| = |u2|. Therefore, u1 and u2

differ in at least one position i ∈ [1, |u1|]. Then bj = u1[i] 6= u2[i] = bj′ for
some j, j ′ ∈ [1, k]. W.l.o.g. we assume j > j ′. The tree ω contains a pumping
phrase ϑ1 allowing to pump the 0-th subblock and the j-th subblock of block
i jointly and it contains a pumping phrase ϑ2 allowing to pump the 0-th
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subblock and the j ′-th subblock of block i jointly. Pumping ϑ1 once within
ω we obtain a derivation tree ω′ with a word β ∈ (P ∪ {a})∗ inserted to
the left of ϑ2. Since β does only contain leaves labelled with a-symbols ϑ2

is shifted to the right, but remains within the same subblock as in ω. Thus
in ω′ it is still possible to pump the 0-th subblock and the j ′-th subblock
of block i jointly, but now in ↓(ω′). This pumping yields a derivation tree
ω′′ for which the 0-th subblock of block i does no longer agree with any
other subblock of block i, which is a contradiction. Hence, ω1 6= ω2. This
implies that fillp(w) can be generated by at least |codeh,p(h

−1(w)∩L)| many
different derivation trees. Moreover, since codeh,p is injective we finally obtain
dG′(fillp(w)) ≥ |codeh,p(h

−1(w) ∩ L)| = |h−1(w) ∩ L| = sh,L(w). �

Theorem 8.17 The context-free language σh(L) is ŝh,L-ambiguous.

Proof. Recall that L(G(h, L)) = σh(L). Now Theorem 8.8 (i) implies:

max{dG(h,L)(v) | v ∈ (Γ ∪ {a, #})≤n}
≥ max{dG(h,L)(w) | w ∈ Γ≤n}
= max{dG(h,L)(πΓ(v)) | v ∈ (Γ ∪ {a, #})≤n}

8.8 (i)

≥ max{dG(h,L)(v) | v ∈ (Γ ∪ {a, #})≤n}

Hence, all the expressions above are equal and again by Theorem 8.8 (i)
we obtain:

ŝh,L(n) = max{sh,L(w) | w ∈ Γ≤n}
8.8 (i)
= max{dG(h,L)(w) | w ∈ Γ≤n}

= max{dG(h,L)(v) | v ∈ (Γ ∪ {a, #})≤n} = d̂G(h,L)(n)

Thus, G(h, L) is appropriate to satisfy property (i) of Definition 2.96. By
Theorem 8.8 (ii) we obtain that for each context-free grammar G′ such that
L(G′) = σh(L) there is a p ∈ N such that for all words w ∈ Γ∗ we have
sh,L(w) ≤ dG′(fillp(w)). This implies ŝh,L(|w|) ≤ d̂G′(|fillp(w)|) = d̂G′(c · |w|)
where c = 1+(k+1)(p!+p+1). Thus, σh(L) and ŝh,L also satisfies property
(ii) of Definition 2.96. Hence, σh(L) is ŝh,L-ambiguous. �

8.3 Applications

8.3.1 Census Functions

Definition 8.18 Let L ⊆ Σ∗ be a formal language. The census function
γL : N → N is defined by γL(n) := |Σn ∩ L|, and the function γ̂L : N → N is
defined by γ̂L(n) := max{γL(i) | i ≤ n}. The homomorphism hide : Σ∗ → {$}
is defined by hide(X) := $ for all X ∈ Σ.
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Theorem 8.19 Let L ⊆ Σ∗ be an unambiguous context-free language. Then

σhide(L) is γ̂L-ambiguous.

Proof. By Theorem 8.17 the language σhide(L) is ŝhide,L-ambiguous. We
obtain ŝhide,L(n) = max{shide,L(w) | w ∈ Σ≤n} = max{|hide−1(w) ∩ L| |
w ∈ Σ≤n} = max

{
|Σ|w| ∩ L|

∣
∣w ∈ Σ≤n

}
= max

{
|Σj ∩ L|

∣
∣ j ≤ n

}
=

max
{
γL(j)

∣
∣ j ≤ n

}
= γ̂L(n). �

Corollary 8.20 There is an unambiguous context-free language L such that
L+ is exponentially ambiguous and Lk is Θ(nk−1)-ambiguous for each k ∈
N \ {0}.

Proof. Let {a, b} be an alphabet. We observe that γ̂(a+b)∗b(n) = b2n−1c and
γ̂(a∗b)k(n) =

(
n−1
k−1

)
for each k ∈ N \ {0}. Using Theorem 8.19 we obtain that

σhide((a + b)∗b) is b2n−1c-ambiguous and σhide((a
∗b)k) is

(
n−1
k−1

)
-ambiguous.

Thus, σhide((a
∗b)1) is unambiguous. Finally, since σhide is a homomorphism

we immediately get σhide((a + b)∗b) = σhide((a
∗b)+) = (σhide(a

∗b))+ and
σhide((a

∗b)k) = (σhide(a
∗b))k. Thus, L := σhide(a

∗b) is a language with the
required properties. �

8.3.2 Grammars in Greibach Normal Form

In this section we show that the ambiguity function of each context-free
grammar is inherent for some context-free language.

For context-free grammars in Greibach normal form the parse of each
derivation tree has the same length as its frontier. Moreover, the i-th symbol
of the frontier is uniquely determined by the i-th symbol of the parse. This
implies the following lemma:

Lemma 8.21 Let G = (N, Σ, P, S) be a context-free grammar in Greibach
normal form and hG : P ∗ → Σ∗ the length preserving homomorphism defined
by hG(p) := Xp for each p ∈ P where Xp is the terminal at the beginning of
p’s right-hand side. Then ↓(ρ) = hG(parse(ρ)) for all ρ ∈ ∆G.

Theorem 8.22 Let G = (N, Σ, P, S) be a context-free grammar in Greibach
normal form, and hG defined as in Lemma 8.21. Then the context-free lan-
guage σhG

(parseG(∆G)) is d̂G-ambiguous.

Proof. Let L := parseG(∆G) and h := hG.

ŝh,L(n) = max
{
|h−1(w) ∩ L|

∣
∣ w ∈ Σ≤n

}

= max
{∣
∣
{
ρ ∈ ∆G

∣
∣ ↓(ρ) = w

}∣
∣
∣
∣ w ∈ Σ≤n

}

= max
{
dG(w)

∣
∣ w ∈ Σ≤n

}
= d̂G(n).
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By Lemma 8.2 the context-free language parseG(∆G) is unambiguous. More-
over, hG is length preserving. Thus, the claim follows by Theorem 8.17 �

8.3.3 Cycle-Free Context-Free Grammars

Here we complete the proof of Theorem 8.1. stating that the set of ambi-
guity functions for cycle-free context-free grammars and the set of inherent
ambiguity functions coincide. By definition each inherent ambiguity function
is the ambiguity function of a context-free grammar. It is easily seen that
there is also a cycle-free context-free grammar with this property (Observa-
tion 8.23). To show that each ambiguity function of a cycle-free context-free
grammar G is inherent for some context-free language is much more tricky.
The essential idea is to transform G in an ambiguity preserving way into
Greibach normal form and than apply Theorem 8.22. Unfortunately, we
cannot preserve the ambiguity in a strict sense, since Greibach normal form
grammars cannot generate the empty word and they cannot generate words
of length one ambiguously. Thus, we will first transform G in a Greibach
normal form grammar with almost the same ambiguity function. Than we
will handle the differences between the ambiguity functions.

Observation 8.23 Each inherent ambiguity function is the ambiguity func-
tion of a cycle-free context-free grammar.

Proof. The constant function f0 : N → N defined by f0(n) = 0 for each
n ∈ N is inherent for the language ∅ ⊆ Σ∗. For some symbol S /∈ Σ we define
the cycle-free context-free grammar G = ({S}, Σ, ∅, S). Now we observe that
d̂G = f0. (Note that there is no reduced context-free grammar in this case,
since each context-free grammar generating ∅ has a useless start symbol.)

Let f : N → N be an arbitrary inherent ambiguity function, such that
f 6= f0. Then there is an f -ambiguous context-free language L 6= ∅ and a
context-free grammar G such that d̂G = f and L = L(G). Since L(G) 6= ∅
at least the start symbol of G is useful. Moreover, symbols which cannot
occur in any derivation tree do not contribute to the ambiguity. Thus, we
can assume without loss of generality that G is reduced. Assume G is cyclic,
then there is a word u which has infinitely many derivation trees. Then
d̂G(|u|) = ω 6= f(|u|) contradicting d̂G = f . Hence G is cycle-free. �

Note that any context-free language can be generated by a cycle-free
context-free grammar and by [16, Theorem 12.2.1] the ambiguity func-
tion of each cycle-free context-free grammar G grows at most exponentially
(d̂G ∈ OT (2n)). In particular, d̂G(n) ∈ N for each n ∈ N. Hence, the fact
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that Definition 2.96 and Observation 8.23 restricted the range of f to N

instead of allowing N∪{ω} is not crucial for the validity of Observation 8.23.
[22, Corollary 5.12.] claims that any cycle-free context-free grammar

G = (N, Σ, P, S) can be transformed into a grammar G′ in Greibach normal
form such that dG(w) = dG′(w) for each w ∈ Σ+. Unfortunately, this is not
necessarily true for words of length one. A grammar in Greibach normal
form does neither have ε-productions nor chain productions. Without them
it is impossible to generate a word of length one ambiguously. But by the
use of a chain production it is easy to obtain an ε-free cycle-free context-free
grammar which generates a word of length one ambiguously. For instance by
a context-free grammar defined by the following production set:

S → A | a, A→ a

Fortunately, the author of [22] just drew a wrong conclusion from the
correct statements [22, Theorems 3.9, 5.4, 5.10] and [29, Lemma IV.2.5]. In
particular, he has overseen that [29, Lemma IV.2.5] introduces terms consist-
ing of a single variable. They correspond to chain productions not allowed
in a Greibach normal form.

Thus the author of [22] actually proved the following statement:

Lemma 8.24 For each cycle-free context-free grammar G = (N, Σ, P, S)
there is a context-free grammar G′ = (N1 ∪ N2, Σ, P ′, S) where N1 ∩N2 = ∅
and

P ′ ⊆ (N1 × (Σ(N1 ∪N2)
∗ ∪N2)) ∪ (N2 × Σ).

Moreover, L(G′) = L(G) \ {ε} and for each w ∈ Σ+ the equation dG(w) =
dG′(w) is satisfied.

Proof. By [22, Theorem 3.9] the ambiguity power series dG is the first compo-
nent of the solution of the algebraic system AG corresponding to G (see [22]
for the definition of algebraic systems corresponding to context-free gram-
mars.) We apply the construction of [22, Theorem 5.10], resulting in an
equivalent algebraic system only containing ε-terms and terms in Greibach
normal form, the latter terms consist of a single symbol followed by a se-
quence of variables. (In addition the length of the terms is bounded by
three.) The construction of [22, Theorem 5.4], eliminating ε-terms, is than
applied to the resulting algebraic system yielding an algebraic system A′

G,
whose terms are in Greibach normal form. Moreover the solution of the
first component of A′

G is d+
G, where d+

G(ε) := 0 and d+
G(w) := dG(w) for all

w ∈ Σ+. Observe that the elimination of ε-terms, does not introduce terms
not in Greibach normal form. The construction of [29, Lemma IV.2.5] is
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[A, B][B, a]a = A

B

a

→ [A, B]

a

= [[A, B], a]a

Figure 8.1: chain production [A, B] compressed into nonterminal [A, B]

meant to avoid coefficients larger than one by introducing several copies of
variables. Essentially it does not change the form of the terms, but it intro-
duces terms consisting of a single variable. Originally it transforms a systems
whose terms are in Chomsky normal form (see [22] for a definition). But a
completely analogous transformation for an algebraic system with terms in
Greibach normal form yields an algebraic system A′′

G corresponding to G′

�

Lemma 8.25 Let G = (N1 ∪ N2, Σ, P, S) be a cycle-free context-free gram-
mar, where N1 ∩N2 = ∅ and

P ⊆ (N1 × (Σ(N1 ∪N2)
∗ ∪N2)) ∪ (N2 × Σ).

Then there is a context-free grammar G′ = (N ′, Σ, P ′, S) in Greibach normal
form, such that L(G′) = L(G) \ {ε} and dG(w) = dG′(w) for each w ∈ Σ≥2.

Proof. It suffices to construct G′ such that the tree manipulation described in
Figure 8.1 gives rise to a bijection between the embedded trees of G and G′.
Thus chain productions of G are nonterminals of G′. Whenever a nonterminal
A is generated on the right-hand side of a production p ∈ P and [A, B] is
a chain production then there is a copy of p generating the nonterminal
[A, B] instead of A. Let P ′′ := (N1 × N2) ∩ P , i.e., P ′′ is the set of chain
productions in P . Let G′ := (N ′, Σ, P ′, S), where N ′ := N1 ∪ P ′′. The
mapping h : N ′∗ → N∗

1 is the homomorphism defined by:

h(X) =

{

X if X ∈ N1

`(X) if X ∈ P ′′

Finally:

P ′ := {[[A, B], a] | [A, B] ∈ P ′′ and [B, a] ∈ P}

∪ {[A, α] ∈ N1 × ΣN ′∗ | [A, h(α)] ∈ P}.
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The first set in the definition of P ′ compresses chain productions, the second
define when the new nonterminals occur on right-hand sides of productions.
It is easily seen that the construction has the desired properties. �

Note that the result can easily be strengthened to allow at most two nonter-
minals on a right-hand side, but we do not need that.

Lemma 8.24 and Lemma 8.25 immediately imply:

Lemma 8.26 For each cycle-free context-free grammar G = (N, Σ, P, S)
there is a context-free grammar G′ = (N ′, Σ, P ′, S) in Greibach normal form,
such that L(G′) = L(G) \ {ε} and dG(w) = dG′(w) for each w ∈ Σ≥2.

Lemma 8.27 Let G = (N, Σ, P, S) be a cycle-free context-free grammar.
Then there is a cycle-free context-free grammar G′ such that

dG′(u) =

{

dG(u) if u ∈ Σ≥2

0 if u ∈ Σ≤1

Proof. Let S := {α ∈ (N ∪ Σ)∗ | ∃v ∈ Σ≤1 : S
∗

⇒lm,G α
∗

⇒lm,G v}, i.e., S is
the set of left-sentential forms2 of G which can derive the empty word or a
single terminal. Since G is cycle-free each word has only a finite number of
(leftmost) derivations. Moreover, each derivation has finite length and Σ≤1

is finite. Hence S is finite. In case S = ∅ the claim is trivially satisfied by
setting G′ := G. Now we consider the case S 6= ∅. Let N1 be a disjoint
copy of S, i.e., |N1| = |S| and N1 ∩ S = ∅. Moreover, we associate a unique
element ᾱ ∈ N1 with each element α ∈ S. Since S is non-empty we have
S ∈ S. Hence S̄ ∈ N1. Now we construct the cycle-free context-free grammar
G′ = N, Σ, P ∪ P ′, S̄) where

P ′ := {(ᾱ, β̄) ∈ N2
1 | α

∗
⇒lm,G β}

∪ {(ᾱ, β) ∈ N1 × ((N ∪ Σ)∗ \ S) | α
∗

⇒lm,G β}

There is an obvious bijection between left-sentential forms of G and G′. It is
the mapping ϕ : (N ∪ Σ)∗ → N1 ∪ (N ∪ Σ)∗ defined by:

ϕ(α) :=

{

ᾱ if α ∈ S

α otherwise.

A straightforward induction shows that:

∀α, β ∈ (N ∪ Σ)∗ : ((α
∗

⇒lm,G β) ⇔ (ϕ(α)
∗

⇒lm,G′ ϕ(β))).

2A sentential form is a left-sentential form if it is generated by a leftmost derivation.
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Thus the number of cuts of derivation trees generating a left-sentential form
α by using G equals the number of cuts of derivation trees generating ϕ(α)
by using G′. Note that v̄ is a useless nonterminal for each v ∈ Σ≤1 while
ϕ(u) ∈ L(G′) for each u ∈ Σ≥2. Hence dG′ has the claimed properties. �

Lemma 8.28 Each ambiguity function of a cycle-free context-free grammar
is inherent for some context-free language.

Proof. Let G1 be a cycle-free context-free grammar. By Lemma 8.26 there is
a grammar G2 in Greibach normal form such that L(G2) = L(G1) \ {ε} and
dG2(w) = dG1(w) for each w ∈ Σ≥2. If necessary, we add some nonterminals
and productions such that for some u ∈ Σ2 the resulting Greibach normal
form grammar G3 has the properties:

(i) d̂G2(2) = dG3(u)

(ii) ∀v ∈ Σ∗ \ {u} : dG3(v) = dG2(v).

Then L(G2) ⊆ L(G3) ⊆ L(G2) ∪ {u}. This modification may change the
generated language but it guarantees that dG3(n) = dG1(n) for all n ≥ 2.
Moreover dG3(n) ≤ dG1(n) for all n ∈ N. By Theorem 8.22 there is an
inherently d̂G3-ambiguous context-free language L. Thus there is a cycle-free
context-free grammar G4 such that L = L(G4) and d̂G4 = d̂G3 . If d̂G1 6= d̂G4

then we add some nonterminals, chain productions and ε-productions only
changing the ambiguity of words of length at most one. We do this such that
we get a cycle-free context-free grammar G5 with the property d̂G1 = d̂G5 .
Moreover, dG5(w) = dG4(w) for all w ∈ Σ≥2. This implies L(G5) \ Σ≤1 =
L \ Σ≤1. Now we show that L(G5) is inherently d̂G1-ambiguous. We have
already shown that L(G5) is generated by a context-free grammar with the
ambiguity-function d̂G1 , namely G5. It remains to show that for each context-
free grammar G′ generating L(G5) there is a constant c ∈ N such that for
each n ∈ N \ {0} the relation d̂G′(cn) ≥ d̂G1(n). Now assume that G′ is an
arbitrary context-free grammar generating L(G5). By Lemma 8.27 there is
a cycle-free context-free grammar G′′ such that:

dG′′(u) =

{

dG′(u) if u ∈ Σ≥2

0 if u ∈ Σ≤1

We have:

L(G′′) = L(G′) \ Σ≤1 = L(G5) \ Σ≤1 = L \ Σ≤1.
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By adding some nonterminals, chain-productions, and ε-productions be ob-
tain a grammar G′′′ such that

dG′′′(u) =







dG′(u) if u ∈ Σ≥2

1 if u ∈ Σ≤1 and u ∈ L

0 if u ∈ Σ≤1 and u /∈ L

Now we have L(G′′′) = L. Since L is inherently d̂G3-ambiguous there is a
constant c ∈ N such that d̂G′′′(cn) ≥ d̂G3(n) for each n ∈ N\{0}. For a c ∈ N

with this property and each n ∈ N \ {0} we have

d̂G′(2cn) = d̂G′′′(2cn) ≥ d̂G3(2n) = d̂G1(2n) ≥ d̂G1(n)

Hence for c′ := 2c we have d̂G′(c′n) ≥ d̂G1(n) for each n ∈ N \ {0}. Thus,
L(G5) is inherently d̂G1-ambiguous. �

Finally, Observation 8.23 and Lemma 8.28 imply Theorem 8.1.

8.3.4 Sublinear Ambiguity Functions

In the last section we have completed the proof of Theorem 8.1. Thus,
the set of ambiguity functions for cycle-free context-free grammars and the
set of inherent ambiguity functions coincide. This result allows to transfer
our results on sublinear ambiguity functions in Theorem 6.18 to context-free
languages. Hence, we finally obtain

Theorem 8.29 If f : N→ N is a computable divergent total non-decreasing
function then there is a context-free language L such that L has a divergent
inherent ambiguity function d̂L with the property d̂L(n) ≤ f(n) for all n ∈ N.

Theorem 8.1 also allows to show a result on the product of two inherent
ambiguity functions:

Theorem 8.30 Let f, g : N→ N be two inherent ambiguity functions. Then
there is an ambiguity function in ΘT ((f · g)(n)).

Proof. If f, g : N→ N be two inherent ambiguity functions then by definition
there are two reduced context-free grammars Gf = (N, Σ, P, S) and Gg which
are f - and g-ambiguous, respectively. We also require that Gf does not
generate the empty word. Since both grammars do not generate a single
word with infinite ambiguity they are cycle-free. Now we define the context-
free grammar Ḡf := (N ∪̇ N̄ , Σ ∪̇ Σ̄, P ∪ P̄ , S̄), where

P̄ := {[Ā→ αX̄] | A ∈ N, α ∈ (N ∪ Σ)∗, X̄ ∈ N̄ ∪ Σ̄, [A, αX] ∈ P}.
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This grammar has essentially the same set of derivation trees except for
the fact that for each ρ ∈ cut(∆Ḡf

) the rightmost leaf is marked. Hence,

d̂Ḡf
= d̂Gf

= f . Due to the marking of the rightmost symbol L(Ḡf )L(Gg)
is an unambiguous concatenation. Thus, according to Corollary 4.4 there is
a reduced context-free grammar G with an ambiguity function d̂G ∈ ΘT ((f ·
g)(n)). Since G generates no word with infinitely many derivation trees it
is cycle-free. Finally, by Theorem 8.1 this implies that d̂G is an inherent
ambiguity function. �
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Chapter 9

Conclusion

For a summary of the results the reader is referred to the Introduction. Here
additional remarks on some results, suggestions for further research, and
open problems are presented.

9.1 Remarks on the Results

We have seen that a cycle-free context-free grammar G is exponentially am-
biguous if its set of pumping trees is ambiguous.1 Moreover, we have defined
a context-free grammar s(G) obtained from G by adding some markers into
the right-hand sides of bounded productions in a well defined way. If the set
of G’s pumping trees is unambiguous then s(G) is unambiguous too. This
leads to a polynomial upper bound for the ambiguity of G, whose polyno-
mial degree is bounded by the maximal number of markers k contained in
a word of L(s(G)). We can compute k efficiently with respect to the size of
G. Then we know that G is either O(nk)-ambiguous or ΘT (2n)-ambiguous.
However, the question whether G is exponentially ambiguous or not is unde-
cidable. The gap between exponential ambiguity and polynomially bounded
ambiguity has been already discovered as a part of the authors Diplomarbeit.
But here k is improved in many cases substantially. Moreover, the proof is
simpler and algebraically more satisfying. Furthermore, s(G) and its rela-
tion to G is new in this thesis. This relation has been used to prove that

1It is easily seen that cycle-free context-free grammars are at most exponentially am-
biguous. Cyclic context-free grammars may exceed this ambiguity by generating some
words with infinite ambiguity. This happens if and only if a cycle exists for some useful
nonterminal. It is easy to detect this situation and to transform such a grammar into an
equivalent cycle-free grammar. Hence, to have infinite ambiguity for a single word is not
an inherent feature of any context-free language. Therefore, the investigation of cyclic
context-free grammars is not very interesting.
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bounded marker languages BMCFL and the class of languages with polyno-
mially bounded ambiguity PCFL coincide. In other words the class PCFL is
the closure of the class of unambiguous context-free languages UCFL under
bounded contraction. While bounded contractions already suffices to gen-
erate PCFL from the class of unambiguous languages even the formally far
stronger operation of bounded substitution does not suffice to leave PCFL,
i.e., PCFL is closed under bounded substitution.

In contrast to the huge gap between ECFL and PCFL there is no such
gap between the classes of languages with a bounded degree of ambiguity
FCFL and with infinite ambiguity. We have shown that for each computable
divergent total non-decreasing function f there is a context-free grammars
G with infinite ambiguity whose ambiguity function is bounded by f , i.e.,
∀n ∈ N : d̂G(n) ≤ f(n). This allows infinite sequences of context-free gram-
mars with strictly decreasing ambiguity. (To make this statement precise
we define that an infinite sequence of context-free grammars G0, G1, . . . has
strictly decreasing ambiguity if d̂Gi

∈ oT (d̂Gi+1
) for each i ∈ N.) This leads

immediately to the question whether there are such strictly decreasing se-
quences of context-free grammars such that all the grammars in the sequence
generate the same language.2 If this is possible it would mean that there are
context-free languages which does not have a corresponding inherent ambi-
guity function.

Finally, we examined the relationship between ambiguity functions of
context-free grammars and the ambiguity functions of context-free languages.
In [17, 4.7] one can read:

“It is easy to exhibit ambiguous context-free grammars [. . .]. What is not
so easy to do is to exhibit a context-free language for which every CFG is
ambiguous.”3

One can generalise this statement to ambiguity functions generated by
arbitrary context-free grammar. Then the “not so easy” part is the question
whether the ambiguity function of each cycle-free context-free grammar is
inherent for some context-free language. We have answered this question
positive. (If we allow cyclic context-free grammars the answer is trivially no.)
Thus, the set of ambiguity functions for context-free languages and the set of
ambiguity functions for cycle-free context-free grammars coincide. Moreover,
the proof is constructive, i.e., for a given cycle-free context-free grammar G
an d̂G-ambiguous context-free language is explicitly given. This turns the
“not so easy” part of the statement above into the easy one: Theorem 8.22

2If we replace the oT notation in the definition of strictly decreasing ambiguity by the
o notation then this is possible for exponentially ambiguous languages [24]. This is due to
the fact that ΘT (2n) ⊃ Θ(2kn) for each k ∈ N, while Θ(2k1n) 6= Θ(2k2n) for k1 6= k2.

3The notion CFG means context-free grammar here.
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directly provides an d̂G-ambiguous language for each cycle-free context-free
grammar G. If one is interested in the question which ambiguity functions are
possible for context-free grammars this is a useful result. All the ambiguity
functions of context-free grammars which we can create by the constructions
described in Chapter 6 are inherent for some context-free language. (Note
that the constructed grammars are cycle-free) Thus, for each computable
divergent total non-decreasing function f there is a context-free language
L with infinite ambiguity whose ambiguity function is in OT (f), Moreover,
Theorem 8.22 provides a general construction principal. For instance the
right linear grammars over a single letter alphabet in Chapter 3 are sufficient
to witness the existence of context-free languages of any finite degree, any
polynomial degree, and of exponential degree. So far each of the ambiguity
types mentioned above has been considered separately [23, 24]. But Theorem
8.22 covers the common techniques used in all these proofs.

In fact, Theorem 8.22 is deduced from Theorem 8.8, which is more tech-
nical, but somewhat stronger. Theorem 8.8 does not deal with ambiguity
functions but with ambiguity series. Intuitively it states that the loss of in-
formation induced by an arbitrary length preserving homomorphism can be
turned into inherent ambiguity. One consequence is the following: Let G1

and G2 be cycle-free context-free grammars. Let s be the Chauchy product of
dG1 and dG2 defined by s(w) :=

∑

w=uv dG1(u)dG2(v) for each word w. Then

there is an d̂G1-ambiguous context-free language L1 and an d̂G2-ambiguous
context-free language L2 such that L1L2 is ŝ ambiguous where ŝ : N→ N is
defined by ŝ(n) := max{s(w) | w ∈ Σ≤n}.

It is hard to find a non-trivial characterisation for the class of languages
with bounded ambiguity. There is no non-trivial criterion known, which sep-
arates the class of context-free grammars with finite ambiguity (FCFL) from
the class of context-free grammars with infinite ambiguity. One reason might
be that there are “almost constantly ambiguous” context-free grammars with
infinite ambiguity (see Chapter 6) Maybe “almost constantly ambiguous”
context-free grammars are too similar to context-free grammars with a con-
stant degree of ambiguity to allow simple non-trivial separations. In fact, we
have seen that “almost constantly ambiguous” context-free grammars can
be parsed in “almost quadratic time” (Theorem 5.9). In contrast to that we
have a huge gap between PCFG and ECFG. We know two non trivial criteria
separating these classes (ambiguity of pumping trees and the ambiguity of
s(G).) Moreover, PCFL is closed under bounded contractions. In addition,
we know that PCFL is the closure of UCFL under bounded contractions.
This relationship between UCFL and PCFL also leads to the result that the
languages in PCFL can be parsed in logarithmic time on a CREW-PRAM.
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All this indicates that the distinction between polynomial and exponential
ambiguity might be more natural than the one between a finite degree of
ambiguity and an infinite degree.

9.2 Some Suggestions for further Research

So far no nontrivial characterisation of the set of ambiguity functions is
known. Due to Theorem 8.1, it is not necessary to consider this question for
cycle-free context-free grammars and context-free languages separately. We
have also gathered a lot of knowledge about the nature of inherent ambiguity
functions:

(i) There is no ambiguity function in ω(2O(n)) (trivial).

(ii) There is no ambiguity function in o(2Ω(n)) ∩ ω(nO(1)) (see 7.37).

(iii) According to Theorem 6.18 there are ambiguity functions, which grow
as slowly as any computable function.

(iv) Let f, g : N → N be two inherent ambiguity functions. Then there is
an inherent ambiguity function in ΘT ((f · g)(n)) (see 8.30).

But all these results do not determine the set of inherent ambiguity functions
completely. Theorem 6.18 only claims that substantially below a divergent
inherent ambiguity function we can always find another one. It does not
tell anything about the question whether there are further gaps, like the one
betwen exponential and polynomially bounded ambiguity.

In the proof of Theorem 6.18 for each Turing machine M a context-free
grammar G is constructed, which generates essentially a superset of the set
of valid computation. In addition, the ambigity function is dominated by the
ambiguity of the valid computations. The ambiguity of a valid computation
is the number of occurrences of a certain state. By the choice of the Turing
machine we can control this number quite well. This indicates that a fine
tuning of sublogarithmic ambiguity is possible. This could lead to good
density results for slowly growing ambiguity functions.

Unfortunately, the estimation of the length of valid computations is a
mixture of time and space complexity. The length of a computation is a
series over the time where each addend is the space used at the corresponding
time. On the other hand it is not necessary to stick to Turing machines as a
means of computation. Instead of the transition relation of a Turing machine
one can use unambiguous context-free relations to describe the transition of
two configurations.
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Another field of research is the examination of subsets of languages re-
sponsible for the ambiguity. We cannot expect to determine such a subset
uniquely. Note that there is no single word w in a context-free language L,
which is generated ambiguously by each context-free grammar G generating
L. Instead we allow some amount of fuzzyness:

Definition 9.1 Let L be a context-free language and k ∈ N. A subset L′ ⊆ L
is a complete at least k-ambiguous subset of L if the following conditions
are satisfied:

(i) Each context-free grammar G with L = L(G) generates all but a finite
subset of words in L′ with at least k derivation trees.

(ii) There is a context-free grammar G with L = L(G) such that each word
in L \ L′ is generated by less than k derivation trees.

Obviously, each context-free language L is a complete at least 1-ambiguous
subset of L. Let us consider two languages L1 and L2 as equivalent if their
symmetric difference ((L1 \ L2) ∪ (L2 \ L1)) is finite. It can be easily seen
that for each context-free language L and each k ∈ N the set of complete
k-ambiguous subsets of L is either empty or one equivalence class. Using the
notion of complete at least k ambiguous subsets one can reveal interesting
structures. For instance L̃1 := {anbncn | n ∈ N} is a complete at least 2-
ambiguous subset of L1 := {aibjck | i = j or j = k}. As another example
we can show that L̃2 := {a20

#a21
# · · ·a2n

| n ∈ N} is a complete at least
2-ambiguous subset of L2 := L∗a∗ ∪ aL∗, where L := {an#a2n | n ∈ N}. The
languages L1 and L2 both are inherently ambiguous of degree 2. Despite
that there is a fundamental structural difference between them: The number
of words of length up to n in a complete at least 2-ambiguous subset grows
in L2 by far slower than in L1. More formally, let f1, f2 : N → N be two
functions defined by fi(n) := |L̃i ∩ Σ≤n| for each i ∈ {1, 2}. Then f1 ∈ Θ(n)
und f2 ∈ Θ(log(n)). Instead of asking for the maximal number of derivation
trees for words of a certain length one can also ask for the number of words
requiring an ambiguous generation. The definition above also allows us to
combine both points of view. For instance L̃1 is as well a complete 2- and 3-
ambiguous subset of L3 := {aibjck | i = j or j = k or k = i}, that is L3 is a 3-
ambiguous language, which is generated by a context-free grammar G which
generates each word in L̃1 with 3 derivation trees and the remaining words
unambiguously. Hence, it does not generate a single word with ambiguity 2.

It is also interesting to consider the ambiguity of subsets of derivation
trees or embedded trees. For instance it has been shown in this thesis that a
cycle-free context-free grammar G is exponentially ambiguous if and only if
the corresponding set of pumping trees is ambiguous.
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It is also possible to consider the combined complexity of a context-free
language with respect to different properties. For instance, the language L :=
{aibiajbj | i, j ∈ N} is as well generated by a linear context-free grammar G1

and an unambiguous context-free grammar G2, but among the context-free
grammars generating L there is no one which is linear and unambiguous at
the same time. Thus, a context-free grammar G generating L either allows
a pair of independent internal nodes or G is ambiguous. More generally
one can also consider the product of the width of a nonterminal bounded
context-free grammar and its degree of ambiguity as a complexity measure.
Questions (vi) and (vii) deal with this combined complexity measure.

9.3 Open Problems

Finally, some open problems occurred during the preparation of this thesis
are listed. In some cases remarks to their relevance, origin of the problems,
or suggestions for their solution are provided. It may be the case that some
questions have trivial answers overseen by the author. This is particular
likely for questions which occured late in the preparation, when the author
had no more time to think them over carefully. This concerns the questions
from (vi) on.

(i) Does each context-free language L have a corresponding inherent am-
biguity function? The author weakly conjectures that this question
should have a positive answer. There are however two scenarios imag-
inable which would lead to a negative solution:

(a) There is an infinite sequence of grammars, G1, . . . , Gi, . . . such
that L = L(Gn) for each n ∈ N and for each n ∈ N we have
d̂Gn+1 ∈ oT (d̂Gn

).

(b) There are two context-free grammars G1, G2 such that L =
L(G1) = L(G2) but their ambiguity functions are incomparable
in the sense that d̂G1 /∈ oT (d̂G2) and d̂G2 /∈ oT (d̂G1). An example
of a pair of incomparable functions is: fe, fo : N→ N defined by:

fe(n) :=
(
max

{
i ∈ {2j | j ∈ N} | i! < n

})
!

fo(n) :=
(
max

{
i ∈ {2j + 1 | j ∈ N} | i! < n

})
!

(ii) Is the set of ambiguity functions of linear context-free grammar a proper
subset of the set of ambiguity functions for arbitrary context-free gram-
mars?
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(iii) It is possible that the inherent ambiguity function of a linear context-
free language L is no ambiguity function of any linear context-free
grammar generating L. In such a case the “least” ambiguous context-
free grammar generating L is non-linear. It might be more suitable to
define a version of inherent ambiguity functions specialised for linear
context-free languages. That is we replace each occurence of context-
free grammars and languages by linear context-free languages and
grammars in the Definitions 2.96 and 2.97, respectively. Let us call the
resulting version of inherent ambiguity functions linearised inherent
ambiguity functions. Now we can reask several questions for linearised
inherent ambiguity functions. For instance:

(a) Does each linear context-free language L have a corresponding
linearised inherent ambiguity function?

(b) Does the set of linearised inherent ambiguity functions coincide
with the set of ambiguity functions of cycle-free linear context-
free grammars?

(iv) Is each context-free language with finite ambiguity a finite union of
unambiguous context-free languages?

Restricted to so-called bounded languages the answer is positive, i.e.,
each bounded language with finite degree of ambiguity is a finite union
of unambiguous context-free languages [12].

The author only made partial progress on this question: Let G be a
context-free grammar and let P<ω be the set of G’s bounded produc-
tions. Let us call G a bottleneck grammar if πP<ω

(∆G) is a singleton,
i.e., each derivation tree consists of a fixed sequence of bounded produc-
tions with the remaining symbols somehow shuffled inside. A language
is a bottleneck language if it is generated by some bottleneck grammar.
It can be shown that each context-free language can be written as a
finite union of bottleneck languages.

(A sketch of the corresponding proof is: Let G = (N, Σ, P, S) be a
context-free grammar and let P<ω be the set of G’s bounded produc-
tions. Obviously, πP<ω

(∆G) is finite. For each word τ ∈ πP<ω
(∆G) we

generate a bottleneck grammar Gτ , such that L(Gτ ) generates exactly
those words in L(G) which are generated by some derivation tree ρ of
G with πP<ω

(ρ) = τ . This is done as follows: The nonterminal set of
Gτ is the Cartesian product of N and the set of infixes of τ . The infix
specifies the sequence of bounded productions occurring in the sub-
tree dominated by the nonterminal. The production set of Gτ contains
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copies of each production in [A, α] ∈ P \P<ω for each infix γ of τ . The
copies are the set of productions of the form [(A, γ), α′] where α′ equals
α if we ignore the infixes attached to the nonterminals and the con-
catenation of the attached infixes is γ. Similarly Gτ contains copies of
each production [A, α] ∈ P<ω but only for infixes γ of τ which begins
with [A, α]. Let γ′ be the string which remains after cancellation of
the first symbol from γ. Now the copies of [A, α] for the infix γ are all
the productions of the form [(A, γ), α′] where α′ is α if we ignore the
attached infixes and the concatenation of the infixes yield γ ′. (Note
that Gτ may contain several useless symbols.)

Hence, the question above can be reduced to the question:

Is each bottleneck language with finite ambiguity a finite union of un-
ambiguous context-free languages?

(v) Let Σ be a two letter alphabet. Let L ⊆ Σ∗ be the set of words with
the property that they cannot be transformed into a word of the form
w2 by changing less than two letters. Is L context-free? A more formal
specification of L is:

{

w ∈ Σ∗
∣
∣
∣
∣

∃n ∈ N : |w| = 2n and ∃i, j ∈ [1, n] : i 6= j
such that w[i] 6= w[i + n] and w[j] 6= w[j + n]

}

Intuitively this question seems to be easier then the famous question
whether the set of primitive words Q is context-free. Despite that
one faces similar difficulties in attacking this problems. Even if this
question has not much to do with this thesis the author likes to raise
it.

(vi) Let n1, n2, n ∈ N such that n1 · n2 ≤ n. Let

Ln :=
(
(a∗ba∗b)∗{aibai | i ∈ N}

(
ba∗ba∗)∗

)
∩ (a∗ba∗)2n−1.

It can be shown that Ln is an unambiguous context-free language and
a linear context-free language. Moreover, it can be shown that Ln is
generated by some nonterminal bounded context-free grammar with a
width of n2 and an ambiguity of n1 if n1 ·n2 ≥ n. Note that this implies
that Ln is linear and unambiguous.

Is it possible to generate Ln by any nonterminal bounded context-free
grammar with a width of at most n2 and an ambiguity of at most n1?
(Conjecture: No)
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(vii) The language

L∗ :=
(
a∗ba∗b

)∗
{anban | n > 0}

(
ba∗ba∗)∗

is an unambiguous context-free language and a linear context-free lan-
guage. The linearity is obvious. For the unambiguity note that L∗ can
be written as:

L∗ = {anbam | n 6= m}∗{anban | n > 0}
(
a∗ba∗b

)∗
.

The languages {anbam | n 6= m}, {anban | n > 0}, and
(
a∗ba∗b

)∗

are unambiguous. Due to the block structure their concatenation is
unambiguous.

Is L∗ generated by any nonterminal bounded context-free grammar
with a bounded degree of ambiguity. (Conjecture: No)

(viii) Let G be a context-free grammar. A phrase of a word w is an interval
[i, j] ⊆ [1, |w|] such that there is a tree ρ ∈ ∆G with ↓(ρ) = w and for
some τ1, τ2 ∈ T ∗

G and some ω ∈ subtree(ρ) we have ρ = τ1ωτ2, |↓(τ1)| =
i − 1, and ↓(τ1ω) = j. A context-free grammar has a unique phrase
structure if two phrases for one word are either disjoint or one is a subset
of the other. The notion of unique phrase structure has already been
introduced by Parikh in [26, Definition 11]. He showed (Theorem 1)
that each unambiguous grammar has unique phrase structure. Hence,
to prove that a context-free language L is ambiguous it is sufficient
to show that each context-free grammar generating it does not have
a unique phrase structure. In fact, within all the proofs for inherent
ambiguity we examined the least number of trees required to distribute
phrases of a word such that each derivation tree has a unique phrase
structure. But the converse of Parikh’s statement is not true. An
example for an ambiguous context-free grammar with unique phrase
structure is:

S → AA | aa, A→ a.

This leads us to the question:

Is there any ambiguous context-free language L such that some context-
free grammar G with L(G) = L has a unique phrase structure?

The prove of the ambiguity of such a language L would require different
proof techniques then the ones we used in this thesis. The author
conjectures that this question has a negative answer. Ambiguities of
a context-free grammar G which does not destroy the unique phrase
structure does not seem to be fundamental enough to be unavoidable.
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Anhang A

Zusammenfassung

A.1 Einleitung

Eine kontextfreie Grammatik G ist eindeutig, wenn jedes Wort höchstens
einen Ableitungsbaum hat, andernfalls ist G mehrdeutig. Eine kontextfreie
Sprache ist eindeutig, wenn sie von einer eindeutigen kontextfreien Gramma-
tik erzeugt wird. Kontextfreie Grammatiken und Sprachen sind mehrdeutig,
wenn sie nicht eindeutig sind. Mehrdeutige kontextfreie Sprachen bezeichnet
man auch als inhärent mehrdeutig. Die Existenz mehrdeutiger kontextfrei-
er Sprachen wurde in [26, 27] gezeigt. So gesehen tragen Mehrdeutigkeiten
wesentlich zur generativen Mächtigkeit der kontextfreien Grammatiken bei.
Mehrdeutigkeit ist für kontextfreie Sprachen und Grammatiken unentscheid-
bar. (Siehe in [8, 9, 14] oder in den Lehrbüchern [16, Theorem 8.4.5, 8.4.6],
[17, Theorem 8.9, 8.16]).

Für eine kontextfreie Grammatik G ist die Mehrdeutigkeit eines Wortes
w die Anzahl der Ableitungsbäume mit der w von G generiert wird. Mehr-
deutige kontextfreie Sprachen und Grammatiken können nach dem Grad der
Mehrdeutigkeit differenziert werden. Dabei heißt eine Grammatik k-deutig,
wenn k die kleinste obere Schranke für die Mehrdeutigkeit der erzeugten
Wörter ist. Entsprechend heißt eine kontextfreie Sprache k-deutig, wenn sie
von einer k-deutigen, aber von keiner k− 1-deutigen kontextfreien Gramma-
tik erzeugt wird. Für jedes k ∈ N gibt es k-deutige kontextfreie Sprachen [23].
Es gibt sogar Sprachen mit einem unendlichen Mehrdeutigkeitsgrad [30]. Ein
besonders interessantes Beispiel ist die Crestin Sprache [10]. Dabei handelt
es sich um das Quadrat der (eindeutig kontextfreien) Sprache der Palindro-
me, d. h. um die Menge der Wörter die sich in zwei Palindrome faktorisieren
lassen.

Zunächst sieht das nach einer kompletten Antwort auf die Frage nach

185
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möglichen Mehrdeutigkeitsgraden aus. Es stellt sich jedoch in natürlicher
Weise die Frage, wie sich, bei unendlichdeutigen kontextfreien Sprachen und
Grammatiken, die Mehrdeutigkeit zur Wortlänge verhält. Wahrscheinlich
wurde diese Frage erstmals in [16, Section 7.1] angesprochen. Es heißt dort:

”
[. . . ] there are inherently ambiguous languages that have an exponential

number of derivation trees in the length of the string“. 1

Übersetzt heißt das:

”
[. . . ] es gibt inhärent mehrdeutige Sprachen, die eine exponentielle Zahl

von Ableitungsbäumen in der Länge der Zeichenketten haben.“2

Die Mehrdeutigkeitsfunktion d̂G einer kontextfreien Grammatik ist die-
jenige monoton nicht fallende Funktion, welche jeder natürlichen Zahl n die
kleinste obere Schranke für die Mehrdeutigkeit der Wörter bis zur Länge
n zuordnet. Während man für kontextfreie Grammatiken jedem Wort eine
Mehrdeutigkeit zuordnen kann, macht eine solche Zuordnung im Fall einer
kontextfreien Sprache keinen Sinn, da es für jede kontextfreie Sprache L und
jedes Wort w eine kontextfreie Grammatik gibt welche w eindeutig erzeugt.
Eine Art, die Mehrdeutigkeit einer kontextfreien Sprache L dennoch nachzu-
weisen besteht darin, eine unendliche Teilmenge L′ anzugeben, so dass jede
kontextfreie Grammatik, die L erzeugt, alle bis auf endlich viele Wörter in L′

mehrdeutig erzeugt. Dennoch kann manchen kontextfreien Sprachen sinnvoll
eine (inhärente) Mehrdeutigkeitsfunktion zugeordnet werden.3 Eine Funkti-
on f ist eine inhärente Mehrdeutigkeitsfunktion für eine kontextfreie Sprache
L, wenn die folgenden beiden Bedingungen erfüllt sind.

(i) Die Sprache L wird von einer f -deutigen kontextfreien Grammatik er-
zeugt.

(ii) Für jede kontextfreie Grammatik G, die L erzeugt, gibt es eine Kon-
stante cG ∈ N, so dass für jedes n ∈ N \ 0 die kleinste obere Schranke
für die Mehrdeutigkeit der Wörter bis zur Länge cG ·n mindestens f(n)
beträgt.

Grob ausgedrückt bestimmt eine solche Funktion die Länge eines kürzesten
Wortes, das eine gegebene Mehrdeutigkeit d ∈ N überschreitet, bis auf einen
konstanten Faktor in der Wortlänge. Dabei hängt der Faktor nur von der
Pumpkonstante der verwendeten kontextfreien Grammatik ab.

1Ein korrektes Beispiel für eine solche Sprache wird in [16, Section 7.3] angegeben.
Leider weist der zugehörige Beweis eine Lücke auf, die jedoch in [24] geschlossen wurde.

2Natürlich ist gemeint, dass alle kontextfreien Grammatiken, welche die Sprache erzeu-
gen, eine exponentielle Anzahl von Ableitungsbäumen in der Wortlänge haben.

3Es ist tatsächlich nicht klar, ob jede kontextfreie Sprache eine Mehrdeutigkeitsfunktion
gemäß der folgenden Definition hat.
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Diese Dissertation untersucht die Mehrdeutigkeit kontextfreier Sprachen
und Grammatiken. Ein Ziel ist dabei, eine möglichst genaue Charakterisie-
rung der Menge der Mehrdeutigkeitsfunktionen für kontextfreie Sprachen
und Grammatiken zu finden. Desweiteren werden Trennungen verschiedener
Mehrdeutigkeitsklassen sowie Beziehungen zwischen denselben untersucht.
Schließlich werden Zusammenhänge zwischen Mehrdeutigkeit und dem Auf-
wand zur Worterkennung herausgearbeitet.

A.2 Grundbegriffe

Sei G eine kontextfreie Grammatik. Ein Symbol (Terminal oder Nichtter-
minal) von G heißt nutzlos, wenn es in keinem Ableitungsbaum auftauchen
kann. Dabei verlangen wir von Ableitungsbäumen, dass sie vollständig sind,
d. h., die Wurzel ist mit dem Startsymbol und die Blätter sind ausschließ-
lich mit Terminalen beschriftet. Eine kontextfreie Grammatik heißt reduziert,
wenn sie keine nutzlosen Symbole enthält. Offenbar haben nutzlose Symbole
keinen Einfluss auf die Mehrdeutigkeit einer kontextfreien Grammatik. Es
genügt daher, reduzierte kontextfreie Grammatiken zu betrachten.

Die Grammatik G ist zyklisch, wenn sie ein Nichtterminal hat, welches
sich selbst in einer nicht leeren Folge von Ableitungsschritten generiert, d. h.

A
+
⇒G A. Die Mehrdeutigkeitsfunktion f einer reduzierten kontextfreien

Grammatik G hat für fast alle (alle bis auf endlich viele) Argumente den
Wert ∞ genau dann, wenn G zyklisch ist. Da jede kontextfreie Grammatik
in eine äquivalente zykelfreie kontextfreie Grammatik transformiert werden
kann, sind Mehrdeutigkeitsfunktionen, die den Wert ∞ erreichen, für kei-
ne kontextfreie Sprache inhärent. Deshalb betrachten wir im Folgenden nur
reduzierte zykelfreie kontextfreie Grammatiken.

A.3 Ergebnisse

Offenbar gibt es mehrdeutige kontextfreie Grammatiken, die eindeutig kon-
textfreie Sprachen erzeugen. In diesem Sinne kann die Mehrdeutigkeit einer
Grammatik überflüssig sein. Nun stellt sich aber die Frage, ob es Mehrdeu-
tigkeitsfunktionen kontextfreier Grammatiken gibt, die für keine kontextfreie
Sprache inhärent sind. Dies ist aber nicht der Fall:

Satz A.1 Die Menge der Mehrdeutigkeitsfunktionen kontextfreier Sprachen
und zykelfreier kontextfreier Grammatiken sind identisch.
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Das heißt, gleichgültig wie künstlich die Mehrdeutigkeitsfunktion d̂G einer
kontextfreien Grammatik G anmuten mag, es gibt stets eine kontextfreie
Sprache LG, so dass LG inhärent d̂G-deutig ist. Im Beweis wird aus G auf
Basis der Ableitungsbaummenge ∆G eine kontextfreie Sprache L effektiv kon-
struiert, die nicht generiert werden kann, ohne die Struktur von ∆G nachzu-
bilden.

Satz A.1 reduziert die Frage, ob eine gegebene Funktion f eine inhärente
Mehrdeutigkeitsfunktion einer kontextfreien Sprache ist, auf die entsprechen-
de Frage für kontextfreie Grammatiken. Um zu zeigen, dass eine bestimmte
Mehrdeutigkeitsfunktion f : N → N für eine kontextfreie Sprache inhärent
ist, genügt es also, eine f -deutige kontextfreie Grammatik G anzugeben. Da-
bei ist die Mehrdeutigkeit der von L erzeugten Sprache unerheblich.

Nun wenden wir uns der Frage zu, welche Mehrdeutigkeitsfunktionen es
für zykelfreie kontextfreie Grammatiken tatsächlich gibt. Es ist leicht, für
jedes k ∈ N rechtslineare Grammatiken über einem Alphabet mit nur ei-
nem Element anzugeben, die k-deutig, Θ(nk)-deutig bzw. 2Θ(n)-deutig sind.
Gemäß Satz A.1 reichen diese einfachen Beispiele trotz ihrer Regularität be-
reits hin, um die Existenz der entsprechenden inhärenten Mehrdeutigkei-
ten zu zeigen. Dies vereinheitlicht die Beweisführung für die Existenz der
in [23, 30, 24] bereits gezeigten inhärenten Mehrdeutigkeiten. Mithilfe von
[16, Theorem 12.2.1] sieht man leicht, dass die Mehrdeutigkeit zykelfreier
kontextfreier Grammatiken durch 2O(n) beschränkt ist.

Sei G eine kontextfreie Grammatik. Ein Teilbaum eines Ableitungsbaums
von dem ein Teilbaum abgeschnitten wurde heißt Pumpbaum von G, falls er
ein Blatt hat, dass mit dem gleichen Nichtterminal wie die Wurzel beschrif-
tet ist. Der Begriff des Pumpbaums ist zentral für den Beweis der meisten
Pumpinglemmata. Es wird gezeigt, dass:

Lemma A.2 Eine zykelfreie kontextfreie Grammatik ist exponentiell mehr-
deutig, wenn die Menge ihrer Pumpbäume mehrdeutig ist, d. h., wenn es zwei
Pumpbäume mit gleicher Front gibt.

Eine Produktion p einer kontextfreien Grammatik G heißt beschränkt,
wenn es eine Konstante k ∈ N gibt, so dass keine Ableitung aus dem Start-
symbol mehr als k Anwendungen von p enthält.

Lemma A.3 Eine zykelfreie kontextfreie Grammatik G heißt polynomiell
mehrdeutig, wenn man durch Einfügen von Markierungen in die rechten Re-
gelseiten beschränkter Produktionen eine eindeutige kontextfreie Grammatik
erhalten kann.
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Die Kriterien in den beiden vorangegangenen Lemmata sind jeweils hin-
reichend für die zugehörige Mehrdeutigkeitsklasse und schließen sich gegen-
seitig aus, d. h., jede kontextfreie Grammatik kann nur eines der beiden Krite-
rien erfüllen. Tatsächlich erfüllt jede zykelfreie kontextfreie Grammatik eines
der beiden Kriterien, d. h.:

Lemma A.4 In einer zykelfreien kontextfreien Grammatik, deren Pump-
baummenge eindeutig ist, lassen sich die beschränkten Produktionen so mar-
kieren, dass die resultierende Grammatik eindeutig ist.

Aus den vorangegangenen drei Lemmata ergibt sich unmittelbar:

Satz A.5 Für jede kontextfreie Grammatik G kann effizient eine Konstante
k ∈ N mit der Zusicherung errechnet werden, dass die Mehrdeutigkeitsfunkti-
on von G entweder in 2Θ(n) oder in O(nk) liegt. Eine (zykelfreie) kontextfreie
Grammatik ist stets entweder exponentiell (d. h. in 2Θ(n)) oder polynomiell
beschränkt (d. h. in nk).

Satz A.5 wurde bereits in der Diplomarbeit des Autors bewiesen, aller-
dings durch einen technischen Beweis, der zeigt, dass das Kriterium aus A.2
notwendig für exponentielle Mehrdeutigkeit ist. Lemma A.3 und Lemma A.4,
die neu sind, zerlegen diese Beweisführung in zwei leicht verständliche Teilzie-
le. Ein wesentlicher Erkenntnisfortschritt liegt hier in der Herausarbeitung
der besonderen Rolle der beschränkten Produktionen, die im alten Beweis
gar nicht vorkamen. Die Erkenntnis, dass bestimmte Produktionen eine für
polynomielle Mehrdeutigkeit herausragende Rolle spielen, vertieft und er-
leichtert das Verständnis des Sachverhalts erheblich. Darüber hinaus kommt
man auf Grundlage der neuen Herangehensweise meist zu einer wesentlichen
Verbesserung der in Satz A.5 zugesicherten Konstante k. (Von jn, wobei j
die maximale Anzahl der Nichtterminale auf der rechten Seite einer Produk-
tion und n die Anzahl der Nichtterminale ist, auf die maximale Anzahl von
Markierungen m in den Wörtern der markierten Grammatik. Dabei ist m
effizient berechenbar und es gilt m ≤ jn.)

Darüber hinaus ergibt sich aus Lemma A.3 unmittelbar eine wichtige
Beziehung zwischen der Klasse der eindeutigen kontextfreien Grammatiken
UCFL und der Klasse der kontextfreien Grammatiken mit polynomiell be-
schränkter Mehrdeutigkeit PCFL:

Satz A.6 Die Klasse der kontextfreien Sprachen mit polynomiell beschränk-
ter Mehrdeutigkeit PCFL fällt mit dem Abschluss der eindeutigen kontext-
freien Sprachen UCFL unter beschränkten Kontraktionen zusammen.
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Bei beschränkten Kontraktionen handelt es sich um Projektionen, die nur
Symbole löschen dürfen, deren Anzahl von Vorkommen in beliebigen Wörtern
der Sprache durch eine globale Konstante beschränkt ist. Dadurch lässt sich
ein Resultat von Rossmanith und Rytter von UCFL auf PCFL generalisieren.

Korollar A.7 Jede kontextfreie Sprache mit polynomiell beschränkter Mehr-
deutigkeit lässt sich auf einer CREW-PRAM 4 in logarithmischer Zeit erken-
nen.

Ein weiteres interessantes Resultat ist die Existenz von sublinearer Mehr-
deutigkeit. Für logarithmische und quadratwurzelförmige Mehrdeutigkeit
wurden in [33] linear kontextfreie Sprachen explizit angegeben. Tatsächlich
können wir zeigen:

Lemma A.8 Für jede berechenbare totale monoton nicht fallende divergente
Funktion f gibt es eine kontextfreie Grammatik G mit unendlicher Mehrdeu-
tigkeit, deren Mehrdeutigkeitsfunktion langsamer wächst als f , d. h. ∀n ∈ N :
d̂G(n) ≤ f(n).

Unter Anwendung von Satz A.1 ergeben sich die folgenden Resultate:

Theorem A.9 Für jede berechenbare totale monoton nicht fallende diver-
gente Funktion f gibt es eine kontextfreie Sprache L mit unendlicher Mehr-
deutigkeit, mit einer Mehrdeutigkeitsfunktion d̂L, die langsamer wächst als
f , d. h. ∀n ∈ N : d̂G(n) ≤ f(n).

Theorem A.10 Seien f, g : N → N zwei inhärente Mehrdeutigkeitsfunktio-
nen. Dann gibt es eine inhärente Mehrdeutigkeitsfunktion in ΘT ((f · g)(n)).

Tatsächlich lässt sich dies sogar mit speziellen linearen Grammatiken er-
zielen. Da jede Mehrdeutigkeit - wie oben erwähnt - inhärent für eine kon-
textfreie Sprache ist, gibt es für jede solche Funktion f eine kontextfreie
Sprache mit unbeschränktem Mehrdeutigkeitsgrad, deren inhärente Mehr-
deutigkeitsfunktion langsamer als f wächst. Wir können also zum Beispiel
eine unbeschränkt mehrdeutige kontextfreie Sprache finden, deren inhären-
te Mehrdeutigkeitsfunktion unterhalb von log∗ angesiedelt ist. Kontextfreie
Grammatiken mit sublinearer Mehrdeutigkeit erweisen sich im Zusammen-
hang mit dem Parsing Algorithmus von Earley [11] als interessant. Es gilt:

4Eine CREW-PRAM ist eine Random-Access-Maschine mit einer polynomiellen An-
zahl von Prozessoren (PRAM). Der gemeinsame Speicher erlaubt es mehreren Prozessoren
im gleichen Zeitschritt auf eine Speicherstelle lesend zuzugreifen (concurrent read (CR)),
aber es darf nur ein Prozessor zu einer bestimmten Zeit eine Speicherzelle überschreiben
(exclusive write (EW)).
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Satz A.11 Betrachtet man die Größe der untersuchten Grammatik als eine
Konstante und bestimmt die Laufzeit nur in Abhängigkeit von der Wortlänge,
so liegt die Zeitkomplexität des Wortproblems mit Earley’s Algorithmus (se-
quentiell) innerhalb von O(n2 · d̂G(n + kG)), wobei d̂G die Mehrdeutigkeits-
funktion von G und kG ∈ N eine nur von G abhängige Konstante ist.

Die Konstante kG im vorangegangenen Satz kann weggelassen werden, wenn
die Mehrdeutigkeitsfunktion von G eine sehr schwache Homogenitätsbedin-
gung erfüllt. (Dem Autor ist keine Mehrdeutigkeitsfunktion bekannt, welche
diese Homogenitätsbedingung nicht erfüllt.)

A.4 Ausblick

Bisher gibt es keine vollständige nichttriviale Charakterisierung der Menge
der Mehrdeutigkeitsfunktionen. Aus Theorem 8.1 ergibt sich, dass es nicht
notwendig ist, diese Frage getrennt für zykelfreie kontextfreie Grammatiken
und kontextfreie Sprachen zu behandeln. Ferner kann man den Bereich, in
dem Mehrdeutigkeitsfunktionen liegen können, erheblich einschränken:

(i) Es gibt keine Mehrdeutigkeitsfunktion in ω(2O(n)).

(ii) Es gibt keine Mehrdeutigkeitsfunktion in o(2Ω(n)) ∩ ω(nO(1)).

(iii) Gemäß Satz A.9 gibt es Mehrdeutigkeitsfunktionen, die so langsam wie
eine beliebige berechenbare Funktion wachsen.

(iv) Seien f und g : N → N zwei inhärente Mehrdeutigkeitsfunktionen.
Dann gibt es eine inhärente Mehrdeutigkeitsfunktion in ΘT ((f · g)(n)).

Dennoch klärt dies nicht, welche Mehrdeutigkeitsfunktionen es genau gibt
und in welcher Dichte sie auftreten. Satz A.9 besagt lediglich, dass substan-
tiell unterhalb einer divergenten Mehrdeutigkeitsfunktion es stets weitere di-
vergente Mehrdeutigkeitsfunktionen gibt. Er sagt hingegen nichts darüber
aus, ob es weitere Lücken wie die zwischen polynomieller und exponentieller
Mehrdeutigkeit im sublinearen Bereich gibt.

Im Beweis von Satz A.8 wurde zu einer beliebigen Turing Maschine M ei-
ne kontextfreie Grammatik G konstruiert, welche im Wesentlichen (jede zwei-
te Konfiguration ist gespiegelt) eine Obermenge der Menge der Berechnungs-
folgen von M generiert. Die Mehrdeutigkeitsfunktion wird dabei bereits von
den gültigen Berechnungsfolgen eindeutig festgelegt, da nur diese kürzeste
Wörter zu einer gegebenen Mehrdeutigkeit sein können. Die Mehrdeutigkeit
einer Berechnungsfolge war dabei einfach die Häufigkeit, mit der ein bestimm-
ter Zustand erreicht wird. Diese Konstruktion legt den Verdacht nahe, dass
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man die Mehrdeutigkeit im sublogarithmischen Bereich sehr fein justieren
und damit gute Dichteresultate erzielen kann. Jedoch ist die Abschätzung der
Länge von Berechnungsfolgen technisch schwierig. Hier fließt sowohl die Zeit-
komplexität über die Anzahl der Konfigurationsübergänge als auch die Platz-
komplexität über die Länge der einzelnen Konfigurationen ein. Gewisserma-
ßen handelt es sich um den, über die Zeit aufsummierten, Platzverbrauch.
Andererseits ist man nicht notwendig an Turing Maschinen als Berechnungs-
modell gebunden. Statt der Übergangsrelation einer Turingmaschine, kann
man wesentlich allgemeinere eindeutig kontextfreie Relationen zulassen. Da-
bei heißt eine Relation R ⊆ Σ× Σ für ein Alphabet Σ eindeutig kontextfrei,
wenn L := {u#vR | (u, v) ∈ R} eindeutig kontextfrei ist, wobei # /∈ Σ und
vR die Spiegelung von v ist.

Ein weiteres Forschungsfeld ist die Untersuchung der für die Mehrdeutig-
keit verantwortlichen Teilmengen. Obwohl es kein Wort in einer kontextfreien
Sprache L gibt, das von allen kontextfreien Grammatiken, die L erzeugen,
mehrdeutig generiert wird, lassen sich unendliche Teilmengen der erzeugten
Sprache für die Mehrdeutigkeit von L gemäß der folgenden Definition ver-
antwortlich machen.

Definition A.12 Sei L eine kontextfreie Sprache, und k ∈ N. Eine Sprache
L′ ⊆ L ist eine vollständige mindestens k-deutige Teilmenge von L, falls
folgende Bedingungen erfüllt sind:

(i) Jede kontextfreie Grammatik G mit L = L(G) erzeugt alle bis auf end-
lich viele Wörter in L′ mit mindestens k Ableitungsbäumen.

(ii) Es gibt eine kontextfreie Grammatik G mit L = L(G), für die jedes
Wort aus L \ L′ weniger als k Ableitungsbäume hat.

Offenbar ist jede kontextfreie Sprache L mindestens 1-deutig in L. Mit diesem
Begriff lassen sich interessante Strukturen entdecken: Zum Beispiel kann man
zeigen, dass die Sprache L̃1 := {anbncn | n ∈ N} eine vollständige mindestens
2-deutige Sprache in L1 := {aibjck | i = j oder j = k} ist. Man kann auch
zeigen, dass L̃2 := {a20

#a21
# · · ·a2n

| n ∈ N} eine vollständige mindestens
2-deutige Sprache in L2 := L∗a∗ ∪ aL∗ ist, wobei L := {an#a2n | n ∈ N}
ist. Sowohl L1 als auch L2 sind 2-deutig. Dennoch gibt es einen interessanten
Unterschied zwischen L1 und L2, nämlich den, dass L2 wesentlich weniger
mehrdeutige Wörter zu einer gegebenen Wortlänge besitzt als L1. Man be-
trachte dazu die Funktionen f1, f2 : N→ N definiert durch fi(n) := |L̃i∩Σ≤n|
für i ∈ {1, 2}. Es gilt f1 ∈ Θ(n) und f2 ∈ Θ(log(n)). Statt zu fragen wieviele
Ableitungsbäume es für Wörter einer gewissen Länge gibt, kann man auch
fragen, wieviele Wörter bis zu einer gewissen Länge mehrdeutig erzeugt wer-
den. Man kann natürlich auch beide Ansätze kombinieren. Zum Beispiel ist L̃1
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sowohl eine vollständige mindestens 2-deutige, als auch eine vollständige min-
destens 3-deutige Teilmenge in L3 := {aibjck | i = j oder j = k oder k = i},
d. h., dass L3 eine 3-deutige Sprache ist, die von einer kontextfreien Gram-
matik erzeugt wird, welche Wörter entweder eindeutig oder 3-deutig, aber
nicht 2-deutig generiert.

Es kann auch erhellend sein, Teilmengen der Menge der Ableitungsbäume
oder Teilstrukturen derselben zu untersuchen. Beispielsweise wird in dieser
Arbeit gezeigt, dass eine zykelfreie kontextfreie Grammatik G genau dann
exponentiell mehrdeutig ist, wenn die Pumpbaummenge von G mehrdeutig
ist. Aber es lassen sich auch interessante Bezüge zu linearen Grammatiken
herstellen. So lässt sich zeigen, dass die Sprache L := {aibiajbj | i, j ∈ N}
sowohl von einer linear kontextfreien Grammatik G1 als auch von einer ein-
deutig kontextfreien Grammatik G2 erzeugt werden kann, es aber keine so-
wohl lineare als auch eindeutig kontextfreie Grammatik gibt, die L erzeugt.
Eine kontextfreie Grammatik muss also entweder unabhängige innere Kno-
tenpaare (also Paare, bei denen keine Komponente Vorgänger der anderen
ist) oder Mehrdeutigkeit zulassen, um L zu erzeugen.

A.5 Offene Fragen

Wir haben gesehen, dass es zu jeder berechenbaren totalen monoton nicht
fallenden divergenten Funktion f eine kontextfreie Grammatik G mit unend-
licher Mehrdeutigkeit gibt, deren Mehrdeutigkeitsfunktion langsamer wächst
als f . Somit lassen sich unendliche Folgen kontextfreier Grammatiken mit
echt absteigender Mehrdeutigkeit definieren. Dies wirft die Frage auf, ob es
zu jeder kontextfreien Sprache eine inhärente Mehrdeutigkeitsfunktion gibt.
Wenn nein, dann würde das heißen, dass es eine kontextfreie Sprache L mit
unendlicher Mehrdeutigkeit gibt, für die es zu jeder kontextfreien Gram-
matik G1 mit L = L(G1) eine substantiell weniger mehrdeutige kontext-
freie Grammatik G2 mit L = L(G2) gibt, wobei

”
substantiell“bedeutet, dass

d̂G2(n) ≤ d̂G1(n) für alle n ∈ N gilt und diese Funktionen sich an mehr als
endlich vielen Stellen unterscheiden.

Bisher ist keine Mehrdeutigkeitsfunktion bekannt, die nicht auch für eine
linear kontextfreie Sprache inhärent ist. Es stellt sich daher die Frage, ob die
Menge der inhärenten Mehrdeutigkeitsfunktionen linear kontextfreier Spra-
chen mit der Menge der inhärenten Mehrdeutigkeitsfunktionen kontextfreier
Sprachen zusammenfällt.

In diesem Zusammenhang stellt sich auch die Frage, ob es zu jeder line-
ar kontextfreien Grammatik G eine inhärent d̂G-deutige lineare kontextfreie
Sprache gibt. Das geht nicht aus Satz A.1 hervor, da die zugehörige Kon-
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struktion nicht linearitätserhaltend ist. Man beachte hierbei, dass es eine
linear kontextfreie Sprache L mit einer inhärenten Mehrdeutigkeitsfunktion
f geben kann, so dass jede linear kontextfreie Grammatik, die L erzeugt,
mehr als f -deutig ist. Dies resultiert aus der Definition der inhärenten Mehr-
deutigkeitsfunktion, welche nur die Existenz einer f -deutigen kontextfreien
Grammatik, nicht jedoch die einer linearen kontextfreien Grammatik fordert.
Für die Untersuchung linear kontextfreier Sprachen erscheint es daher sinn-
voller, einen modifizierten Inhärenzbegriff zu benutzen, der analog zu dem in
dieser Dissertation benutzten ist, in dem aber konsequent kontextfrei durch
linear kontextfrei ersetzt wird. Für diesen Begriff stellen sich die vorangegan-
genen Fragen neu.
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Appendix B

Glossar

The glossar lists symbolic notations. Some notations are overloaded, i.e.,
their meaning depends on the type of subscripts or superscripts. Therefore,
in the table of objects we define some objects of different type which are
needed to specify the objects in the table of symbolic notations uniquely.
Unfortunately, the definition of an object x in the table of Objects may
contain objects yt typed by an object t. In such a case the definition of t
occurs earlier than x in the table of objects. Hence, the lookup procedure
has no cycles.

B.1 Table of Objects

object page type
R, R1, R2 relations
M 18 monoid
i, j, n i, j, n ∈ N

Σ, Γ finite alphabets
w w ∈ Σ∗

S set
G 42 context-free grammar
P 42 production set of G
N 42 nonterminal set of G
Σ 42 terminal set of G
A, B 42 elements of N
X, Y 42 elements of (N ∪ Σ)∗

Z 42 element of TG = (N ∪ Σ ∪ P )∗

L, L1, L2 19 formal languages
p 42 production of G
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object page type
τ τ ∈ Γ∗

L∆ 41 tree language
ρ ρ ∈ embedded(∆G)
X set of multisets
a a ∈ Σ
f function N→ R+

g : N→ N divergent non-decreasing function
ϑ1, ϑ2 131 ϑ1, ϑ2 ∈ ΛA

G

B.2 Table of Symbolic Notations

object page no explanation
R 15 Sec 2.1.1 real numbers
R+ 15 Sec 2.1.1 set of positive real numbers

R+ := {x ∈ R | x > 0}
N 15 Sec 2.1.1 non-negative integers
∪̇ 15 Sec 2.1.1 disjoint union
sR1tR2u 16 Sec 2.1.3 (s, t) ∈ R1 and (t, u) ∈ R2

R1 ◦R2 16 Sec 2.1.3 R2 ◦R1 := {(s, u) | ∃t : sR1tR2u}
Rn 16 Sec 2.1.3 R0 identity, Rn := Rn−1 ◦R
R+ 16 Sec 2.1.3

⋃∞
i=1 Ri

R∗ 16 Sec 2.1.3 R+ ∪R0

M+ 18 Sec 2.1.5 semigroup generated by M
M∗ 18 Sec 2.1.5 monoid generated by M
R−1 16 Sec 2.1.3 {(y, x) | (x, y) ∈ R} (inverse relation)
ε 18 Sec 2.1.5 empty word
[i, j] 19 Sec 2.1.6 {i, . . . , j} (intervall)
w[i] 19 Sec 2.1.6 i-th symbol of w
|w| 19 Sec 2.1.6 length of w
w[i, j] 19 Sec 2.1.6 w[i]w[i + 1] · · ·w[j] (infix)
~w 21 Def 2.4 Parikh vector
2S 19 Sec 2.1.6 {s | s ⊆ S} (power set)
X ` Y 50 Def 2.65 ∃ρ ∈ embedded(∆G) : ↑(ρ) = X and Y ∈ ~ρ
X `1 Y 51 Sec 2.3.8 ∃p ∈ P : `(p) = X and Y ∈ r(p).
X ≡ Y 53 Def 2.70 X ` Y and Y ` X
∇X 50 Def 2.65 {Y ∈ N ∪ Σ | Y ` X}
dist(Y, X) 55 Def 2.74 Max number of equiv. classes on

a path from Y to X in the
dependency graph.

L1 · L2 19 Sec 2.1.6 {uv | u ∈ L1 ∧ v ∈ L2} (concatenation)
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object page no explanation
L1L2 19 Sec 2.1.6 L1 · L2 (concatenation)
Ln 19 Sec 2.1.6 L0 := {ε}, Ln := L · Ln−1

Σ≤n 19 Sec 2.1.6 ∪n
i=0Σ

i

Σ<n 19 Sec 2.1.6 ∪n−1
i=0 Σi

Σ≥n 19 Sec 2.1.6 Σ∗ \ Σ<n

L×n 19 Sec 2.1.6 {(w1, . . . , wn) | w1, . . . , wn ∈ L}
(Cartesian product)

(a1 · · ·an)R 19 Sec 2.1.6 an · · ·a1 (reversal)
LR 19 Sec 2.1.6 {wR | w ∈ L} (reversal)
πΣ(w) 20 Sec 2.1.6 projection
[a/L] 20 Def 2.1 substitution
σ(L) 20 Sec 2.1.6 substitution
PΓ 26 Def 2.6 Γ× Γ∗ (internal symbols)
TΓ 26 Def 2.6 Γ ∪ PΓ (tree alphabet)
→Γ 26 Def 2.7 tree expansion
←Γ 27 Def 2.9 (→Γ )−1 (tree reduction)
↔Γ 29 Def 2.15 →Γ ∪ ←Γ (tree transformation)
`(Z) 30 Def 2.17 left-hand side
r(Z) 30 Def 2.17 right-hand side
TG 42 Def 2.49 N ∪ Σ ∪ P (tree alphabet)
∆τ

Γ 27 Def 2.8 forest derived by τ
∆Γ 30 Def 2.18 ∪A∈Γ∆A

Γ (trees)
∆G 42 Def 2.49 set of derivation trees
∆L 65 Def 2.98 {∆G | G context-free L = L(G)}
subtree(L∆) 41 Def 2.47 subtree
cut(L∆) 41 Def 2.47 cut of trees
embedded(L∆) 41 Def 2.47 embedded trees

∆̃G 136 Def 7.18 trees in cut(∆G) without void symbols
ΛG 42 Def 2.49 pumping trees
ΛA

G 131 Def 7.1 A-pumping trees
ϑ1 � ϑ2 131 Def 7.2 pumping tree concatenation
↑(ρ) 29 Def 2.14 root
↓(ρ) 39 Def 2.34 frontier
l(ρ) 60 Def 2.85 [↑(ρ), ↓(ρ)] (interface)
parse(ρ) 157 Sec 8.1 πN∪P (ρ)
w(τ) 38 Def 2.31 weight of a tree string
wX 55 Def 2.75 X-weight
L(G) 42 Def 2.49 {↓(ρ) | ρ ∈ ∆G} (generated language)
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object page no explanation
SG 42 Def 2.49 {↓(ρ) | ρ ∈ cut(∆G)} (sentential form)
s(G) 137 Def 7.23 skeleton grammar
P= 48 Def 2.62 pumping productions
P< 48 Def 2.62 descending productions
P<ω 46 Def 2.56 bounded productions
Pω 46 Def 2.56 unbounded productions
sup(X ) 21 Def 2.3 Supremum of a set of multisets.
sup(L) 21 Def 2.5 Supremum of Parikh vectors
sup(L)(a) 21 Def 2.5 a component of sup(L)

(Parikh supremum)
sup(L)(Σ) 21 Def 2.5

∑

a∈Σ sup(L)(a) (Parikh supremum)
sup(G) 46 Def 2.56 sup(cut(∆G)) (Parikh supremum)
g−1 117 Def 6.13 pseudo inverse
O(f) 58 Def 2.82 assymptotic notation
o(f) 58 Def 2.82 assymptotic notation
Ω(f) 58 Def 2.82 assymptotic notation
ω(f) 58 Def 2.82 assymptotic notation
Θ(f) 58 Def 2.82 assymptotic notation
OT (f) 58 Def 2.83 assymptotic notation
oT (f) 58 Def 2.82 assymptotic notation
ΩT (f) 58 Def 2.83 assymptotic notation
ωTf 58 Def 2.82 assymptotic notation
ΘT (f) 58 Def 2.83 assymptotic notation
dL∆

(i) 60 Def 2.86 ambiguity

d̂L∆
(n) 61 Def 2.87 ambiguity

U(L∆) 61 Def 2.88 ambiguity of tree language
dG 61 Def 2.89 ambiguity
D(Γ) 70 Def 2.109 Dyck language with parenthesis

of type Γ
L(R) 110 Def 6.1 {u#vR | (u, v) ∈ R}
R(R) 110 Def 6.1 {uR#v | (u, v) ∈ R}
BMCFL 104 Def 5.17 class of bounded marker languages
UCFG 62 Def 2.93 unambiguous grammars
FCFG 62 Def 2.93 grammars finitely ambiguous
PCFG 62 Def 2.93 grammars with polynomially

bounded ambiguity
ECFG 62 Def 2.93 grammars with exponential ambiguity
UCFL 63 Def 2.95 unambiguous languages
FCFL 63 Def 2.95 languages with finite ambiguity
PCFL 63 Def 2.95 languages with polynomially

bounded ambiguity
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object page no explanation
ECFL 63 Def 2.95 languages with exponential ambiguity
BDCFL 97 Sec 5.1.3 languages with bounded degree

of direct ambiguity
mark 96 Def 5.4
predict prefixG 96 Def 5.5
imG(n) 96 Def 5.5 immediate ambiguity
tEarley(n) 95 Sec 5.1.2 Zeitkomplexitt des Earleyalgorithmus.
duplicateG(n) 95 Sec 5.1.2
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A-pumping trees, 131

alphabet, 18
ambiguity, 59–65

context-free grammar, 61
ambiguity function, 62
ambiguity power series, 61
ambiguous, 62
constant, 62
degree, 62
exponential, 62
extreme, 144
finite, 62
finite degree, 62
infinite, 62
interface power series, 61
O, OT , o, oT , 62
Ω, ΩT , ω, ωT , 62
polynomially bounded, 62
Θ,ΘT , 62
unambiguous, 62

context-free language, 63–65
ambiguity function (inherent), 64
ambiguous, 64
constant, 63
degree, 64
exponential, 64
finite, 63
finite degree, 64
infinite, 64
infinite degree, 64
O, OT , o, oT , 63
Ω, ΩT , ω, ωT , 63
polynomially bounded, 63
Θ,ΘT , 63
unambiguous, 63

tree string language, 60–61
ambiguity function, 61
ambiguity series, 60
ambiguous, 61

unambiguous, 61
ambiguity function

context-free grammar, 62
generation of trace language, 127
right linear, 75
tree string language, 61

ambiguity power series, 61
generation of trace language, 127

ambiguity series
tree string language, 60

ancestor, 40
first, 41
first common, 41

antisymmetry, 16
A-pumping tree

concatenation, 131
proper, 131

arity, 30
asymptotic notations, 58–59

bijective, 17
block correlation language, 111
bottleneck grammar, 181
bottleneck language, 181
bounded

nonterminal, 46
productions, 46
substitution, 80
symbol, 21
terminal, 46

bounded contraction of language, 80
bounded marker language, 104
bounded symbol

context-free grammar, 46

canonical ambiguity series, 112
canonical grammar

block correlation language, 111
chain production, 44
child, 40
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Church-Rosser, 17
class of derivation tree sets, 65
composition, 16
concatenation, 18

A-pumping tree, 131
language, 19
pumping tree, 131
word, 18

condensation of graph, 54
configuration, 110
confluence, 17
constant ambiguity

context-free grammar, 62
context-free language, 63

context free grammar, 42
context-free gramma

pumping constant, 47
context-free grammar

bounded symbol, 46
unbounded symbol, 46

context-free language, 43
pumping constant, 47

context-free relation, 111
convergence, 17
CREW-PRAM, 105
cut, 26
cycle-free, 45
cyclic, 45
cyclic tree, 45

decomposition, 19
degree of ambiguity

context-free grammar, 62
dependency graph, 51
derivation

leftmost, 67
derivation relation, 43
derivation tree, 42
descendant, 40
descending production, 48
d̂G-ambiguous, 62
direct ambiguity, 97
disjoint union, 15
distance between symbols, 55
divergent, 17
dominating production, 48
dotted production, 92

Earley parsing time of language class, 90

ECFG, 62
ECFL, 64
embedded, 41
empty word, 18
ε-free context-free grammar, 44
ε-production, 44
equivalence

context-free grammar, 43
equivalence relation, 16
erasing termination, 121
expansion, 26
exponential ambiguity, 62

context-free language, 64
extreme ambiguity, 144

factor, 19
factorisation, 19
FCFG, 62
FCFL, 64
finite ambiguity, 62, 63
finite degree of ambiguity, 62
first ancestor, 41
first common ancestor, 41
fixable turn position, 122
forest, 30
formal language, 19, see language
free block, 112
free monoid, 18
frontier, 39
function

bijective, 17
injective, 17
surjective, 17

generated
language, 42
word, 42

generated trace language, 127
graph condensation, 54
Greibach normal form, 44
Greibach production, 44

homomorphism, 19
length preserving, 20

independence alphabet, 126
independent nodes, 40
infinite ambiguity, 62, 64
infix, 19
inherent ambiguity function, 64
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inherent property
context-free language, 65–66

injective, 17
interface, 60
interface power series

context-free grammar, 61
internal

node, 30
symbol

context-free grammar, 42
tree string, 26

interval, 19
inverse relation, 16
irreducibility, 16

label, 30
language, 19

concatenation, 19
context-free, 43
generated, 42

leaf, 30
leaf alphabet, 26
left parse, 67
left portion

split, 121
word, 122

left-sentential form, 170
left-hand side

internal symbol, 30
node, 30

leftmost derivation, 67
leftmost embedded trees, 67
length, 19
length preserving homomorphism, 20
linear

context-free grammar, 44
context-free language, 44

linear block correlation language, 124
linear canonical grammar

block correlation language, 124
linear order, 16
linearised inherent ambiguity functions,

181
linear production, 44
link node, 42
local confluence, 17

marked ambiguity, 96
marking constant, 104

metalinear
grammar, 57
language, 58

minimal linear, 153
monoid, 18
multiset, 20

subset, 20

node, 30
left-hand side, 30
right-hand side, 30

noetherian, 17
non-decreasing, 17
non-linear

context-free language, 44
non-regular language, 44
nonterminal, 42
nonterminal bounded grammar, 56

width, 56

O, o, 58
Ω, ω, 58
ΩT , ωT , 58
operation, 18
OT , oT , 58

parent, 40
parenthesis expression, 70
Parikh

supremum
language, 21
subalphabet, 21
symbol, 21

vector, 20, 21
Parikh supremum, 46
parse, 157
parse label, 30
partial order, 16
path, 41
PCFG, 62
PCFL, 64
phrase, 39

numbering, 40
tree, 39

phrase truncation, 39
pointwise exponentially bounded, 99
polynomially bounded ambiguity, 62

context-free language, 63
potential ancestor, 50
power set, 19
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prefix, 19
production, 42

descending, 48
pumping, 48

projection, 20
proper

ancestor, 40
A-pumping tree, 131
context-free grammar, 45
descendant, 40
leaf, 31
prefix, 19
pumping tree, 131
subtree, 35
suffix, 19

proper context-free grammar, 45
pseudo inverse, 117
pumpable symbol, 55
pumping constant

context-free grammar, 47
context-free language, 47

pumping production, 48
pumping tree, 42

concatenation, 131
proper, 131

rational trace language, 127
reduced context-free grammar, 45
reducibility, 16
reflexive, 16
regular expression, 22
regular language, 22, 44
related nodes, 40
relation, 16

antisymmetric, 16
Church-Rosser, 17
confluent, 17
context-free, 111
convergent, 17
equivalence relation, 16
inverse, 16
irreducible, 16
linear order, 16
locally confluent, 17
noetherian, 17
on a set, 16
partial order, 16
reducible, 16
reflexive, 16

simple, 124
symmetric, 16
transitive, 16
tree reduction, 27
unambiguous context-free, 111
well founded, 17

remainder tree, 39
reversal

language, 19
word, 19

right linear, 75
right linear ambiguity function, 75
right portion

turn position, 121
word, 122

right-hand side
internal symbol, 30
node, 30

right linear
context-free grammar, 44

right linear production, 44
root, 27, 29
root node, 30
rule, 42

semigroup, 18
sentential

derivation tree, 42
form, 42

simple relation, 124
single step tree transformation, 29
single symbol substitution, 20
skeleton grammar, 137
split

left portion, 121
start symbol, 42
string, 18
substitution, 20

bounded, 80
subtree, 35
suffix, 19
support

ambiguity function, 113
supremum

multiset, 21
surjective, 17
symbol, 18

bounded, 21
pumpable, 55
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unbounded, 21
useful, 45
useless, 45
void, 136

symmetry, 16

terminal, 42
terminal production, 44
Θ, 58
ΘT , 58
trace language, 127
trace monoid, 126
transitive, 16
tree, 30

alphabet
over alphabet, 26
over context-free grammar, 42

attached to a node, 40
derivation, 26
expansion, 26
language, 41
phrase, 39
reduction, 27
string, 26

weight, 38
truncation of a phrase, 39
turn position, 121

right portion, 121

U(·), 61
UCFG, 62
UCFL, 64
unambiguity, see ambiguity
unambiguous

context-free relation, 111
turn position, 122

unambiguous concatenation, 80
unbounded

nonterminal, 46
production, 46
symbol, 21
terminal, 46

unbounded symbol
context-free grammar, 46

unit of a monoid, 18
useful symbol, 45
useless symbol, 45

valid tree predicates, 92
very simple

grammar, 45
void

symbol, 136

weight
tree string, 38

well founded, 17
width

nonterminal bounded grammar, 56
witness

bounded marker language, 104
pumpability, 55

word, 18
decomposition, 19
empty, 18
factor, 19
factorisation, 19
generated, 42
infix, 19
left portion, 122
length, 19
non-empty, 18
prefix, 19
proper prefix, 19
proper suffix, 19
right portion, 122
suffix, 19

yield, 39


