
Sublinear Ambiguity

Klaus Wich
E-mail: wich@informatik.uni-stuttgart.de

Institut für Informatik, Universität Stuttgart,
Breitwiesenstr. 20-22, 70565 Stuttgart.

Abstract. A context-free grammar G is ambiguous if there is a word
that can be generated by G with at least two different derivation trees.
Ambiguous grammars are often distinguished by their degree of ambigu-
ity, which is the maximal number of derivation trees for the words gener-
ated by them. If there is no such upper bound G is said to be ambiguous
of infinite degree. By considering how many derivation trees a word of
at most length n may have, we can distinguish context-free grammars
with infinite degree of ambiguity by the growth-rate of their ambiguity
with respect to the length of the words. It is known that each cycle-free
context-free grammar G is either exponentially ambiguous or its ambigu-
ity is bounded by a polynomial. Until now there have only been examples
of context-free languages with inherent ambiguity 2Θ(n) and Θ(nd) for
each d ∈ N0. In this paper first examples of (linear) context-free lan-
guages with nonconstant sublinear ambiguity are presented.

1 Introduction

A context-free grammar G is ambiguous if there is a word that can be generated
by G with at least two different derivation trees. Ambiguous grammars are often
distinguished by their degree of ambiguity, which is the maximal number of
derivation trees for the words generated by them. If there is no such upper
bound G is said to be ambiguous of infinite degree.

In [5] and [6] the ambiguity function has been introduced as a new tool for
examining the ambiguity of cycle-free context-free grammars. The ambiguity
function maps the natural number n to the maximal number of derivation trees
which a word of at most length n may have. It has been shown there that for
cycle-free context-free grammars the ambiguity function is either an element of
2Θ(n) or of O(nd) for a d ∈ N0 which can be effectively constructed from G

L has inherent ambiguity Θ(f) if there is a grammar with an ambiguity
function in O(f) and each grammar that generates L has an ambiguity function
in Ω(f). Languages with inherent ambiguity 2Θ(n) and with inherent ambiguity
Θ(nd) for each d ∈ N0 have been presented in [4].

It is easy to prove that the above mentioned infinite ambiguities are exactly
the ones that can occur, of course not inherently, in right linear grammars over
a single letter alphabet. In that sense sublinear ambiguity requires a more com-
plicated structure.

In this article first examples of context-free grammars having sublinear ambi-
guity are presented (they are even linear). These grammars have logarithmic and
square-root ambiguity, respectively. Moreover it is shown that these ambiguities
are inherent for the corresponding languages.

2 Preliminaries

Let Σ be a finite alphabet. For a word w ∈ Σ∗, a symbol a ∈ Σ, and n ∈ N the
length of w is denoted by |w|, the number of a’s in w is denoted by |w|a. The
empty word is denoted by ε. The set Σ≤n denotes all words over Σ with length
up to n. The cardinality of a set S is denoted by |S|.

A context-free grammar is a quadruple G = (N,Σ,P, S), where N and Σ
are finite disjoint alphabets of nonterminals and terminals, respectively, S ∈ N
is the start symbol, and P ⊆ N × (N ∪ Σ)∗ is a finite set of productions. We
usually write A → α or (A → α) for the pair (A,α). We write A → α | β as an
abbreviation for the two productions A → α, A → β.

For a context-free grammar G = (N,Σ,P, S) and α, β ∈ (N ∪ Σ)∗, we say
that α derives β in one step, denoted by α ⇒G β, if there are α1, α2, γ ∈ (N∪Σ)∗

and A ∈ N such that α = α1Aα2, β = α1γα2 and (A → γ) ∈ P . We say that α
derives β leftmost in one step if in the definition above α1 ∈ Σ∗.

Let ⇒+
G denote the transitive closure of ⇒G, and ⇒∗

G denote the reflexive
closure of⇒+

G. For α, β ∈ (N∪Σ)∗ and π ∈ P ∗ we write α ⇒π
G β if α derives β by

the sequence of leftmost steps indicated by π. We call π a parse from α to β in this
case. The language generated by G is defined by L(G) = {w ∈ Σ∗ | S ⇒∗

G w }.
If the grammar is clear from the context, the subscript G is omitted. A language
L is said to be context-free if there is a context-free grammar G with L = L(G).
Let G = (N,Σ,P, S) be a context-free grammar, and α ∈ (N ∪Σ)∗. We say that
α is a sentential form if S ⇒∗ α. The grammar G is said to be cycle-free if there
is no A ∈ N such that A ⇒+ A.

Definition 1. Let G = (N,Σ,P, S) be a context-free grammar, w ∈ Σ∗ and
n ∈ N. We define the ambiguity of w, and the ambiguity function amG : N0 → N0

as follows:

amG(w) := |{π ∈ P ∗ | S ⇒π
G w}|

amG(n) := max
{

amG(w) | w ∈ Σ≤n
}

Note that for a grammar G which contains cycles the set parseG(A, β) may be
infinite. But for all cycle-free grammars G the ambiguity function amG is a total
mapping amG : N0 → N0. Note that amG(w) = 0 for all w /∈ L(G).

Definition 2. Let f : N0 → {r ∈ R | r > 0} be a total function and L a
context-free language. We call L inherently f-ambiguous if

(i) for all context-free grammars G such that L = L(G) we have amG = Ω(f),
and

(ii) there is a grammar G0 such that L = L(G0) and amG0 = O(f).

Note that we have defined inherent complexity classes for languages here.
Let L be an f -ambiguous context-free language such that f(n) > 1 for some
n ∈ N. This does not imply that each grammar G with L(G) = L has a word of
at most length n with at least f(n) derivation trees. In fact there are grammars
for L which generate all words up to length n unambiguously.

3 Sublinear Languages

Let Σ = {0, 1} be an alphabet. We denote 0i−11 by [i] for all i ∈ N. We define
the following two languages:

Llog := {[i1] . . . [i2m−1] | m ∈ N; i1, . . . , i2m−1 ∈ N; ∃1 ≤ k ≤ m :
((∀` < k : 2i` = i2m−`) ∧ (∀m ≥ ` > k : i` = 2i2m+1−`))}

and analogously

L√ := {[i1] . . . [i2m−1] | m ∈ N; i1, . . . , i2m−1 ∈ N; ∃1 ≤ k ≤ m :

((∀` < k : i` + 1 = i2m−`) ∧ (∀m ≥ ` > k : i` = i2m+1−` + 1))}

Let w = [i1] . . . [i2m−1] ∈ Llog for some i1, . . . , i2m−1 ∈ N and some m ∈ N.
For 1 ≤ k ≤ 2m − 1 we call [ik] the k-th block of w. The blocks are pairwise
correlated from the borders to the middle. One block k (1 ≤ k ≤ m) is not
forced to have a correlation. When passing this free blockt, the direction of the
correlation is reversed. For Llog the quotient of the correlated numbers is 2, for
L√ their difference is 1. The situation is illustrated in the following diagram.
Arrows indicate correlations forced by the definition of the language:

[i1] . . . [ik−1] [ik]︸︷︷︸
free

[ik+1] . . . [im][im+1] . . . [i2m−k][i2m−k+1] . . . [i2m−1]

� �#

" !& %

??

66

...

...

The languages Llog and L√ are generated by the subsequently defined grammars
Glog and G√ , respectively. For sub ∈ {log,

√} we define

Gsub := ({A,B,C, D, S}, {0, 1}, Psub, S) as follows:

Plog := { S → 1S01 | 0A01 | B
A → 0A00 | 1S00
B → 0B | 1C | 1
C → 01C1 | 00D1 | 011
D → 00D0 | 01C0 | 010 }

P√ := { S → 1S01 | 0A1 | B
A → 0A0 | 1S00
B → 0B | 1C | 1
C → 01C1 | 0D1 | 011
D → 0D0 | 01C0 | 010 }

It is easily verified that these grammars generate the languages defined above.
The derivation starts with a (possibly empty) finite number of cycles in the
nonterminals S and A which produces the blocks to the left of the free block and
the corresponding blocks at the right end of the word. Eventually the production
S → B is applied. The nonterminal B generates the free block. Finally either
the derivation is terminated with the production B → 1, or with B → 1C we
begin to produce blocks with the opposite correlation to the right of the free
block, by using the nonterminals C and D.

3.1 Sublinear Ambiguity of the Presented Grammars

In this section we prove that amGlog ∈ O(log n). Analogously amG√ ∈ O(
√

n)
can be shown, which however will not be done here.

Definition 3. Let i1, . . . , i2m−1 ∈ N for some m ∈ N, w = [i1] . . . [i2m−1], and
1 ≤ ` ≤ m.

– The word w has a forward correlation at block ` if and only if ` < m and
2i` = i2m−`. It has a forward crack if and only if ` < m and 2i` 6= i2m−`.

– The word w has a backward correlation at block ` if and only if 1 < ` ≤ m
and i` = 2i2m+1−`. It has a backward crack if and only if 1 < ` ≤ m and
i` 6= 2i2m+1−`.

– Block ` is isolated in w if and only if block ` has neither a forward nor a
backward correlation.

Example 1. We illustrate these definitions by the following diagram. The rele-
vant relations between blocks are on a spiral from the leftmost block to the block
in the middle, indicated by solid and dotted arrows.

[3] [5] [1] [6] [10] [8] [4] [5] [2] [10] [6]
6 6 6 6 6

?????

The blocks 1, 2, and 3 have a forward correlation. Block 4 and 5 have a
forward crack. Forward correlations and cracks are indicated by solid and dotted

arrows from left to right, respectively. Blocks 2, 3, and 4 have a backward crack,
blocks 5 and 6 have a backward correlation, again indicated by dotted and solid
arrows, this time from right to left. Block 4 is isolated, since it has neither a
forward nor a backward correlation.

Definition 4. Let m, r ∈ N, i1, . . . , i2m−1 ∈ N, and w = [i1] . . . [i2m−1].

– (r ∗ w) := [ri1] . . . [ri2m−1]

– zm =
{

[1] for m = 1
[1](4 ∗ zm−1)[2] for m > 1

For example z4 = [1][4][16][64][32][8][2].
– Leven,r := {(r ∗ zm) | m ∈ N}
– Leven :=

⋃
r∈N Leven,r

– Lmin := Leven,1.

Note that Lmin = {zm | m ∈ N}, and that a word is in Leven if and only if it
has no cracks.

For a word with an isolated block we know that this block has to be derived by
the nonterminal B and therefore the derivation of the whole word is completely
determined. In general cracks provide information about the position of the free
block. But the language definition does not require the existence of cracks. Hence
Leven ⊆ Llog. For a word w ∈ Leven any block up to the one in the middle can
be produced by nonterminal B. For example in the word z3 = [1][4][16][8][2]
either [1], [4], or [16] is the free block. This gives ambiguity 3. Hence, for each
m, r ∈ N, the word (r ∗ zm) has m derivations. Moreover we will prove that zm

is the shortest word in Llog with m derivations, which inspired the name Lmin.
Due to the free block the forward and backward correlations are interlocked.
Therefore in a word without cracks the length of the blocks is strictly increasing
along the spiral, while the ambiguity is proportional to the number of blocks.
Thus the ambiguity is sublinear.

Lemma 1. Let w ∈ Llog and w /∈ Lmin. Then there is a word w′ ∈ Σ∗ with
|w′| < |w| and amGlog(w

′) = amGlog(w).

Proof. We distinguish three cases.
Case 1: w ∈ Leven.
For some m, r ∈ N we have w = (r ∗ zm). Since w /∈ Lmin we have r > 1.
Thus we obtain |zm| < r|zm| = |(r ∗ zm)| = |w|. Moreover amGlog(zm) = m =
amGlog((r ∗ zm)) = amGlog(w).
Case 2: w has a block ` with a forward crack.
For some m ∈ N we have |w|1 = 2m−1, which is the number of blocks in w. Since
block ` has a forward crack, by definition ` < m. Moreover block ` cannot be
generated by the nonterminals S and A. Therefore block ` is either produced by
nonterminal B or by the nonterminals C and D. In both cases blocks `+1 up to
block m are generated by C and D. Since ` < m there is at least one such block.
But then the derivation after generating block ` is completely determined by the
blocks ` + 1 up to block m. That is, by erasing these and their correlated blocks

we obtain a word w′ which consists of 2`− 1 blocks from w, and which has the
same ambiguity as w. Hence we obtain |w′| < |w| and amGlog(w

′) = amGlog(w).
Case 3: w has a block ` with a backward crack.
For some m ∈ N we have |w|1 = 2m − 1. Since block ` has a backward crack,
by definition ` > 1. Moreover block ` cannot be generated by the nonterminals
C and D. Therefore block ` is either produced by nonterminal B or by the
nonterminals S and A. In both cases blocks 1 up to block `− 1 are generated by
S and A. Since ` > 1, there is at least one such block. But then the derivation
until generating block ` is completely determined by the blocks 1 up to block
`− 1. That is, by erasing these and their correlated blocks we obtain a word w′

which consists of 2(m−`)+1 blocks from |w| and which has the same ambiguity
as w. Hence we obtain |w′| < |w| and amGlog(w

′) = amGlog(w).

Theorem 1. ∀j ∈ N ∀w ∈ Llog : |w| < |zj | implies amGlog(w) < j

Proof. Let w be a shortest word such that amGlog(w) >= j. Since amGlog(zj) =
j we observe that |w| ≤ |zj |. Moreover Lemma 1 implies that w is in Lmin

and hence w = zi for some i ∈ N. Since amGlog(zi) = i we get i ≥ j. Now
|zi| = |w| ≤ |zj | implies i ≤ j. Thus we obtain i = j, that is w = zj which proves
Theorem 1.

By Theorem 1 we obtain the following table

ambiguity shortest word length
1 z1 = [1] 1
2 z2 = [1][4][2] 7
3 z3 = [1][4][16][8][2] 31
...

...
...

i . . . 1
24i − 1

If we proceed analogously for L√ we obtain

Theorem 2.

amGlog(n) = blog4(2n + 2)c = O(log n)

amG√ (n) =

⌊
1
4

+

√
1
2
n +

1
16

⌋
= O(

√
n)

3.2 Inherence of the Sublinearity

In this section we will prove that the language Llog has inherent logarithmic
ambiguity. We already proved that logarithmic ambiguity is sufficient to generate
the language. Thus we have to prove that less than logarithmic ambiguity does
not suffice. First we prove a technical lemma.

Lemma 2. Let w = [i1] . . . [i2m−1] for some m ∈ N and i1, . . . , i2m−1 ∈ N, and
let 1 ≤ n ≤ 1

3 (m− 1). Then

im−3n = im+3n and im = im+2n and im+1 = im+1−2n implies w /∈ Llog.

Proof. By definition w has a forward crack at block m − 3n. Now assume w ∈
Llog. Then all blocks numbered m − 3n + 1 up to m must have a backward
correlation. In particular im+1−2n = 2im+2n and im = 2im+1. But then im =
2im+1 = 2im+1−2n = 4im+2n = 4im is a contradiction.

The lemma above is important because it tells us that in a word of Llog a
sequence consisting of 2n blocks cannot be repeated too often in the vicinity of
the middle block.

Theorem 3. Llog has inherent logarithmic ambiguity.

Proof. Let G = (N,Σ,P, S) be an arbitrary context-free grammar such that
L(G) = Llog. We will apply Ogden’s iteration lemma for context-free grammars
(see [1, Lemma 2.5]). Let p be the constant of Ogden’s iteration lemma for G.
We define s := p + 1 and r := s! + s. For each m ∈ N, and 1 ≤ n ≤ 2m− 1, we
define im,n such that [im,n] is the n-th block of zm. Let

Sm := {[rim,1] . . . [rim,`−1][sim,`][rim,`+1] . . . [rim,2m−1] | 1 ≤ ` ≤ m} ⊆ Llog.

Now for some m ∈ N and 1 ≤ ` ≤ m we consider the word

z := [rim,1] . . . [rim,`−1][sim,`][rim,`+1] . . . [rim,2m−1] ∈ Sm.

Corresponding to Ogden’s Lemma we mark all the 0’s in the `-th block. Then
we can write z = uvwxy such that for a nonterminal A we have S ⇒∗

G uAv,
A ⇒∗

G vAx and A ⇒∗
G w. By the iteration theorem v or x lie completely inside

the 0’s of block `. Assume v lies completely in the 0’s of block ` and |x|1 > 0.
Now |x|1 is even, because otherwise by pumping only once we would obtain a
word with an even number of blocks, which is impossible by the definition of the
language. But then after pumping up m + 3 times we obtain a word which has
enough repeated occurrences of a sequence of 2n blocks for some n ∈ N, such
that the condition of Lemma 2 is satisfied. Thus x cannot contain 1’s in this case.
The case that x lies completely in block ` and |v|1 > 0 is treated analogously.
Hence x and v cannot contain 1’s. Thus both x and v lie completely in the 0’s of
one block, respectively. Assume x and v do not lie in the same block and x 6= ε
and v 6= ε. That is, block ` can be pumped together with a block `′. Assume
`′ ≤ m then after one pumping step we obtain a word with two isolated blocks,
which is a contradiction. Assume `′ > m then after one pumping step we obtain
a word with a forward crack in block 2m − `′ and a backward crack in block
2m − `′ + 1 again a contradiction. Note that in both blocks the correlation is
either destroyed if it held before, or its partner is block ` and then due to the
choice of s and r the crack is not repaired by one pumping step. Hence x and v
either both lie inside block ` or the one which doesn’t is the empty word.

Thus only block ` is pumped up. And by repeated pumping we can repair the
cracks in block ` and obtain (r∗zm). That is, all the words in Sm can be pumped
up to yield (r ∗ zm). Now assume that among the derivation trees obtained by
this method there are two which are equal. Then we can pump two different
blocks 1 ≤ `1, `2 ≤ m independently. Thus by pumping once in both blocks we
obtain a word with two isolated blocks, which is a contradiction.

Finally we have proved that (r ∗zm) has at least m derivation trees. Now the
length of (r∗zm) increases exponentially with respect to m. Hence the ambiguity
is logarithmic with respect to the length of the word.

The proof that L√ is inherently square-root ambiguous is analogous.

4 Conclusion

Here we have presented first examples of linear context-free languages with non-
constant sublinear ambiguity. By concatenation we can get some other sublinear
ambiguities. Is it possible to find nonconstant sublogarithmic ambiguity? Can
we characterize the possible complexity classes? These questions are deeply con-
nected with the structure of the intersection of context-free languages. To see
this we consider the languages L1 := {1i02i | i ∈ N} and L2 := {0i12i | i ∈ N}.
Now we define the unambiguous languages L′1 := 0L∗1 and L′2 := L∗20

∗. The
language L′1∩L′2 contains only O(log n) words with a length up to n. Of course
L′1 ∪ L′2 has the degree of ambiguity 2, but ambiguity is “needed” only loga-
rithmic many times. The languages L′1 and L′2 are slightly modified versions of
languages found in [3]. The main question was how sublinear “density” of the
intersection can be transformed into an inherent degree of ambiguity. The idea
was to concatenate L∗1 and L∗2 buffered with a free block to interconnect the
correlations and hide the factorization. This led to the (non-linear) language
L∗1 1+ L∗2 which is a context-free language with inherent logarithmic ambiguity.

Recall that intersections of context-free languages can have a very compli-
cated structure. If we denote the set of computations of a Turing machine M
by sequences of configurations, where every second configuration is written in
reverse, then we obtain the set of valid computations. In [2, Lemma 8.6] it is
shown that this set is the intersection of two linear languages.

Thus if our method of transforming the “density” of an intersection into an
inherent degree of ambiguity can be generalized, we can hope for a variety of
sublinear ambiguities.

Acknowledgements Thanks to Prof. Dr. Friedrich Otto, Dr. Dieter Hofbauer,
and Gundula Niemann for proofreading, valuable discussions and LATEX tips.

References

1. J. Berstel. Transductions and Context-Free Languages. Teubner, 1979.
2. J.E. Hopcroft, J.D. Ullman. Introduction to Automata Theory, Formal Languages,

and Computation. Addison-Wesley, 1979.
3. R. Kemp. A Note on the Density of Inherently Ambiguous Context-free Languages.

Acta Informatica 14, pp. 295–298, 1980.
4. M. Naji. Grad der Mehrdeutigkeit kontextfreier Grammatiken und Sprachen.

Diplomarbeit, FB Informatik, Johann–Wolfgang–Goethe–Universität, Frankfurt am
Main, 1998.

5. K. Wich. Kriterien für die Mehrdeutigkeit kontextfreier Grammatiken. Diplomar-
beit, FB Informatik, Johann–Wolfgang–Goethe–Universität, Frankfurt am Main,
1997.

6. K. Wich. Exponential Ambiguity of Context-free Grammars. Proc. 4th Int. Conf.
on Developments in Language Theory ’99, World Scientific, Singapore, to appear.

