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Abstract

We review some results on global and local temporal logic on Mazurkiewicz traces.
Our main contribution is to show how to derive the expressive completeness of
global temporal logic with respect to first order logic [9] from the similar result on
local temporal logic [11].
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1 Introduction

Trace theory has a long history in computer science. It started with the classi-
cal works of Keller [16] and Mazurkiewicz [17,18]. Contributions to trace the-
ory include combinatorial properties, formal languages, automata, and logic.
Christian Choffrut participated in the development of trace theory in all these
areas with papers [2–4,6–8] and his survey in [5]. In the present paper we focus
on linear temporal logics which have received quite an attention, see [1,19–
27]. In [9] we have shown that a pure future linear temporal logic is powerful
enough to express all first-order properties, if a global semantics is used, where
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the formulae are interpreted at configurations. This means traces are viewed
as labelled partial orders and the interpretation is done along cuts as e.g. in
[25]. The drawback of this approach is however that the satisfiability prob-
lem and the model checking problem become non-elementary, [26]. On the
other hand, a local interpretation of linear temporal logics at vertices leads to
polynomially space bounded satisfiability and model checking algorithms. In
fact, all local temporal logics over traces where the modalities are definable in
monadic second order logic are decidable in Pspace [14]. Therefore local log-
ics are much more of interest. In [11] we were able to prove that a pure future
local linear temporal logic is also powerful enough to express all first-order
properties.

The main contribution here is a direct translation of local temporal logic
formulae into equivalent global temporal logic formulae. From this translation,
using the expressive completeness of local temporal logics with respect to first
order logic ([11]) we get as a corollary the expressive completeness of global
temporal logics, which is the main result of [9]. Actually, we strengthen the
result of [9] in two respects. First we show that we can use the basic next
modality (EXϕ) instead of the more precise 〈a〉ϕmodality to get the expressive
completeness of global temporal logics. Second, we show that this expressive
completeness can be obtained using robust global formulae whose evaluation
do not depend on whether the semantics of until allows a finite or an infinite
prefix in the factorization.

2 Mazurkiewicz traces

We recall some standard notations from trace theory which will be used in the
paper. A dependence alphabet is a pair (Σ, D) where the alphabet Σ is a finite
set and the dependence relation D ⊆ Σ × Σ is reflexive and symmetric. The
independence relation I is the complement of D. For A ⊆ Σ, the set of letters
dependent on A is denoted by D(A) = {b ∈ Σ | (a, b) ∈ D for some a ∈ A}.

A Mazurkiewicz trace is an equivalence class of a labelled partial order t =
[V,≤, λ] where V is a set of vertices labelled by λ : V → Σ and ≤ is a
partial order over V satisfying the following conditions: For all x ∈ V , the
downward set ↓x = {y ∈ V | y ≤ x} is finite, and for all x, y ∈ V we
have that (λ(x), λ(y)) ∈ D implies x ≤ y or y ≤ x, and that x ⋖ y implies
(λ(x), λ(y)) ∈ D, where ⋖ = < \ <2 is the immediate successor relation in t.
For x ∈ V , we also define ↑x = {y ∈ V | x ≤ y} and ⇑x = {y ∈ V | x < y}.

The trace t is finite if V is finite and we denote the set of finite traces by
M(Σ, D) (or simply M). By R(Σ, D) (or simply R), we denote the set of finite
or infinite traces (also called real traces). We write alph(t) = λ(V ) for the
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alphabet of t and we let alphinf(t) = {a ∈ Σ | λ−1(a) is infinite} be the set of
letters occuring infinitely often in t.

We define the concatenation for traces t1 = [V1,≤1, λ1] and t2 = [V2,≤2, λ2],
provided alphinf(t1)× alph(t2) ⊆ I. It is given by t1 · t2 = [V,≤, λ] where V is
the disjoint union of V1 and V2, λ = λ1 ∪ λ2, and ≤ is the transitive closure of
the relation ≤1 ∪ ≤2 ∪ (V1 × V2 ∩ λ

−1(D)). The set M of finite traces is then
a monoid with the empty trace 1 = (∅, ∅, ∅) as unit. If we can write t = rs,
then r is a prefix of t and s is a suffix of t.

We denote by min(t) the set of minimal vertices of t. We let R1 = {t ∈ R |
|min(t)| = 1} be the set of traces with exactly one minimal vertex.

We also use min(t) for the set λ(min(t)) of labels of the minimal vertices of
t, and similarly for max(t). What we actually mean is always clear from the
context. If t = [V,≤, λ] ∈ R is a real trace and x ∈ V is a vertex then we also
write x ∈ t instead of x ∈ V .

A trace p is called a prime, if it is finite and has a unique maximal element.
The set of all primes in R is denoted by P. We have P ⊆ M, whereas R1

contains infinite traces (if Σ 6= ∅).

3 Local temporal logics

The syntax of the basic linear temporal logic LTLΣ is given by

ϕ ::= ⊤ | a | ¬ϕ | ϕ ∨ ϕ | EXϕ | ϕ U ϕ.

where a ranges over Σ and ⊤ denotes true. As ususal, we use Fϕ (future or
eventually ϕ) as an abbreviation for ⊤ U ϕ and Gϕ = ¬F¬ϕ (globally in the
sense of always ϕ).

Here EX denotes the usual (existential) next-operator and U means until. For
(non-empty) finite or infinite words there is a standard semantics, and we have
the following classical results:

The notions of first-order definability, star-freeness, aperiodicity, and
LTLΣ-definability lead to the same class of formal languages.

These results have been generalized in a sequence of papers to traces, [9,11–
13,15,25]. However, the situation for traces is more complex. Traces are la-
belled partial orders and hence there are (at least) two natural semantics for
LTLΣ. We can define a local and a global semantics of linear temporal logics,
and these semantics are quite different. In the following, we review some of

3



our results and the reference logic for us is always first-order logic. We do not
repeat its definition (which is the usual one and can be found e.g. in [13]),
because we never work explicitely with it. Our results rather relate expressive
powers of different temporal logics to each other.

3.1 Local semantics

Let t = [V,≤, λ] ∈ R be a nonempty real trace and x ∈ t be a vertex. The
local semantics of LTLΣ is defined by:

t, x |= ⊤

t, x |= a if λ(x) = a

t, x |= ¬ϕ if t, x 6|= ϕ

t, x |= ϕ ∨ ψ if t, x |= ϕ or t, x |= ψ

t, x |= EXϕ if ∃y (x⋖ y and t, y |= ϕ)

t, x |= ϕ U ψ if ∃z (x ≤ z and t, z |= ψ and ∀y (x ≤ y < z) ⇒ t, y |= ϕ).

Together with the local semantics LTLΣ is denoted by LocTLΣ[EX,U] hence-
forth. This semantics is called local since a formula is evaluated at some vertex
x of t which corresponds to the occurrence of a local event of the concurrent
behavior represented by t.

Note that the temporal logics LocTLΣ[EX,U] is pure future, i.e., whether t, x |=
ϕ holds or not only depends on the suffix of t defined by ↑x consisting of the
events in t which are in the future of x. Formally, we have t, x |= ϕ if and only
if ↑x, x |= ϕ. Therefore, we could also define the semantics t |=′ ϕ for traces
t ∈ R1 only omitting the vertex x which is implicitely the minimal vertex of
t, i.e., t |=′ ϕ if and only if t,min(t) |= ϕ for t ∈ R1. For instance we would
have t |=′ ϕUψ if there exists z ∈ t such that ↑z |=′ ψ and for all y ∈ t, y < z
implies ↑y |=′ ϕ. We draw the attention to this alternative definition because
the corresponding one will be more convenient for the global semantics. Hence
this remark should help linking the two definitions.

In the following proofs we will use mainly some fragments of LocTLΣ[EX,U].
To introduce these fragments, we first need some notations. For x ∈ t and
c ∈ Σ, we denote by xc the unique minimal vertex of ⇑x ∩ λ−1(c) if it exists,
i.e., if ⇑x ∩ λ−1(c) 6= ∅. Note that x < xc if xc exists.

We consider the local temporal logic LocTLΣ[(Xa ≤ Xb),XUa] the syntax of
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which is given by

ϕ ::= ⊤ | a | (Xa ≤ Xb) | ¬ϕ | ϕ ∨ ϕ | ϕ XUa ϕ

where a, b range over Σ. The semantics of LocTLΣ[(Xa ≤ Xb),XUa] is defined
as follows.

t, x |= (Xa ≤ Xb) if xa, xb exist and xa ≤ xb

t, x |= ϕ XUa ψ if ∃z (x < z and λ(z) = a and t, z |= ψ and

∀y (x < y < z and λ(y) = a) ⇒ t, y |= ϕ).

It is shown in [11] that LocTLΣ[(Xa ≤ Xb),XUa] is indeed a a fragment of
LocTLΣ[EX,U]. The main results of [11] can be stated now as follows:

Theorem 1 ([11]) Let L ⊆ R be a first-order definable real trace language
Then there are formulae ϕ ∈ LocTLΣ[EX,U] and ψ ∈ LocTLΣ[(Xa ≤ Xb),XUa]
such that

L ∩ R
1 = {t ∈ R

1 | t,min(t) |= ϕ} = {t ∈ R
1 | t,min(t) |= ψ}.

Theorem 2 ([11]) Let L ⊆ R be a real trace language and let # be a new
symbol (# 6∈ Σ) which depends on all letters of Σ. Then the following asser-
tions are equivalent.

(1) The language L is first-order definable.
(2) There is a formula ϕ ∈ LocTLΣ[EX,U] such that

L = {t ∈ R | #t,# |= ϕ}.

(3) There is a formula ϕ ∈ LocTLΣ[(Xa ≤ Xb),XUa] such that

L = {t ∈ R | #t,# |= ϕ}.
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3.2 Global semantics

Let t ∈ R be a possibly empty real trace. The global semantics of the linear
temporal logic LTLΣ is defined by:

t |=g ⊤

t |=g a if t ∈ aR

t |=g ¬ϕ if t 6|=g ϕ

t |=g ϕ ∨ ψ if t |=g ϕ or t |=g ψ

t |=g EXϕ if ∃a ∈ Σ, s ∈ R : t = as and s |=g ϕ

t |=g ϕ U ψ if ∃r ∈ M, s ∈ R : t = rs and s |=g ψ and

∀r′, r′′ ∈ R, (r = r′r′′ and r′′ 6= 1) ⇒ r′′s |=g ϕ.

Analogously to the above, together with the global semantics we denote this
logic by GlobTLΣ[EX,U] henceforth.

When the logic is not pure future, the global semantics must define more
generally when t, r |=g ϕ where t ∈ R is a (possibly empty) real trace and r
is a prefix of t corresponding to a partial execution. If s is the corresponding
suffix then we have t = rs. Note that r may have several maximal events and
s may have several minimal events. Hence the factorization t = rs defines a
global cut in the behavior t. This is why we call this semantics global.

Since our logic LTLΣ is pure future, the truth value of t, r |=g ϕ only depends
on the suffix s: formally, we have t, r |=g ϕ if and only if s |=g ϕ. Since we only
deal with pure future logics in this paper we have chosen to omit the prefix r
simplifying the definition of the semantics.

For sake of completeness let us discuss a subtle point. It is not clear that the
choice to define t |=g ϕ U ψ as done above is the only natural one for traces.
We required the first factor r to be finite, and we did it this way in order to
find the usual semantics in case of infinite words, but as an alternative one
could consider a semantics defined as follows:

t |=g ϕ U ψ if ∃r ∈ R, s ∈ R : t = rs and s |=′
g ψ and

∀r′, r′′ ∈ R, (r = r′r′′ and r′′ 6= 1) ⇒ r′′s |=′
g ϕ.

We get stronger and more convenient results, if we do not need to pay attention
what choice has been taken. To make this formal let us inductively define
robust formulae.
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⊤ is robust,

a is robust (for a ∈ Σ),

¬ϕ is robust if ϕ is robust,

ϕ ∨ ψ is robust if ϕ and ψ are robust,

EXϕ is robust if ϕ is robust,

ϕ U ψ is robust if ϕ and ψ are robust, and ∀t ∈ R,

t |=g ϕ U ψ ⇐⇒ t |=′
g ϕ U ψ.

Note that F a is robust, whereas F¬a is not robust since aω |=′
g F¬a but

aω 6|=g F¬a. Actually, t |=′
g F¬a for all trace t ∈ R whereas t |=g F¬a if and

only if t = aks for some k ≥ 0 and s ∈ R with a /∈ min(s).

Clearly, if ϕ is robust then t |=g ϕ if and only if t |=′
g ϕ.

In [9] another type of global formulae has been used. For a ∈ Σ and a formula
ϕ the global semantics of 〈a〉ϕ (read next-a-ϕ) is defined by

t |=g 〈a〉ϕ if ∃s ∈ R : t = as and s |=g ϕ.

It was not noticed in [9] that the modality 〈a〉(−) can be expressed in GlobTLΣ[EX,U].
So this is our first contribution.

Lemma 3 A language L ⊆ R is expressible in GlobTLΣ[EX,U] if and only if
it is expressible in GlobTLΣ[〈a〉,U].

Moreover, if ϕ is robust, then 〈a〉ϕ can be expressed by some robust formula
in GlobTLΣ[EX,U].

Proof. Obviously, EX can be defined by EXϕ =
∨

a∈Σ〈a〉ϕ. For the other
direction we show that the formula 〈a〉ϕ can be expressed using EX and ϕ. In
particular, 〈a〉ϕ is replaced by a robust formula, if ϕ is robust.

First, for a given ϕ ∈ GlobTLΣ let m ∈ N be such that for all t ∈ R and a ∈ Σ
we have amt |=g ϕ if and only if am+1t |=g ϕ. The existence of m is ensured
by the fact that {t ∈ R | t |=g ϕ} is aperiodic by [13] (see also [10]). Here, we
give a direct proof of this fact.

We define inductively m(ϕ) by m(⊤) = 0, m(b) = 1 for b ∈ Σ, m(¬ϕ) = m(ϕ),
m(EXϕ) = 1+m(ϕ) and m(ϕ∨ψ) = m(ϕUψ) = max(m(ϕ), m(ψ)). We show
by structural induction on ϕ that for all n ≥ m(ϕ) and all t ∈ R and a ∈ Σ,
we have ant |=g ϕ if and only if an+1t |=g ϕ.
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The result is clear for ϕ = ⊤. For ϕ = b we use the fact that for n ≥ 1, ant |=g b
if and only if a = b or b ∈ min(t) and (a, b) ∈ I. The induction is trivial for
negation and disjunction. Assume now that ant |=g EXϕ with n ≥ 1 +m(ϕ).
We have ant = bs with b ∈ Σ and s |=g ϕ. If a = b then s = an−1t |=g ϕ
and we get ant |=g ϕ by induction. It follows that an+1t |=g EXϕ. Now, if
a 6= b then (a, b) ∈ I and we have s = anr and t = br. By induction we get
an+1r |=g ϕ and therefore an+1t = ban+1r |=g EXϕ. Hence we have shown that
ant |=g EXϕ implies an+1t |=g EXϕ. The converse implication can be shown
similarly.

Finally, assume that ant |=g ϕ U ψ and write ant = rs with s |=g ψ and
r′′s |=g ϕ for all r′r′′ = r with r′′ 6= 1. If a is independent of r then s = ans′

and we get by induction that as = an+1s′ |=g ψ and r′′as = an+1r′′s′ |=g ϕ for
all r′r′′ = r with r′′ 6= 1. Hence in this case an+1t |=g ϕUψ. Now, if a depends
on r then a ≤ r and an+1t = (ar)s. Let r′r′′ = ar with r′′ 6= 1. If r′ = ar1 then
r = r1r

′′ and we get r′′s |=g ϕ. Otherwise a is independent of r′ and r′′ = ar2.
We obtain r = r′r2 and a ≤ r2 6= 1. Therefore, r2s |=g ϕ and since an ≤ r2s
we get also r′′s = ar2s |=g ϕ. Finally, we have shown an+1t |=g ϕ U ψ. The
converse can be shown similarly.

Now, for each k ≥ 1 we define a macro ak by

ak = a ∧
∧

1≤ℓ<k

¬EX
ℓ ¬a.

Note that ak is a robust formula. We show that t |=g a
k if and only if t ∈ akR

by induction on k. If k = 1 then the result is clear. Let now k > 1 and assume
that t |=g a

k. Note that ak = ak−1 ∧¬EX
k−1 ¬a. By induction we deduce that

t = ak−1s with s ∈ R. If s /∈ aR then s |=g ¬a and t = ak−1s |=g EX
k−1 ¬a, a

contradiction. Hence s ∈ aR and t ∈ ak
R.

Conversely, if t ∈ ak
R then we have t |=g a

k−1 by induction and it remains to
show that t |=g ¬EX

k−1 ¬a. We have t |=g EX
k−1 ¬a if and only if there is a

factorization t = rs with |r| = k − 1 and s /∈ aR. This is indeed impossible if
t ∈ akR.

To conclude the proof of the lemma, we show that 〈a〉ϕ is equivalent to the
robust formula

(am+1 ∧ ϕ) ∨
∨

1≤k≤m

(ak ∧ EX(¬ak ∧ ϕ)).

Assume first that t |=g 〈a〉ϕ. If t = am+1s ∈ am+1R then we have ams |=g ϕ
and we get t = am+1s |=g ϕ by definition of m. In this case, t |=g a

m+1 ∧ ϕ.
Now, assume that t = aks ∈ akR for some k ≤ m and s ∈ R \ aR. Then
t |=g a

k and ak−1s |=g ϕ ∧ ¬ak.
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Conversely, assume that t |=g a
m+1∧ϕ then t = am+1s |=g ϕ and by definition

of m we get ams |=g ϕ and t |=g 〈a〉ϕ. Finally, assume that t |=g a
k ∧ EX(ϕ ∧

¬ak) for some 1 ≤ k ≤ m. We have t ∈ akR and t = bs with b ∈ Σ, s |=g ϕ
and s /∈ akR. We deduce that b = a and t |=g 〈a〉ϕ. 2

With the help of Lemma 3 the main result of [9] can be stated as follows:

Theorem 4 ([9]) A language L ⊆ R is first-order definable if and only if it
is expressible in GlobTLΣ[EX,U].

4 From local to global logic

The proofs in [9] and [11] are both very complex and technical. They are
independent of each other, but one has the impression that the local result
Theorem 2 is stronger than the global one in Theorem 4. We can confirm this
impression by the following proposition. In the following # denotes again a
new symbol (not in Σ) which depends on all letters of Σ.

Proposition 5 Let c ∈ Σ′ = Σ∪{#} and ϕ ∈ LocTLΣ[(Xa ≤ Xb),XUa]. Then
we can effectively construct a robust formula ϕc ∈ GlobTLΣ[〈a〉,U] such that
for all t ∈ R we have

ct,minc(ct) |= ϕ if and only if t |=g ϕ
c

where minc(ct) is the minimal vertex of ct which is labelled c.

So, if we are willing to use Theorem 2, we get as a corollary a strengthening
of Theorem 4 since the expressibility is obtained with robust formulae.

Corollary 6 A language L ⊆ R is first-order definable if and only if it is
expressible by some robust formula in GlobTLΣ[EX,U].

Proof. Actually, we get as a corollary only the difficult part of the equivalence.
So let L ⊆ R be first-order definable. By Theorem 2 we find a local formula
ϕ ∈ LocTLΣ[(Xa ≤ Xb),XUa] such that

L = {t ∈ R | #t,# |= ϕ}.

Let ϕ# ∈ GlobTLΣ[〈a〉,U] be the robust formula given by Proposition 5. We
get

L = {t ∈ R | t |=g ϕ
#}.

It remains to apply Lemma 3 to get a robust formula from GlobTLΣ[EX,U]
defining L. 2
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The remaining of this section is devoted to the proof of Proposition 5. The
construction of ϕc is done by structural induction. Clearly, we have ⊥

c
= ⊥,

¬ϕc = ¬ϕc, and ϕ ∨ ψ
c

= ϕc ∨ ψ
c
. For a ∈ Σ, we define ac = ⊤, if a = c,

and ac = ⊥, if a 6= c. The translation for (Xa ≤ Xb) and XUa is much more
involved and will use some auxiliary macros.

Since we deal with pure future logics, we have already noticed that whether
ct,minc(ct) |= ϕ only depends on the future of minc(ct) in the trace ct. Hence,
we define µc(t) and σc(t) by the equation t = µc(t)σc(t) with c independent of
µc(t) and min(σc(t)) ⊆ D(c). Note that cσc(t) ∈ R1 is the future of minc(ct).
Therefore, ct,minc(ct) |= ϕ if and only if cσc(t),min(cσc(t)) |= ϕ.

ct =

µc(t)

σc(t)
c

It is easier to give a formula for (Xa ≤ Xb) if the first a in t coincide with the
first a in ct which is above x = minc(ct) and similarly for b. This is the case
if and only if a, b /∈ alph(µc(t)). In order to reduce the general case to this
simpler case, we will introduce a macro (shiftc,E(−)) which allows to skip an
arbitrary finite prefix of µc(t). In the special case of (Xa ≤ Xb) we will use this
macro to skip all a’s and b’s contained in µc(t). Skipping a prefix that might
be arbitrarily long requires some until formula. Since we would like not to skip
any vertex from σc(t) we insist that the set E of minimal letters depending
on c remains constant along the until move. This requirement does not ensure
that no vertex from σc(t) will be skipped but it is powerful enough for our
purposes.

We start by defining some abbreviations. For A ⊆ Σ we define the macro
(min = A) ∈ GlobTLΣ by

∧
a∈A a∧

∧
a/∈A ¬a so that for all t ∈ R we have t |=g

(min = A) if and only if min(t) = A. We will also use macros (min∩D(a) = A)
for a ∈ Σ and A ⊆ Σ with the obvious meanings and definitions. Note that
all these macros are robust. For a formula α ∈ GlobTLΣ and a subalphabet
E ⊆ Σ, we define the global formula

shiftc,E(α) = (min∩D(c) = E) U (α ∧ (min∩D(c) = E)).

Lemma 7 For all t ∈ R, we have t |=g shiftc,E(α) if and only if t = r1r2s
with r1r2 finite, s |=g α, alph(r1) ⊆ E, r2 independent of E ∪ {c} and E =
min(s) ∩D(c).

Moreover, shiftc,E(α) is robust if the following two conditions hold: α is robust
and s |=g α implies rs |=g α for r, s ∈ R with r independent of s and c.
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t =

r1

r2

s

E E

Proof. Assume first that t |=g shiftc,E(α) then we write t = rs with r finite,
s |=g α and min(r′′s) ∩ D(c) = E for all r′r′′ = r. Using r′′ = 1 we get
E = min(s)∩D(c). There is a unique factorization r = r1r2 with alph(r1) ⊆ E
and min(r2) ∩ E = ∅. It remains to show that r2 is independent of E and c.
Assume that r2 = r′2br

′′
2 with r′2 independent of E ∪ {c} and r′2b prime. We

first show that b /∈ E. If r′2 = 1 then b ∈ min(r2) hence b /∈ E. Otherwise, let
a ∈ max(r′2). Since (a, b) ∈ D, we have b /∈ min(abr′′2s) and E ⊆ min(abr′′2s),
hence again b /∈ E. Now, since b /∈ E = min(br′′2s) ∩D(c), we deduce that b is
independent of E ∪ {c}.

Conversely, let t = r1r2s with r1r2 finite, s |=g α, alph(r1) ⊆ E, r2 independent
of E ∪ {c} and E = min(s) ∩ D(c). We have to show that if r′r′′ = r1r2
then E = min(r′′s) ∩ D(c). By Levi’s lemma, r′r′′ = r1r2 implies r′ = r′1r

′
2,

r′′ = r′′1r
′′
2 , r1 = r′1r

′′
1 and r2 = r′2r

′′
2 . Since E ⊆ min(s), the letters in E are

pairwise independent and using alph(r1) ⊆ E, we get E = min(r′′1s) ∩ D(c).
Using in addition r2 independent of E ∪ {c} we obtain E = min(r′′s) ∩D(c).
This proves the first part of the claim.

Assume now that α is robust and s |=g α implies rs |=g α for r, s ∈ R with
r independent of s and c. Let t ∈ R be such that t |=′

g shiftc,E(α) and write
t = rs with s |=′

g α and min(r′′s)∩D(c) = E for all r′r′′ = r. Since α is robust,
we get s |=g α. Now, write r = r′r′′ with r′ finite and alph(r′′) = alphinf(r).
Then, r′′ is independent of s. Now, if b ∈ alph(r′′) then there is a suffix br′′′ of
r and we obtain {b}∩D(c) ⊆ min(br′′′s)∩D(c) = E. Since b is independent of
s and E ⊆ min(s), we deduce that b /∈ D(c). Therefore, r′′s |=g α and obtain
easily t = r′(r′′s) |=g shiftc,E(α). 2

Now, for a ∈ Σ, we let

(a ∈ µc) =
∨

E | a/∈E

shiftc,E(a)

where the disjunction ranges over all subsets E ⊆ Σ such that a /∈ E.

Lemma 8 For all t ∈ R, we have t |=g (a ∈ µc) if and only if a ∈ alph(µc(t)).
Moreover, the formula (a ∈ µc) is robust.

Proof. Let t ∈ R with a ∈ alph(µc(t)) and let E = min(t) ∩ D(c) =
min(σc(t)). We have µc(t) independent of E ∪ {c}. In particular, a /∈ E. We
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can write µc(t) = r2r
′ with r2 finite and a ∈ min(r′). Then, with s = r′σc(t)

we have a ∈ min(s) and min(s) ∩D(c) = E. Hence, t = r2s |=g shiftc,E(a) by
Lemma 7 with r1 = 1.

Conversely, assume that t |=g shiftc,E(a) for some E with a /∈ E. Let t = r1r2s
be the factorization given by Lemma 7. From E = min(s) ∩D(c), a ∈ min(s)
and a /∈ E, we deduce that a is independent of E∪{c}. Using in addition that
r2 is independent of E ∪ {c} and alph(r1) ⊆ E we infer that the trace r2a is
a prefix of µc(t) and we get a ∈ alph(µc(t)) as desired.

Finally, shiftc,E(a) is robust since α = a satisfies the additional requirement
of Lemma 7 for robustness. 2

We deal now with (Xa ≤ Xb). If a = b ∈ D(c) then we let (Xa ≤ Xa)
c

= F a
and if a 6= b or if a = b /∈ D(c) then we let

(Xa ≤ Xb)
c
=

∨

E|b/∈E

shiftc,E(ζ ∧ (a /∈ µc) ∧ (b /∈ µc))

where ζ = (¬b) U (a ∧ (b /∈ µa) ∧ F b).

Lemma 9 The formula (Xa ≤ Xb)
c
satisfies the requirement of Proposition 5.

Proof. In all this proof, we let x = minc(ct).

If a = b ∈ D(c) then a /∈ alph(µc(t)), hence a ∈ alph(t) if and only if
ct,minc(ct) |= (Xa ≤ Xa). Moreover, the formula F a is robust.

Next, we consider the special case where a, b /∈ alph(µc(t)). We show that
for all t ∈ R such that a, b /∈ alph(µc(t)), we have t |=g ζ if and only if
ct, x |= (Xa ≤ Xb).

Assume first that a, b /∈ alph(µc(t)) and t |=g ζ . We can write t = rs with a ∈
min(s) and b ∈ alph(s) \ alph(µa(s)) and b /∈ alph(r). We have a, b ∈ alph(t) \
alph(µc(t)). We deduce that xa and xb exist. Let y ∈ min(s) with λ(y) = a.
Since a /∈ alph(µc(t)) we deduce that x < y and therefore xa ≤ y. Now,
b /∈ alph(r)∪alph(µa(s)), hence xb is in σa(s) and we get y = min(σa(s)) ≤ xb.

Conversely, note that if a, b /∈ alph(µc(t)) then xa and xb are the first vertices
labelled a and b respectively in the trace t. So assume that a, b /∈ alph(µc(t))
and xa ≤ xb exist. We can write t = rs with ra prime, a /∈ alph(r) and
a ∈ min(s). Since a /∈ alph(µc(t)), we deduce that xa ∈ min(s) and therefore
{xa} = min(σa(s)). From xa ≤ xb we deduce that xb is in σa(s) and therefore
b ∈ alph(s). Also, b /∈ alph(µa(s)) since xb is the first vertex labelled b in t.
We have thus shown s |=g a ∧ (b /∈ µa) ∧ F b. Finally, let r = r′r′′ with r′′ 6= 1.
We have xa ∈ r′′s and the vertex xa is not minimal in r′′s since ra is prime
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and r′′ 6= 1. Then b /∈ min(r′′s) since xa ≤ xb and xb is the first vertex of t
which is labeled b. Therefore, t |=g ζ as desired.

We show now that ζ is robust. Let t ∈ R with t |=′
g ζ and write t = rs the

associated factorization. Since a ∈ min(s), we can write r = r1r2 with r1 finite
and r2 independent of a. We have µa(r2s) = r2µa(s) and b /∈ alph(r), hence
b ∈ alph(r2s) \ alph(µa(r2s)). Also a ∈ min(r2s) and we deduce easily that
t = r1(r2s) |=g ζ .

For the general case, note that if a 6= b or a = b /∈ D(c) then ct, x |= (Xa ≤ Xb)
implies b /∈ min(t) ∩D(c). Hence, it is enough to show that for all t ∈ R and
E ⊆ Σ with b /∈ E, we have E = min(t) ∩D(c) and ct, x |= (Xa ≤ Xb) if and
only if t |=g shiftc,E(ζ ∧ (a /∈ µc) ∧ (b /∈ µc)).

Let t ∈ R and E ⊆ Σ with b /∈ E. Assume that E = min(t) ∩ D(c) and
that xa, xb exist and xa ≤ xb. We can write µc(t) = r2r

′ with r2 finite and
alph(r′) = alphinf(µc(t)). Since xa, xb exist, we have a, b ∈ alph(σc(t)). Using
σc(t) independent of alphinf(µc(t)) we deduce that a, b /∈ alph(r′). With s =
r′σc(t), we have µc(s) = r′ and σc(s) = σc(t). Hence, x = minc(cs) and cs, x |=
(Xa ≤ Xb). Moreover, a, b /∈ alph(µc(s)) and we deduce that s |=g ζ from the
special case above. Hence, we have shown s |=g ζ∧(a /∈ µc)∧(b /∈ µc). Now, we
have µc(t) (hence also r2) independent of E ∪ {c}. Also, E = min(t)∩D(c) =
min(σc(t)) = min(σc(s)) = min(s) ∩ D(c). Using Lemma 7 with r1 = 1, we
obtain as desired t = r2s |=g shiftc,E(ζ ∧ (a /∈ µc) ∧ (b /∈ µc)).

Conversely, let t ∈ R be such that t |=g shiftc,E(ζ∧(a /∈ µc)∧(b /∈ µc)) for some
E with b /∈ E. Let t = r1r2s be the factorization given by Lemma 7. Note that
E = min(t)∩D(c). Let y = minc(cs). Since a, b /∈ alph(µc(s)), we deduce from
the special case above that ya, yb exist and ya ≤ yb. We have σc(t) = r1σc(s),
hence xa, xb exist and xa ≤ ya. Using b /∈ E and alph(r1) ⊆ E, we obtain
xb = yb and therefore, xa ≤ xb.

Finally, the formula α = ζ ∧ (a /∈ µc) ∧ (b /∈ µc) is robust. Let r, s ∈ R

with s |=g α and r independent of s and c. We have µc(rs) = rµc(s) and
σc(rs) = σc(s). Since s |=g ζ we have a, b ∈ alph(s) and using r independent
of s and a, b /∈ alph(µc(s)) we deduce that a, b /∈ alph(µc(rs)). Now, using the
special case we have s |=g ζ if and only if σc(s) |=g ζ and rs |=g ζ if and only
if σc(rs) |=g ζ . Since σc(s) = σc(rs) we deduce that rs |=g ζ . Therefore, α
satisfies the additional requirement of Lemma 7 for robustness and we deduce
that shiftc,E(ζ ∧ (a /∈ µc) ∧ (b /∈ µc)) is robust. 2

It remains to deal with ϕ XUa ψ. We define

ϕ XUa ψ
c
= (ξ ∧ (a /∈ µc)) ∨

∨

E|a/∈E

shiftc,E(ξ ∧ (a /∈ µc))
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where ξ = (¬a ∨ 〈a〉ϕa) U 〈a〉ψ
a
.

Lemma 10 The formula ϕ XUa ψ
c
satisfies the requirement of Proposition 5.

Proof. We first show that for all t ∈ R such that a /∈ alph(µc(t)), we have
t |=g ξ if and only if ct, x |= ϕXUa ψ where x = minc(ct) is the minimal vertex
of ct which is labelled c.

Assume first that a /∈ alph(µc(t)) and t |=g ξ. We can write t = ras with s |=g

ψ
a

and for all r′r′′ = r with r′′ 6= 1, r′′as |=g (¬a∨〈a〉ϕa). Let z = mina(as) be
the minimal vertex of as which is labelled a. By induction, we get as, z |= ψ.
Since a /∈ alph(µc(t)), we have z ∈ σc(t) and x < z. Therefore ct, z |= ψ. Now,
let x < y < z with λ(y) = a. Then y ∈ r and we have a factorization r = r′ar′′

with y = mina(ar
′′) = mina(ar

′′as). Since ar′′ 6= 1 and ar′′as |=g a, we get
r′′as |=g ϕ

a. By induction we obtain ar′′as, y |= ϕ and therefore ct, y |= ϕ. We
have thus shown that ct, x |= ϕ XUa ψ.

Conversely, assume that a /∈ alph(µc(t)) and ct, x |= ϕXUaψ. We have to show
that t |=g ξ. Let z > x with λ(z) = a and ct, z |= ψ and for all x < y < z
with λ(y) = a we have ct, y |= ϕ. We can write t = ras with ra prime and z
being the maximal vertex of ra. Since ct, z |= ψ we also have as, z |= ψ and by
induction we get s |=g ψ

a
. Now, let r′r′′ = r with r′′ 6= 1. By definition of r, z is

not minimal in r′′as. Assume that a ∈ min(r′′as) and let y = mina(r
′′as). We

have x < y < z since a /∈ alph(µc(t)). Therefore ct, y |= ϕ and also r′′as, y |= ϕ.
By induction, with r′′ = ar′′′, we obtain r′′′as |=g ϕa and r′′as |=g 〈a〉ϕa.
Therefore, t |=g ξ.

Next, we show that ξ is robust. Assume that t |=′
g ξ and write t = ras with

s |=′
g ψ

a
and r′′as |=′

g ¬a ∨ 〈a〉ϕa for all r′r′′ = r with r 6= 1. Since ψ
a

is

robust we also have s |=g ψ
a
. We can write r = r1r2 with r1 finite and r2

independent of a. We have s |=g ψ
a

if and only if as,mina(as) |= ψ if and only
if aσa(s),min(aσa(s)) |= ψ. Since σa(s) = σa(r2s) and s |=g ψ

a
, we deduce

r2s |=g ψ
a
. Also, for all r′r′′ = r1 with r′′ 6= 1 we have r′′ar2s |=

′
g ¬a ∨ 〈a〉ϕa,

hence also r′′ar2s |=g ¬a ∨ 〈a〉ϕa since 〈a〉ϕa is robust. Therefore, t |=g ξ.

Note that if a ∈ alph(µc(t)) then a /∈ E = min(t) ∩ D(c). Hence, it remains
to show that for all t ∈ R, x = minc(ct) and E ⊆ Σ with a /∈ E, we have
E = min(t)∩D(c) and ct, x |= ϕXUaψ if and only if t |=g shiftc,E(ξ∧(a /∈ µc)).

Let t ∈ R and E ⊆ Σ with a /∈ E. Assume that E = min(t) ∩ D(c)
and that ct, x |= ϕ XUa ψ. We can write µc(t) = r2r

′ with r2 finite and
alph(r′) = alphinf(µc(t)). We have a ∈ alph(σc(t)). Using σc(t) independent
of alphinf(µc(t)) we deduce that a /∈ alph(r′). With s = r′σc(t), we have
µc(s) = r′ and σc(s) = σc(t). Hence a /∈ alph(µc(s)) and cs, x |= ϕ XUa ψ.
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We deduce that s |=g ξ from the special case above. We have thus shown
s |=g ξ ∧ (a /∈ µc). Now, we have µc(t) (hence also r2) independent of E ∪ {c}.
Also, E = min(t) ∩ D(c) = min(σc(t)) = min(σc(s)) = min(s) ∩ D(c). Using
Lemma 7 with r1 = 1, we obtain as desired t = r2s |=g shiftc,E(ξ ∧ (a /∈ µc)).

Conversely, let t ∈ R be such that t |=g shiftc,E(ξ ∧ (a /∈ µc)) for some E
with a /∈ E. Let t = r1r2s be the factorization given by Lemma 7. Note that
E = min(t) ∩ D(c). Since a /∈ alph(µc(s)), we deduce from the special case
above that cs,minc(cs) |= ϕXUa ψ. We have σc(t) = r1σc(s). Using a /∈ E and
alph(r1) ⊆ E, we obtain ct, x |= ϕ XUa ψ.

Finally, we can show exactly as in the proof of Lemma 9 that α = ξ∧ (a /∈ µc)
satisfies the additional requirement of Lemma 7 for robustness. Therefore, the
formula shiftc,E(ξ ∧ (a /∈ µc)) is robust. 2
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