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Abstract. Consider a family of sets and a single set, called query set.
How can one quickly find a member of the family which has a maximal in-
tersection with the query set? Strict time constraints on the query and on
a possible preprocessing of the set family make this problem challenging.
Such maximal intersection queries arise in a wide range of applications,
including web search, recommendation systems, and distributing on-line
advertisements. In general, maximal intersection queries are computa-
tionally expensive. Therefore, one needs to add some assumptions about
the input in order to get an efficient solution. We investigate two well-
motivated distributions over all families of sets and propose an algorithm
for each of them. We show that with very high probability an almost op-
timal solution is found in time logarithmic in the size of the family. In
particular, we point out a threshold phenomenon on the probabilities
of intersecting sets in each of our two input models which leads to the
efficient algorithms mentioned above.

1 Introduction

The nearest neighbor problem is the task to determine in a general metric space
a point that is closest to a given query point. This kind of queries appear in
a huge number of applied problems: text classification, handwriting recognition,
recommendation systems, distributing on-line advertisements, near-duplicate de-
tection, and code plagiarism detection.

In this paper we consider the nearest neighbor problem in a “binary” form.
Namely, every object is described as a set of its features and similarity is defined
as the number of common features. For some cases, like recommending a person
who has a maximal number of joint friends with you but is not your direct
friend, this formalization is quite natural. On the other hand, weighted models
could be simply reduced to the binary form. Let us illustrate this reduction by
example. Assume that we are working with documents and their terms, and one
particular term is “Ekaterinburg”. Then we can introduce 8 new artificial terms
Ekaterinburg1, . . . Ekaterinburg8. For an object having the largest weight for
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Ekaterinburg in weighted representation we simply put all eight new terms, while
for objects with small weights we put only Ekaterinburg1. Thus, an intersection
similarity for the new representation is somehow reflecting the classical scalar
product similarity for the vector model.

In order to construct an efficient solution some assumptions should be added
to the problem. In our paper we assume that the input is taken from some
predefined distribution. Then we construct an algorithm and show that the time
complexity and/or the accuracy are reasonably good with high probability. Here
we use the probability over the input distribution, not over random choices of
the algorithm. This probabilistic approach was inspired by the recent survey of
Newman [7]. He gives a comprehensive survey about random models of graphs
that agree well with many real life networks, including Web graph, friendship
graphs, co-authorship graphs, and many others. Hence, we can attack the nearest
neighbor problem in already “verified” random models.

The Maximal Intersection Problem. Consider a family of sets and a single set.
We ask for a member of the set family which has a maximal intersection with
the query set.

The Maximal Intersection Problem (MaxInt)

Database: A family F of n sets such that |f | ≤ k for all f ∈ F .

Query: Given a set fnew with |fnew | ≤ k, return fi ∈ F with maximal
|fnew ∩ fi|.

Constraints: Preprocessing time n · polylog(n) · poly(k) or n1+o(1).
Query time polylog(n) · poly(k) or at most o(n).

Let us restate the MaxInt problem in a graph theoretical notation. A data-
base is a bipartite graph with vertex set partition (V, V ′) such that |V | = n and
the degree of every v ∈ V is at most k. A query is a (new) vertex v (together
with edges connecting v with V ′) of degree at most k. The query task is to return
a vertex u ∈ V with a maximal number of paths of length 2 from v to u.

Results. Inspired by [4] we present for the first time a theoretical investigation of
MaxInt. In Section 2 and Section 3 we propose two new randomized models of
bipartite graphs, called the Zipf model and the hierarchical schema. Assume that
the terms of a query document are ordered by their frequency in the document
collection. Now consider the probability curves for the two following events with
parameter q. Any q-match: there is a document in the random (according to our
models) collection that has at least q common terms with the query document.
Prefix q-match: there is a document in the random collection that has at least q

“top” terms of the query document. Both curves have the similar structure: the
probability is close to 1 for small q, but suddenly, at some “magic level”, it falls
to nearly zero and remains so till the end. Our main observation is that these
magic levels for prefix match and any match are very close to each other. And



this is extremely important for solving MaxInt. Indeed, finding the best prefix
match is computationally feasible, but we don’t know the general solution for
MaxInt. We show that closeness of magic levels for any match and prefix match
with high probability allows to find an approximate solution for MaxInt.

Related Work. MaxInt is a special case of the nearest neighbor problem. In-
deed, one just needs to define the distance between two vertices in a bipartite
graph as the inverse of the number of 2-step paths between these vertices. Yian-
ilos proposed in [9] vp-trees (vantage point trees), a data structure that solves
nearest neighbor problem on general metric spaces. The preprocessing time of
his algorithms is in O(n · log n) and expected query time is in O(log n). However,
he uses a strong anti-discrete assumption about the metric that does not hold
for our similarity-by-intersection-size model.

Nearest neighbors are particularly well studied in vector models with a simi-
larity function based on the scalar product [3]. Actually, we can interpret a doc-
ument as a vector of 0s and 1s (1 means a term is contained in a document).
Then, the scalar product is equal to the size of the intersection. Unfortunately,
the first algorithm from [3] needs quadratic space and the second one has linear
query time, so none of them preserve our constraints. Both algorithms return
a γ-approximate nearest neighbor and are based on random projections of the
database vectors onto several randomly chosen directions.

Closely related to MaxInt is text search. Finding documents that most fit
to some given search terms can also be considered as a problem on a bipartite
graph. The documents and terms are the nodes and edges are drawn when a term
occurs in a document. Basically the task is to find all documents containing every
query term and rank these documents by relevance. The key technique in this
area is inverted files (inverted indexing). A comprehensive survey of the topic
can be found in [10].

A problem similar to MaxInt called collaborative filtering is considered by
O’Connor and Herlocker in [8]. Collaborative filtering can be seen as a bipartite
graph problem where nodes represent people and objects and weighted edges
between these people and objects are defined by ratings. The task is to estimate
the weight of a new edge.

2 MaxInt in the Zipf Model

Throughout the following sections we use a documents-terms notation, that is,
vertices from D = {d1, . . . , dn} represent documents and vertices from T =
{t1, . . . , tm} represent terms. Let n ≥ 3, and m ≤ poly(n). By log we always
mean log2, while ln denotes loge.

We now describe a probabilistic mechanism for generating a document col-
lection called the Zipf model. Every document is generated independently. Term
occurrences are also independent. A document contains term ti with probability
1
i . Hence, the expected number of terms in a document is approximately equal
to lnm in our model. This model is similar to the configuration model (see [7])



with Zipf’s law for distribution of term degrees and constant document degrees.
Zipf’s law states that in natural language texts the frequency of a word is ap-
proximately inversely proportional to its rank in the frequency table1. For more
details about Zipf’s law see [6].

Remark 1. The frequency of a term t in a collection D of documents is defined
as

|{d ∈ D | t ∈ d}|
|D| .

The expected frequency of the term ti is equal to 1
i . At the same time, the ex-

pected frequency rank for ti is exactly the i-th value among those of all terms. So
the Zipf model reflects in a natural way Zipf’s law. Since some of our motivating
applications also deal with natural language texts, we can state that the Zipf
model agrees with real life at least by degree distribution.

Remark 2. In the following proofs we will use two inequalities (a, b > 0):

(

1 − a

b

)b

< 2−a, a ≤ b (∗)
(

1 − 1

ab

)a

> 1 − 1

b
, a, b ≥ 2 (∗∗).

These inequalities follow from the well-known fact lim
n→∞

(1 − x
n )n = e−x.

For further considerations we partition the set of terms in the following way:

t1 t2
︸︷︷︸

P1

t3 t4 t5 t6 t7
︸ ︷︷ ︸

P2

. . .

Here the group Pi includes terms from t⌈ei−1⌉ to t⌊ei⌋ A document that contains
lnm terms p1 . . . pln m, pi ∈ Pi, will be called regular.

We now introduce a magic level to give statements about the most probable
size of maximal intersection

q =
√

2 lnn.

Theorem 1 (Magic Level for the Zipf Model). Let 3 ≤ γ < q − 1 be
a positive integer. Fix n, m and a regular query document dnew . Then for a
document collection following the Zipf model the following holds:

1. The probability that there exists a document d ∈ D that contains the first

q − γ terms (“prefix match”) of dnew is greater than 1 − 2−e
q(γ+1)

2 .
2. The probability that there exists a document d ∈ D that contains at least

q + γ terms (“any match”) of dnew is smaller than 1
e(γ−2)q−1 .

1 In the frequency table, the most frequent term is at rank 1, the second most frequent
term at rank 2 and so on.



Proof. 1. The probability that a document contains the prefix of length q − γ

of dnew is equal to or greater than

1

e
· . . . · 1

eq−γ
>

1

e
(q−γ+1)2

2

>
e

q(γ+1)
2

e
q2

2

=
e

q(γ+1)
2

n
.

This means the probability that there exists no document in D that contains
the (q − γ)-prefix of dnew is equal to or smaller than

(

1 − e
q(γ+1)

2

n

)n

< 2−e
q(γ+1)

2
,

which follows from inequality (∗) (note that e
q(γ+1)

2 < n for γ < q − 1). So

with probability greater than 1 − 2−e
q(γ+1)

2 there exists a document d ∈ D
that has all terms from the (q − γ)-prefix of dnew .

2. Let dnew = {a1, . . . , a⌈ln m⌉}, s = q + γ. We now estimate the probability
that a random document has a large overlap with dnew :

Pr(|dnew ∩ d| ≥ s) ≤
∑

j1<···<js

Pr(aj1 , . . . , ajs
∈ d)

≤
∑

j1<···<js

exp(−
s∑

k=1

(jk − 1))

=
∑

∆1≥0, ∆2,...∆s>0

exp(−s∆1 − (s − 1)∆2 − · · · − ∆s)

≤
∞∑

∆1=0

exp(−s∆1) ·
s∏

k=2

∞∑

∆k=1

exp(−∆k(s − k + 1))

=
1

1 − exp(−s)

s∏

k=2

exp(−(s − k + 1))

1 − exp(−(s − k + 1))

≤ exp(1−
s∑

k=2

s−k) ≤ exp

(

1 − (s − 2)2

2

)

≤ 1

e
q2

2 · e(γ−2)q−1
≤ 1

n · e(γ−2)q−1
.

The probability that not a single document in D contains at least q+γ terms
of dnew is equal to or greater than

(

1 − 1

n · e(γ−2)q−1

)n

> 1 − 1

e(γ−2)q−1
,

which follows from inequality (∗∗) (note that e(γ−2)q−1 ≥ 2 for 3 ≤ γ < q).
Therefore, we proved that the probability that any document matches dnew

at q + γ arbitrary positions is smaller than 1
e(γ−2)q−1 .



By Theorem 1 we can conclude that with very high probability there exists
a document in D that matches a prefix of length q−γ, whereas with quite small
probability there exists a document that has at least q + γ common terms with
dnew (at arbitrary positions). We get the following algorithm:

MaxInt Algorithm in the Zipf Model

Preprocessing:
1. For every document: Sort the term list according to the position of

the term in the frequency table.

2. For every document: Generate the set of all possible regular (q−γ)-
lists, i.e. generate all possible term subsets of size (q−γ) containing
one term from every group P1, . . . , Pq−γ .

3. Sort these regular lists and store for every list a pointer to the
corresponding document.

Query: Find a regular (q − γ)-list having the maximal common prefix with
the query document by binary search. Return the document correspond-
ing to this (q − γ)-list.

The running time is as follows (for average case2 analysis we assume that
the length of term lists is log m, for worst case analysis the length is m):

average worst

Step 1 O(n · log m · log log m) O(n · m · log m)

Step 2 n1+o(1) O(n2 · log n)

Step 3 O(log m · n · log n) O(m · n · log n)

Query O(log2 n) O(log2 n)

Let us explain the estimations from the second line. The number of all pos-
sible regular (q − γ)-lists is equal to

|P1| · · · · · |Pq−γ | ≤
q−γ
∏

k=1

ek < eq2/2 = n

Therefore, a single document can generate at most n different regular (q − γ)-
lists, the log n factor arises from the size of a single list. Let us prove the bound
for the average case. The probability of containing some fixed regular (q−γ)-list
is n−1+o(1). Summing over all possible lists we see that the expected number of
generated regular lists per document is at most n−1+o(1) · n = no(1). Therefore,
the expected time for the indexing stage is n1+o(1).

2 Only for the average case our constraints from Section 1 are preserved.



One can try to improve the accuracy of our algorithm by finding a “maximal
prefix with at most one difference to the query document”. A famous technique
called “indexing with errors” [2, 5] might be useful for such an extension.

3 MaxInt in the Hierarchical Schema

Fig. 1. Hierarchical Schema

Let |D| = 2k, k ∈ N, k ≥ 3, and |d| = k for
every d ∈ D. Let |T | = (2k−1) ·k be the num-
ber of different terms. A hierarchical schema
is a table with k levels, level 1 to level k. Level
i is divided to 2i−1 cells, 1 ≤ i ≤ k. Every
cell contains k terms. A document collection
based on this schema can be generated as fol-
lows: Choose a random cell on level k. Then
mark all cells that are above it and choose one
random term in every marked cell. Now each
document corresponds to a path from the top
cell to a bottom cell (see Figure 1).

Remark 3. We claim that the hierarchical schema follows Zipf’s law. To be more
precise, the following holds: For every level the product of expected frequency and
expected frequency rank of a term is the same. Indeed, the expected frequency

of a term on level i is calculated by the formula 2k

2i−1·k . The expected rank of
a term is calculated by the formula (2i−1 − 1) · k + 2i−2 · k. Hence, the product
between frequency and frequency rank (divided by 2k) is equal to

2k

2i−1 · k · (1.5

2k
· 2i−1 − 1) · k ≈ 3

2

and hence Zipf’s law applies.

Again we introduce magic levels to give statements about the most probable
size of maximal intersection. The magic levels are

q =
k

1 + log k
and q′ =

k

log k
.

Theorem 2 (Magic Levels for Hierarchical Schema). Let k ≥ 4 and 2 ≤
γ < q be a positive integer. Fix a query document dnew following hierarchical
schema and take a randomly generated document collection D:

1. The probability that there exists a document d ∈ D that matches the same
terms from top q−γ levels (“prefix match”) of dnew is greater than 1−2−(2k)γ

.
2. The probability that there exists a document d ∈ D that matches at least

q′ + γ terms (“any match”) of dnew is smaller than 2
kγ−1 .



Proof. 1. The number of different prefixes of length q − γ is equal to

k(2k)q−γ−1 < 2(1+log k)(q−γ) = 2(1+log k)( k
1+log k

−γ) = 2k · (2k)−γ .

So the probability that a new document does not match a prefix of length
q − γ with any document from D is smaller than

(

1 − (2k)γ

2k

)2k

< 2−(2k)γ

.

Since (2k)γ < 2k, this inequality follows from inequality (∗). We get that
the probability that there exists a document with the same prefix as dnew of
length q − γ is greater than 1 − 2−(2k)γ

.

2. Let t ≥ q′ + γ be the last position where the terms of d and dnew match. We
want to estimate the probability that dnew matches at least q′ + γ terms at
arbitrary positions with d. The probability that the first t terms (beginning
at the top) of d and dnew are all in the same cells is 21−t. The probability that
at least q′ + γ terms are matched on some fixed positions is equal or smaller

than
(

1
k

)q′+γ ·
(

k−1
k

)t−q′−γ
. An upper bound for the number of different

possibilities of matching at least q′ + γ out of t terms is 2t. Since the factor
(

k−1
k

)t−q′−γ
is smaller than 1, overall we get that the probability that dnew

matches at least q′ + γ terms at arbitrary positions with d is equal to or
smaller than

k · 2t ·
(

1

k

)q′+γ

· 21−t = 2 · k ·
(

1

k

)q′+γ

= 2 ·
(

1

k

)q′+γ−1

.

The factor k is due to the fact that we need to consider all possible levels for
the last matched position t. Now the probability that no document matches
at q′ + γ arbitrary positions with dnew is greater than

(

1 − 2 ·
(

1

k

)q′+γ−1
)2k

=

(

1 − 1

2k · kγ−1

2

)2k

> 1 − 2

kγ−1
,

which follows from inequality (∗∗), since γ ≥ 2, k ≥ 4. So the probability
that we get any match in D is smaller than 2

kγ−1 .

By Theorem 2 we get an analogue algorithm as the one for the Zipf model:



MaxInt Algorithm in the Hierarchical Schema

Preprocessing:
1. For every document: Sort the term list according to the hierarchical

schema, i.e. according to the levels in which the terms appear.

2. Sort the documents according to their corresponding cell paths, i.e.
documents that correspond to the leftmost path in the schema are
at the beginning of the sorted list. Documents that correspond to
the same cell path are sorted lexicographically.

Query: Find a document having the maximal common prefix with the query
document by binary search.

Step 1 of preprocessing needs time O(2k ·k·log k). Step 2 needs time O(2k ·k2).
So the overall running time of the preprocessing is in O(2k ·k2). The query time
is in O(k2).

4 Further Work

In this paper we have shown that assumptions on the random nature of the
input can lead to provable time and accuracy bounds for MaxInt. Also, we
have discovered a MaxInt threshold phenomenon in two randomized models.

The next step is to understand it better. Does it hold for other randomized
models from [7], especially the preferential attachment model? Is it still true
when we replace the Zipf distribution by a power law distribution? Does it hold
in the real life networks? Can we introduce randomized models for sparse vector
collections and find a similar effect there? Of course, the most challenging prob-
lem is to find an exact algorithm for MaxInt (preserving our time constraints)
or to prove its hardness. What are other particular cases or assumptions that
have efficient MaxInt solutions? On the other hand, we have a very particular
subcase for which we still do not believe in a positive solution. Hence, we ask
for a hardness proof for the following on-line inclusion problem. Note that we
have a constraint on space for preprocessing, not time. A related problem but
with a much stronger restriction on preprocessing space was proven to be hard
by Bruck and Naor [1].

On-line Inclusion Problem

Database: A family F of 2k subsets of [1 . . . k2].

Query: Given a set fnew ⊆ [1 . . . k2], decide whether there exists an f ∈ F
such that fnew ⊆ f .

Constraints: Space for preprocessed data 2k · poly(k).
Query time poly(k).



Our algorithm in Section 3 uses polylogarithmic time (in the number of doc-
uments) but it returns only an approximate solution with high probability (not
every time). Can we get an optimal solution or at least a guaranteed approxi-
mation by relaxing the time constraint to expected polylogarithmic time?
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