Comparison of Standard and Zipf-Based
Document Retrieval Heuristics

Benjamin Hoffmann
Universitat Stuttgart,
Institut fir Formale Methoden der Informatik
Universitatsstr. 38, D-70569 Stuttgart, Germany
hof f mann@ mi . uni -stuttgart. de

September 15, 2010

Abstract

Document retrieval is the task to retrieve from a possibly huge collection
of documents those which are most similar to a given query document. In
this paper, we present a new heuristic for inexactAopetrieval. It is simi-
lar to the well-known index elimination heuristic and is based on Zipf’s law,

a statistical law observable in natural language texts. We compare the two
heuristics with regard to retrieval performance and execution time. There-
fore, we use a text collection consisting of scientific articles from various
computer science conferences and journals. It turns out that ouapew
proach is not better than index elimination. Interestingly, a combination of
both heuristics yields the best results.

1 Introduction

Today, information retrieval (IR) gains rapidly increasintgrest from researchers
in the area of computer science. This is mainly due to the tfzett for most
people, information retrieval systems (like, for examplep search engines) are
the preferred means of information access. Furthermocénteal progress has
made it possible to accumulate huge amounts of data. Acuwprdi the 2008
annual review of Thomson Reuters, every day 15 petabyteswoflata are created
[2]. Thus, one needs efficient algorithms which are capabif@ndling huge data
sets.

A common task in the context of information retrieval is tb#dwing. Given
a document collection (corpus) and a query document, we tealgtermine docu-
ments from the collection that are most similar to the quegudnent with respect
to some similarity measure (e.g. cosine similarity). Weaderthis task bydocu-
ment retrieval It appears in a wide range of applications, including faaraple
text clustering, duplicate detection, and search engiegs (@ “more like this”
feature available in the results list) .

In this paper, we present a new document retrieval methodhwvéxkploits
a fact on the probabilities of intersecting sets in #ipf model[9]. The Zipf
model is a randomized input model for the maximal intersecgiroblem, which
is defined as follows: Given a s@tand a databasP C 27 along with a query
setq C 7. We ask for a membet € D having an intersection of maximal size
with the query set. In general, determining such a member is computationally
expensive. It becomes efficiently feasible if the inputdels the Zipf model.
Loosely speaking, in the Zipf model an almost optimal ansveer be found by
considering only a relatively small subset®f In this paper, we transfer this
idea to document retrieval in the vector space model and aocenp with the
well-known index elimination method. Our new approach agglishes inexact
top K retrieval where the selection criterion for relevant teismghe document
frequency.

The remainder of the paper is organized as follows: In Se@iwve give an
overview of the vector space model and introduce simultasigathe notation
used. In Section 3 we state the maximal intersection prohledrexplain the Zipf
model. (Readers familiar with these two models can immelgiatap to Section
4.) In Section 4 we show how the Zipf model can be applied taudwmt re-
trieval and present our new algorithm. Section 5 explaiesttperimental setting
and compares the results obtained by our method with thoseneld by index
elimination. We give a conclusion in Section 6.

2 The vector space model

The most common information retrieval taskaid hoc retrieval Given a collec-
tion of documents, we want from our IR system a method pragdiocuments
from within the collection that are relevant to an arbitrast of (search) terms
initiated by the user. This terms are called tfuery. In order to solve the retrieval
task by our system, we have to formalize the notion of relegar(Clearly, the
relevance of a document depends on the user’s informatied. n& formal def-
inition tries to capture the information need.) The staddaay to do this is the
usage ofcosine similarity Therefore, we represent each documéas a vector

—

V'(d) over thevocabularyof terms. Usually, the vocabulary does not contain each

word occurring in our collection, but a subset of the wordsgeslfor document
retrieval. These words are callegtrms(see Section 5.1). Therm frequencyf, 4
is the number of occurrences of tetnm documenti. Thedocument frequencif;
is the number of documents in the collection that contaimterThe components
of a document vectoV(d) are thet f-idf weights of the document’s correspond-
ing terms. The f-idf; , weight of term¢ in document is the product of its term
frequencyt f; , and its inverse document frequendy, = log dﬂft Intuitively, this
weighting scheme is reasonable since a term gets a high d¢boecurs many
times in a document and only in a small number of documentss(ttiscrimi-
nating those documents from the rest). The similarity betw&vo documents is
defined as the cosine similarity of their vector represéiat/ (d;) andV (ds),

— —

V(dy) - V(dy)

M) = G)P

(The numerator represents the dot product of the two vegt@iearly, this con-
cept of similarity can easily be transferred to measurelanity between a doc-
ument and a query by representing the query as a vector ogerditabulary.
Consequently, we use the cosine similarity as a measureedarate of a docu-
ment to the query. Note that document retrieval differs famhhoc retrieval since
the query itself is a document and not a set of user-initiagadch terms.

Now that we have an exact mathematical notion of relevaneenust explain
how relevant documents are retrieved. This is done by thgeushaninverted
index which is a data structure that stores for each vocabulany t& so called
postings list A postings listis a list of those documents containing terin order
to answer a query, we calculate for each document that cardidieast one search
(query) term its cosine similarity with the query. As resule present thé top-
scoring documents. Here, we call this algorithm skendardretrieval algorithm.
The computation cost of it can be lowered if we do not demaatitecisely the
K documents with the highest scores are returned. A commoriskieucalled
index eliminationis to consider only the postings lists of terms wha#eexceeds
a certain value and to return a ranked list of the documemttgeed in the union
of all such postingsiiexact topk retrieval). For a more detailed treatment of the
vector space model and a comprehensive list of referenaesefer the reader to
[10, 6].

3 Maximal intersection queries and the Zipf model

Let 7 = {t1,1s,...,t,}. Themaximal intersection (Ml) problers the follow-
ing:

Input: A database of: finite setsD = {d,...,d,} C 27.

Query: Given a finite query set C 7, we ask for a sef € D having a maximal
intersection withy, that is,|¢ N d’| < |[¢Nd| forall d’ € D.

Thek-approximaterersion of this problem asks for a se€ D such thatgNd’| <
k-lgnd| foralld € D,k > 1.

The exact version is as hard as thearest neighbor searcproblem in the
Hamming cube (see [7]), for which no preferable solution.(ione usingn -
m)°W) storage and having:°") search time) is known so farMoreover, it is
believed that no such solution exists at all [3]. However,rfany applications
like text clustering, recommendation systems, and theibligion of online ad-
vertisements it suffices to solve the approximate version.

In real life, most problem inputs are not random, but extalgertain underly-
ing structure. An obvious example are natural languags telxich exhibitsZipf’s
law [12]. Zipf's law states that the frequengyof a word is inversely proportional
to its rankr in the frequency table, that is,

1
foc—.
r

Or, in other words, there exists a constarguch thatf - » ~ c¢. In the next
paragraph we will explain a randomized input model for thepktiblem based on
Zipf’s law, called theZipf model

3.1 The Zipf model

Since the Zipf model is motivated by an empirical law whiclmainly observed
in natural language texts, we deal in the following wdittumenténstead of sets.
The setZ can be considered as the vocabulary.

The Zipf model was introduced in [9] and further developein7]. It is a
probabilistic process for generating a document collectibich follows Zipf’s
law. Each document is generated by choosing terms that witldmtained in it.
Each term is chosen independently and the terre chosen with probabilit)%.
Every document is also generated independently. (Notethttis process, each
term can occur at most once in a document.) Now, if a collacigogenerated
in this way, one can observe that the document frequencidsederms are dis-
tributed according to Zipf's law. For inputs (i.e., docurheallectionand query)
following the Zipf model, the following holds:

IClearly, for both problems there exist solutions. Namelip@ar scan over the database or the
usage of a hash table storing for each possible query theat@nswer. However, these solutions
do not comply with the complexity constraints of a prefeeadslution.

Theorem 3.1. There exists a deterministic algorithm for the MI problerattre-
turns ai*i(g ”)-approxmate answer with probability(<, J, n) tending to one as

n — oo, wheree 6 > 0andE(e,n) — ¢,A(d,n) — d asn — oo. The algo-
rithm has a preprocessing time ©fnm) and a query time of(log m +n) in the
average case The space required is' (),

This algorithm is based on the fact that in the Zipf modé¢heeshold phe-
nomenoron the most probable intersection size holds. That is, assbenterms
of each document from the collection and the query termsaered in descend-
ing order according to their document frequency. Then, @meshow that up to
a certain value (threshold) a document matching the fifst— §)s query terms
exists with high probability, where for larger values thelmability falls to nearly
zero. Surprisingly, this behavior cannot only be obsereedafmatch in théirst
terms, but also for an “arbitrary” match. The crucial obs¢ion is that for both
kinds of matches the threshold values are close to each(@éeFigure 1). Thus,
determining a document that has a maximal comrefix* match with the query
yields with high probability an almost optimal answer.

probability

threshold

Figure 1: Exemplary probability curves formatch (the solid line) and-prefix
match (the dashed line)

In [7], the author generalized the Zipf model such that it cape with stop
words. Stop wordsare words which occur very frequently in a text and there-
fore appear to be of little value in reflecting its content. the context of the
Zipf model, the notion stop word refers to terms that occuallr(or nearly all)
documents. Clearly, a term which is contained in every docurigeirrelevant
for the MI problem. It was shown that without stop words, a#iold theorem

20(f) := Uy O(f log" f)

3according to the above order

analogously to the one above holds and the same determialgbrithm can be
applied. While the complexity remains the same, the appration factork be-

comes larger by a multiplicative factor depending on thdectibn. For a full

description of the generalized model see [7].

4 Applying the Zipf model to document retrieval

So far we have introduced the “background” we will need inftiiwing. We
now explain how the Zipf model and its threshold phenomerasmbz applied to
document retrieval. Recall that by document retrieval weotkethe problem to
determine to some given query document a set of documentaréhenost similar
to the query with respect to cosine similarity.

As mentioned in Section 2, in the vector space model indewiedition (i.e.,
consider only the postings of terms whagk exceeds a certain value) is used
in order to speed up query processing. Now, instead of selequery terms
according tadf value, we take the terms with the highest document frequandy
intersect the according postings lists. The documentssnritersection constitute
the answer set and will be ranked according to their sintyasith the query
document. To be more precise, we apply the following thtep-algorithm:

Preprocessing.Determine the vocabulary of terms (removing stop words; nor
malization, stemming).

Data structure. Generate an index which is sorted according to document fre-
quency.

Query processing. 1. Preprocess the query (cf. Preprocessing).

2. Determine the answer set by intersecting the postingdefguery
terms in descending order according to document frequeBtmp if
the set size is equal to or for the first time smaller than somdedfined
value.

3. Calculate the cosine similarity between each answer deotiand the
guery document.

The above is a high-level description of the algorithm. la tiext section, we
explain the different steps in more detail.

We derived this method from the threshold phenomenon masdia the last
section, where the query terms with the highest documeqguéecy suffice to
determine an almost maximal matching. The fact that mostitents we deal
with in information retrieval are natural language textsu@, exhibiting Zipf’s
law) makes this approach obvious and, moreover, justifi¢ésatvever, a problem

6

might be that we want to maximize cosine similarities andintgrsection sizes.
It is not clear that the set of answer documents chosen aogotd the "high
frequency” query terms they contain yield high cosine saniies. As we will see
in Section 5, for our test collection this is the case.

Other discrepancies to the Zipf model are the facts thatmeods are usually
multisets of words and that Zipf’s law makes a statement at@udistribution
of word frequencies in a single text, and not about documeatgjuencies in a
collection. In Section 5.2.1, we discuss these issues aildet

5 EXxperiments

In this section, we set out our experimental setting and @mthe results of our
new approach with the inverted index method.

Our test corpus consists of 1432 freely availalsieientific articles from var-
ious conferences in the area of computer science. The mpiostinclude al-
gorithm theory, automata and language theory, theoretimadputer science in
general, and combinatorics on words. As queries, we haworaly chosen 120
texts from the corpus; all results are averaged over thesaegu The texts were
given in PDF format. For further processing, we convertezirthio the simple
TXT format by the toopdf t ot ext using ASCII7 encoding.

5.1 Determining the vocabulary

First, we applied case-folding by reducing all letters tovdo case. We then re-
move stop words since they do not reflect the content of a dentiend thus
appear to be of little value in selecting content-similacwiments. (In general,
information retrieval systems remove stop words beforexnty.) We applied
the stop word list provided by the SMART software [1]. Thistlcontains 571
different stop words. Given the nature of our corpus, werake the list by the
following words: abstract, computer, define, defined, definition, denote, de-
notes, exist, exists, general, introduction, lemma, number, paper, perform,
performs, problem, proof, references, result, results, science, section, the-
orem, theory. In [11] Miller et al. established empirically that the aage length
of a stop word is 3.13 letters. Hence, in addition to the warfdihe list, we re-
moved all words whose length is less than 5. We also removedaharacters
(e.g. @, &, ?). As a final filtering step, we performed some $&ngemming
technigues. To be more precise, we removed each s’ at thegenfla word if
the predecessor of this last 's’ is not equal to 's’, ', or.’u=or words ending

4Or available via access provided by the library of the Ursitgrof Stuttgart.

with "ies”, we replaced this ending by 'y’. Additionally, wagpplied the following
replacements:

vertices— vertex
gueries— query
suffixes— suffix

We list some statistics of our collection in Table 1. Note thath retrieval meth-
ods use the vocabulary determined by this linguistic pregssing.

Statistic Value

documentsV 1,312

words (before pp) 137,188
terms 93,220
avg. # tokens per document (before pp) 3,404
avg. # tokens per document 1,837
avg. # terms per document 551
collection size (before pp) 51 MB
collection size 24 MB

Table 1: Collection statistics. If not explicitly stated etiise, all values refer to
the collection after preprocessing (pp).

5.2 Implementation details
5.2.1 Adapting the data to the Zipf model

As mentioned in Section 3, in a document collection follogvihe Zipf model the
terms’ document frequencies are distributed accordinggfsdaw. However, in
a collection of real texts, Zipf's law states that tt@lection frequencie@&he total
number of times each term appears in the collection) areilalistd according
to it. To see that this holds, just consider the concatenatioall texts. This
means that a real text collection does not necessarily leedewording to the
Zipf model. And indeed, if we consider the terms from our \mdary and plot
the document frequency as a function of the rank, the regsulfraph is not a
line with slope -1, as it should be according to Zipf's law. (¢figure 2). The
shape of this graph is due to the fact that the terms with tghdst document
frequency occur in the bulk of the documents (see Table 2efhieolumn) and
do not follow Zipf's law (the most frequent term occurs twias often as the

8

Term frequency distribution

T
before pp +
T ﬁ: ,,i,j:,t,t} HHHHHHHTHE after pp -——-—---
1000 e — 20/doc x 7

100

log10 df

10 |

x -
= - -
= - -

b4 L o

- _
_— L
1 1 1 1 1

1 10 100 1000 10000

log10 rank

Figure 2: Rank-frequency distribution of our test corpus.ciduoent frequency
(df) is plotted as a function of the rank. On both axes, we agarithmic scales.

second most frequent one and so on). According to our digouss the end of
Section 3, these terms are stop words in the context of thierZgplel. Thus, a
possible solution is to remove these most frequent terma.eder, they occur not
in every document and most of them are relevant regardingahient. Therefore,
dropping them might impair retrieval results, see Remark Briother indicator
for this assumption provides the theoretical analysis |n According to it, the
approximation factor would become larger by the multigheafactor of 241 for
our corpus. Thus, we applied the following heuristic: Wefusm each document
only the 20 most frequently occurring terms for indexingjethmeans only the
terms which are most important in describing the contentdaf@iment. The right
column in Table 2 shows the first 10 terms for this case. Naiettte document
frequencies are closer to Zipf's law. Also, if we plot the dowent frequency of
the resulting term set, we get a graph which fits Zipf’s lavtdrahan the graph of
all terms after preprocessing (see Figure 2). Clearly, tégpaon is only applied
for the Zipf-based method.

Remark 5.1. In order to verify the (theoretical) assumption that drapgpistop
words impairs retrieval results, we applied this approachite test corpus. To be
more precise, we applied the Zipf-based heuristic withouh&mrmodifications of
the vocabulary, with dropping the first 100 terms, and with giop the first 500

9

All terms 20/doc

property (1104) algorithm (549)
assume (1086) function (345)
function (1079) state (292)

order (1078) language (276)
called (1067) graph (269)
prove (1055) bound (261)

algorithm (1048) finite (255)
application (1022) probability (222)
university (1015) system (221)
similar (970) vertex (219)

Table 2: Most frequently occurring terms and their docunfiEguencies.

terms. In all cases, the results were worse with respect to biglaek and pre-
cision/recall than those obtained with adaption. While tleelthe for the highest
ranks was moderate, the decline with respect to precisioallre@s significantly
(for example, precision decreases by 50 % or more). For the séclarity, we do
not list the results here explicitly. Note also that withouaption the vocabulary
size is larger which results in higher execution times.

5.2.2 Index structure

Using from each document only 20 terms reduces the overaibeu of terms to
4447. As index structure we buildt@rm-document incidence matriwe sort the
terms in decreasing order according to their document @egy Our experiments
have shown that the last matrix row considered was number B2érefore, it is
likely that we do not need all rows. To use the first 500 rowshtixe a reasonable
number. This observation is also supported by the threghetstem, which yields
implicitly an upper bound for the number of terms among a mmaxkiprefix match
occurs with high probability, see [7]. By coding the rows imitegers, the whole
matrix requires about 0.73 MB. Taking only the first 500 ronduees the size to
82 KB (we assume that an integer contains 32 bits). Note tisi¢ad of using a
matrix we could have also used a standard index.

5.2.3 Query processing

In order to process a query, we first apply to it the same poEsing steps we ap-
plied to the corpus. Then, we take the 20 most frequently micguquery terms

10

and sort them in decreasing order according to their doctifnequency in the
corpus. The answer set is determined by intersecting thexmnaivs correspond-
ing to the sorted query term sequence, starting with theddrawing the highest
document frequency (cf. Section 3: prefix match in the Zipdeih Note that
intersecting reduces tol@nary and We stop this process once the size of the
answer set is equal to or for the first time smaller tha® - N (for our corpus,
5% of the corpus size is a good compromise between qualityeafsults and fast
execution time.) Finally, we rank the answer documentsraeg to their cosine
similarity with the query document.

5.3 Results

Table 3 shows experimental results the different algorgtlyeld on our test cor-
pus. We list the results for the standard retrieval algorithithouf and with
index elimination, where in the latter case we choosél/Ashreshold the value
2.6. Then, only postings of terms widli < 131 are considered, which means that
the 12711 terms with higheif values are dropped. The threshold 2.6 is chosen
so that we get approximately the same number of answer dotaras the Zipf-
based algorithm retrieves. Considering the last columnenTdble 3, we see that

Statistic Std. Std. Zipf
(measurecosing no elimination idf > 2.6 <0.05-N
avg. sim. best answer 0.410 0.351 0.234
highest ranKavg./med./#rank1) 1/1/120 4/2/59 19/6/22
avg. size answer set 1304 36 31
avg. # (postings lists traversed) 503 29 2
last postings listavg./max.) 84409 /93138 17/ 326
preprocessing time (ins) 47.7 12.3
avg. query time (inus) 0.211 0.013 0.008

Table 3: Retrieval results for the standard retrieval athari(with and without
index elimination) and our new algorithm (Zipf heuristi€imilarity is measured
by cosine similarity. The average value over the 120 avesagdarity values
between each query and all documents is 0.022, the averagmalaimilarity is

0.410.

our new selection heuristic corresponds to high cosindaiities. However, the

SWe list the results for the algorithm without index elimiicat mainly for time comparison.

11

standard algorithm in connection with the quite rigorowdexelimination yields
even better results. Most notably, in 59 of 120 cases itews the document
which is most similar to the query, while for our method théphens in 22 cases
only.

The first two entries (cosine) of Table 4 Itecision(prec.) andecall (rec.),
which are defined as follows:

#(relevant documents retrieved
#(retrieved documents

precision=

#(relevant documents retrieved
(relevant documents

For our tests, we set the number of relevant documents toeb2Glor 40 high-
est ranked documents from the corpus. For 40 relevant dausitée precision
increases for both heuristics. Simultaneously, the retmdteases. Here, itis in-
teresting that for the Zipf heuristic the decrease in rdsathuch smaller than for
the index elimination heuristic. This means that for thef Ziguristic the number
of relevant documents retrieved scales linearly with resfmethe number of rel-
evant documents. Or, in other words, the relative increaselévant documents
is larger. However, in absolute terms index eliminatiomieges more relevant
documents.

Examining the execution times, we see that our new methoasterf, espe-
cially preprocessing takes one fifth of the time needed bythedard algorithm.
This is due to the fact that the latter method constructs ahrtarger index struc-
ture (93220 instead of 4447). Note that for both methods, awe lzalculated the
weighted document vectors and for each termdfsvalue once during prepro-
cessing. If space consumption is a concern (note that gttmsweights require
floating point numbers), the weights could also be computethd query pro-
cessing at the expense of a longer query time. The differenqeery times is
mainly indebted to the longer query input time of the stadaaethod (recall that
here we read all query terms, while the Zipf method reads thm@st frequent
ones only). To a small amount, this difference comes alsu fte different num-
ber of postings lists traversed. Note that the predecessoo$ counting the term
frequencies in the query document is done in the same wayotbrrbethods, so
we do not consider it.

recall =

5.4 Jaccard similarity coefficient

The better retrieval results index elimination yields camgal to the Zipf method
might arise from the fact that in the Zipf model, the objeetig to maximize
intersection sizes instead of cosine similarities. Oafy) cosine similarity is de-
signed to retrieve documents subject to a query consisfibgrms expressing a

12

Std.idf > 2.6 | Zipf <0.05- N
relevant 20 \ 40 20 \ 40

cosine |_Prec: 0.132| 0.200| 0.073| 0.137
rec. | 0.230| 0.170| 0.093| 0.090
Jaccard_Prec: 0.144| 0.204| 0.083| 0.136
rec. | 0.250| 0.173| 0.110| 0.093

Table 4: Average precision and recall values for both seledbeuristics and
similarity measures.

user’s information need. If complete documents are empl@gequeries, there is
another reasonable similarity measure: the size of the armocabulary of two
documents (as mentioned before, stop words do not reflecbtitent of a text so
they are not considered; individual term frequency is notsatered, too). Intu-
itively, this measure captures if two documents have ndhdysame content, or
at least the same topic. Itis derived from the definition af-nentical duplicates
stated in [5]. There, two documents are duplicates if th&egimemuch of the same
language and if at least 80% of the words in one document arioed in the
other (in terms of terminology). Accordingly, we replacée tcosine similarity
measure by intersection sizes. Again, the incidence mestiilt by using the
20 most frequent terms of each document. The intersectr®s sire calculated
using all words. Since a long document can result in a higberesjust because
it is longer (which increases the probability that it contamore terms from the
query document), we use tlaccard (similarity) coefficientAn B|/|AUB|. This
coefficient is a "normalized” form of the intersection site [4] the resemblance
between two documents was also defined by the Jaccard ceeffielowever, the
author represents each document as a set of so called shifglgyive the reader

Query Answer
Approx. the cut-norm via Grothendieck’s inequ. Quadratierfs on graphs
N. Alon and A. Naor, STOC '04 Alon et al.,, STOC '05

Distinct distances in three and higher dimensions Cuttitapgular cycles of lines in space
Aronov et al., STOC '03 Aronov et al., STOC '03

Table 5: Example query and corresponding answer documieoitis énswers are
optimal).

8A shingle is a contiguous fixed-length subsequence of tokens

13

some ideas that this similarity measure is reasonable stvalTable 5 two query

documents for which the Zipf-based algorithm yields the b@swer documents
with respect to the Jaccard coefficient. The subjects of teedquery and answer
document are quadratic programming methods and compusgabio matrices. In

both texts, Grothendieck’s inequality plays a central.rdlee query and answer
document in the second entry are about geometrical problé€hbsiously, each

answer is relevant to its corresponding query.

Statistic Std. Zipf
(measureJaccard) idf >2.6 <0.05-N
avg. sim. best answer 0.244 0.218
highest ranKavg./med./#rank 1) 2/1/82 14/6/25
preprocessing time (ips) 42.0 9.3
avg. query time (inus) 0.009 0.005

Table 6: Retrieval results for the standard retrieval atariwith index elimina-
tion and our new algorithm (Zipf heuristic). Similarity issasured by the Jaccard
coefficient. Note that the average value over the 120 avesag#arity values
between each query and all documents is 0.118, the averagmaiaimilarity is
0.247.

Table 6 shows the results for the Jaccard measure. For batisties, the
results are better than under cosine similarity, with indemination showing a
significant improvement (cf. table entry “highest rank”).tBbeuristics need less
preprocessing time since the calculation of weighted dasunaectors anddf
values is not required. The average query time reduces ialse we do not need
to calculate the f-idf weights of the query document. Precision and recall behave
identical as they do under cosine similarity, whereas uddecard similarity most
values are slightly higher.

5.5 Combining both heuristics

Examining the obtained results in detail reveals that tle&rst queries for which

the Zipf heuristic yields better results than index elini@, even though the
overall performance of the latter one is better. Thus, arabfipproach is to com-
bine both heuristics. Here, combining means to determineglay search heuris-
tic an answer set and then taking their union as the final anssteCompared to
the “stand-alone” index elimination method, the additi@tarage requirement is
marginal (cf. Section 5.2.2, storage requirements of thigléence matrix).

14

Measure Cosine Jaccard

avg. sim. best answer 0.364 0.245
highest ranKavg./med./#rank 1) 3/1/66 1/1/88

0.096 0.104

PrECISIon 4o 0.156 0.157

recall 20 0.293 0.315
40 0.240 0.241

avg. size answer set 65

avg. query time (ins) 0.027

Table 7: Retrieval results for the combination of both sedretristics. Average
maximal cosine similarity: 0.410; average maximal Jacsardlarity: 0.247.

In Table 7 we list the results for our test corpus. Compareddex elimina-
tion, the improvement regarding the highest rank is quitalsdue to the already
good results obtained by this method. However, recall imgsoconsiderably,
which means we retrieve a larger number of relevant docwsndrite decline in
precision is due to the fact that on average 65 documentsetiieved instead
of 36. The doubling in execution time is also attributed ts thrger number of
documents.

6 Conclusion

In this paper, we examined a new method for efficient documetneval. The

method is derived from the Zipf model, which is a randomizsgput model for

the maximal intersection problem. We conducted an experiahe&omparison
and analysis of our new approach with the well-known invértelex technique
used for computing cosine similarities in the vector spaodeh

We applied two different document similarity measuresimg@similarity and

the Jaccard coefficient. The latter one is a normalized fairthe intersection
size of two sets, and thus conform to the Zipf model. Our drpemts show
that for both measures the inverted index technique in adiorewith the index
elimination heuristic yields significantly better resulfBhis is quite interesting,
since the index elimination heuristic is designed to mazeraosine similarities,
and not intersection sizes. Thus, it seems to be the casgqukat terms with a
low document frequency have a strong influence on the intBosesize. With

regard to time complexity, our new approach is better. Hamethe differences

15

are moderate.

We obtained good results by combining both heuristics. Bgjiicg a slightly
higher execution time, this approach outperforms the stahohdex elimination
method.

An important issue in our considerations was the adaptiahedata to the
Zipf model. We believe that a better adaption could imprineeresults.

References

[1] SMART ftp site. ftp://ftp.cs.cornell.edu/pub/sma@ited August 9, 2010.

[2] Thomson Reuters 2008 annual review. http://ar.thomesaers.com/2008/.
Cited August 9, 2010.

[3] A. Borodin, R. Ostrovsky, and Y. Rabani. Lower bounds forthdimen-
sional nearest neighbor search and related problemsSTMC '99: Pro-
ceedings of the thirty-first annual ACM symposium on Theocpwofputing
pages 312—-321, New York, NY, USA, 1999. ACM.

[4] A. Z. Broder. On the resemblance and containment of docsneln In
Compression and Complexity of Sequences (SEQUENCPRS§&s 21-29.
IEEE Computer Society, 1997.

[5] J. G. Conrad, X. S. Guo, and C. P. Schriber. Online duplicieument
detection: signature reliability in a dynamic retrievalieganment. InCIKM
'03: Proceedings of the twelfth international conferencdmiiormation and
knowledge managememplages 443-452, New York, NY, USA, 2003. ACM.

[6] D. A. Grossman and O. Friederinformation Retrieval: Algorithms and
Heuristics Springer, second edition, 2004.

[7] B. Hoffmann.Similarity Search with Set Intersection as a Distance Measur
PhD thesis, University of Stuttgart, 2010.

[8] B. Hoffmann, M. Lifshits, Y. Lifshits, and D. Nowotka. Ma&xal intersec-
tion queries in randomized input modelheor. Comp. Sys46(1):104-119,
2010.

[9] B. Hoffmann, Y. Lifshits, and D. Nowotka. Maximal interst@&n queries in
randomized graph models. @SR pages 227-236, 2007.

[10] C. D. Manning, P. Raghavan, and H. &tte. Introduction to Information
Retrieval Cambridge University Press, New York, NY, USA, 2008.

16

[11] G. A. Miller, E. B. Newman, and E. A. Friedman. Lengthdtency statis-
tics for written englishinformation and Contrql1(4):370-389, 1958.

[12] G. K. Zipf. Human behavior and the principle of least efforAddison-
Wesley, 1949.

17

