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Abstract

In this paper we study rewriting systems for groups and monoids, focus-
ing on situations where finite convergent systems may be difficult to find or
do not exist. We consider systems which have no length increasing rules
and are confluent and then systems in which the length reducing rules lead
to geodesics. Combining these properties we arrive at our main object of
study which we call geodesically perfect rewriting systems. We show that
these are well-behaved and convenient to use, and give several examples of
classes of groups for which they can be constructed from natural presenta-
tions. We describe a Knuth-Bendix completion process to construct such
systems, show how they may be found with the help of Stallings’ pregroups
and conversely may be used to construct such pregroups.
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(Centro Recherche Matemàtica, Barcelona) on invitation by Enric Ventura.

1



Geodesic rewriting systems 2

2 Rewriting techniques 5
2.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Rewriting in monoids . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Convergent rewriting systems . . . . . . . . . . . . . . . . . . . . 7
2.4 Computing with infinite systems . . . . . . . . . . . . . . . . . . 10

3 Length-reducing and Dehn systems 11
3.1 Finite length-reducing systems . . . . . . . . . . . . . . . . . . . 11
3.2 Infinite length-reducing systems . . . . . . . . . . . . . . . . . . 12
3.3 Weight-reducing systems . . . . . . . . . . . . . . . . . . . . . . 13

4 Preperfect systems 14
4.1 General results . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Geodesically perfect rewriting systems 17
5.1 Geodesic systems . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Geodesically perfect systems . . . . . . . . . . . . . . . . . . . . 22

6 Knuth-Bendix completion for geodesically perfect systems 24

7 Examples of preperfect systems in groups 27
7.1 Graph groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.2 Coxeter groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.3 HNN-extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.4 Free products with amalgamation . . . . . . . . . . . . . . . . . . 30

8 Stallings’ pregroups and their universal groups 31
8.1 Rewriting systems for universal groups . . . . . . . . . . . . . . . 34
8.2 Characterisation of pregroups in terms of geodesic systems . . . . 37

1 Introduction
A presentation of a group or monoid may be thought of as a rewriting system
which, in certain cases may give rise to algorithms for solving classical algorith-
mic problems. For example if the rewriting system is finite and convergent (that
is confluent and terminating) then it can be used to solve the word problem and
to find normal forms for elements of the group. This is one reason for the impor-
tance of convergent rewriting systems in group theory. However there are many
groups for which the natural presentations do not give rise to convergent rewrit-
ing systems, but which are none the less well behaved, algorithmically tractable
groups. In this paper we investigate properties of rewriting systems, which are not
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in general finite or terminating, but which all the same give algorithms for such
tasks as solving the word problem, computation of normal forms or computation
of geodesic representatives of group elements. We contend that the resulting al-
gorithms are often more convenient and practical than those arising from more
conventional finite convergent systems.

Rewriting methods in algebra have a very long and rich history. In groups and
semigroups they are usually related to the word problem and take their roots in the
ground breaking works of Dehn and Thue (not to mention the classical Euclidean
and Gaussian elimination algorithms!). Several famous algorithms in group the-
ory are in fact particular types of string rewriting processes: the Nielsen method
in free groups, Hall collection in nilpotent and polycyclic groups, the Dehn al-
gorithm in small cancellation and hyperbolic groups, Tits rewriting in Coxeter
groups, convergent rewriting systems for finite groups, and so on. In rings and
algebras rewriting methods appear as a major tool in computing normal forms
of elements [40, 45, 10], in solving the word and ideal-membership problems.
These techniques emerged up independently in various branches of algebra at
different times and under different names (the diamond lemma, Gröbner or Shir-
shov bases, Buchberger’s algorithm and S-polynomials, for instance). They have
gained prominence with the progress of practical computing, as real applications
have become available. Notably, crucial developments in methods of computa-
tional algebra originated in commutative algebra and algebraic geometry, with
Buchberger’s celebrated algorithm and related computational techniques, which
revolutionised the whole area of applications. We refer to [11], and the references
therein, for more details.

From the theoretical view point the main shift in the paradigm came with
the seminal paper of Knuth and Bendix [33]. In this paper they introduced a
process, now known as the Knuth-Bendix (KB) procedure, which unified the field
of rewriting techniques in (universal) algebra. This KB procedure gives a solid
theoretical basis for practical implementations, even the procedure itself may lead
to non-optimal algorithms for solving word problems.

Roughly speaking a KB procedure takes as input a finite system of identities
(between terms) and a computable (term) ordering such that the identities can be
read as a finite set of directed rewrite rules. Using the crucial concept of critical
pairs the procedure adds in each round more and more rules, and it stops only if
the system is completed. Thus the KB procedure attempts to construct an equiva-
lent convergent (term) rewriting system: which in particular allows unique normal
forms to be found by a simple strategy. In case of termination we obtain a solvable
word problem.

In the case of commutative algebra this concept can be viewed as Buchberger’s
algorithm and termination is guaranteed. In case of algebraic structures like
groups or monoids we have a special case of term rewriting systems since the
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rewriting process is based on strings. (Formally, monoid generators are read as
unary function symbols, and the neutral element is read a constant.)

As has been mentioned above, the history of rewriting systems in monoids
and groups is about one hundred years old, with the main focus on convergent
rewriting systems and algorithms for computing normal forms. Any presentation
M = 〈Γ | `i = ri(i ∈ I)〉 of a monoid M gives a rewriting system S = {`i →
ri, i ∈ I} which defines M via the congruence relation it generates on the free
monoid Γ∗. Every rule ` → r ∈ S allows one to rewrite a word u`v into the
word urv and this gives a (non-deterministic) word rewriting procedure associated
with S. If the system S is convergent (see Section 2) then this rewriting system
describes a deterministic algorithm which computes the normal forms of elements,
thus solving the word problem in the monoid M . This yields the major interest
in finite convergent systems. Many groups are known to allow finite convergent
systems (for example Coxeter groups, polycyclic groups, some small cancellation
groups: see books [30, 46, 34] for more examples and details). The primary task
here is to find a finite convergent system for a given finitely presented monoid,
assuming that such a system exists. In principle, the KB procedure performs this
task. However, several obstacles may present themselves. By design, to start
the KB procedure one has to fix in advance an ordering on Γ∗, with particular
properties, as described in Section 2.3. This may seem like a minor hurdle, but
the difficulty is that, even for well understood groups, with two orderings which
look very much alike, it may happen that using the first the KB process halts
and outputs a convergent system while with respect to the the second there exists
no finite convergent system: see Example 2.5 below. Furthermore, the existence
of a finite convergent system also depends on a choice of the set of generators
of the group. This means that for KB to succeed one has to make a the right
choice of a set of generators Γ and of an ordering on Γ∗. In fact [42] in general
the problem of whether or not a given finitely presented group can be defined
by a finite convergent rewriting system is undecidable. In addition, even when
restricted to instances where the generators and the order have been chosen so
that the KB process will halt giving a finite convergent rewriting system, there
may be no be effectively computable upper bound on the running time of the
KB procedure. To make things even more interesting, having a finite convergent
rewriting system S does not guarantee a fast solution of the word problem in the
monoid M (see Section 2.3). All these results show that the KB process for finite
convergent systems, while being an important theoretical tool, is not a panacea for
problems in computational algebra.

As a first step towards resolving some of these difficulties we consider, in Sec-
tion 4, the class of preperfect rewriting systems: that is those which are confluent
and have no length increasing rules. These restrictions are enough to allow solu-
tion of the word problem and to find geodesic representatives and, as examples
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show, such systems are common in geometric group theory. In fact in Section 7
we describe preperfect rewriting systems for Coxeter groups, graph groups, HNN-
extensions and free products with amalgamation. One disadvantage of these sys-
tems is that it is undecidable whether are a finite rewriting system is preperfect or
not [38] (see Theorem 4.6).

Another desirable property of rewriting systems is that they should be geodesic;
meaning that shortest representatives of elements can be found by applying only
the length reducing rules of the system. A group defined by a finite geodesic
rewriting system has solvable word problem and in [24] these groups are char-
acterised as the finitely generated virtually free groups. However, as we show in
Section 5.1, the question of a whether or not a finite rewriting system is geodesic
is undecidable.

Combining properties of preperfect and geodesic rewriting systems we arrive
at geodesically perfect rewriting systems (defined in Section 5.2). These were first
investigated by Nivat and Benois [41] where they were called quasi-parfaites.
Elsewhere these rewriting systems are also known as almost confluent, see e.g.
[6] but here we prefer the notation geodesically perfect since these systems are
designed to deal with geodesics in groups and monoids. In [41], it was shown that
the property of being geodesically perfect is decidable for finite systems. This
leads to a new Knuth-Bendix completion procedure for constructing geodesically
perfect systems as we explain below. One advantage of this KB process is that it
requires no choice of ordering, using only the partial order given by word length
in Γ∗.

Among the examples of Section 7 are rewriting systems for amalgamated
products and HNN-extensions. As several several important frameworks have
been developed to unify the studies of such groups (Bass-Serre Theory, pregroups
and relatively hyperbolic groups,for example) it is natural to look for a unified
theory of rewriting systems covering HNN-extensions and amalgamated products.
In this paper, following Stallings [49, 50], we approach this unification question
from a combinatorial view-point via pregroups and their universal groups: which
seem to lend themselves naturally to algorithmic and model theoretic problems.
Intuitively, a pregroup can be viewed as a “partial group”, that is, a set P with a
partial (not everywhere defined) multiplication m : P × P → P , or a piece of
the multiplication table of some group, that satisfies some particular axioms. In
this case the universal group U(P ) can be described as the group defined by the
presentation with a generating set P and a set of relations m(x, y) = z for all
x, y ∈ P such that m(x, y) is defined and equal to z. On the other hand, Stallings
proved that U(P ) can be realized constructively as the set of all P -reduced forms
(reduced sequences of elements of P ) modulo a suitable equivalence relation and
a naturally defined multiplication. We discuss these definitions in detail in Section
8.
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In Section 8.1 we show how the existence of a pregroup allows us to construct
a preperfect rewriting system for the universal group. Moreover, we show in The-
orem 8.4 that this system is geodesically perfect. In this way pregroups may play
a role in clarifying completion procedures of KB type. In particular, completing
a given presentation (in terms of generators and relators) of a group G to a larger
presentation, which is a pregroup, amounts to a construction of a geodesically
perfect rewriting system for G.

As an application of these results we obtain a slight strengthening of the result
of [24]. It is known that a group G is virtually free if and only if G = U(P )
for a finite pregroup P [44] and combining this result with Theorem 8.4 we see
that a group is finitely generated, virtually free if and only if it is defined by a
geodesically perfect rewriting system (Corollary 8.7).

2 Rewriting techniques

2.1 Basics
In this section we recall the basic concepts from string rewriting. We use rewriting
techniques as a tool to prove that certain constructions have the expected proper-
ties.

A rewriting relation over a set X is a binary relation =⇒ ⊆ X × X . We

denote by ∗
=⇒ the reflexive and transitive closure of =⇒, by⇐⇒ its symmetric

closure and by ∗⇐⇒ its symmetric, reflexive, and transitive closure. We also write

y⇐=x whenever x=⇒y, and we write x ≤k
=⇒ y whenever we can reach y in at

most k steps from x.

Definition 2.1. The relation =⇒ ⊆ X ×X is called:

i) strongly confluent, if y⇐=x=⇒z implies y ≤1
=⇒ w

≤1⇐= z for some w,

ii) confluent, if y ∗⇐= x
∗

=⇒ z implies y ∗
=⇒ w

∗⇐= z for some w,

iii) Church-Rosser, if y ∗⇐⇒ z implies y ∗
=⇒ w

∗⇐= z for some w,

iv) locally confluent, if y⇐=x=⇒z implies y ∗
=⇒ w

∗⇐= z for some w,

The following facts are well-known and can be found in several text books
(see for example, [6, 31]).
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1) Strong confluence implies confluence.

2) Confluence is equivalent to Church-Rosser.

3) Confluence implies local confluence, but the converse is false, in general.

2.2 Rewriting in monoids
Rewriting systems over monoids (and in particular over groups) play an important
part in algebra. Let M be a monoid. A rewriting system over M is a binary
relation S ⊆M ×M . It defines the rewriting relation =⇒

S
⊆M ×M such that

x=⇒
S
y if and only if x = p`q, y = prq for some (`, r) ∈ S.

The relation ∗⇐⇒
S
⊆M×M is a congruence onM , hence the quotient setM/

∗⇐⇒
S

forms a monoid with respect to the multiplication induced from M . We denote it
by M/ { ` = r | (`, r) ∈ S } or, simply by M/S. Two rewriting systems S and
T over a monoid M are termed equivalent if ∗⇐⇒

S
=

∗⇐⇒
T

, i.e., MS = MT .
We say that a rewriting system S is strongly confluent (or confluent, etc) if the

relation =⇒
S

has the corresponding property. Instead of (`, r) ∈ S we also write

`−→r ∈ S and `←→r ∈ S in order to indicate that both (`, r) and (r, `) are in S.
We say that a word w is S-irreducible (sometimes we omit S here), if no left-

hand side ` of S occurs in w as a factor. Thus, if w is irreducible, then w ∗
=⇒

S
w′

implies w = w′. The set of all irreducible words is denoted by IRR(S).
In order to compute with monoids (in particular, groups) we usually specify

a choice of monoid generators Γ, sometimes called an alphabet. For groups we
often assume that Γ is closed under inversion, so Γ = Σ ∪ Σ−1 where Σ is a set
of group generators. For an alphabet Γ we denote by Γ∗ the free monoid with
basis Γ. Throughout, 1 denotes the neutral element in monoids or groups. In
particular, 1 is also used to denote the empty word in a free monoid Γ∗. If we can
write w = xuy, then we say that u is a factor of w. For free monoids a factor is
sometimes also called a subword, but this might lead to confusion because other
authors understand b a subword simply a subsequence or scattered subword.

Rewriting systems S over a free monoid Γ∗ are sometimes called string rewrit-
ing systems or semi-Thue systems. In this case the quotient Γ∗/S has the standard
monoid presentation 〈Γ | { ` = r | (`, r) ∈ S }〉. We say that a string rewriting
system S defines a monoid M if Γ∗/S is isomorphic to M . In addition, if P is a
property of rewriting systems (Church-Rosser, strongly confluent, confluent, etc.)
we say that a monoidM has a P -presentation if it can be defined by a system with
property P .
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For groups two types of presentations via generators and relators arise: monoid
presentations, described above, and group presentations, typical in combinatorial
group theory and topology. More precisely, we say that G = Γ∗/S is a monoid
presentation of a group G if the alphabet Γ is of the form Γ = Σ ∪ Σ−1, where
Σ is a set of group generators, and Σ−1 = {σ−1 | σ ∈ Σ} is the set of formal
inverses of Σ (in which case Γ∗ is a the free monoid with an involution σ → σ−1).
Given a group presentation 〈X | R〉 of a group G one can easily obtain a monoid
presentation of G by adding the formal inverses X−1 to the set of generators X of
G and the “trivial” relations xx−1 = 1, x−1x = 1, x ∈ X} to the relators ofG. We
consider here monoid presentations of groups, except where explicitly indicated
otherwise.

2.3 Convergent rewriting systems
In this section we briefly discuss convergent (or complete) rewriting systems,
which play an important role in algebra due to their relation to normal forms.

A relation =⇒ ⊆ X×X is called terminating (or Noetherian), if every infinite
chain

x0
∗

=⇒ x1
∗

=⇒ · · ·xi−1
∗

=⇒ xi
∗

=⇒ · · ·

becomes stationary.
There are two typical sources of terminating string rewriting systems S ⊆

Γ∗×Γ∗. Systems of the first type are length-reducing, i.e., for any rule `→ r ∈ S
one has |`| > |r|, where |x| is the length of a word x ∈ Γ∗. Systems of the second
type are compatible with a given reduction ordering � on Γ∗, which means that if
` → r ∈ S then ` � r. Recall that a reduction ordering on Γ∗ is a well-ordering
preserving left and right multiplication (i.e. if u � v then aub � avb for any
a, b ∈ Γ∗). Clearly, such systems are terminating. In fact, the condition that S is
compatible with some partial order, �, preserving left and right multiplication is
just a reformulation of the terminating property. Indeed, if S is terminating then
there is a binary relation �S on Γ∗ defined by u �S v if and only if u ∗

=⇒
S

v.
In this case �S is a partial well-founded ordering (no infinite descending chains),
such that ` �S r for any rule ` → r ∈ S. Moreover, the converse is also true.
(The condition that � is total is not needed here but is required in running the
Knuth-Bendix completion procedure, see below).

A relation =⇒ ⊆ X × X is called convergent (or complete) if it is locally
confluent and terminating. The following properties are crucial. Let S be a con-
vergent rewriting system.

1) S is confluent (see for example, [6, 31]).
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2) Every ∗⇐⇒
S

equivalence class in Γ∗ contains a unique S-reduced word (a word
to which no rule from S is applicable).

3) If S is finite then for a given word w ∈ Γ∗ one can effectively find its unique
S-reduced form (just by subsequently rewriting the word w until the result is
S-reduced).

The results above show that if a monoidM has a finite convergent presentation
then the word problem in M as well as the problem of finding the normal forms,
is decidable. This explains popularity of convergent systems in algebra. There are
many examples of groups that have finite convergent presentations: finite groups,
polycyclic group, free groups, some geometric groups (see [46, 20, 34] for details)

One of the major results on convergent systems concerns the Knuth-Bendix
procedure (KB) (see [6] for general rewriting systems and [46, 20] for groups),
which can be stated as follows. Let � be a reduction well-ordering on Γ∗ and
S ⊆ Γ∗ × Γ∗ a finite rewriting system compatible with �. If there exists a finite
convergent rewriting system T ⊆ Γ∗ × Γ∗ compatible with � which is equiva-
lent to S, then, in finitely many steps, the Knuth-Bendix procedure KB finds a
finite convergent rewriting system S ′ ⊆ Γ∗ × Γ∗ compatible with � which is also
equivalent to S.

There are three principle remarks due here.

Remark 2.2. The time complexity of the word problem in a monoid MS defined
by a finite convergent system S may be of an arbitrarily high complexity [43].

Remark 2.3. It may happen that the word problem in a monoid MS defined by a
finite convergent system S is decidable in polynomial time, whereas the complexity
of the standard rewriting algorithm that finds the S-reduced forms of words can
be of an arbitrarily high complexity [43].

These remarks show that convergent rewriting systems may not be the best tool
to deal with complexity issues related to the word problems and normal forms in
monoids.

Remark 2.4. The Knuth-Bendix procedure really depends on the chosen ordering
�. The following example shows that in a free Abelian group of rank two the
KB procedure relative to one length-lexicographic ordering results in a finite con-
vergent presentation, while another length-lexicographic ordering does not allow
any finite convergent presentations for the same group.

Example 2.5 ([21], page 127). Let G be the free Abelian group given by the
following monoid presentation.

〈x, y, x−1, y−1 | xy = yx, xx−1 = x−1x = yy−1 = y−1y = 1〉.
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Then the KB procedure with respect to the length-lexicographic ordering induced
by the ordering x < x−1 < y < y−1 of the generators outputs a finite convergent
system defining G:

xx−1=⇒1, x−1x=⇒1, yy−1=⇒1, y−1y=⇒1,

yx=⇒xy, y−1x=⇒xy−1, yx−1=⇒x−1y, y−1x−1=⇒x−1y−1.

However, there are no finite convergent systems defining G and compatible with
the length-lexicographic ordering x < y < x−1 < y−1.

Therefore, even if a finite convergent presentation for a monoid M exists it
might be hard to find it using the Knuth-Bendix procedure. In addition Ó’Dún-
laing [42] has shown that the problem of whether or not a given finitely presented
group can be defined by a finite convergent rewriting system is undecidable.

It is not hard to see that all finitely generated commutative monoids have a
finite convergent presentation, [13]. However, this is demands enough generators,
in general. For example, a free Abelian groups of rank k can be generated as a
monoid by an alphabet of size k+1, but in order to find a finite convergent system
for it we need at least 2k generators, see [14]. Another nice example of this kind
is the non-commutative semi-direct product of Z by Z. Even as a monoid we
need just two generators a and b and one relation abba = 1. There is no finite
convergent system S ⊆ { a, b }∗ × { a, b }∗ such that { a, b }∗ / { abba = 1 } =
{ a, b }∗ /S, but clearly such systems exists if we spend more generators. See [31]
for more details about this example.

We finish the section with a few open problems.

Problem 2.6. Is it true that every hyperbolic group has a finite convergent pre-
sentation?

It is known that some hyperbolic groups have finite convergent presentations,
for example, surface groups [34].

Problem 2.7. Is it true that every finitely generated fully residually free group has
a finite convergent presentation?

The next two problems are from [43].

Problem 2.8. Do all automatic groups have finite convergent presentations?

Problem 2.9. Do all one-relator groups have finite convergent presentations?

Notice that all the groups above satisfy the homological conditionFP∞; which
is the main known condition necessary for a group to have a finite convergent pre-
sentation, see [48, 47].
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2.4 Computing with infinite systems
In this section we discuss computing with infinite systems. An infinite string
rewriting system S ⊆ Γ∗ × Γ∗ can be used in computation if it satisfies some
natural conditions. Firstly, one has to be able to recognise if a given pair (u, v) ∈
Γ∗ × Γ∗ gives a rule u → v ∈ S or not, i.e., the system S must be a recursive
subset of Γ∗ × Γ∗. We call such systems recursive. Secondly, to rewrite with S
one has to be able to check if for a given u ∈ Γ∗ there is a rule ` → r ∈ S with
` = u, so we assume that the set L(S) of the left-hand sides of the rules in S
is a recursive subset of Γ∗. Systems satisfying these two conditions are termed
effective rewriting systems. Clearly, every finite system is effective. Notice also,
that every recursive non-length-increasing system S (i.e., |`| ≥ |r| for every rule
` → r ∈ S) is effective. Indeed, given u ∈ Γ∗ one can check if a rule u → v
is in S or not for all words v with |v| ≤ |u|, thus effectively verifying whether
u ∈ L(S) or not.

The argument above shows that for a recursive non-length-increasing system
S one can effectively enumerate all the rules in S in such a way

`0 → r0, `1 → r1, . . . , `i → ri, . . . (1)

that if i < j then `i � `j in the length-lexicographical ordering � and also if
`i = `j then ri � rj . We call this enumeration of S standard.

Proposition 2.10. Let S be an infinite effective convergent system. Then the word
problem in the monoid MS defined by S is decidable.

Proof. Given a word u ∈ Γ∗ one can start the rewriting process applying rules
from S. Indeed, for a given factor w of u one can check if w ∈ L(S) or not, thus
enumerating all factors of u one can either find a factor w of u with w ∈ L(S) or
prove that u is S-irreducible. If such w exists one can enumerate all pairs (w, v)
with v ∈ Γ∗ and check one by one if (w, v) ∈ S or not. This procedure eventually
terminates with a rule w → v ∈ S. Now one can apply this rule to u and rewrite
u into u1. Applying again this procedure to u1 one eventually arrives at a unique
S-irreducible word û. To check if two words are equal in the monoid MS one can
find their S-irreducibles and check whether they are equal or not.

There are various modifications of the algorithm described above, that work
for other types of, not necessarily convergent, infinite systems. We consider some
of these below.
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3 Length-reducing and Dehn systems

3.1 Finite length-reducing systems
In this section we study a very particular type of rewriting system, called length-
reducing systems, where, for every rule `→ r one has |`| > |r|. The main interest
in length-reducing systems comes from the fact that, contrary to the case of finite
convergent systems, the algorithm for computing the reduced forms is fast.

Lemma 3.1. [7] If S is a finite length-reducing string rewriting system, then irre-
ducible descendants of a given word can be computed in linear time (in the length
of the word).

This result is well-known, we use it in many parts of the paper, and it can be
seen easily as follows.

Proof. First, we choose some ε > 0 such that (1− ε)|`| ≥ |r| for all rules (`, r) ∈
S.

Now, consider an input w ∈ Γ∗ of length n = |w|. For a moment, let a
configuration be a pair (u, v) such that (i) w ∗⇐⇒

S
uv and (ii) u is irreducible. The

goal is to transform the initial configuration (1, w) in O(n) steps into some final
configuration (ŵ, 1).

Say, we are in the configuration (u, v). The goal is achieved if v = 1. So as-
sume that v = av′ where a is a letter. If ua is irreducible, then we replace (u, av′)
by (ua, v′), and (ua, v′) is the next configuration. If however ua is reducible, then
we can write ua = u′` for some (`, r) ∈ S; and u′ is irreducible. So, we replace
(u, av′) by (u′, rv′), and (u′, rv′) is the next configuration. The algorithm is obvi-
ously correct. Defining the weight γ of configurations by γ(u, v) = (1−ε)|u|+|v|
we see that γ reduces from one configuration to the next by at least ε. Hence we
have termination in linear time.

In fact, length reducing rewriting systems arise naturally in the class of small
cancellation groups, and more generally hyperbolic groups, which we might re-
gard as a paradigm for groups with easily solvable word problem. To be precise:
a group G is hyperbolic if and only if there is a finite generating set Γ for G and
a finite length-reducing system S ⊆ Γ × Γ (so G = Γ/S) such that a word w
represents the trivial element of G if and only if w can be S-reduced to the empty
word, see [2]. In other words, a group is hyberbolic, if and only if there exists a
finite length-reducing system which is confluent on the empty word.

Definition 3.2. A length-reducing string rewriting system which is confluent on
the empty word is called a Dehn system.
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If a group is defined by a finite length-reducing Dehn rewriting system then the
rewriting algorithm is known in group theory as the Dehn algorithm. More general
definitions of Dehn algorithms, to rewriting systems over a larger alphabet than
the generators of the group, have been studied by Goodman and Shapiro [25] and
Kambites and Otto [32]. In particular in [25] it is shown that such generalised
Dehn algorithms solve the word problem in finitely generated nilpotent groups
and many relatively hyperbolic groups.

It is known that, given a finite presentation of a hyperbolic group G, one can
produce a finite Dehn presentation of G by adding, to a given presentation, all
new relators of G up to some length (which depends on the hyperbolicity constant
of G). However, this algorithm is very inefficient and the following questions
remain.

Problem 3.3. Is there a Knuth-Bendix type completion process that, given a finite
presentation of a hyperbolic group G, finds a finite Dehn presentation of G.

Problem 3.4. Is there an algorithm that, given a finite presentation of a hyperbolic
group, determines whether or not this presentation is Dehn.

Notice that some partial answers to this question are known. Namely, in [3]
Arzhantseva has shown that there is an algorithm that, given a finite presentation
of a hyperbolic group and α ∈ [3/4, 1), detects whether or not this presentation
is an α-Dehn presentation. Here a presentation 〈X | R〉 of a group G is called
an α-Dehn presentation if any non-empty freely reduced word w ∈ (X ∪ X−1)∗

representing the identity in G contains as a factor a word u which is also a factor
of a cyclic shift of some r ∈ R±1 with |u| > α|r|.

3.2 Infinite length-reducing systems
Let us discuss some algorithmic aspects of rewriting with infinite length-reducing
systems.

Proposition 3.5. Let S ⊆ Γ∗×Γ∗ be an infinite recursive string rewriting system.
Then the following hold.

1) If S is length-reducing then an irreducible descendant of a given word can
be computed.

2) If S is Dehn and MS is a group, then the word problem in MS is decidable.

Proof. The system S is effective since it is recursive and length-reducing (see
remark before Proposition 2.10). Now the argument in the proof of Proposition
2.10 shows that for a given w one can effectively find an S-irreducible of w, so 1)
and 2) follow.
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In the case of length-reducing systems one can try to estimate the time com-
plexity of the algorithms involved. To this end we need the following definition.
Let S be an effective non-length increasing rewriting system and

`0 → r0, `1 → r1, . . . , `i → ri, . . .

its standard enumeration (see Section 2.4). If there an algorithm A and a polyno-
mial p(n) such that for every n ∈ N the algorithm A writes down the initial part
of the standard enumeration of S with |`i| ≤ n in time p(n) then the system S is
called enumerable in time p(n) or Ptime enumerable. In particular, we say that S
is linear (quadratic) time enumerable if the polynomial p(n) is linear (quadratic).

Proposition 3.6. Let S ⊆ Γ∗ × Γ∗ be an infinite non-length increasing string
rewriting system, which is enumerable in time p(n). Then the following hold.

1) If S is length-reducing then an irreducible descendant of a given word w
can be computed in polynomial time.

2) If S is Dehn and MS is a group, then the word problem in MS is decidable
in time in polynomial time.

Proof. Given a word w one can list in time p(|w|) all the rules ` → r of the
standard enumeration of S with |`| ≤ |w|. Now in time O(p(|w|)|w|2) one can
check whether one of the listed rules can be applied to w or not. This proves 1)
and 2).

3.3 Weight-reducing systems
Many results above can be generalised to weight-reducing systems. A weight γ
assigns to each generator a a positive integer γ(a) with the obvious extensions
to words by γ(a1 · · · an) =

∑n
i=1 γ(ai). A system is called weight-reducing, if

for every rule ` → r one has γ(`) > γ(r). The following statements in this
paragraph are taken from [16]. It is decidable whether a finite system is weight-
reducing by linear integer programming. The reason to consider weight-reducing
systems is that there are monoids like { a, b, c }∗ /ab = c2 having an obvious finite
convergent weight-reducing presentation, but where no finite convergent length-
reducing presentation exists.

For groups the situation is unclear. Actually, the following conjecture has been
stated.

Conjecture 3.7. Let G be a finitely generated group. Then the following asser-
tions are equivalent:

1) G is a plain group, i.e., G is a free product of free and finite groups.
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2) G has a finite convergent length-reducing presentation.

3) G has a finite convergent weight-reducing presentation.

The implications 1) =⇒ 2) =⇒ 3) are trivial, and 2) =⇒ 1) is known as
the Gilman conjecture and was stated first in [23].

It is clear that the conjugacy problem can be decided in plain groups and this
holds for groups G having a finite convergent weight-reducing presentation, too.
In fact, for s, t ∈ G the set Rs,t = { g ∈ G | gsg−1 = t } is an effectively com-
putable rational subset of G.

4 Preperfect systems

4.1 General results
In this section we discuss preperfect rewriting systems, which play an important
part in solving the word problem and finding geodesics (shortest representatives
in the equivalence classes) in groups.

Definition 4.1. A Thue system is a rewriting system S ⊆ Γ∗ × Γ∗ such that the
following conditions hold:

i) If ` −→ r ∈ S then |`| ≥ |r|.

ii) If ` −→ r ∈ S with |`| = |r|, then r −→ ` ∈ S, too.

To every rewriting system is associated an equivalent Thue system. In order
to specify a Thue system which is equivalent to a rewriting system S one can do
the following: symmetrize S by adding all the rules r −→ ` whenever ` −→
r ∈ S, then throw out all the length increasing rules. The new system, denoted
T (S) is called the Thue resolution of S. It follows that every monoid has a Thue
presentation.

Definition 4.2. A confluent Thue system is called preperfect.

The main interest in preperfect systems in algebra comes from the following
known (and easy) complexity result: for which we require the following defini-
tion.

Definition 4.3. A word w ∈ Γ∗ is termed S-geodesic, with respect to a string
rewriting system S, if it has minimal length in its ∗⇐⇒

S
-equivalence class (and

simply geodesic where no ambiguity arises).



Geodesic rewriting systems 16

Clearly, S-geodesic words are precisely the geodesic words in the monoid Γ/S
relative to the generating set Γ, i.e., they have minimal length among all the words
in Γ∗ that represent the same element in Γ/S. Sometimes, we say that a word
w ∈ Γ∗ is a geodesic of a word u ∈ Γ∗, if w is S-geodesic and ∗⇐⇒

S
-equivalent to

u.

Proposition 4.4. If a rewriting system S is finite and preperfect, then one can
decide the word problem in the monoid defined by S in polynomial space, and
hence in exponential time. Moreover, along the way one can find an S-geodesic
of a given word w, as well as, all S-geodesics of w.

A locally confluent (strictly) length-reducing system is convergent, hence,
from the above, preperfect. However the Thue resolution of an arbitrary finite
convergent rewriting system may fail to be terminating or confluent as simple ex-
amples show. (Let Γ = {a, b, c, d, u, v} and S be the system with rules ab −→ u,

bc −→ v, uc −→ d3 and av −→ d3. Then T (S) is not confluent. The system
with one rule a −→ b has non-terminating Thue resolution.) It is also easy to

see that T (S) may be preperfect when S is not confluent. On the other hand,
if a confluent system S has no length-increasing rules, then the Thue resolution
can be constructed by symmetrizing S relative to all length preserving rules in S
(by adding the rule r −→ ` for each length preserving rule ` −→ r ∈ S) and a
straightforward argument shows that in this case T (S) is confluent, so preperfect.

Lemma 4.5. If S is a confluent rewriting system with no length-increasing rules
then the Thue resolution T (S) is preperfect.

For a system S (for example a Thue system) where all rules ` → r ∈ S are
either length-reducing |`| > |r|, or length-preserving |`| = |r|, it is convenient
to split S into a length reducing part SR and a length preserving part SP , so S =
SR ∪ SP . If S is a Thue system then all S-geodesic words that lie in the same
equivalence class have the same length and any two of them are SP -equivalent
(can be transformed one into other by a sequence of rules from SP ). Therefore, the
word length in Γ∗ induces a well-defined length on the factor-monoidM = Γ∗/SP

(application of relations from SP does not change the length). Hence, one can
view SR as a length reducing rewriting system over the monoid M = Γ∗/SP , in
which case we assume that SR ⊆ M ×M . Note that if SP is finite and if there is
an effective way to perform reduction steps with SR, then the word problem in M
is decidable.

Decidability of the word problem in M = Γ∗/SP allows one to test whether
a given rule from SR is applicable to an element of M . Since SR ⊆ M ×M is
terminating it suffices to show local confluence to ensure convergence. This may
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tempt one to introduce an analogue of the Knuth-Bendix completion. However,
in general an infinite number of critical pairs may appear in the Knuth-Bendix
process, and one needs to be able to recognise when the current system becomes
preperfect. Unfortunately, this is algorithmically undecidable. More precisely, the
following result holds.

Theorem 4.6 ([38]). The problem of verifying whether a finite Thue system is
preperfect or not is undecidable.

In fact in [39] this problem is shown to be undecidable even in the case of a
Thue system, whose length-preserving part SP consists only of a single rewriting
rule of the form ab←→ ba. On the other hand, under some additional assumptions
such a procedure can yield useful results ([17, 18]) - good examples in our context
are graph groups, c.f. Section 7.1.

In the final part of this section we discuss some complexity issues in comput-
ing with preperfect systems. By Proposition 4.4 finite preperfect systems allow
one to solve the word problem and find geodesics in at most exponential time.

Proposition 4.7. Let S be an infinite preperfect rewriting system. Then:

1) if S is recursive then the word problem in the monoid MS defined by S is
decidable;

2) if S is Ptime enumerable then one can solve the word problem in MS and
find a geodesic of a given word in exponential time.

Proof. Since preperfect rewriting systems are non-length-increasing it follows
that recursive preperfect systems are effective. (see the remark before Proposi-
tion 2.10). Therefore, given a word w one can effectively list all the rules in S
with the left-hand sides of length at most |w|. Denote this subsystem of S by Sw.
Now rewriting w using S is exactly the same as using Sw, so 1) and 2) follow from
the argument in the proof of Proposition 4.4 for finite preperfect systems.

5 Geodesically perfect rewriting systems
In this section we consider a subclass of Thue systems which are designed to deal
with geodesics in groups or monoids. In particular, we study confluent geodesic
systems, which form a subclass of preperfect string rewriting systems, and which
behave better in many ways than general preperfect systems. We call these sys-
tems geodesically perfect, as this indicates their essential properties and fits with
the terminology of preperfect systems. However as discussed in Section 1 they are
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also known in the literature as almost confluent or quasi-perfect. The motivation
for the study of geodesically perfect systems in group theory comes mainly from
attempts to solve the, algorithmically difficult, geodesics problem: that is, given
a finite presentation of a group G and a word w in the generators, find a word of
minimal length representing w as an element of G.

5.1 Geodesic systems
We consider first a somewhat larger, less well-behaved, class of rewriting systems.

Definition 5.1. A string rewriting system S ⊆ Γ∗ × Γ∗ is called geodesic if S-
geodesic words are exactly those words to which no length reducing rule from S
can be applied.

Note that if S is a geodesic rewriting system then its Thue resolution is also
geodesic, this allows us to assume, without loss of generality, that geodesic sys-
tems are Thue systems.

Remark 5.2. Dehn rewriting systems are not in general geodesic: they need only
rewrite words that represent the identity to (empty) geodesics in Γ∗/S.

A finite geodesic system gives a linear time algorithm to find a geodesic of a
given word u ∈ Γ∗. The following algebraic characterisation of finite geodesic
systems in groups is given in [24] (the definition of geodesic in [24] is slightly
more restrictive than ours, however this makes no difference to the result).

Theorem 5.3 ([24]). A group G is defined by a finite geodesic system S if and
only if G is a finitely generated virtually free group.

From the result of Rimlinger quoted above finitely generated virtually free
groups are precisely the universal groups of finite pregroups. It follows that every
finite length reducing geodesic system can be transformed to the length reducing
part of the rewriting system (see Section 8.1) associated with a finite pregroup.

The following result follows from Proposition 3.6.

Proposition 5.4. Let S be a geodesic Ptime enumerable string rewriting system
such that the monoid MS is a group. Then the word problem in the group MS is
decidable in polynomial time.

Very little is known about geodesic systems which do not present groups. In
particular, it is not clear whether the word problem remains decidable: that is,
given u, v ∈ Γ∗ decide whether or not u ∗⇐⇒

S
v.



Geodesic rewriting systems 19

Problem 5.5. Does there exist a finite geodesic system S for which the word prob-
lem is undecidable?

The following result demonstrates one of the principal difficulties of working
with geodesic systems.

Theorem 5.6. It is undecidable whether a finite rewriting system is geodesic.

Proof. The proof is a modification of the proof by Narendran and Otto [39] which
showed undecidability of preperfectness in presence of a single commutation rule.

We need some notation and we adhere as far as possible to that of [39]. We
shall define the computation of a Turing machine by a set of rewriting rules. A
configuration of the machine is then a particular form of word over the tape al-
phabet, the states and the end markers. In detail let Σ be a finite set, the tape
alphabet, let Σ be a disjoint copy of Σ, let Q be a finite set of states, and α and β
be special symbols representing end markers. There are two marked states q0 and
qf , the initial and final states. The computation of the machine can be described
by a finite set of rules which fall into the following categories, where we use the
notation p, q ∈ Q, p 6= qf , a, a′, b ∈ Σ:

1.) pa −→ a′q.

(Read a in state p, write a′, move one step to the right, switch to state q.)

2.) bpa −→ qba′. (As above, but move one step to the left.)

3.) pβ −→ paβ. (Create new space before the right end marker.)

These rewriting rules constitute the rewriting system associated to M . We assume
that the machine is deterministic, so there no overlapping rules. A configuration
of a (deterministic) Turing machine is then a word αuqvβ with u ∈ Σ

∗
, v ∈ Σ+,

and q ∈ Q. The initial configuration on input x ∈ Σ∗ is the word αq0xβ. We
assume that the machine stops if and only if it reaches the state qf .

Now let M be a Turing machine for which it is undecidable whether or not
computation halts on on input x ∈ Σ∗. Using this machine we are going to con-
struct, for each x ∈ Σ∗, a new length reducing rewriting system Sx, which is
geodesic if and only if the machine M does not stop on input x.

The alphabet Γ of each such system is to consist of the symbols of Σ ∪ Σ ∪
Q∪{α, β} and new additional symbols d, e, γ, δ, I, C. The system Sx will consist
of rules which simulate the computation of M on input x, with some additional
control on the number of steps of the computation carried out. Let x ∈ Σ∗ . To
begin with, we introduce rules leading to two different initial configurations. Let
m = |x|+ 5. We define the two rules

αq0xβγ ←−
(1)

ICm −→
(2)

αq0xβδ.
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Next we introduce rules, involving d, e, γ and δ, to control the number of steps
of the simulation. Symbols γ and δ convert d’s to e’s. The latter act as tokens
to control the number of steps performed by the simulation of M . Both γ and δ
move right consuming three d’s and producing two e’s, the difference being that
between γ may move to the right arbitrarily far from β whereas δ is forced to
remain very close to β. The effect on the length of a word of each rule is the
same.

Explicitly, we add new rules of the form:

γddd −→ eeγ, βδddd −→ βeeδ.

Note that, using rule (1), all words in ICm(ddd)∗ now reduce as follows

ICmd3n =⇒
(1)

αq0xβγd
3n ∗

=⇒ αq0xβe
2nγ.

However, using the rule ICm −→
(2)

αq0xβδ in the first step we can only do

ICmd3n =⇒
(2)

αq0xβδd
3n ∗

=⇒ αq0xβeeδd
3n−3

and then, for n ≥ 2, we are stuck.
Now we bring e into the game. The letter e is used to enable a computation

step of M . It can move to the left until it is at distance one to the right of a state
symbol. The generic rules for e allow e to move left and are as follows:

abee −→ aeb, aebee −→ aeeb for a ∈ Σ, b ∈ Σ ∪ {β}.

Let us describe the effect of these rules on words of the form

αupa1 · · · akβδd
3n

where n is huge (and k is viewed as constant k ≥ 0), ai ∈ Σ, u ∈ Σ
∗
. The

maximal possible reduction leads to a word of the form

αupa1ee · · · akeeβeeδd
3n′
.

In this case, if n is large enough, then n′ > 0, no further reduction is possible and
actually n− n′ ∈ O(1).

At this point we introduce rules to simulate the computation of the machine
M . There is one simulation rule corresponding to each rule in the rewriting system
associated to M . More precisely we introduce a rule uee −→ v for each rewriting
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I.) Initial rules:
αq0xβγ ←−

(1)
ICm −→

(2)
αq0xβδ.

II.) Step control rules, for a ∈ Σ, b ∈ Σ ∪ {β}:

γddd −→ eeγ,

βδddd −→ βeeδ,

abee −→ aeb,

aebee −→ aeeb.

III.) Simulation rules, for a, b ∈ Σ, p ∈ Q\{qf}:

paee −→ a′q,

bpaee −→ qba′,

pβee −→ paβ.

Figure 1: The system Sx.

rule u −→ v of M : so we have simulation rules of three types (where again we

use the notation p, q ∈ Q, a, a′, b ∈ Σ)

paee −→ a′q, bpaee −→ qba′, pβee −→ paβ.

The system Sx consists of the rules defined so far, which we list in Figure 1, so is
length reducing.

Now assume that the machine M halts on input x. This implies that only
finitely many computation steps t can be performed. Again choose n huge and
view t and |x| as constants. Consider a word of the form ICmd3n. Starting a
reduction with the second rule we get stuck at an irreducible word when the sim-
ulation reaches state qf :

ICmd3n −→
(2)

αq0xβδd
3n ∗

=⇒ αuqfa1ee · · · akeeβeeδd
3n′

at which point n − n′ ∈ O(1). The system Sx cannot be geodesic because with
the other initial rule we can first move Γ to the right of all the d’s thereby losing n
letters immediately:

ICmd3n −→
(1)

αq0xβγd
3n ∗

=⇒ αq0xβd
2nγ
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IV.) Completion rules:
∀i ≥ 0 : αwiβδ −→ αwiβγ

where αwiβee
∗

=⇒
Sx

αwi+1β, ∀i ≥ 0, and w0 = q0x.

Figure 2: The additional rules of system Tx.

and then when the simulation reaches the state qf the resulting irreducible word
will end e2n′

γ instead of δd3n′ (and otherwise will be the same).
It remains to cover the case when the machine does not halt on input x. We

shall show that in this case the system Sx is geodesic. Note that, as M never
reaches state qf , for all n > 0

αq0xβe
2n ∗

=⇒
Sx

αupyβ,

where u ∈ Σ
∗
, p ∈ Q and y ∈ (Σ ∪ {e})∗. For technical reasons we define a

sequence of words wi for i ≥ 0 as follows. We let w0 = q0x and let αwi+1β be
defined to be the irreducible descendant of αwiβee. The sequence of words wi is
infinite because the machine does not stop on input x. Thus

∀i ≥ 0 : αwiβee
∗

=⇒
Sx

αwi+1β ∈ IRR(Sx).

Now we add infinitely many rules to Sx to form a new system Tx as follows:

∀i ≥ 0 : αwiβδ −→ αwiβγ

As the rules of Tx are generated by steps of the Knuth-Bendix completion
procedure applied to Sx the congruences generated by Sx and Tx are the same.
To summarise, the system Tx consists of the rules of Figure 1 and those listed in
Figure 2. Thus Tx is is terminating and local confluence can be checked directly.

Each word w ∈ Γ∗ has a unique factorisation where we choose k and all nj to
be maximal:

u0(ICmdn1)u1 · · · (ICmdnk)uk.

The benefit of the system Tx is that it provides us with canonical geodesics. A
geodesic of w is given by:

û0(αwi1βγd
m1)û1 · · · (αwikβγd

mk)ûk,

where mj = nj mod 3. The crucial observation is that allowing only rules from
Sx we achieve exactly the same form with the exception that some γ’s are still δ’s.
Thus, the system is geodesic.
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5.2 Geodesically perfect systems
Definition 5.7. A string rewriting system S ⊆ Γ∗ × Γ∗ is called geodesically
perfect, if

i) S is geodesic, and

ii) if u, v ∈ Γ∗ are S-geodesics, then u ∗⇐⇒
S

v if and only if u ∗⇐⇒
SP

v, where SP

is the length-preserving part of S.

Again, it follows directly that if S is a geodesically perfect system then so is
its Thue resolution, so we can assume that geodesically perfect systems are Thue.
If S is a geodesically perfect Thue system then we write it as S = SR ∪SP where
SR is its length reducing part and SP its length preserving part. It also follows
from the definition that a geodesically perfect system is confluent.

There is a simple procedure to describe geodesics of elements in the monoid
Γ∗/S defined by a geodesically perfect Thue system S. Namely, the geodesics of a
given wordw ∈ Γ∗ are the SR-reduced forms ofw and any two such geodesics can
be obtained from one another by applying finitely many rules from SP . Moreover
it is shown in [6] that the word problem for monoids defined by finite geodesically
perfect rewriting systems is PSPACE complete.

The following result relates geodesically perfect to preperfect Thue systems.

Proposition 5.8. Let S ⊆ Γ∗ × Γ∗ be a Thue system. Then

1) if S is geodesically perfect then it is preperfect and

2) if S is preperfect and geodesic then it is geodesically perfect.

Proof. 1) follows from the observation that geodesically perfect implies confluent.
To see 2) observe that S is confluent, hence Church-Rosser. Therefore, if u, v are
two geodesics with u ∗⇐⇒

S
v then u ∗

=⇒
S

w and w ∗⇐=
S

v for some w ∈ Γ∗. Since

u, v are S-geodesics the only rules that could be applied in u ∗
=⇒

S
w and w ∗⇐=

S
v

are length preserving, hence u ∗⇐⇒
SP

v, as required.

In Section 8.1 we will describe a general tool to construct geodesically perfect
systems defining groups: based on the fact that rewriting systems associated with
pregroups are always geodesically perfect.

In Corollary 8.7 we prove that groups defined by finite geodesic systems are
exactly the groups defined by finite geodesically perfect systems.

Obviously, every geodesic rewriting system S contains the length-reducing
part TR of some (infinite) geodesically perfect Thue system T defining the same
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monoid. Indeed, one can obtain T by first constructing the Thue resolution T ′ of
S and then adding length-preserving rules to T ′ to make it confluent. But it is not
true that every finite geodesic rewriting system S is the length-reducing part of a
finite geodesically perfect system defining the same monoid. To see this consider
the following example.

Example 5.9. The following system is geodesic, and it is not the length-reducing
part of any finite geodesically perfect system defining the same quotient monoid.

add −→ ab, add −→ ac, bdd −→ eb, cdd −→ ec.

Indeed, let S be the system above, and let T = S ∪ { b←→ c }. The new system
T is geodesically perfect by Proposition 6.1. But T -geodesics are computed by
using rules from S. As ∗⇐⇒

S
⊆ ∗⇐⇒

T
we see that S is a geodesic system.

Let us show that S is not the length-reducing part of any equivalent, finite,
geodesically perfect system. For a contradiction, assume that a finite set T of
non-trivial symmetric rules can be added to S such that S ∪ T becomes geodesi-
cally perfectand is equivalent to S. Assume T involves a new letter, say f . Then
f is equal to some word uf over {a, b, c, d, e} which is irreducible with respect
to S. If uf is empty, then we do not need f , hence uf is nonempty and we have
uf

∗
=⇒

T
f . The rules of T are symmetric (hence length preserving), so f is accom-

panied by a rule, say f ←→ a, and f is redundant. So, actually we may assume
T ⊆ {a, b, c, d, e}∗ × {a, b, c, d, e}∗. Clearly, aenb

∗⇐=
S

ad2n+2 ∗
=⇒

S
aenc, hence

aenb
∗⇐⇒
S

aenc and aenb, aenc are in the same class and are S-reduced. Because

T is finite, some left hand side of T must contain a word in u ∈ ae∗∪e∗∪e∗b∪e∗c.
But all these words u are S-reduced, hence geodesic. Moreover, for any such u
there is no other word v in the same class as u and of the same length. So, for
large enough n the rules of T cannot be applied to either aenb or aenc. As T is
the length preserving part of the supposedly geodesically perfect system S ∪ T ,
this is the required contradiction.

Remark 5.10. Let M = {a, b, c, d, e}∗/S be the quotient monoid as in Exam-
ple 5.9. The proof above can be modified in order to show that actually there is no
finite system T ⊆ {a, b, c, d, e}∗×{a, b, c, d, e}∗ which is geodesically perfect and
which defines M . However, if we use an additional letter f , then the following
system defines M , too.

dd −→ f, af ←→ ab, af ←→ ac, bf ←→ eb, cf ←→ ec.

The system is geodesically perfect, by Proposition 6.1 again.
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We note that Example 5.9 illustrates a general fact: namely that if S is a rewrit-
ing system and there exists a set T of symmetric rules such that S ∪ T is geodesi-
cally perfect (but not necessarily equivalent to S) then S itself is geodesic. Since
geodesic systems are undecidable whereas geodesically perfect systems are de-
cidable this could prove to be a useful test for a geodesic system.

6 Knuth-Bendix completion for geodesically perfect
systems

A classical result of Nivat and Benois (stated in Proposition 6.1) shows that it is
decidable whether a finite Thue system is geodesically perfect. In order to explain
the criterion we need the notion of critical pair. All rewriting systems S in this
subsection are viewed as Thue systems and split into a length reducing part SR

and a length preserving part of symmetric rules SP . By definition, a critical pair
is a pair (x, y) arising from the situation

x ⇐=
(`1,r1)

z =⇒
(`2,r2)

y

subject to the following conditions:

1. (`1, r1) ∈ SR is length reducing, but (`2, r2) ∈ S can be any rule.

2. z = `iui = uj`j with |ui| < |`j| and i, j ∈ {1, 2} such that i = j implies
ui = uj = 1.

Proposition 6.1 ([41]). A finite Thue system S is geodesically perfect if and only if
for all critical pairs (x, y) there are words x′ and y′ such that with length reducing
reductions we have:

x′
∗⇐=

SR

x, y
∗

=⇒
SR

y′,

and with length preserving reductions we have:

x′
∗⇐⇒

SP

y′

Proof. The proof is not very difficult and can be found, for example, in the book
[6, Thm. 3.6.4].

Remark 6.2. Note that the words x′ and y′ in Proposition 6.1 need not be irre-
ducible w.r.t. the length reducing subsystem SR. This fact is actually used in the
proof of Proposition 6.3.
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This criterion leads to the following version of the Knuth-Bendix procedure.
Consider a finite Thue system S0. We shall construct a series of Thue systems
S0 ⊆ S1 ⊆ S2 ⊆ · · · such that the union over all Si is geodesically perfect and
we have Si = Si+1 (i.e., the completion procedure stops) if and only if there exists
a finite Thue system T which is geodesically perfect and equivalent to S0, that is
∗⇐⇒
S0

=
∗⇐⇒
T

. We divide the procedure into phases. We assume that in phase

i a Thue system Si = SR ∪ SP has been defined such that SR contains the length
reducing rules, SP contains the length preserving rules, and ∗⇐⇒

S0

=
∗⇐⇒
Si

.

We begin phase i + 1 by computing a list of all critical pairs of the system Si

(which were not already considered in phases 1 to i). For each such pair (x, y)
choose words x̂, ŷ, irreducible with respect to the subsystem SR, such that

x̂
∗⇐=

SR

x, y
∗

=⇒
SR

ŷ.

Define new rules as follows.

• If |x̂| > |ŷ| then add the rule x̂ −→ ŷ to SR.

• If |ŷ| > |x̂| then add the rule ŷ −→ x̂ to SR.

• If |ŷ| = |x̂| then test whether or not

x̂
∗⇐⇒

SP

ŷ.

If the answer is negative then add the symmetric rule x̂←→ ŷ to SP .

The system Si+1 is defined to be Si together with all new rules which have been
added to resolve all critical pairs of Si. On a formal level we define Si for all
i ≥ 0, but, of course, the procedure stops as soon as Si = Si+1, i.e., no new rules
are needed to resolve critical pairs of Si. Thus, if it stops with Si = Si+1 then Si is
a finite geodesically perfect Thue system, which is equivalent to S0 (and we have
Si = Sj for all i ≤ j). However, what we really wish is stated in the following
proposition.

Proposition 6.3. Let S0 = SR ∪ SP be a finite Thue system with length reducing
rules SR and length preserving rules SP . Let

S0 ⊆ S1 ⊆ · · ·Si ⊆ · · ·

be the sequence of Thue systems which are computed by the Knuth-Bendix com-
pletion as described above. Let S̃ =

⋃
i≥0 Si. Then the system S̃ is geodesically

perfect and we have ∗⇐⇒
S0

=
∗⇐⇒
Si

=
∗⇐⇒es for all i ≥ 0. Moreover the

following statements are equivalent.
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1.) We have Si = Si+1 for some i ≥ 0.

2.) The Thue system S̃ is finite and geodesically perfect.

3.) There exists some finite geodesically perfect Thue system T such that ∗⇐⇒
S0

=

∗⇐⇒
T

.

Proof. If Si = Si+1 for some i ≥ 0, then clearly S̃ is finite. It is geodesically
perfect by the criterion of Nivat and Benois, c.f. Proposition 6.1. So, assume
there exists some finite geodesically perfect Thue system T with ∗⇐⇒

S0

=
∗⇐⇒
T

.

We have to show that the procedure stops. We let m be large enough that m ≥
max { |`| | (`, r) ∈ T }. Next we consider i large enough that Si contains all
rules from S̃ where the left hand side has length of at most m. Clearly, an index
i ∈ N with this property exists. We will show that Si is geodesically perfect, and
Proposition 6.1 immediately implies Si = Si+1. For technical reasons, in a first
step we we remove from T all length preserving rules (`, r) ∈ T where we can
apply to ` a length reducing rule of T . It is clear that new and smaller system T ′

is still geodesically perfect and ∗⇐⇒
S0

=
∗⇐⇒
T ′

; so we replace T with T ′. Since

now (`, r) ∈ T with |`| = |r| implies that ` and r are geodesics and since S̃ is
geodesically perfectand m is large enough, we see that ∗⇐⇒

TP

⊆ ∗⇐⇒
(Si)P

.

Next consider some word x̂, which is irreducible with respect to the length
reducing rules in Si. The claim is that x̂ is a geodesic. Indeed assume the contrary.
Then a length reducing rule (`, r) ∈ T can be applied to x̂. Since ` is not geodesic,
there is a length reducing rule in S̃ which can be applied to `, but due to the
definition of m this rule is in Si, too. Thus, we have a contradiction and so Si

is geodesic. Now suppose that x̂ and ŷ are geodesic and that x̂ ∗⇐⇒
Si

ŷ. Then

x̂
∗⇐⇒
T

ŷ so x̂
∗⇐⇒

TP

ŷ. As ∗⇐⇒
TP

⊆ ∗⇐⇒
(Si)P

this implies x̂ ∗⇐⇒
(Si)P

ŷ so Si is

geodesically perfect.

A finite geodesic (or geodesically perfect) rewriting system S ⊆ Γ∗ × Γ∗

allows one to find S-geodesics in linear time. In particular, if the monoid M =
Γ∗/S defined by S is a group one can solve the word problem in M in linear time.
However, in general, there seems to be no linear time reduction from the word
problem in a monoid M to the geodesic problem.
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7 Examples of preperfect systems in groups

7.1 Graph groups
Let ∆ = (Σ, E) be an undirected graph. The graph group (or a right angled Artin
group, or a partially commutative group) defined by ∆ is the group G(∆) given
by the presentation

G(∆) = F (Σ)/ { ab = ba | (a, b) ∈ E } ,

where F (Σ) is the free group with basis Σ. The group G(∆) has a monoid pre-
sentation given by a preperfect rewriting system S∆. Indeed, let Γ = Σ∪Σ where
Σ is a disjoint copy of Σ. The rules of S∆ are:

aa −→ 1

ab ←→ ba if
{

(a, b), (a, b), (a, b), (a, b)
}
∩ E 6= ∅

where a, b ∈ Γ and a = a for all a ∈ Γ.
If the graph ∆ is finite the system S∆ provides us with a decision algorithm

for solving the word problem in G(∆), though not the fastest one (WP in graph
groups can be solved in linear time, see [53, 18]). However, the system S∆ is very
intuitive and simple, and it gives the geodesics in G(∆), which are precisely the
words whose length cannot be reduced by S∆.

Although it is preperfect the system S∆ is not geodesically perfect. However
every graph group may be constructed by a sequence of HNN-extensions and free
products with amalgamation, starting with infinite cyclic groups, and so, from the
results of Section 8 below it follows that these groups may be defined by (infinite)
geodesically perfect systems. Moreover finite convergent rewriting systems for
these groups have been found by Hermiller and Meier [27] (see also [5, 22, 52]).

7.2 Coxeter groups
Let D3 = {a, b}∗/{a2 = 1, b2 = 1, (ab)3 = 1} be a dihedral group. Define a
preperfect system S by the following rules

aa −→ 1,
bb −→ 1,
aba ←→ bab.

More generally, a Coxeter group on n generators a1, . . . , an is given by a sym-
metric n× n matrix (mij) with entries in N and 1’s on the diagonal. The defining
relations are given by:
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(aiaj)
mij = 1 for all 1 ≤ i, j ≤ n.

Note that this implies a2
i = 1 since mii = 1; and if mij = 0, then the equation

(aiaj)
0 = 1 is trivial. (Therefore it is also common to write (aiaj)

∞ = 1, because
aiaj turns out to be an element of infinite order in this case.)

The word problem of Coxeter groups can be solved by the preperfect Tits
system [51] (see also ([9, 1, 12]) of rewriting rules:

a2
i −→ 1, for 1 ≤ i ≤ n,

(aiajaiaj · · · )←→ (ajaiajai · · · ) for 1 ≤ i, j ≤ n and
|(aiajaiaj · · · )| = |(ajaiajai · · · )| = mij.

The classical proof that this system is preperfect relies on the fact that Cox-
eter groups are linear [4]. Of course this system is not geodesically perfect. For
virtually free Coxeter groups Corollary 8.7 guarantees the existence of a finite
geodesically perfect rewriting system. It is shown in [26] that every Coxeter group
is either virtually free or contains a surface group; but the question of whether the
latter can be defined by a geodesically perfect system (necessarily infinite) re-
mains open.

Convergent rewriting systems for Coxeter groups have been constructed, using
the Knuth-Bendix procedure, by le Chenadec [34], but in general these are not
finite. Finite convergent rewriting systems for certain classes of Coxeter groups
have been found by Hermiller [28] (see also [19, 8]).

7.3 HNN-extensions
Let G be any group with isomorphic subgroups A and B. Let Φ : A → B an
isomorphism and let t be a fresh letter. By 〈G, t〉 we mean the free product of
G with the free group F (t) over t. The HNN-extension of G by (A,B,Φ) is the
quotient group

HNN(G;A,B,Φ) = 〈G, t〉 /
{
t−1at = Φ(a)

∣∣ a ∈ A }
There is normal form theorem for elements in HNN(G;A,B,Φ), which implies
that G embeds into HNN(G;A,B,Φ) and shows under which restrictions decid-
ability of the word problem for G transfers to HNN-extensions. Usually the nor-
mal form theorem is shown by appeal to a combination of arguments of Higman,
Neumann and Neumann and Britton, see [35, Chapter IV, Theorem 2.1].

Another option is to define a convergent string rewriting system. To see this,
let Γ = { t, t−1 }∪G \ {1} and view Γ as a possibly infinite alphabet. We identify
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1 ∈ G with the empty word 1 ∈ Γ∗. We choose transversals for cosets of A and
B. This means we choose X, Y ⊆ G such that there are unique decompositions

G = AX = BY

We may assume that 1 ∈ X ∩ Y .
The system S ⊆ Γ∗ × Γ∗ is now defined by the following rules with the

convention that [gh] denotes gh ∈ G (as a single letter or the empty word).

t−1t −→ 1; tt−1 −→ 1; gh −→ [gh], for all g, h ∈ G;
tg −→ aty, if a ∈ A, a 6= 1, y ∈ Y, Φ(a)y = g in G;
t−1g −→ bt−1x, if b ∈ B, b 6= 1, x ∈ X, Φ−1(b)x = g in G.

Proposition 7.1. The system S above is convergent and defines the HNN-extension
of G by by (A,B,Φ). Every irreducible normal form admits a unique decomposi-
tion as

g = g0t
ε1g1 · · · tεngn

with n minimal such that n ≥ 0, g0 ∈ G \ {1}, and either εi = −1 with gi ∈ X
or εi = 1 with gi ∈ Y , for all 1 ≤ i ≤ n.

Proof. Obviously, Γ∗/S defines the HNN-extension of G by by (A,B,Φ). Al-
though the system has length-increasing rules it is not too difficult to prove ter-
mination. Local confluence is straightforward, so S is indeed convergent. Since
all elements of G are irreducible we see that G embeds into the HNN-extension.
Moreover, it is also clear that we obtain the normal form as stated in the proposi-
tion.

This convergent system also leads to the following well-known classical fact.

Corollary 7.2. Assume that have the following properties: H is finitely gener-
ated and has a decidable word problem, membership problems for A and B are
solvable, and the isomorphism Φ : A → B is effectively calculable. Then the
HNN-extension of G by by (A,B,Φ) has a decidable word problem.

Proof. We may represent all group elements in H by length-lexicographic first
elements (i.e., choose among all geodesics the lexicographical first one). The
transversal X (resp. Y ) may be chosen to consist of the length-lexicographic first
element of each coset Ag (resp. Bg), where g runs over G. Given g we can
compute the representative of Ag in X (resp. Bg in Y ), because membership is
decidable for A and B. Now, given b ∈ B, the ability to compute Φ allows us
to find a ∈ A with Φ(a) = b. Thus, all steps in computing normal forms are
effective.
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It should be clear however that the purpose of the system S above is not to
decide the word problem effectively; but rather to facilitate straightforward proofs
of other results, such as Britton’s lemma. Consider the following system B of
Britton reduction rules.

t−1t −→ 1; tt−1 −→ 1; gh −→ f, if gh = f in G;

t−1at −→ Φ(a) if a ∈ A;

tbt−1 −→ Φ−1(b) if b ∈ B

The system B is length reducing, but not confluent. However, =⇒
B
⊆ ∗

=⇒
H

,
hence we can think of B as as subsystem of H . Britton’s lemma says that B
is confluent on all words which represent 1 in the HNN-extension. Here is a
proof using our system S. Consider any Britton reduced word g. It has the form
g = g0t

ε1g1 · · · tεngn. Applying rules from H does not destroy the property of
being Britton reduced and neither t nor t−1 can vanish. Thus, if g reduces to the
empty word using H , then g is already the empty word.

Observe thatB is not a geodesic system, because atΦ(a)−1 is Britton reduced,
but atΦ(a)−1 = t. In Example 8.2 below we construct a geodesically perfect
rewriting system for an HNN-extension.

7.4 Free products with amalgamation
There is a natural convergent (resp. geodesically perfect) rewriting system which
defines amalgamated products. Let A and B be groups intersecting in a common
subgroup H . This time we choose transversals for cosets of H in A and in B; that
is X ⊆ A and Y ⊆ B with 1 ∈ X ∩ Y such that there are unique decompositions
A = HX and B = HY . We let Γ = (A ∪ B) \ {1} and we identify 1 with the
empty word in Γ∗.

We use the convention to write [ab] for the product ab whenever it is defined.
This means [ab] is viewed as a letter in Γ or [ab] = 1 and it is defined if either
a, b ∈ A or a, b ∈ B.

The system S ⊆ Γ2 × ({1} ∪ Γ ∪ Γ2) is now defined by the following rules:

ab −→ [ab] if [ab] is defined,
ab −→ [ah]y if 1 6= a ∈ A, h ∈ H, b 6= y ∈ Y, and b = [hy]
ba −→ [bh]x if 1 6= b ∈ B, h ∈ H, a 6= x ∈ X, and a = [hx]

The system defines the amalgamated product G = A ∗H B. It is terminating by
a length lexicographical ordering. Local confluence follows by a direct inspec-
tion, whence convergence. Again we obtain the normal form theorem (cf. [36,
Corollary 4.4.1]): every element g of G has a unique decomposition as

g = [hg0]g1 · · · gn,
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where h ∈ H , gi is a non-trivial element of X ∪ Y and gi and gi+1 do not lie in
the same factor. However, in practice we may not wish to compute transversals
explicitly. So let us apply only length reducing rules ab −→ [ab] only until we end
up with a word g = g0 · · · gn, to which no length reducing rule may be applied.
Since we cannot apply length reducing rules to g we obtain that

∀0 ≤ i < n : gi ∈ A ⇐⇒ gi+1 ∈ B \H ∧ gi ∈ B ⇐⇒ gi+1 ∈ A \H.

Further applications of the rules of S preserve this property. Thus, S is geodesi-
cally perfect, even if we use the length preserving rules only in the direction indi-
cated above. Moreover, if we cannot apply length reducing rules to g = g0 · · · gn

then we have g = 1 if and only if both n = 0 and g0 = 1.

8 Stallings’ pregroups and their universal groups
We now turn to the notion of pregroups in the sense of Stallings, [49], [50]. A
pregroup P is a set P with a distinguished element ε, equipped with a partial
multiplication m : D → P , (a, b) 7→ ab, where D ⊆ P ×P , and an involution (or
inversion) i : P → P , a 7→ a−1, satisfying the following axioms for all a, b, c, d ∈
P . (By “ab is defined” we mean to say that (a, b) ∈ D and m(a, b) = ab.)

(P1) aε and εa are defined and aε = εa = a;

(P2) a−1a and aa−1 are defined and a−1a = aa−1 = ε;

(P3) if ab is defined, then so is b−1a−1, and (ab)−1 = b−1a−1;

(P4) if ab and bc are defined, then (ab)c is defined if and only if a(bc) is defined,
in which case

(ab)c = a(bc);

(P5) if ab, bc, and cd are all defined then either abc or bcd is defined.

It is shown in [29] that (P3) follows from (P1), (P2), and (P4), hence can be
omitted.

The universal group U(P ) of the pregroup P can be defined as the quotient
monoid

U(P ) = Γ∗/ { ab = c | m(a, b) = c } ,

where Γ = P \ {ε} and ε ∈ P is identified again with the empty word 1 ∈ Γ∗.
The elements of U(P ) may therefore represented by finite sequences (a1, . . . , an)
of elements from Γ such that aiai+1 is not defined in P for 1 ≤ i < n: such
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sequences are called P -reduced sequences or reduced sequences. Since every
element in U(P ) has an inverse, it is clear that U(P ) forms a group.

If Σ is any set, then the disjoint union P = {ε} ∪ Σ ∪ Σ where Σ is a copy
of Σ yields a pregroup with involution given by ε = ε, a = a, for all a ∈ Σ, such
that pp = ε, for all p ∈ P . In this case the universal group U(P ) is nothing but
the free group F (Σ).

The universal property of U(P ) holds trivially, namely the canonical mor-
phism of pregroups P → U(P ) defines the left-adjoint functor to the forgetful
functor from groups to pregroups.

Stallings [49] showed that composition of the inclusion map P → P ∗ with the
standard quotient map P ∗ → U(P ) is injective, where P ∗ is the free monoid on
P . The first step of his proof establishes reduced forms of elements of U(P ), up
to an equivalence relation ≈ which, for completeness, we describe here. Define
first a binary relation ∼ on the set of finite sequences of elements of P by

(a1, . . . , ai, ai+1, . . . , an) ∼ (a1, . . . , aic, c
−1ai+1, . . . , an),

provided (ai, c), (c
−1, ai+1) ∈ D. Then Stallings’ equivalence relation ≈ is the

transitive closure of ∼.
Guiding examples are again amalgamated products and HNN-extensions.

Example 8.1. As in Section 7.4, let A and B be groups intersecting in a common
subgroup H . Consider the subset P = A ∪ B ⊆ G = A ∗H B. Define a partial
multiplication p·q in the obvious way; that is p·q is defined if and only if either p, q
are both in A or p, q both in B. Then P is a pregroup where D = A×A∪B×B.
We obtain the following geodesically perfect rewriting system (where the length is
computed w.r.t. P , thus elements of P are viewed as letters).

1 −→ ε
p · q −→ r if (p, q) ∈ D, pq = r ∈ G
a · b ←→ ah · h−1b if a ∈ A \H, b ∈ B \H.

Example 8.2. Let H be the HNN-extension HNN(G;A,B,Φ) as defined in Sec-
tion 7.3 and, as before, let X and Y be transversals for A and B in G with
X ∩ Y = {1}. Consider the subset

P = G ∪GtY ∪Gt−1X ⊂ H.

We define a partial multiplication by the obvious rules (left to the reader)
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according to the following table.

G×G −→ G

G×GtY −→ GtY

G×Gt−1X −→ Gt−1X

GtY ×G −→ GtY

Gt−1X ×G −→ Gt−1X

Gt−1X ×GtY −→ G if the inner part XG is in A

GtY ×Gt−1X −→ G if the inner part Y G is in B.

This defines a pregroup P for H , where

D = G×G ∪G×GtY ∪G×Gt−1X ∪GtY ×G ∪Gt−1X ×G ∪ S,

where S is the subset of Gt−1X × GtY ∪ GtY × Gt−1X where inner parts XG
or Y G belong to A or B, as appropriate. The partial multiplication table can be
directly read from the convergent system we used in Section 7.3. As we shall see
below, it defines an (infinite) geodesically perfect rewriting system, where again
we view elements of P as letters. Note also that we could replaceX and Y byX =
Y = G throughout the definition of our pregroup P in which the multiplication
table could be slightly more simply described, but would be unnecessarily large.

In [49] an alternative pregroup forH is defined with underlying set consisting
of equivalence classes of elements ofG∪t−1G∪Gt∪t−1Gt under the equivalence
relation generated by t−1at ∼ Φ(a), for a ∈ A. However we feel that the resulting
rewriting rules are obscured by the equivalence relation on the underlying set.

The following is the principal result on the universal groups of pregroups.

Theorem 8.3 (Stallings [49]). Let P be a pregroup. Then:

1) Every element of U(P ) can be represented by a P -reduced sequence;

2) any two P -reduced sequences representing the same element are≈ equivalent,
in particular they have the same length;

3) P embeds into U(P ).

8.1 Rewriting systems for universal groups
The result of [49] cited above may be regarded as showing that composition of the
inclusion map P → P ∗ with the standard quotient map P ∗ → U(P ) is injective,
where P ∗ is the free monoid on P . We show here how to achieve this with the
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help of a geodesically perfect Thue system. Since this approach may be new we
work out the details.

It is convenient to work over P ∗ and view each element of P as a letter. We
have to distinguish whether a product is taken in the free monoid P ∗ or in P , and
we introduce the following convention. Whenever we write [ab] we mean that
(a, b) ∈ D ⊆ P × P with m(a, b) = [ab] ∈ P : that is the product ab is defined in
P and yields a letter.

The system S = S(P ) ⊆ P ∗ × P ∗ is now defined by the following rules.

ε −→ 1 (= the empty word)
ab −→ [ab] if (a, b) ∈ D
ab ←→ [ac][c−1b] if (a, c), (c−1, b) ∈ D

Theorem 8.4. Let P be a pregroup. Then the following hold.

1) P ∗/S(P ) ' U(P ).

2) S is a geodesically perfect Thue system.

Proof. Obviously, P ∗/S defines U(P ) which proves 1). To prove 2) we show
first that the system S is strongly confluent. For this we have to consider two rules
such that the left-hand sides overlap. Strong confluence involving only symmetric
rules is trivial. Thus, we may assume that one rule is length-reducing. If one
of the rules is ε −→ 1, then (by symmetry) the other rule is either εb −→ b or
εb −→ c[c−1b]. Since (c−1, b) ∈ D implies (c, c−1b) ∈ D and [c(c−1b)] = b [49],
both situations lead to b in at most one step. The next situation is:

[ab]⇐=
S
ab=⇒

S
[ac][c−1b]

Since (a, b) and (c−1, b) both belong to D we have (a, c(c−1b)) ∈ D, as above,
and (P4) implies that (ac, c−1b) ∈ D, so we can apply the rule [ac][c−1b] −→ [ab].
Finally, we have to consider:

yd⇐=
S
abd=⇒

S
az

with a, b, d ∈ P and y, z ∈ P ∗. We may assume that one rule is length-reducing
of type ab −→ y = [ab]. The other rule is either of type bd −→ [bd] or of type
bd←→ [bc][c−1d]. Assume first that (b, d) ∈ D, then in both case we can use:

[ab]d=⇒
S

[abb−1][bd] = a[bd]⇐=
S
a[bc][c−1d].

The remaining case is that the (b, d) /∈ D and the situation is:

[ab]d⇐=
S
abd=⇒

S
a[bc][c−1d].
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Since (a, b), (b, c) and (c, c−1d) are in D, (P5) implies that either abc or bcc−1d =
bd is defined in P . But bd is not defined, therefore abc is defined. We obtain:

[ab]d=⇒
S

[abc][c−1d]⇐=
S
a[bc][c−1d].

Now we show that S is geodesic, from which it follows that it is geodesically
perfect. Start with a sequence w ∈ P ∗ and apply only length-reducing rules
until this in no longer possible. Clearly, the resulting sequence is P -reduced:
w

∗
=⇒

S
a1 · · · an ∈ Γ∗ such that aiai+1 is not defined in P for 1 ≤ i < n. Possibly,

one can still apply the symmetric rules, but we claim that any application of the
symmetric rules gives again a P -reduced system. Indeed, assume u ∈ Γ∗ is P -
reduced, but it is not P -reduced after one application of a length-preserving rule
from S(P ). Then there are four consecutive elements abde in u and an element c ∈
P such that neither ab nor bd nor de is defined, but bc, c−1d are defined and either
a(bc) or (bc)(c−1d) or (c−1d)e is defined. Assume the product a(bc) is defined.
Then the sequence a, bc, c−1, d satisfies the premise of the axiom (P5), so either
a(bc)c−1 = ab or (bc)c−1d = bd must be defined, contradicting the assumption
that u is P -reduced. Similarly, (c−1d)e cannot be defined. Suppose now that
(bc)(c−1d) is defined. Then the sequence b, c, c−1d satisfies the premise of (P4),
since (bc) and c(c−1d) are defined. Since (bc)(c−1d) is defined (P4) implies that
b(c−1(cd)) = b(1d) = bd is defined, in contradiction with P -reducibility of u.

Remark 8.5. Stallings’ normal form theorem 8.3 is now a consequence of The-
orem 8.4 because elements from P are irreducible, and the rewriting system is
geodesically perfect. Thus, P -reduced sequences that define the same elements in
U(P ) are ≈ equivalent.

Remark 8.6. As above let Γ = P \ {ε}. Since S(P ) ⊆ P ∗ × P ∗ is strongly con-
fluent and geodesic, we obtain a geodesically perfect presentation of the universal
group U(P ). In some sense it is however nicer to have such a presentation over
Γ. So, let us put S ′(P ) ⊆ Γ∗ × Γ∗ defined by the following rules:

aa−1 −→ 1 if a ∈ Γ
ab −→ c if (a, b) ∈ D, a 6= b−1, [ab] = c
ab ←→ [ac][c−1b] if (a, c), (c−1, b) ∈ D

The difference is that a rule aa−1 −→ ε ∈ S (ε ∈ P is a letter) is replaced
by aa−1 −→ 1 ∈ S ′(P ). This rule of S ′(P ) needs two steps of S(P ), but in
S(P ) we win strong confluence, whereas S ′(P ) is not strongly confluent. However
confluence of S(P ) transfers to S ′(P ). Hence, both systems S(P ) and S ′(P ) are
geodesically perfect.
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Using the geodesically perfect system S(P ) for U(P ) where we P is finite
we see that the result of Rimlinger [44] leads to the following statement which is
slightly stronger than the result of [24].

Corollary 8.7. Let G be a finitely generated group. The following conditions are
equivalent.

1.) G is virtually free.

2.) G can be presented by some finite geodesically perfect system.

3.) G can be presented by some finite geodesic system.

Proof. By Rimlinger [44], a finitely generated virtually free group is the universal
group U(P ) of some finite pregroup P . By Theorem 8.4 it has a presentation by
the (finite) geodesically perfect system S(P ). In our setting every geodesically
perfect system is geodesic, so we get the implication from 2.) to 3.) for free. In
order to pass from 3.) to 1.) one has to show that the set of words which are
equivalent to 1 ∈ G forms a context-free language. This is can be demonstrated
using an argument from [15], which has also been used in [24]. Consider a word
w and write it as as w = uv such that u is geodesic. The prefix u is kept on a push
down stack. Suppose that v = av′, for some letter a. Push a onto the top of the
stack: so the stack becomes ua. There is no reason to suppose that ua is geodesic
and we perform length reducing reduction steps on it to produce an equivalent
geodesic word û. Suppose this requires k steps:

ua
k

=⇒
SR

û

Let us show that we can bound k by some constant depending on only on S.
Indeed for all letters a we may fix a word wa such that awa

∗
=⇒
SR

1. But this means

ûwa
∗

=⇒
SR

ũ,

where ũ is geodesic and ũ represents the same group element as u did. But u
was geodesic, too. Hence |u| = |ũ|. Therefore |û| ≥ |u| − |wa| and this tells us
k ≤ |wa|. Since k is bounded by some constant we see that the whole reduction
process involves a bounded suffix of the word ua, only. This means we can fac-
torise ua = pq and û = pr, where the length of q is bounded by some constant
depending on S only. Moreover, q k

=⇒
SR

r. Since the length of q is bounded this

reduction can be performed using the finite control of the pushdown automaton.
The automaton stops once the input has been read and then the stack gives us a
geodesic corresponding to the input word w. In particular, the set of words which
represent 1 in the group is context-free. Thus, the group presented is context-free;
and using a result of Muller and Schupp [37] we see that G is virtually free.
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8.2 Characterisation of pregroups in terms of geodesic systems
In this section we consider Thue systems S ⊆ Γ∗ × Γ∗, corresponding to group
presentations, i.e., Γ = X ∪X−1 and S contains all the rules xx−1 → 1, x−1x→
1, x ∈ X . We shall refer to these as group rewriting systems. We say that a
rewriting system S ⊆ Γ∗ × Γ∗ is triangular if each rule ` → r ∈ S satisfies
the ”triangular” condition: |`| = 2, |r| ≤ 1, so every rule in S is of the form
ab → c where a, b ∈ Γ and c ∈ Γ ∪ {1}. Observe that a triangular system is
length-reducing.

We also say that S is almost triangular if S = S ′ ∪ S◦, where S ′ is triangular
and all rules in S◦ are trivial, i. e., of the form a → 1, for some a ∈ Γ. Non-
trivial examples of triangular systems come from triangulated presentations of
groups. Namely, if 〈X | R〉 is a presentation of a group then one can triangulate
this presentation by adding new generators and replacing old relations by finitely
many triangular ones.

Another type of example arises from pregroups. Let P be a pregroup. In
Section 8.1 we defined two rewriting systems S(P ) and S ′(P ) associated with P
that define the universal group U(P ). Notice that the length-reducing part S ′(P )R

of S ′(P ) is triangular (here Γ = P \ {ε}):

S ′(P )R = {aa−1 → 1, ab→ c | a, b, c ∈ Γ, (a, b) ∈ D, [ab] = c, a 6= b−1},

meanwhile, the length reducing part S(P )R of S(P ) is almost triangular, since it
contains the trivial rule ε→ 1.

Theorem 8.4 implies the following result.

Corollary 8.8. Let P be a pregroup. Then S ′(P )R is a triangular geodesic sys-
tem, S(P ) is an almost triangular geodesic system and U(P ) = Γ∗/S ′(P )R =
P ∗/S(P )R.

Proof. It suffices to observe, that S ′(P )R and S ′(P ) define the same equivalence
relation on Γ∗. Indeed, every rule of the type ab → [ac][c−1b], where [ac] and
[c−1b] are defined, can be realized as a following rewriting sequence in S ′(P )R:

ab← acc−1b→ [ac]c−1b→ [ac][c−1b],

which shows that S ′(P )R and S ′(P ) are equivalent. The rest follows from Theo-
rem 8.4 and Remark 8.6.

To prove the converse of this corollary we need some notation. Let S ⊆ Γ∗ ×
Γ∗ be a triangular group rewriting system, where Γ = X ∪X−1. The congruence
∗⇐⇒
S

on Γ∗ induces an equivalence relation on the subset Γ∪{1}, which we denote

by ≈. Define PS to be the quotient (Γ∪{1})/ ≈ and write [z] for the equivalence
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class of the element z ∈ Γ ∪ {1} and in addition ε for the equivalence class of 1.
Define an involution p → p−1 on PS by setting [x]−1 = [x−1] and [x−1]−1 = [x],
for x ∈ X , and setting ε−1 = ε. (Note that, since S is a group rewriting system,
x ≈ 1 if and only if x−1 ≈ 1, so this involution is well defined.) Now we define a
“partial multiplication” on PS as follows.

• For p, q ∈ PS \ {ε} the product pq is defined and equal to s if there exist
x, y ∈ Γ such that p = [x], q = [y] and there is a rule xy → z ∈ S, with
z ∈ Γ ∪ {1} and s = [z].

• For all p ∈ PS we put pε = εp = p and pp−1 = p−1p = ε.

It is not hard to see that the partial multiplication on PS is well-defined.

Lemma 8.9. Let S be a geodesic triangular group rewriting system. Then:

1) PS is a pregroup.

2) U(PS) is isomorphic to the group Γ∗/S.

Proof. Clearly, the axioms P1) and P2) hold in PS by construction. It suffices to
show that P4) and P5) hold in PS , in which case P3) follows.

Checking P4). If any one of p, q, r = ε then P4) holds trivially, so we may
assume that p, q, r ∈ PS \ {ε}. Suppose then p = [a], q = [b], r = [c] ∈ PS and
the products pq and qr are defined, i.e., S contains rules ab → x and bc → y for
some x, y ∈ Γ ∪ {1}. Suppose also that (pq)r is defined in PS , so either [x] = [z]
and zc → t ∈ S for some z, t ∈ Γ ∪ {1}, or [x] = ε, in which case let us define
t = c. This means that abc ∗⇐⇒

S
t, for some t ∈ Γ ∪ {1} and also abc ∗⇐⇒

S
yc. As

S is geodesic either S contains a rule yc→ u, for some u ∈ Γ ∪ {1}, or y = 1, in
which case let us define u = c. Then (pq)r = [t] = [u] = p(qr) in PS . It follows,
by symmetry, that P4) holds.

P5). Again we may assume we have p, q, r, s ∈ PS \ {ε} such that p =
[a], q = [b], r = [c], s = [d] and the products pq, qr, rs are defined; so there are
rules ab → x, bc → y, cd → z ∈ S. We need to show that either pqr or qrs is
defined. Assume pqr is not defined. This means in particular that y 6= 1 and that
S contains no rule with left hand side ay.

We may rewrite abcd in two different ways: abcd → xcd → xz and abcd →
ayd. As S is geodesic either S must contain a rule which can be applied to ayd or
one of a, y, d must be 1. Given our assumptions this means that S contains a rule
with left hand side yd. Thus we have (qr)s defined, so P5) holds. This proves the
first statement.

The second statement follows from Theorem 8.4, Remark 8.6 and Corollary
8.8. Indeed, it suffices to note that, by construction, the system S is the length
reducing part of the system S ′(PS) associated with the pregroup PS .
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Combining Corollary 8.8 and Lemma 8.9 one gets the following character-
isation of pregroups and their universal groups in terms of triangular geodesic
systems.

Theorem 8.10. Let P be a pregroup. Then the reduced part of the rewriting
system S ′(P ) is a geodesic triangular group system which defines the universal
group U(P ). Conversely, if S is a triangular geodesic group system then PS is a
pregroup, whose universal group is that defined by S.

This result gives a method of constructing a potentially useful pregroup for a
group given by a presentation in generators and relators. It would be helpful to
have a KB like procedure for finding such pregroups.

Problem 8.11. Design an (KB-like) algorithm that for a given finite triangular
rewriting system finds an equivalent triangular geodesic system.
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