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Abstract

We give an essentially self-contained presentation of some princi-

pal results for first-order definable languages over finite and infinite

words. We introduce the notion of a counter-free Büchi automaton;

and we relate counter-freeness to aperiodicity and to the notion of

very weak alternation. We also show that aperiodicity of a regular

∞-language can be decided in polynomial space, if the language is

specified by some Büchi automaton.

1 Introduction

The study of regular languages is one of the most important areas in formal
language theory. It relates logic, combinatorics, and algebra to automata
theory; and it is widely applied in all branches of computer sciences. More-
over it is the core for generalizations, e.g., to tree automata [26] or to par-
tially ordered structures such as Mazurkiewicz traces [6].

In the present contribution we treat first-order languages over finite and
infinite words. First-order definability leads to a subclass of regular lan-
guages and again: it relates logic, combinatorics, and algebra to automata
theory; and it is also widely applied in all branches of computer sciences.
Let us mention that first-order definability for Mazurkiewicz traces leads
essentially to the same picture as for words (see e.g. [5]), but nice charac-
tizations for first-order definable sets of trees are still missing.

The investigation on first-order languages has been of continuous interest
over the past decades and many important results are related to the efforts
of Wolfgang Thomas, [31, 32, 33, 34, 35]. We also refer to his influential
contributions in the handbooks of Theoretical Computer Science [36] and
of Formal Languages [37].

We do not compete with these surveys. Our plan is more modest. We
try to give a self-contained presentation of some of the principal charac-
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terizations of first-order definable languages in a single paper. This covers
description with star-free expressions, recognizability by aperiodic monoids
and definability in linear temporal logic. We also introduce the notion of a
counter-free Büchi automaton which is somewhat missing in the literature
so far. We relate counter-freeness to the aperiodicity of the transformation
monoid. We also show that first-order definable languages can be charac-
terized by very weak alternating automata using the concept of aperiodic
automata. In some sense the main focus in our paper is the explanation of
the following theorem.

Theorem 1.1. Let L be a language of finite or infinite words over a finite
alphabet. Then the following assertions are equivalent:

1. L is first-order definable.

2. L is star-free.

3. L is aperiodic.

4. L is definable in the linear temporal logic LTL.

5. L is first-order definable with a sentence using at most 3 names for vari-
ables.

6. L is accepted by some counter-free Büchi automaton.

7. L is accepted by some aperiodic Büchi automaton.

8. L is accepted by some very weak alternating automaton.

Besides, the paper covers related results. The translation from first-
order to LTL leads in fact to the pure future fragment of LTL, i.e., the
fragment without any past tense operators. This leads to the separation
theorem for first-order formulae in one free variable as we will demonstrate
in Section 9. We also show that aperiodicity (i.e., first-order definability) of
a regular ∞-language can be decided in polynomial space, if the language
is specified by some Büchi automaton.

Although the paper became much longer than expected, we know that
much more could be said. We apologize if the reader’s favorite theorem is
not covered in our survey. In particular, we do not speak about varieties,
and we gave up the project to cover principle results about the fragment
of first-order logic which corresponds to unary temporal logic. These dia-
monds will continue to shine, but not here, and we refer to [30] for more
background. As mentioned above, we use Büchi automata, but we do not
discuss deterministic models such as deterministic Muller automata.

The history of Theorem 1.1 is related to some of the most influential
scientists in computer science. The general scheme is that the equivalences
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above have been proved first for finite words. After that, techniques were
developed to generalize these results to infinite words. Each time, the gen-
eralization to infinite words has been non-trivial and asked for new ideas.
Perhaps, the underlying reason for this additional difficulty is due to the
fact that the subset construction fails for infinite words. Other people may
say that the difficulty arises from the fact that regular ω-languages are not
closed in the Cantor topology. The truth is that combinatorics on infinite
objects is more complicated.

The equivalence of first-order definability and star-freeness for finite
words is due to McNaughton and Papert [20]. The generalization to in-
finite words is due to Ladner [15] and Thomas [31, 32]. These results have
been refined, e.g. by Perrin and Pin in [24]. Based on the logical framework
of Ehrenfeucht-Fräıssé-games, Thomas also related the quantifier depth to
the so-called dot-depth hierarchy, [33, 35]. Taking not only the quantifier
alternation into account, but also the length of quantifier blocks one gets
even finer results as studied by Blanchet-Sadri in [2].

The equivalence of star-freeness and aperiodicity for finite words is due
to Schützenberger [28]. The generalization to infinite words is due to Perrin
[23] using the syntactic congruence of Arnold [1]. These results are the basis
allowing to decide whether a regular language is first-order definable.

Putting these results together one sees that statements 1, 2, and 3 in
Theorem 1.1 are equivalent. From the definition of LTL it is clear that
linear temporal logic describes a fragment of FO3, where the latter means
the family of first-order definable languages where the defining sentence uses
at most three names for variables. Thus, the implications from 4 to 5 and
from 5 to 1 are trivial. The highly non-trivial step is to conclude from 1 (or
2 or 3) to 4. This is usually called Kamp’s Theorem and is due to Kamp
[13] and Gabbay, Pnueli, Shelah, and Stavi [9].

In this survey we follow the algebraic proof of Wilke which is in his
habilitation thesis [38] and which is also published in [39]. Wilke gave the
proof for finite words, only. In order to generalize it to infinite words we
use the techniques from [5], which were developed to handle Mazurkiewicz
traces. Cutting down this proof to the special case of finite or infinite words
leads to the proof presented here. It is still the most complicated part in the
paper, but again some of the technical difficulties lie in the combinatorics of
infinite words which is subtle. Restricting the proof further to finite words,
the reader might hopefully find the simplest way to pass from aperiodic
languages to LTL. But this is also a matter of taste, of course.

Every first-order formula sentence can be translated to a formula in FO3.
This is sharp, because it is known that there are first-order properties which
are not expressible in FO2, which characterizes unary temporal logic [7] over
infinite words.
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The equivalence between definability in monadic second order logic, reg-
ular languages, and acceptance by Büchi automata is due to Büchi [3].
However, Büchi automata are inherently non-deterministic. In order to
have deterministic automata one has to move to other acceptance conditions
such as Muller or Rabin-Streett conditions. This important result is due to
McNaughton, see [19]. Based on this, Thomas [32] extended the notion of
deterministic counter-free automaton to deterministic counter-free automa-
ton with Rabin-Streett condition and obtained thereby another characteri-
zation for first-order definable ω-languages. There is no canonical object for
a minimal Büchi automaton, which might explain why a notion of counter-
free Büchi automaton has not been introduced so far. On the other hand,
there is a quite natural notion of counter-freeness as well as of aperiodicity
for non-deterministic Büchi automata. (Aperiodic non-deterministic finite
automata are defined in [16], too.) For non-deterministic automata, aperi-
odicity describes a larger class of automata, but both counter-freeness and
aperiodicity can be used to characterize first-order definable ω-languages.
This is shown in Section 11 and seems to be an original part in the paper.

We have also added a section about very weak alternating automata.
The notion of weak alternating automaton is due to Muller, Saoudi, and
Schupp [21]. A very weak alternating automaton is a special kind of weak
alternating automaton and this notion has been introduced in the PhD
thesis of Rhode [27] in a more general context of ordinals. (In the paper
by Löding and Thomas [17] these automata are called linear alternating.)
Section 13 shows that very weak alternating automata characterize first-
order definability as well. More precisely, we have a cycle from 3 to 6 to 7
and back to 3, and we establish a bridge from 4 to 8 and from 8 to 7.

It was shown by Stern [29] that deciding whether a deterministic finite
automaton accepts an aperiodic language over finite words can be done
in polynomial space, i.e., in PSPACE. Later Cho and Huynh showed in [4]
that this problem is actually PSPACE-complete. So, the PSPACE-hardness
transfers to (non-deterministic) Büchi automata. It might belong to folklore
that the PSPACE-upper bound holds for Büchi automata, too; but we did
not find any reference. So we prove this result here, see Proposition 12.3.

As said above, our intention was to give simple proofs for existing re-
sults. But simplicity is not a simple notion. Therefore for some results,
we present two proofs. The proofs are either based on a congruence lemma
established for first-order logic in Section 10.1, or they are based on a split-
ting lemma established for star-free languages in Section 3.1. Depending on
his background, the reader may wish to skip one approach.
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2 Words, first-order logic, and basic notations

By P we denote a unary predicate taken from some finite set of atomic
propositions, and x, y, . . . denote variables which represent positions in finite
or infinite words. The syntax of first-order logic uses the symbol ⊥ for
false and has atomic formulae of type P (x) and x < y. We allow Boolean
connectives and first-order quantification. Thus, if ϕ and ψ are first-order
formulae, then ¬ϕ, ϕ ∨ ψ and ∃xϕ are first-order formulae, too. As usual
we have derived formulae such as x ≤ y, x = y, ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ),
∀xϕ = ¬∃x¬ϕ and so on.

We let Σ be a finite alphabet. The relation between Σ and the set of unary
predicates is that for each letter a ∈ Σ and each predicate P the truth-value
P (a) must be well-defined. So, we always assume this. Whenever convenient
we include for each letter a a predicate Pa such that Pa(b) is true if and
only if a = b. We could assume that all predicates are of the form Pa, but
we feel more flexible of not making this assumption. If x is a position in a
word with label a ∈ Σ, then P (x) is defined by P (a).

By Σ∗ (resp. Σω) we mean the set of finite (resp. infinite) words over
Σ, and we let Σ∞ = Σ∗ ∪Σω. The length of a word w is denoted by |w|, it
is a natural number or ω. A language is a set of finite or infinite words.

Formulae without free variables are sentences. A first-order sentence
defines a subset of Σ∞ in a natural way. Let us consider a few examples. We
can specify that the first position is labeled by a letter a using ∃x∀y Pa(x)∧
x ≤ y. We can say that each occurrence of a is immediately followed by b
with the sentence ∀x ¬Pa(x) ∨ ∃y x < y ∧ Pb(y) ∧ ∀z ¬(x < z ∧ z < y). We
can also say that the direct successor of each b is the letter a. Hence the
language (ab)ω is first-order definable. We can also say that a last position
in a word exists and this position is labeled b. For a 6= b this leads almost
directly to a definition of (ab)∗. But (aa)∗ cannot be defined with a first-
order sentence. A formal proof for this statement is postponed, but at least
it should be clear that we cannot define (aa)∗ the same way as we did for
(ab)∗, because we have no control that the length of a word in a∗ is even.

The set of positions pos(w) is defined by pos(w) = {i ∈ N | 0 ≤ i < |w|}.
We think of pos(w) as a linear order where each position i is labeled with
λ(i) ∈ Σ, and w = λ(0)λ(1) · · · .

A k-structure means here a pair (w, p), where w ∈ Σ∞ is a finite or
infinite word and p = (p1, . . . , pk) is a k-tuple of positions in pos(w). The
set of all k-structures is denoted by Σ∞

(k), and the subset of finite structures
is denoted by Σ∗

(k). For simplicity we identify Σ∞ with Σ∞
(0).

Let x be a k-tuple (x1, . . . , xk) of variables and ϕ be a first-oder formula
where all free variables are in the set {x1, . . . , xk}. The semantics of

(w, (p1, . . . , pk)) |= ϕ
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is defined as usual: It is enough to give a semantics to atomic formulae,
and (w, (p1, . . . , pk)) |= P (xi) means that the label of position pi satisfies
P , and (w, (p1, . . . , pk)) |= xi < xj means that position pi is before position
pj , i.e., pi < pj.

With every formula we can associate its language by

L(ϕ) =
{
(w, p) ∈ Σ∞

(k)

∣∣∣ (w, p) |= ϕ
}
.

In order to be precise we should write LΣ,k(ϕ), but if the context is clear,
we omit the subscript Σ, k.

Definition 2.1. By FO(Σ∗) (resp. FO(Σ∞)) we denote the set of first-
order definable languages in Σ∗ (resp. Σ∞), and by FO we denote the
family of all first-order definable languages. Analogously, we define families
FOn(Σ∗), FOn(Σ∞), and FOn by allowing only those formulae which use
at most n different names for variables.

3 Star-free sets

For languages K,L ⊆ Σ∞ we define the concatenation by

K · L = {uv | u ∈ K ∩ Σ∗, v ∈ L} .

The n-th power of L is defined inductively by L0 = {ε} and Ln+1 = L ·Ln.
The Kleene-star of L is defined by L∗ =

⋃
n≥0 L

n. Finally, the ω-iteration
of L is

Lω = {u0u1u2 · · · | ui ∈ L ∩ Σ∗ for all i ≥ 0}.

We are interested here in families of regular languages, also called ratio-
nal languages. In terms of expressions it is the smallest family of languages
which contains all finite subsets, which is closed under finite union and
concatenation, and which is closed under the Kleene-star (and ω-power).
The relation to finite automata (Büchi automata resp.) is treated in Sec-
tion 11. For the main results on first-order languages the notion of a Büchi
automaton is actually not needed.

The Kleene-star and the ω-power do not preserve first-order definability,
hence we consider subclasses of regular languages. A language is called
star-free, if we do not allow the Kleene-star, but we allow complementation.
Therefore we have all Boolean operations. In terms of expressions the class
of star-free languages is the smallest family of languages in Σ∞ (resp. Σ∗)
which contains Σ∗, all singletons {a} for a ∈ Σ, and which is closed under
finite union, complementation and concatenation. It is well-known that
regular languages are closed under complement1, hence star-free languages
are regular.

1 We do not need this standard result here.
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As a first example we note that for every A ⊆ Σ the set A∗ (of finite
words containing only letters from A) is also star-free. We have:

A∗ = Σ∗ \ (Σ∗(Σ \A)Σ∞).

In particular, {ε} = ∅∗ is star-free. Some other expressions with star are
also in fact star-free. For example, for a 6= b we obtain:

(ab)∗ = (aΣ∗ ∩ Σ∗b) \ Σ∗(Σ2 \ {ab, ba})Σ∗.

The above equality does not hold, if a = b. Actually, (aa)∗ is not star-free.
The probably best way to see that (aa)∗ is not star-free, is to show (by
structural induction) that for all star-free languages L there is a constant
n ∈ N such that for all words x we have xn ∈ L if and only if xn+1 ∈ L.
The property is essentially aperiodicity and we will prove the equivalence
between star-free sets and aperiodic languages later. Since (ab)∗ is star-free
(for a 6= b), but (aa)∗ is not, we see that a projection of a star-free set is
not star-free, in general.

Definition 3.1. By SF(Σ∗) (resp. SF(Σ∞)) we denote the set of star-free
languages in Σ∗ (resp. Σ∞), and by SF we denote the family of all star-free
languages.

An easy exercise (left to the interested reader) shows that

SF(Σ∗) = {L ⊆ Σ∗ | L ∈ SF(Σ∞)} = {L ∩ Σ∗ | L ∈ SF(Σ∞)} .

3.1 The splitting lemma

A star-free set admits a canonical decomposition given a partition of the
alphabet. This will be shown here and it is used to prove that first-order
languages are star-free in Section 4 and for the separation theorem in Sec-
tion 9. The alternative to this section is explained in Section 10, where the
standard way of using the congruence lemma is explained, see Lemma 10.2.
Thus, there is an option to skip this section.

Lemma 3.2. Let A,B ⊆ Σ be disjoint subalphabets. If L ∈ SF(Σ∞) then
we can write

L ∩B∗AB∞ =
⋃

1≤i≤n

KiaiLi

where ai ∈ A, Ki ∈ SF(B∗) and Li ∈ SF(B∞) for all 1 ≤ i ≤ n.

Proof. Since B∗AB∞ =
⋃
a∈AB

∗aB∞, it is enough to show the result when
A = {a}. The proof is by induction on the star-free expression and also on
the alphabet size. (Note that |B| < |Σ|.). The result holds for the basic
star-free sets:
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• If L = {a} with a ∈ A then L ∩B∗AB∞ = {ε}a{ε}.

• If L = {a} with a /∈ A then L ∩B∗AB∞ = ∅a∅ (or we let n = 0).

• If L = Σ∗ then L ∩B∗AB∞ = B∗AB∗.

The inductive step is clear for union. For concatenation, the result follows
from

(L ·L′) ∩B∗AB∞ = (L∩B∗AB∞) · (L′ ∩B∞)∪ (L∩B∗) · (L′ ∩B∗AB∞).

It remains to deal with the complement Σ∞ \ L of a star-free set. By
induction, we have L ∩ B∗aB∞ =

⋃
1≤i≤nKiaLi. If some Ki and Kj are

not disjoint (for i 6= j), then we can rewrite

KiaLi ∪KjaLj = (Ki \Kj)aLi ∪ (Kj \Ki)aLj ∪ (Ki ∩Kj)a(Li ∪ Lj).

We can also add (B∗ \
⋃
iKi)a∅ in case

⋃
iKi is strictly contained in B∗.

Therefore, we may assume that {Ki | 1 ≤ i ≤ n} forms a partition of B∗.
This yields:

(Σ∞ \ L) ∩B∗aB∞ =
⋃

1≤i≤n

Kia(B
∞ \ Li).

q.e.d.

4 From first-order to star-free languages

This section shows that first-order definable languages are star-free lan-
guages. The transformation is involved in the sense that the resulting ex-
pressions are much larger than the size of the formula, in general. The proof
presented here is based on the splitting lemma. The alternative is again in
Section 10.

Remark 4.1. The converse that star-free languages are first-order definable
can be proved directly. Although strictly speaking we do not use this fact,
we give an indication how it works. It is enough to give a sentence for
languages of type L = L(ϕ) · a · L(ψ). We may assume that the sentences ϕ
and ψ use different variable names. Then we can describe L as a language
L(ξ) where

ξ = ∃z Pa(z) ∧ ϕ<z ∧ ψ>z,

where ϕ<z and ψ>z relativize all variables with respect to the position of
z. We do not go into more details, because, as said above, we do not need
this fact.
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We have to deal with formulae having free variables. We provide first
another semantics of a formula with free variables in a set of words over
an extended alphabet allowing to encode the assignment. This will also be
useful to derive the separation theorem in Section 9.

Let V be a finite set of variables. We define ΣV = Σ×{0, 1}V . (Do not
confuse ΣV with Σ(k) from above.) Let w ∈ Σ∞ be a word and σ be an
assignment from the variables in V to the positions in w, thus 0 ≤ σ(x) < |w|
for all x ∈ V . The pair (w, σ) can be encoded as a word (w, σ) over ΣV .
More precisely, if w = a0a1a2 · · · then (w, σ) = (a0, τ0)(a1, τ1)(a2, τ2) · · ·
where for all 0 ≤ i < |w| we have τi(x) = 1 if and only if σ(x) = i.
We let NV ⊆ Σ∞

V be the set of words (w, σ) such that w ∈ Σ∞ and σ is
an assignment from V to the positions in w. We show that NV is star-
free. For x ∈ V , let Σx=1

V be the set of pairs (a, τ) with τ(x) = 1 and let
Σx=0
V = ΣV \ Σx=1

V be its complement. Then,

NV =
⋂

x∈V

(Σx=0
V )∗Σx=1

V (Σx=0
V )∞.

Given a first-order formula ϕ and a set V containing all free variables of ϕ,
we define the semantics [[ϕ]]V ⊆ NV inductively:

[[Pa(x)]]V = {(w, σ) ∈ NV | w = b0b1b2 · · · ∈ Σ∞ and bσ(x) = a}

[[x < y]]V = {(w, σ) ∈ NV | σ(x) < σ(y)}

[[∃x, ϕ]]V = {(w, σ) ∈ NV | ∃i, 0 ≤ i < |w| ∧ (w, σ[x→ i]) ∈ [[ϕ]]V ∪{x}}

[[ϕ ∨ ψ]]V = [[ϕ]]V ∪ [[ψ]]V

[[¬ϕ]]V = NV \ [[ϕ]]V .

Proposition 4.2. Let ϕ be a first-order formula and V be a set of variables
containing the free variables of ϕ. Then, [[ϕ]]V ∈ SF(Σ∞

V ).

Proof. The proof is by induction on the formula. We have

[[Pa(x)]]V = NV ∩ (Σ∗
V · {(a, τ) | τ(x) = 1} · Σ∞

V )

[[x < y]]V = NV ∩ (Σ∗
V · Σ

x=1
V · Σ∗

V ·Σ
y=1
V ·Σ∞

V ).

The induction is trivial for disjunction and negation since the star-free sets
form a Boolean algebra and NV is star-free. The interesting case is existen-
tial quantification [[∃x, ϕ]]V .

We assume first that x /∈ V and we let V ′ = V ∪ {x}. By induction,
[[ϕ]]V ′ is star-free and we can apply Lemma 3.2 with the sets A = Σx=1

V ′ and
B = Σx=0

V ′ . Note that NV ′ ⊆ B∗AB∞. Hence, [[ϕ]]V ′ = [[ϕ]]V ′ ∩ B∗AB∞

and we obtain [[ϕ]]V ′ =
⋃

1≤i≤nK
′
ia

′
iL

′
i where a′i ∈ A, K ′

i ∈ SF(B∗) and
L′
i ∈ SF(B∞) for all i. Let π : B∞ → Σ∞

V be the bijective renaming defined
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by π(a, τ) = (a, τ↾V ). Star-free sets are not preserved by projections but
indeed they are preserved by bijective renamings. Hence, Ki = π(K ′

i) ∈
SF(Σ∗

V ) and Li = π(L′
i) ∈ SF(Σ∞

V ). We also rename a′i = (a, τ) into
ai = (a, τ↾V ). We have [[∃x, ϕ]]V =

⋃
1≤i≤nKiaiLi and we deduce that

[[∃x, ϕ]]V ∈ SF(Σ∞
V ).

Finally, if x ∈ V then we choose a new variable y /∈ V and we let
U = (V \ {x}) ∪ {y}. From the previous case, we get [[∃x, ϕ]]U ∈ SF(Σ∞

U ).
To conclude, it remains to rename y to x. q.e.d.

Corollary 4.3. We have:

FO(Σ∗) ⊆ SF(Σ∗) and FO(Σ∞) ⊆ SF(Σ∞).

5 Aperiodic languages

Recall that a monoid (M, ·) is a non-empty set M together with a binary
operation · such that ((x · y) · z) = (x · (y · z)) and with a neutral element
1 ∈ M such that x · 1 = 1 · x = x for all x, y, z in M . Frequently we write
xy instead of x · y.

A morphism (or homomorphism) between monoids M and M ′ is a map-
ping h : M →M ′ such that h(1) = 1 and h(x · y) = h(x) · h(y).

We use the algebraic notion of recognizability and the notion of aperiodic
languages. Recognizability is defined as follows. Let h : Σ∗ → M be
a morphism to a finite monoid M . Two words u, v ∈ Σ∞ are said to
be h-similar, denoted by u ∼h v, if for some n ∈ N ∪ {ω} we can write
u =

∏
0≤i<n ui and v =

∏
0≤i<n vi with ui, vi ∈ Σ+ and h(ui) = h(vi) for

all 0 ≤ i < n. The notation u =
∏

0≤i<n ui refers to an ordered product,
it means a factorization u = u0u1 · · · . In other words, u ∼h v if either
u = v = ε, or u, v ∈ Σ+ and h(u) = h(v) or u, v ∈ Σω and there are
factorizations u = u0u1 · · · , v = v0v1 · · · with ui, vi ∈ Σ+ and h(ui) = h(vi)
for all i ≥ 0.

The transitive closure of ∼h is denoted by ≈h; it is an equivalence rela-
tion. For w ∈ Σ∞, we denote by [w]h the equivalence class of w under ≈h.
Thus,

[w]h = {u | u ≈h w} .

In case that there is no ambiguity, we simply write [w] instead of [w]h. Note
that there are three cases [w] = {ε}, [w] ⊆ Σ+, and [w] ⊆ Σω.

Definition 5.1. We say that a morphism h : Σ∗ → M recognizes L, if
w ∈ L implies [w]h ⊆ L for all w ∈ Σ∞.

Thus, a language L ⊆ Σ∞ is recognized by h if and only if L is saturated
by ≈h (or equivalently by ∼h). Note that we may assume that a recognizing
morphism h : Σ∗ →M is surjective, whenever convenient.
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Since M is finite, the equivalence relation ≈h is of finite index. More
precisely, there are at most 1+|M |+|M |2 classes. This fact can be derived by
some standard Ramsey argument about infinite monochromatic subgraphs.
We repeat the argument below in order to keep the article self-contained, see
also [3, 12, 25]. It shows the existence of a so-called Ramsey factorization.

Lemma 5.2. Let h : Σ∗ → M be a morphism to a finite monoid M and
w = u0u1u2 · · · be an infinite word with ui ∈ Σ+ for i ≥ 0. Then there
exist s, e ∈M , and an increasing sequence 0 < p1 < p2 < · · · such that the
following two properties hold:

1. se = s and e2 = e.

2. h(u0 · · ·up1−1) = s and h(upi
· · ·upj−1) = e for all 0 < i < j.

Proof. Let E =
{
(i, j) ∈ N2

∣∣ i < j
}
. We consider the mapping c : E →M

defined by c(i, j) = h(ui · · ·uj−1). We may think that the pairs (i, j) are
(edges of an infinite complete graph and) colored by c(i, j). Next we wish
to color an infinite set of positions.

We define inductively a sequence of infinite sets N = N0 ⊃ N1 ⊃ N2 · · ·
and a sequence of natural numbers n0 < n1 < n2 < · · · as follows. Assume
that Np is already defined and infinite. (This is true for p = 0.) Choose
any np ∈ Np, e.g., np = minNp. Since M is finite and Np is infinite, there
exists cp ∈ M and an infinite subset Np+1 ⊂ Np such that c(np,m) = cp
for all m ∈ Np+1. Thus, for all p ∈ N infinite sets Np are defined and
for every position np we may choose the color cp. Again, because M is
finite, one color must appear infinitely often. This color is called e and it is
just the (idempotent) element of M we are looking for. Therefore we find
a strictly increasing sequence p0 < p1 < p2 < · · · such that cpi

= e and
hence e = h(upi

· · ·upj−1) for all 0 ≤ i < j. Note that e = c(np0 , np2) =
c(np0 , np1)c(np1 , np2) = e2. Moreover, if we set s = h(u0 · · ·up1−1), we
obtain

s = c(0, np1) = c(0, np0)c(np0 , np1) = c(0, np0)c(np0 , np1)c(np1 , np2) = se.

This is all we need. q.e.d.

The lemma implies that for each (infinite) word w we may choose some
(s, e) ∈ M ×M with s = se and e = e2 such that w ∈ h−1(s) (h−1(e))ω .
This establishes that ≈h has at most |M |2 classes [w] where w is infinite;
and this in turn implies the given bound 1 + |M |+ |M |2.

Pairs (s, e) ∈M ×M with s = se and e = e2 are also called linked pair.

Remark 5.3. The existence of a Ramsey factorization implies that a lan-
guage L ⊆ Σω recognized by a morphism h from Σ∗ to some finite monoidM
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can be written as a finite union of languages of type UV ω, where U, V ⊆ Σ∗

are recognized by h and where moreover U = h−1(s) and V = h−1(e) for
some s, e ∈M with se = s and e2 = e. In particular, we have UV ⊆ U and
V V ⊆ V . Since {ε}ω = {ε}, the statement holds for L ⊆ Σ∗ and L ⊆ Σ∞

as well.

A (finite) monoid M is called aperiodic, if for all x ∈ M there is some
n ∈ N such that xn = xn+1.

Definition 5.4. A language L ⊆ Σ∞ is called aperiodic, if it is recognized
by some morphism to a finite and aperiodic monoid. By AP(Σ∗) (resp.
AP(Σ∞)) we denote the set of aperiodic languages in Σ∗ (resp. Σ∞), and
by AP we denote the family of aperiodic languages.

6 From star-freeness to aperiodicity

Corollary 4.3 (as well as Proposition 10.3) tells us that all first-order defin-
able languages are star-free. We want to show that all star-free languages
are recognized by aperiodic monoids. Note that the trivial monoid recog-
nizes the language Σ∗, actually it recognizes all eight Boolean combinations
of {ε} and Σω.

Consider next a letter a. The smallest recognizing monoid of the single-
ton {a} is aperiodic, it has just three elements 1, a, 0 with a · a = 0 and 0 is
a zero, this means x · y = 0 as soon as 0 ∈ {x, y}.

Another very simple observation is that if Li is recognized by a morphism
hi : Σ∗ →Mi to some finite (aperiodic) monoidMi, i = 1, 2, then (the direct
product M1 ×M2 is aperiodic and) the morphism

h : Σ∗ →M1 ×M2, w 7→ (h1(w), h2(w))

recognizes all Boolean combinations of L1 and L2.
The proof of the next lemma is rather technical. Its main part shows

that the family of recognizable languages is closed under concatenation.
Aperiodicity comes into the picture only at the very end in a few lines.
There is alternative way to prove the following lemma. In Section 11 we
introduce non-deterministic counter-free Büchi automata which can be used
to show the closure under concatenation as well, see Lemma 11.3.

Lemma 6.1. Let L ⊆ Σ∗ and K ⊆ Σ∞ be aperiodic languages. Then L ·K
is aperiodic.

Proof. As said above, we may choose a single morphism h : Σ∗ → M to
some finite aperiodic monoid M , which recognizes both L and K.

The set of pairs (h(u), h(v)) with u, v ∈ Σ∗ is finite (bounded by |M |2)
and so its power set S is finite, too. We will see that there is a monoid
structure on some subset of S such that this monoid recognizes L ·K.
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To begin with, let us associate with w ∈ Σ∗ the following set of pairs:

g(w) = {(h(u), h(v)) | w = uv} .

The finite set g(Σ∗) ⊆ S is in our focus. We define a multiplication by:

g(w) · g(w′) = g(ww′)

= {(h(wu′), h(v′)) | w′ = u′v′} ∪ {(h(u), h(vw′)) | w = uv} .

The product is well-defined. To see this, observe first that (h(u), h(v)) ∈
g(w) implies h(w) = h(u)h(v) since h is a morphism. Thus, the set g(w)
knows the element h(w). Second, h(wu′) = h(w)h(u′) since h is a morphism.
Hence, we can compute {(h(wu′), h(v′)) | w′ = u′v′} from g(w) and g(w′).
The argument for the other component is symmetric.

By the very definition of g, we obtain a morphism

g : Σ∗ → g(Σ∗).

In order to see that g recognizes L ·K consider u ∈ L ·K and v such that
we can write u =

∏
0≤i<n ui and v =

∏
0≤i<n vi with ui, vi ∈ Σ+ and

g(ui) = g(vi) for all 0 ≤ i < n. We have to show v ∈ L · K. We have
u ∈ L ·K = (L ∩ Σ∗) ·K. Hence, for some index j we can write uj = u′ju

′′
j

with (
∏

0≤i<j

ui

)
u′j ∈ L and u′′j

(
∏

j<i<n

ui

)
∈ K.

Now, g(ui) = g(vi) implies h(ui) = h(vi). Moreover, uj = u′ju
′′
j implies

(h(u′j), h(u
′′
j )) ∈ g(uj) = g(vj). Hence we can write vj = v′jv

′′
j with h(u′j) =

h(v′j) and h(u′′j ) = h(v′′j ). Therefore

(
∏

0≤i<j

vi

)
v′j ∈ L and v′′j

(
∏

j<i<n

vi

)
∈ K

and v ∈ L ·K, too.
It remains to show that the resulting monoid is indeed aperiodic. To

see this choose some n > 0 such that xn = xn+1 for all x ∈ M . Consider
any element g(w) ∈ g(Σ∗). We show that g(w)2n = g(w)2n+1. This is
straightforward:

g(w)2n = g(w2n) =
{
(h(wku), h(vwm))

∣∣ w = uv, k +m = 2n− 1
}
.

If k+m = 2n−1 then either k ≥ n or m ≥ n. Hence, for each pair, we have
either (h(wku), h(vwm)) = (h(wk+1u), h(vwm)) or (h(wku), h(vwm)) =
(h(wku), h(vwm+1)). The result follows. q.e.d.
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Proposition 6.2. We have SF ⊆ AP or more explicitly:

SF(Σ∗) ⊆ AP(Σ∗) and SF(Σ∞) ⊆ AP(Σ∞).

Proof. Aperiodic languages form a Boolean algebra. We have seen above
that AP contains Σ∗ and all singletons {a}, where a is a letter. Thus,
star-free languages are aperiodic by Lemma 6.1. q.e.d.

7 From LTL to FO
3

The syntax of LTLΣ[XU,YS] is given by

ϕ ::= ⊥ | a | ¬ϕ | ϕ ∨ ϕ | ϕ XU ϕ | ϕ YS ϕ,

where a ranges over Σ. When there is no ambiguity, we simply write LTL
for LTLΣ[XU,YS]. We also write LTLΣ[XU] for the pure future fragment
where only the next-until modality XU is allowed.

In order to give a semantics to an LTL formula we identify each ϕ ∈
LTL with some first-order formula ϕ(x) in at most one free variable. The
identification is done by structural induction. ⊤ and ⊥ still denote the truth
value true and false, the formula a becomes a(x) = Pa(x). The formulae
neXt-Until and Yesterday-Since are defined by:

(ϕ XU ψ)(x) = ∃z : x < z ∧ ψ(z) ∧ ∀y : x < y < z → ϕ(y).

(ϕ YS ψ)(x) = ∃z : x > z ∧ ψ(z) ∧ ∀y : x > y > z → ϕ(y).

It is clear that each LTL formula becomes under this identification a
first-order formula which needs at most three different names for variables.
For simplicity let us denote this fragment by FO3, too. Thus, we can write
LTL ⊆ FO3.

As usual, we may use derived formulas such as Xϕ = ⊥XUϕ (read neXt
ϕ), ϕUψ = ψ ∨ (ϕ ∧ (ϕ XU ψ)) (read ϕ Until ψ), Fϕ = ⊤U ϕ (read Future
ϕ), etc.

Since LTL ⊆ FO3 a model of an LTLΣ formula ϕ is a word v =
a0a1a2 · · · ∈ A∞ \ {ε} together with a position 0 ≤ i < |v| (the alphabet A
might be different from Σ).

For a formula ϕ ∈ LTLΣ and an alphabet A, we let

LA(ϕ) = {v ∈ A∞ \ {ε} | v, 0 |= ϕ}.

We say that a language L ⊆ A∞ is definable in LTLΣ if L \ {ε} = LA(ϕ)
for some ϕ ∈ LTLΣ. Note that the empty word ε cannot be a model of a
formula. To include the empty word, it will be convenient to consider for
any letter c (not necessarily in A), the language

Lc,A(ϕ) = {v ∈ A∞ | cv, 0 |= ϕ}.
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Remark 7.1. When we restrict to the pure future fragment LTLΣ[XU] the
two approaches define almost the same class of languages. Indeed, for each
formula ϕ ∈ LTLΣ[XU], we have LA(ϕ) = Lc,A(Xϕ) \ {ε}. Conversely, for
each formula ϕ there is a formula ϕ such that LA(ϕ) = Lc,A(ϕ) \ {ε}. The
translation is simply ϕ XU ψ = ϕ U ψ, c = ⊤ and a = ⊥ if a 6= c, and as
usual ¬ϕ = ¬ϕ and ϕ ∨ ψ = ϕ ∨ ψ.

8 From AP to LTL

8.1 A construction on monoids.

The passage from AP to LTL is perhaps the most difficult step in completing
the picture of first-order definable languages. We shall use an induction on
the size of the monoid M , for this we recall first a construction due to [5].
The construction is very similar to a construction of what is known as local
algebra, see [8, 18].

For a moment let M be any monoid and m ∈ M an element. Then
mM ∩ Mm is obviously a subsemigroup, but it may not have a neutral
element. Hence it is not a monoid, in general. Note that, if m 6= 1M and M
is aperiodic, then 1M 6∈ mM ∩Mm. Indeed, assume that 1M ∈ mM and
write 1M = mx with x ∈ M . Hence 1M = mnxn for all n, and for some
n ≥ 0 we have mn = mn+1. Taking this n we see:

1M = mnxn = mn+1xn = m(mnxn) = m1M = m.

Therefore |mM ∩Mm| < |M |, if M is aperiodic and if m 6= 1M .
It is possible to define a new product ◦ such that mM ∩Mm becomes

a monoid where m is a neutral element: We let

xm ◦my = xmy

for xm,my ∈ mM ∩Mm. This is well-defined since xm = x′m and my =
my′ imply xmy = x′my′. The operation is associative andm◦z = z◦m = z.
Hence (mM ∩Mm, ◦,m) is indeed a monoid. Actually it is a divisor of M .
To see this consider the submonoid N = {x ∈M | xm ∈ mM}. (Note that
N is indeed a submonoid of M .) Clearly, the mapping x 7→ xm yields
a surjective morphism from (N, ·, 1M ) onto (mM ∩ Mm, ◦,m), which is
therefore a homomorphic image of the submonoid N of M . In particular, if
M is aperiodic, then (mM ∩Mm, ◦,m) is aperiodic, too.

8.2 Closing the cycle

Proposition 8.1. We have AP ⊆ LTL. More precisely, let L ⊆ Σ∞ be a
language recognized by an aperiodic monoid M .

(1) We can construct a formula ϕ ∈ LTLΣ[XU] such that L \ {ε} = LΣ(ϕ).
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(2) For any letter c (not necessarily in Σ), we can construct a formula
ϕ ∈ LTLΣ[XU] such that L = Lc,Σ(ϕ).

Note first that (1) follows from (2) by Remark 7.1. The proof of (2) is by
induction on (|M |, |Σ|) (with lexicographic ordering). Let h : Σ∗ → M be
a morphism to the aperiodic monoid M . The assertion of Proposition 8.1
is almost trivial if h(c) = 1M for all c ∈ Σ. Indeed, in this case, the set
L is a Boolean combination of the sets {ε}, Σ+ and Σω which are easily
definable in LTLΣ[XU ]: we have {ε} = Lc,Σ(¬X⊤), Σ+ = Lc,Σ(XF¬X⊤)
and Σω = Lc,Σ(¬F¬X⊤). Note that when |M | = 1 or |Σ| = 0 then we
have h(c) = 1M for all c ∈ Σ and this special case ensures the base of the
induction.

In the following, we fix a letter c ∈ Σ such that h(c) 6= 1M and we let
A = Σ \ {c}. We define the c-factorization of a word v ∈ Σ∞. If v ∈ (A∗c)ω

then its c-factorization is v = v0cv1cv2c · · · with vi ∈ A∗ for all i ≥ 0. If
v ∈ (A∗c)∗A∞ then its c-factorization is v = v0cv1c · · · vk−1cvk where k ≥ 0
and vi ∈ A∗ for 0 ≤ i < k and vk ∈ A∞.

Consider two new disjoint alphabets T1 = {h(u) | u ∈ A∗} and T2 =
{[u]h | u ∈ A∞}. Let T = T1 ⊎ T2 and define the mapping σ : Σ∞ → T∞

by σ(v) = h(v0)h(v1)h(v2) · · · ∈ Tω1 if v ∈ (A∗c)ω and its c-factorization
is v = v0cv1cv2c · · · , and σ(v) = h(v0)h(v1) · · ·h(vk−1)[vk]h ∈ T

∗
1 T2 if v ∈

(A∗c)∗A∞ and its c-factorization is v = v0cv1c · · · vk−1cvk.

Lemma 8.2. Let L ⊆ Σ∞ be a language recognized by h. There exists
a language K ⊆ T∞ which is definable in LTLT [XU] and such that L =
σ−1(K).

Proof. We have seen that M ′ = h(c)M∩Mh(c) is an aperiodic monoid with
composition ◦ and neutral element h(c). Moreover, |M ′| < |M | since h(c) 6=
1M . Let us define a morphism g : T ∗ →M ′ as follows. For m = h(u) ∈ T1

we define g(m) = h(c)mh(c) = h(cuc). For m ∈ T2 we let g(m) = h(c),
which is the neutral element in M ′.

Let K0 = {[u]h | u ∈ L∩A∞} ⊆ T2. We claim that L∩A∞ = σ−1(K0).
One inclusion is clear. Conversely, let v ∈ σ−1(K0). There exists u ∈ L∩A∞

such that σ(v) = [u]h ∈ T2. By definition of σ, this implies v ∈ A∞ and
v ≈h u. Since u ∈ L and L is recognized by h, we get v ∈ L as desired.

For n ∈ T1 and m ∈ T2, let Kn,m = nT ∗
1m ∩ n[n−1σ(L) ∩ T ∗

1m]g and
let K1 =

⋃
n∈T1,m∈T2

Kn,m. We claim that L ∩ (A∗c)+A∞ = σ−1(K1).

Let first v ∈ L ∩ (A∗c)+A∞ and write v = v0cv1 · · · cvk its c-factorization.
With n = h(v0) and m = [vk]h we get σ(v) ∈ Kn,m. Conversely, let
v ∈ σ−1(Kn,m) with n ∈ T1 and m ∈ T2. We have v ∈ (A∗c)+A∞ and
its c-factorization is v = v0cv1 · · · cvk with k > 0, h(v0) = n and [vk]h =
m. Moreover, x = h(v1) · · ·h(vk−1)[vk]h ∈ [n−1σ(L) ∩ T ∗

1m]g hence we
find y ∈ T ∗

1m with g(x) = g(y) and ny ∈ σ(L). Let u ∈ L be such
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that σ(u) = ny ∈ nT ∗
1m. Then u ∈ (A∗c)+A∞ and its c-factorization is

u = u0cu1 · · · cuℓ with ℓ > 0, h(u0) = n and [uℓ]h = m. By definition
of g, we get h(cv1c · · · cvk−1c) = g(x) = g(y) = h(cu1c · · · cuℓ−1c). Using
h(v0) = n = h(u0) and [vk]h = m = [uℓ]h, we deduce that v ≈h u. Since
u ∈ L and L is recognized by h, we get v ∈ L as desired.

For n ∈ T1, letKn,ω = nTω1 ∩n[n−1σ(L)∩Tω1 ]g and letK2 =
⋃
n∈T1

Kn,ω.

As above, we will show that L ∩ (A∗c)ω = σ−1(K2). So let v ∈ L ∩ (A∗c)ω

and consider its c-factorization v = v0cv1cv2 · · · . With n = h(v0), we get
σ(v) ∈ Kn,ω. To prove the converse inclusion we need some auxiliary results.

First, if x ∼g y ∼g z with x ∈ Tω and |y|T1
< ω then x ∼g z. Indeed,

in this case, we find factorizations x = x0x1x2 · · · and y = y0y1y2 · · · with
xi ∈ T+, y0 ∈ T+ and yi ∈ T

+
2 for i > 0 such that g(xi) = g(yi) for all

i ≥ 0. Similarly, we find factorizations z = z0z1z2 · · · and y = y′0y
′
1y

′
2 · · ·

with zi ∈ T+, y′0 ∈ T
+ and y′i ∈ T

+
2 for i > 0 such that g(zi) = g(y′i) for all

i ≥ 0. Then, we have g(xi) = g(yi) = h(c) = g(y′i) = g(zi) for all i > 0 and
g(x0) = g(y0) = g(y′0) = g(z0) since y0 and y′0 contain all letters of y from
T1 and g maps all letters from T2 to the neutral element of M ′.

Second, if x ∼g y ∼g z with |y|T1
= ω then x ∼g y′ ∼g z for some

y′ ∈ Tω1 . Indeed, in this case, we find factorizations x = x0x1x2 · · · and
y = y0y1y2 · · · with xi ∈ T+, and yi ∈ T ∗T1T

∗ such that g(xi) = g(yi)
for all i ≥ 0. Let y′i be the projection of yi to the subalphabet T1 and let
y′ = y′0y

′
1y

′
2 · · · ∈ T

ω
1 . We have g(yi) = g(y′i), hence x ∼g y′. Similarly, we

get y′ ∼g z.

Third, if σ(u) ∼g σ(v) with u, v ∈ (A∗c)ω then cu ≈h cv. Indeed, since
u, v ∈ (A∗c)ω, the c-factorizations of u and v are of the form u1cu2c · · · and
v1cv2c · · · with ui, vi ∈ A∗. Using σ(u) ∼g σ(v), we find new factorizations
u = u′1cu

′
2c · · · and v = v′1cv

′
2c · · · with u′i, v

′
i ∈ (A∗c)∗A∗ and h(cu′ic) =

h(cv′ic) for all i > 0. We deduce

cu = (cu′1c)u
′
2(cu

′
3c)u

′
4 · · · ∼h (cv′1c)u

′
2(cv

′
3c)u

′
4 · · · = cv′1(cu

′
2c)v

′
3(cu

′
4c) · · ·

∼h cv
′
1(cv

′
2c)v

′
3(cv

′
4c) · · · = cv.

We come back to the proof of σ−1(Kn,ω) ⊆ L ∩ (A∗c)ω. So let u ∈
σ−1(Kn,ω). We have u ∈ (A∗c)ω and σ(u) = nx ∈ nT ω1 with x ∈ [n−1σ(L)∩
Tω1 ]g. Let y ∈ Tω1 be such that x ≈g y and ny ∈ σ(L). Let v ∈ L with
σ(v) = ny. We may write u = u0cu

′ and v = v0cv
′ with u0, v0 ∈ A∗,

h(u0) = n = h(v0), u
′, v′ ∈ (A∗c)ω, x = σ(u′) and y = σ(v′). Since x ≈g y,

using the first two auxiliary results above and the fact that the mapping
σ : (A∗c)ω → Tω1 is surjective, we get σ(u′) ∼g σ(w1) ∼g · · · ∼g σ(wk) ∼g
σ(v′) for some w1, . . . , wk ∈ (A∗c)ω. From the third auxiliary result, we get
cu′ ≈h cv′. Hence, using h(u0) = h(v0), we obtain u = u0cu

′ ≈h v0cv′ = v.
Since v ∈ L and L is recognized by h, we get u ∈ L as desired.
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Finally, let K = K0 ∪K1 ∪K2. We have already seen that L = σ−1(K).
It remains to show that K is definable in LTLT [XU]. Let N ⊆ T∞,
then, by definition, the language [N ]g is recognized by g which is a mor-
phism to the aperiodic monoid M ′ with |M ′| < |M |. By induction on
the size of the monoid, we deduce that for all n ∈ T1 and N ⊆ T∞

there exists ϕ ∈ LTLT [XU] such that [N ]g = Ln,T (ϕ). We easily check
that nLn,T (ϕ) = LT (n ∧ ϕ). Therefore, the language n[N ]g is definable
in LTLT [XU]. Moreover, K0, nT

∗
1m and nTω1 are obviously definable in

LTLT [XU]. Therefore, K is definable in LTLT [XU]. q.e.d.

Let b ∈ Σ be a letter. For a nonempty word v = a0a1a2 · · · ∈ Σ∞ \ {ε}
and a position 0 ≤ i < |v|, we denote by µb(v, i) the largest factor of
v starting at position i and not containing the letter b except maybe ai.
Formally, µb(v, i) = aiai+1 · · ·aℓ where ℓ = max{k | i ≤ k < |v| and aj 6=
b for all i < j ≤ k}.

Lemma 8.3 (Lifting). For each formula ϕ ∈ LTLΣ[XU], there exists a
formula ϕb ∈ LTLΣ[XU] such that for each v ∈ Σ∞\{ε} and each 0 ≤ i < |v|,
we have v, i |= ϕb if and only if µb(v, i), 0 |= ϕ.

Proof. The construction is by structural induction on ϕ. We let ab = a.

Then, we have ¬ϕb = ¬ϕb and ϕ ∨ ψ
b

= ϕb ∨ ψ
b

as usual. For next-until,

we define ϕ XU ψ
b

= (¬b ∧ ϕb) XU (¬b ∧ ψ
b
).

Assume that v, i |= ϕ XU ψ
b
. We find i < k < |v| such that v, k |= ¬b∧ψ

b

and v, j |= ¬b∧ ϕb for all i < j < k. We deduce that µb(v, i) = aiai+1 · · · aℓ
with ℓ > k and that µb(v, i), k − i |= ψ and µb(v, i), j − i |= ϕ for all
i < j < k. Therefore, µb(v, i), 0 |= ϕ XU ψ as desired. The converse can be
shown similarly. q.e.d.

Lemma 8.4. For all ξ ∈ LTLT [XU], there exists a formula ξ̃ ∈ LTLΣ[XU]

such that for all v ∈ Σ∞ we have cv, 0 |= ξ̃ if and only if σ(v), 0 |= ξ.

Proof. The proof is by structural induction on ξ. The difficult cases are for
the constants m ∈ T1 or m ∈ T2.

Assume first that ξ = m ∈ T1. We have σ(v), 0 |= m if and only if
v = ucv′ with u ∈ A∗∩h−1(m). The language A∗∩h−1(m) is recognized by
the restriction h↾A : A∗ →M . By induction on the size of the alphabet, we
find a formula ϕm ∈ LTLA[XU] such that Lc,A(ϕm) = A∗ ∩ h−1(m). We let
m̃ = ϕm

c ∧ XF c. By Lemma 8.3, we have cv, 0 |= m̃ if and only if v = ucv′

with u ∈ A∗ and µc(cv, 0), 0 |= ϕm. Since µc(cv, 0) = cu, we deduce that
cv, 0 |= m̃ if and only if v = ucv′ with u ∈ Lc,A(ϕm) = A∗ ∩ h−1(m).

Next, assume that ξ = m ∈ T2. We have σ(v) |= m if and only if
v ∈ A∞ ∩ m (note that letters from T2 can also be seen as equivalence
classes which are subsets of Σ∞). The language A∞ ∩m is recognized by
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the restriction h↾A. By induction on the size of the alphabet, we find a
formula ψm ∈ LTLA[XU] such that Lc,A(ψm) = A∞ ∩ m. Then, we let

m̃ = ψm
c
∧ ¬XF c and we conclude as above.

Finally, we let ¬̃ξ = ¬ξ̃, ξ̃1 ∨ ξ2 = ξ̃1∨ ξ̃2 and for the modality next-until

we define ˜ξ1 XU ξ2 = (¬c ∨ ξ̃1) U (c ∧ ξ̃2).
Assume that σ(v), 0 |= ξ1 XU ξ2 and let 0 < k < |σ(v)| be such that

σ(v), k |= ξ2 and σ(v), j |= ξ1 for all 0 < j < k. Let v0cv1cv2c · · · be
the c-factorization of v. Since the logics LTLT [XU] and LTLΣ[XU] are pure
future, we have σ(v), k |= ξ2 if and only if σ(vkcvk+1 · · · ), 0 |= ξ2 if and only

if (by induction) cvkcvk+1 · · · , 0 |= ξ̃2 if and only if cv, |cv0 · · · cvk−1| |= ξ̃2.

Similarly, σ(v), j |= ξ1 if and only if cv, |cv0 · · · cvj−1| |= ξ̃1. Therefore,

cv, 0 |= ˜ξ1 XU ξ2. The converse can be shown similarly. q.e.d.

We conclude now the proof of Proposition 8.1. We start with a language
L ⊆ Σ∞ recognized by h. By Lemma 8.2, we find a formula ξ ∈ LTLT [XU]

such that L = σ−1(LT (ξ)). Let ξ̃ be the formula given by Lemma 8.4.

We claim that L = Lc,Σ(ξ̃). Indeed, for v ∈ Σ∞, we have v ∈ Lc,Σ(ξ̃) if

and only if cv, 0 |= ξ̃ if and only if (Lemma 8.4) σ(v), 0 |= ξ if and only if
σ(v) ∈ LT (ξ) if and only if v ∈ σ−1(LT (ξ)) = L.

9 The separation theorem

As seen in Section 7, an LTLΣ[YS,XU] formula ϕ can be viewed as a first-
order formula with one free variable. The converse, in a stronger form, is
established in this section.

Proposition 9.1. For all first-order formulae ξ in one free variable we
find a finite list (Ki, ai, Li)i=1,...,n where each Ki ∈ SF(Σ∗) and each Li ∈
SF(Σ∞) and ai is a letter such that for all u ∈ Σ∗, a ∈ Σ and v ∈ Σ∞ we
have

(uav, |u|) |= ξ if and only if u ∈ Ki, a = ai and v ∈ Li for some 1 ≤ i ≤ n.

Proof. By Proposition 4.2, with V = {x} we have [[ξ]]V ∈ SF(Σ∞
V ). Hence,

we can use Lemma 3.2 with A = Σx=1
V and B = Σx=0

V . Note that NV =
B∗AB∞. Hence, we obtain

[[ξ]]V =
⋃

i=1,...,n

K ′
i · a

′
i · L

′
i

with a′i ∈ A, K ′
i ∈ SF(B∗) and L′

i ∈ SF(B∞) for all i. Let π : B∞ → Σ∞ be
the bijective renaming defined by π(a, τ) = a. Star-free sets are preserved
by injective renamings. Hence, we can choose Ki = π(K ′

i) ∈ SF(Σ∗) and
Li = π(L′

i) ∈ SF(Σ∞). Note also that a′i = (ai, 1) for some ai ∈ Σ. q.e.d.
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Theorem 9.2 (Separation). Let ξ(x) ∈ FOΣ(<) be a first-order formula
with one free variable x. Then, ξ(x) = ζ(x) for some LTL formula ζ ∈
LTLΣ[YS,XU]. Moreover, we can choose for ζ a disjunction of conjunctions
of pure past and pure future formulae:

ζ =
∨

1≤i≤n

ψi ∧ ai ∧ ϕi

where ψi ∈ LTLΣ[YS], ai ∈ Σ and ϕi ∈ LTLΣ[XU]. In particular, every
first-order formula with one free variable is equivalent to some formula in
FO3.

Note that we have already established a weaker version which applies
to first-order sentences. Indeed, if ξ is a first-order sentence, then L(ϕ) is
star-free by Proposition 10.3, hence aperiodic by Proposition 6.2, and finally
definable in LTL by Proposition 8.1. The extension to first-order formulae
with one free variable will also use the previous results.

Proof. By Proposition 9.1 we find for each ξ a finite list (Ki, ai, Li)i=1,...,n

where each Ki ∈ SF(Σ∗) and each Li ∈ SF(Σ∞) and ai is a letter such
that for all u ∈ Σ∗, a ∈ Σ and v ∈ Σ∞ we have

(uav, |u|) |= ξ if and only if u ∈ Ki, a = ai and v ∈ Li for some 1 ≤ i ≤ n.

For a finite word b0 · · · bm where bj are letters we let
←−−−−−
b0 · · · bm = bm · · · b0.

This means we read words from right to left. For a language K ⊆ Σ∗

we let
←−
K = {←−w | w ∈ K}. Clearly, each

←−
Ki is star-free. Therefore, using

Propositions 6.2 and 8.1, for each 1 ≤ i ≤ n we find ψ̂i and ϕi ∈ LTLΣ[XU]

such that Lai
(ψ̂i) =

←−
Ki and Lai

(ϕi) = Li. Replacing all operators XU by YS

we can transform ψ̂i ∈ LTLΣ[XU] into a formula ψi ∈ LTLΣ[YS] such that

(a←−w , 0) |= ψ̂i if and only if (wa, |w|) |= ψi for all wa ∈ Σ+. In particular,
Ki = {w ∈ Σ∗ | wai, |w| |= ψi}.

It remains to show that ξ(x) = ζ(x) where ζ =
∨

1≤i≤n ψi ∧ ai ∧ϕi. Let
w ∈ Σ∞ \ {ε} and p be a position in w.

Assume first that (w, p) |= ξ(x) and write w = uav with |u| = p. We
have u ∈ Ki, a = ai and v ∈ Li for some 1 ≤ i ≤ n. We deduce that
uai, |u| |= ψi and aiv, 0 |= ϕi. Since ψi is pure past and ϕi is pure future,
we deduce that uaiv, |u| |= ψi ∧ ai ∧ ϕi. Hence we get w, p |= ζ.

Conversely, assume that w, p |= ψi ∧ ai ∧ ϕi for some i. As above, we
write w = uaiv with |u| = p. Since ψi is pure past and ϕi is pure future, we
deduce that uai, |u| |= ψi and aiv, 0 |= ϕi. Therefore, u ∈ Ki and v ∈ Li.
We deduce that (w, p) |= ξ(x). q.e.d.
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10 Variations

This section provides an alternative way to establish the bridge from first-
order to star freeness and an alternative proof for Theorem 9.2.

There is a powerful tool to reason about first-oder definable languages
which we did not discuss: Ehrenfeucht-Fräıssé-games. These games lead to
an immediate proof of a congruence lemma, which is given in Lemma 10.2
below. On the other hand, in our context, it would be the only place where
we could use the power of Ehrenfeucht-Fräıssé-games, therefore we skip this
notion and we use Lemma 10.1 instead.

Before we continue we introduce a few more notations. The quantifier
depth qd(ϕ) of a formula ϕ is defined inductively. For the atomic formulae
⊥, P , and x < y it is zero, the use of the logical connectives does not
increase it, it is the maximum over the operands, but adding a quantifier
in front increases the quantifier depth by one. For example, the following
formula in one free variable y has quantifier depth two:

∀x (∃y P (x) ∧ ¬P (y)) ∨ (∃z P (z) ∧ (x < z) ∨ (z < y))

By FOm,k we mean the set of all formulae of quantifier depth at most
m and where the free variables are in the set {x1, . . . , xk}, and FOm is a
short-hand of FOm,0; it is the set of sentences of quantifier-depth at most
m.

We say that formulae ϕ, ψ ∈ FOm,k are equivalent if L(ϕ) = L(ψ) (for all
Σ). Since the set of unary predicates is finite, there are, up to equivalence,
only finitely many formulae in FOm,k as soon as k and m are fixed. This
is true for m = 0, because over any finite set of formulae there are, up to
equivalence, only finitely many Boolean combinations. For m > 0 we have,
by induction, only finitely many formulae of type ∃xk+1 ϕ where ϕ ranges
over FOm−1,k+1. A formula in FOm,k is a Boolean combination over such
formulae, as argued for m = 0 there are only finitely many choices.

10.1 The congruence lemma

Recall that Σ∞
(k) means the set of pairs (w, p), where w ∈ Σ∞ is a finite or

infinite word and p = (p1, . . . , pk) is a k-tuple of positions in pos(w). If we
have (u, p) ∈ Σ∗

(k) and (v, q) ∈ Σ∞
(ℓ), then we can define the concatenation

in the natural way by shifting q:

(u, p) · (v, q) = (uv, p1, . . . , pk, |u|+ q1, . . . , |u|+ qℓ) ∈ Σ∞
(k+ℓ).

For each k and m and (w, p) ∈ Σ∞
(k) we define classes as follows:

[(w, p)]m,k =
⋂

ϕ∈FOm,k|(w,p)|=ϕ

L(ϕ).
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For k = 0 we simply write [w]m,0. Since qd(ϕ) = qd(¬ϕ) and L(¬ϕ) =
Σ∞

(k) \ L(ϕ) we obtain

[(w, p)]m,k =
⋂

ϕ∈FOm,k|(w,p)|=ϕ

L(ϕ)

=
⋂

ϕ∈FOm,k|(w,p)|=ϕ

L(ϕ) \
⋃

ϕ∈FOm,k|(w,p) 6|=ϕ

L(ϕ).

Note that (u′, p′) ∈ [(u, p)]m,k if and only if (u, p) |= ϕ⇐⇒ (u′, p′) |= ϕ for
all ϕ ∈ FOm,k if and only if [(u′, p′)]m,k = [(u, p)]m,k.

Lemma 10.1. Let [(u, p)]m,k = [(u′, p′)]m,k with m ≥ 1, p = (p1, . . . , pk),
and p′ = (p′1, . . . , p

′
k). Then for all positions pk+1 ∈ pos(u) there exists a

position p′k+1 ∈ pos(u′) such that

[(u, (p1, . . . , pk+1))]m−1,k+1 = [(u′,
(
p′1, . . . , p

′
k+1

)
)]m−1,k+1.

Proof. Choose some pk+1 ∈ pos(u). We are looking for a position p′k+1 ∈
pos(u′) such that for all ψ ∈ FOm−1,k+1 we have (u, (p1, . . . , pk+1)) |= ψ if
and only if (u′,

(
p′1, . . . , p

′
k+1

)
) |= ψ.

Consider the following finite (up to equivalence) conjunction:

Ψ =
∧

ψ∈FOm−1,k+1|(u,(p1,...,pk+1))|=ψ

ψ.

We have (u, (p1, . . . , pk+1)) |= Ψ, qd(∃xk+1Ψ) ≤ m and (u, p) |= ∃xk+1Ψ.
Hence (u′, p′) |= ∃xk+1Ψ; and therefore there is some p′k+1 ∈ pos(u′) such

that (u′,
(
p′1, . . . , p

′
k+1

)
) |= Ψ.

Finally, for each ψ ∈ FOm−1,k+1, either Ψ implies ψ or Ψ implies
¬ψ, because either (u, (p1, . . . , pk+1)) |= ψ or (u, (p1, . . . , pk+1)) |= ¬ψ.
Hence, if (u, (p1, . . . , pk+1)) |= ψ, then (u′,

(
p′1, . . . , p

′
k+1

)
) |= ψ, too. If

(u, (p1, . . . , pk+1)) |= ¬ψ, then (u′,
(
p′1, . . . , p

′
k+1

)
) |= ¬ψ, too. The result

follows. q.e.d.

The next lemma is known as congruence lemma.

Lemma 10.2. Let [(u, p)]m,k = [(u′, p′)]m,k and [(v, q)]m,ℓ = [(v′, q′)]m,ℓ,
where u and u′ are finite words. Then we have

[(u, p) · (v, q)]m,k+ℓ = [(u′, p′) · (v′, q′)]m,k+ℓ.

Proof. We have to show that for all ϕ ∈ FOm,k we have (u, p) · (v, q) |= ϕ
if and only if (u′, p′) · (v′, q′) |= ϕ. Since we get Boolean combinations for
free, we may assume that ϕ is of the form ∃xk+1ψ or an atomic formula.
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If ϕ = P (xi) and i ≤ k, then we have (u, p) · (v, q) |= P (xi) if and only
if (u, p) |= P (xi) and the result follows. The case i > k is symmetric.

If ϕ = xi < xj , assume first i ≤ k. If, in addition, j > k, then (u, p) ·
(v, q) |= xi < xj is true, otherwise i, j ≤ k and we see that (u, p) · (v, q) |=
xi < xj if and only if (u, p) |= xi < xj . The case i > k is similar.

It remains to deal with ϕ = ∃xk+1ψ. Assume (u, p) ·(v, q) |= ϕ. We have
to show that (u′, p′) · (v′, q′) |= ϕ. Assume first that there is some position
pk+1 ∈ pos(u) such that

(u, (p1, . . . , pk+1)) · (v, q) |= ψ.

By Lemma 10.1 there is some position p′k+1 ∈ pos(u′) such that

[(u, (p1, . . . , pk+1))]m−1,k+1 = [(u′,
(
p′1, . . . , p

′
k+1

)
)]m−1,k+1.

We have qd(ψ) ≤ m− 1, hence by induction on m we deduce

(u′,
(
p′1, . . . , p

′
k+1

)
) · (v′, q′) |= ψ

This in turn implies

(u′, p′) · (v′, q′) |= ∃xk+1ψ.

The case where (u, p) · (v, (q1, . . . , qℓ+1)) |= ψ for some position qℓ+1 in v is
similar. q.e.d.

10.2 From FO to SF and separation via the congruence lemma

It is convenient to define a dot-depth hierarchy. The Boolean combinations
of Σ∗ are of dot-depth zero. In order to define the m-th level of the dot-
depth hierarchy, m ≥ 1, one forms the Boolean closure of the languages
K · a ·L, where a ∈ Σ and K,L are of level at most m− 1. Note that there
are only finitely many languages of level m.

Proposition 10.3. Let m ≥ 0 and ϕ ∈ FOm be a sentence with quantifier-
depth at most m. Then we find a star-free language L of level at most m
in the dot-depth hierarchy such that L(ϕ) = L.

Proof. We perform an induction on m. The case m = 0 is trivial since the
only sentences are ⊤ and ⊥. Hence let m > 0. By definition,

[w]m−1,0 =
⋂

ψ∈FOm−1|w|=ψ

L(ψ).

By induction on m we may assume that [w]m−1,0 is star-free of dot-depth
m− 1. Consider next a sentence ϕ ∈ FOm. We want to show that L(ϕ) is
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of dot-depth m. Languages of dot-depth m form a Boolean algebra, thus by
structural induction it is enough to consider a sentence ϕ = ∃xψ. Consider
the following union:

T =
⋃

(uav,|u|)|=ψ

[u]m−1,0 · a · [v]m−1,0.

Since [u]m−1,0 and [v]m−1,0 are star-free sets of dot-depth m− 1, there are
finitely many sets [u]m−1,0 · a · [v]m−1,0 in the union above. In fact, it is a
star-free expression of dot-depth m.

It remains to show that L(ϕ) = T . Let w ∈ L(ϕ) = L(∃xψ). We find a
position in w and a factorization w = uav such that (uav, |u|) |= ψ. Since
u ∈ [u]m−1,0 and v ∈ [v]m−1,0, we have uav ∈ T , hence L(ϕ) ⊆ T .

The converse follows by a twofold application of the congruence lemma
(Lemma 10.2): Indeed, let u′ ∈ [u]m−1,0 and v′ ∈ [v]m−1,0 then

[(u′a, |u′|)]m−1,1 = [(u′) · (a, 0)]m−1,1

= [(u) · (a, 0)]m−1,1 = [(ua, |u|)]m−1,1

[(u′av′, |u′|)]m−1,1 = [(u′a, |u′|) · (v′)]m−1,1

= [(ua, |u|) · (v)]m−1,1 = [(uav, |u|)]m−1,1.

Therefore, (uav, |u|) |= ψ implies (u′av′, |u′|) |= ψ and this implies u′av′ |=
∃xψ. Thus, T ⊆ L(Ψ). q.e.d.

The congruence lemma yields an alternative way to show Proposition 9.1
(and hence the separation theorem, Theorem 9.2) too.

Proof of Proposition 9.1 based on Lemma 10.2. Let qd(ξ) = m for some
m ≥ 0. As in the proof of Proposition 10.3 define a language:

T =
⋃

(uav,|u|)|=ξ

[u]m,0 · a · [v]m,0.

The union is finite and the classes [u]m,0 ∩ Σ∗ and [v]m,0 are first-order
definable. First-order definable languages are star-free by Proposition 10.3.
Thus, we can rewrite T as desired:

T =
⋃

i=1,...,n

Ki · ai · Li.

Moreover, the proof of Proposition 10.3 has actually shown that (uav, |u|) |=
ξ if and only if u ∈ Ki, a = ai and v ∈ Li for some 1 ≤ i ≤ n.

For convenience, let us repeat the argument. If (uav, |u|) |= ξ, then we
find an index i such that u ∈ Ki, a = ai, and v ∈ Li. For the converse, let
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u′ ∈ Ki, a
′ = ai, and v′ ∈ Li for some i. We have to show (u′a′v, |u′|) |= ξ.

By definition of T , we have u′ ∈ Ki = [u]m,0 ∩ Σ∗, a′ = a, and v′ ∈ Li =
[v]m,0 for some (uav, |u|) |= ξ. The congruence lemma (Lemma 10.2) applied
twice yields:

[(a′v′, 0)]m,1 = [(a′, 0) · (v′)]m,1 = [(a, 0) · (v)]m,1 = [(av, 0)]m,1.

[(u′a′v′, |u′|)]m,1 = [(u′) · (a′v′, 0)]m,1 = [(u) · (av, 0)]m,1 = [(uav, |u|)]m,1.

We deduce (u′a′v, |u′|) |= ξ. q.e.d.

11 Counter-free and aperiodic Büchi automata

There is a standard way to introduce recognizable languages with finite
automata. Since we deal with finite and infinite words we use Büchi au-
tomata with two acceptance conditions, one for finite words and the other
for infinite words. A Büchi automaton is given as a tuple

A = (Q,Σ, δ, I, F,R),

where Q is a finite set of states and δ is a relation:

δ ⊆ Q× Σ×Q.

The set I ⊆ Q is called the set of initial states, the sets F,R ⊆ Q consist of
final and repeated states respectively.

If δ is the graph of a partially defined function from Q× Σ to Q and if
in addition |I| ≤ 1, then the automaton is called deterministic.

A path means in this section a finite or infinite sequence

π = p0, a0, p1, a1, p2, a2, . . .

such that (pi, ai, pi+1) ∈ δ for all i ≥ 0. We say that the path is accepting,
if it starts in an initial state p0 ∈ I and either it is finite and ends in a
final state from F or it is infinite and visits infinitely many repeated states
from R. The label of the above path π is the word u = a0a1a2 · · · ∈ Σ∞.
The language accepted by A is denoted by L(A) and is defined as the set
of words which appear as label of an accepting path. We have L(A) ⊆ Σ∞.
Languages of the form L(A) are called regular or regular ω-languages, if
L(A) ⊆ Σω

McNaughton and Papert have introduced the classical notion of a coun-
ter-free deterministic finite automaton, [20]. They showed that counter-
freeness captures star-freeness (hence aperiodicity) for languages over finite
words. Our aim is to give a natural notion of counter-freeness for non
deterministic (Büchi) automata such that a language L ⊆ Σ∞ is aperiodic
if and only if it can be accepted by a counter-free Büchi automaton. To
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the best of our knowledge, all previous extensions to infinite words used
deterministic automata.

If p, q ∈ Q are states of A, then we let Lp,q be the set of labels of finite
paths from p to q.

Definition 11.1. A Büchi automaton A = (Q,Σ, δ, I, F,R) is called coun-
ter-free, if um ∈ Lp,p implies u ∈ Lp,p for all states p ∈ Q, words u ∈ Σ∗,
and m ≥ 1.

Note that the definition is taking only the underlying transition relation
δ into account, but does not depend on the sets I, F , or R. For deterministic
automata counter-freeness coincides with the standard notion as introduced
in [20]. We start with the classical result of [20] on finite words.

Lemma 11.2. Let L ⊆ Σ∗ be a language of finite words recognized by a
morphism h from Σ∗ to some finite aperiodic monoid M . Then the minimal
deterministic automaton recognizing L is counter-free.

Proof. The states of the minimal deterministic automaton recognizing L
can be written as

L(u) = u−1L = {w ∈ Σ∗ | uw ∈ L}

with u ∈ Σ∗ and all transitions have the form (L(u), a, L(ua)). Assume that
L(uvm) = L(u) for some m ≥ 1. Then we can take m as large as we wish
and since M is aperiodic we may assume that xm+1 = xm for all x ∈ M .
Since h recognizes L, we deduce that uvmw ∈ L if and only if uvm+1w ∈ L
for all w ∈ Σ∗, i.e., L(uvm) = L(uvm+1). Using L(uvm) = L(u) we obtain,

L(u) = L(uvm) = L(uvm+1) = L((uvm)v) = L(uv).

Hence, the automaton is counter-free. q.e.d.

Lemma 11.3. Let L ⊆ Σ∗ and L′ ⊆ Σ∞ be accepted by counter-free
automata. Then L · L′ can be accepted by some counter-free automaton.

Proof. Trivial, just consider a usual construction showing that regular lan-
guages are closed under concatenation. Essentially, the new automaton is
the disjoint union of the two automata with additional transitions allowing
to switch from the first one to the second one. Therefore, a loop in the
new automaton is either a loop in the first one or a loop in the second one.
Thus, we have no new loops and hence the result. q.e.d.

Proposition 11.4. Let L ⊆ Σ∞ be recognized by a morphism h : Σ∗ →M
to some finite aperiodic monoid M . Then we find a counter-free Büchi
automaton A with L = L(A).
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Proof. By Remark 5.3 we can write L as a finite union of languages of type
UV ω, where U and V are aperiodic languages of finite words and where
moreover V = h−1(e) for some idempotent e ∈M . By a simple construction
on monoids we may actually assume that h−1(1) = {ε} and then in turn
that e 6= 1. Hence without restriction we have V ⊆ Σ+. The union of
two counter-free Büchi automata is counter-free and recognizes the union
of the accepted languages. Therefore we content to construct a counter-free
Büchi automaton for the language UV ω. By Lemmata 11.2 and 11.3 it is
enough to find a counter-free automaton for V ω. The trick is that V ω can
be accepted by some deterministic Büchi automaton. Define the witness W
by

W = V · (V \ V Σ+).

The language W is aperiodic. By Lemma 11.2, its minimal automaton A =
(Q,Σ, δ, I, F,∅) is counter-free. View this automaton as a deterministic
Büchi automaton A′ = (Q,Σ, δ, I,∅, F ) where final states are now repeated
states. (It is also counter-free according to Definition 11.1, because it is
deterministic.)

The automaton A′ accepts those infinite strings where infinitely many
prefixes are in W . We want to show that this coincides with V ω. Clearly,
w ∈ V ω implies that w has infinitely many prefixes in W . We show that the
converse holds, too. Let w ∈ Σω and wi be a list of infinitely many prefixes
in W . For each wi choose some factorization wi = uivi with ui ∈ V and
vi ∈ V \ V Σ+. Note there might be several such factorizations. However,
if wi 6= wj , then we cannot have ui = uj, because otherwise vi is a strict
prefix of vj or vice versa. Thus, we find infinitely many ui and by switching
to some infinite subsequence we may assume

u1 < u1v1 < u2 < u2v2 < u3 < u3v3 · · ·

where ≤ means the prefix relation. For all i we can write ui+1 = uiviv
′
i. We

have

e = h(ui+1) = h(uiviv
′
i) = e · e · h(v′i) = e · h(v′i) = h(vi) · h(v

′
i) = h(viv

′
i).

Hence

w = u1(v1v
′
1)(v2v

′
2)(v3v

′
3) · · · ∈ V

ω.

Therefore, V ω is accepted by the counter-free Büchi automaton A′. q.e.d.

To prove that conversely, a language accepted by a counter-free Büchi
automaton is aperiodic, we will use a weaker notion. The following definition
coincides with the one given in [16, Def. 3.1] for non-deterministic finite
automata in the context of finite transducers.
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Figure 1. The non-deterministic Büchi automaton A1

Definition 11.5. A Büchi automaton A = (Q,Σ, δ, I, F,R) is called aperi-
odic, if for some m ≥ 1 we have:

um ∈ Lp,q ⇐⇒ um+1 ∈ Lp,q

for all states p, q ∈ Q and words u ∈ Σ∗.

Lemma 11.6. Let A be a Büchi automaton.

1. If A is counter-free, then A is aperiodic.

2. If A is deterministic and aperiodic, then A is counter-free.

Proof. 1. Let um+1 ∈ Lp,q. If m is large enough, we find m+1 = k1 + ℓ+k2

with ℓ ≥ 2 and a state s such that uk1 ∈ Lp,s, uℓ ∈ Ls,s, and uk2 ∈ Ls,q.
Since the automaton is counter-free, we obtain u ∈ Ls,s and therefore um ∈
Lp,q. Similarly, we can show that um ∈ Lp,q implies um+1 ∈ Lp,q.

2. Let um ∈ Lp,p for some m ≥ 1. Then um ∈ Lp,p for m as large
as we wish. Since the automaton is aperiodic we have um, um+1 ∈ Lp,p for
some m large enough. Since the automaton is deterministic, we deduce that
u ∈ Lp,p, too. q.e.d.

Remark 11.7. Consider the non-deterministic Büchi automatonA1 of Fig-
ure 1 which accepts {aω}. The automaton A1 is aperiodic, but not coun-
ter-free.

The transformation monoid T (A) of A is realized as a submonoid of
Boolean matrices. More precisely, let A have n states. We consider the
monoid Bn×n of n × n matrices over the finite commutative semiring B =
{0, 1} with max as addition and the natural multiplication as product. For
every word u we define a matrix t(u) ∈ Bn×n by:

t(u)[p, q] = 1 ⇐⇒ u ∈ Lp,q.

The mapping t : Σ∗ → Bn×n is a monoid morphism, because t(ε) is the
identity matrix and we have for all u, v ∈ Σ∗:

t(u · v)[p, q] =
∑

r∈Q

t(u)[p, r] · t(v)[r, q].

The transition monoid of A is T (A) = t(Σ∗) ⊆ Bn×n.
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Figure 2. The deterministic and counter-free Büchi automaton A2

Remark 11.8. In terms of the transition monoid, Definition 11.5 says that
a Büchi automaton A is aperiodic if and only if the monoid T (A) is aperi-
odic.

The problem is that the morphism t to the transition monoid of A does
not recognizeL(A), in general. Indeed consider the deterministic automaton
A2 on Figure 2 where the only repeated state is 2. The automaton accepts
the language

L = {w ∈ {aab, bba}ω | the factor aa appears infinitely often} .

Consider the matrix t(aab) for which all entries are 0 except t(aab)[1, 1] = 1.
We have t(aab) = t(bba), but (aab)ω ∈ L and (bba)ω 6∈ L. Thus t does not
recognize L.

It is therefore somewhat surprising that aperiodicity of T (A) implies
that L(A) is an aperiodic language. This is proved in Proposition 11.11,
below.

We still need another concept. In Büchi’s original proof that regular
ω-languages are closed under complementation (see [3]) he used a finer con-
gruence than given by the morphism t. To reflect this, we switch from the
Boolean semiring B to the finite commutative semiring K = {0, 1,∞}. The
semiring structure of K is given by x + y = max {x, y} and the natural
multiplication with the convention 0 · ∞ = 0.

In order to take repeated states into account we let Rp,q ⊆ Lp,q be the
set of labels of nonempty and finite paths from p to q, which use a repeated
state at least once. For every word u we define a matrix h(u) ∈ Kn×n by:

h(u)[p, q] =





0 if u 6∈ Lp,q,

1 if u ∈ Lp,q \Rp,q,

∞ if u ∈ Rp,q.

For the Büchi automaton A2 in Figure 2 we have h(aab)[1, 1] =∞, whereas
h(bba)[1, 1] = 1. For all other entries we have h(aab)[p, q] = h(bba)[p, q] = 0.

Note that h(ε) is the identity matrix. In the semiring Kn×n we have as
usual:

h(u · v)[p, q] =
∑

r∈Q

h(u)[p, r] · h(v)[r, q].
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Hence, h : Σ∗ → Kn×n is a monoid morphism and we can check easily
that h recognizes L(A). The submonoid BT (A) = h(Σ∗) ⊆ Kn×n is called
either Büchi’s transition monoid of A or the ω-transition monoid of A. We
obtain Büchi’s result [3]:

Proposition 11.9. For every Büchi automaton A the morphism h : Σ∗ →
BT (A) onto the ω-transition monoid of A recognizes L(A).

Corollary 11.10. A language in L ⊆ Σ∞ can be accepted by some Büchi
automaton if and only if it can be recognized by some morphism to some
finite monoid.

Proof. Proposition 11.9 gives one direction. Conversely, assume that L is
recognized by a morphism h from Σ∗ to some finite monoid M . By Re-
mark 5.3, L is a finite union of languages of type UV ω , where U, V ⊆ Σ∗

are recognized by h. These sets are accepted by finite deterministic au-
tomata with M as set of states. Standard constructions on Büchi automata
for union, concatenation, and ω-power yield the result. q.e.d.

It also follows that regular ω-languages are closed under complemen-
tation, since recognizable languages are closed under complementation by
definition (as they are unions of equivalence classes).

Proposition 11.11. Let L ⊆ Σ∞ a language. The following are equivalent.

1. There is a counter-free Büchi automaton A with L = L(A).

2. There is an aperiodic Büchi automaton A with L = L(A).

3. The language L is aperiodic.

Proof. 1⇒ 2: Trivial by Lemma 11.6.1.
2 ⇒ 3: Let A have n states and consider Büchi’s morphism h : Σ∗ →

Kn×n as above. We show that the submonoid BT (A) = h(Σ∗) ⊆ Kn×n

is aperiodic. More precisely, we show for all states p, q and words u that
h(u2m)[p, q] = h(u2m+1)[p, q] as soon as m large enough.

Since the automaton is aperiodic we find a suitable m with um ∈ Lp,q if
and only if um+1 ∈ Lp,q for all states p, q and words u. We immediately get

h(u2m)[p, q] ≥ 1 ⇐⇒ h(u2m+1)[p, q] ≥ 1.

Assume now that h(u2m)[p, q] =∞. Then for some r we have h(u2m)[p, q] =
h(um)[p, r] · h(um)[r, q] and by symmetry we may assume h(um)[r, q] =
∞ and h(um)[p, r] 6= 0. This implies h(um+1)[p, r] 6= 0 and therefore
h(u2m+1)[p, q] = h(um+1)[p, r] · h(um)[r, q] = ∞. Similarly, we can show
that h(u2m+1)[p, q] =∞ implies h(u2m)[p, q] =∞.
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Figure 3. Aperiodicity does not imply counter-freeness for minimal size
NFA.

Thus we have seen that h(u2m)[p, q] = h(u2m+1)[p, q] for all u ∈ Σ∗ and
all states p, q. This shows that L is recognized by some aperiodic monoid
(of size at most 3n

2

).
3⇒ 1: This is the contents of Proposition 11.4. q.e.d.

The automaton A2 above is counter-free, and this notion does not de-
pend on final or repeated states. In particular, the languages {aab, bba}ω

and {aab, bba}∗ are further examples of aperiodic languages.
We conclude this section with several remarks concerning counter-free-

ness for Büchi automata.

Remark 11.12. If L ⊆ Σ∞ is aperiodic, then we actually find some Büchi
automaton A with L = L(A), where for all states p ∈ Q, words u ∈ Σ∗, and
m ≥ 1 the following two conditions hold:

1. If um ∈ Lp,p, then u ∈ Lp,p.

2. If um ∈ Rp,p, then u ∈ Rp,p.

This is true, because all crucial constructions in the proof of Proposition 11.4
were done for deterministic automata. If an automaton is deterministic,
then Condition 1 implies Condition 2, because if um ∈ Rp,p and u ∈ Lp,p,
then the path labeled by um from p to p visits the same states as the
path labeled by u from p to p. For non-deterministic automata the second
condition is a further restriction of counter-free automata.

Remark 11.13. For finite words, counter-freeness of the minimal automa-
ton of a language L ⊆ Σ∗ characterizes aperiodicity of L. There is no
canonical minimal Büchi automaton for languages of infinite words, but we
may ask whether counter-freeness of a non-deterministic automaton of min-
imal size also characterizes aperiodicity. The answer is negative. Indeed,
consider the language L =

{
ε, a2

}
∪ a4a∗ which is aperiodic and accepted

by the 3-state automaton in Figure 3. This automaton is not counter-free
since a2 ∈ L1,1 but a /∈ L1,1. We can check that L cannot be accepted by a
2-state automaton.

Remark 11.14. Let A = (Q,Σ, δ, I) be a non-deterministic automaton
and let B = (2Q,Σ, δB, {I}) be its (deterministic) subset automaton. Note
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Figure 4. The Büchi automaton A accepting Σ+{a2, b}ω.

that, in this definition, we do not restrict to the accessible subsets from
I. First, we prove that if A is counter-free, then so is B. Assume that
δ(X,um) = X for some X ⊆ Q, u ∈ Σ+ and m > 0. Then, for each p ∈ X
we find some p′ ∈ X with p ∈ δ(p′, um). Iterating these backward paths, we
find q ∈ X such that

q
ujm

−−→ q
ukm

−−−→ p

Since A is counter-free, it follows q
u
−→ q. Hence, p ∈ δ(X,u1+km) = δ(X,u).

We have proved X ⊆ δ(X,u). It follows by induction that δ(X,u) ⊆
δ(X,um) = X . Therefore, B is counter-free.

Next, we show that if B is counter-free thenA is aperiodic. Let x ∈ T (A)
be in the transition monoid of A: x = t(u) for some u ∈ Σ∗. We have
xm = xm+k for some m, k > 0. Let X = xm(Q) = δ(Q, um). Since
xm = xm+k we have δ(X,uk) = X and we deduce δ(X,u) = X since B
is counter-free. Therefore, xm = xm+1 and we have shown that T (A) is
aperiodic.

Therefore, counter-freeness of the full subset automaton is another suf-
ficient condition for aperiodicity. But, for this to hold over infinite words,
it is important not to restrict to the subsets accessible from I. Indeed, let
Σ = {a, b} with a 6= b and consider the language:

L = Σ+{a2, b}ω.

The non-deterministic 3-state Büchi automaton A in Figure 4 accepts L
with I = {1}, F = ∅ and R = {2} (an easy exercise shows that there
is no deterministic Büchi automaton accepting L). The subset automaton
restricted to the subsets reachable from {1} is depicted in Figure 5. This
automaton is counter-free, but L is not aperiodic.

12 Deciding aperiodicity in polynomial space

This section is devoted to a construction which shows that aperiodicity is
decidable (in polynomial space) for recognizable languages. Thus, all prop-
erties mentioned in Theorem 1.1 are decidable for a regular ∞-languages.

Our aim is an optimal algorithm in a complexity theoretical meaning,
and the best we can do is to find a polynomial space bounded algorithm.
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Figure 5. The subset automaton B of A restricted to reachable states.

This is indeed optimal, because PSPACE-hardness is known by [4]. It should
be noted that our PSPACE-upper bound is not a formal consequence of
[29] or any other reference we are aware of, because [29] deals only with
deterministic automata over finite words. Moreover, our approach is not
based on the syntactic congruence of Arnold [1]. Instead we start with
any recognizing morphism and we consider its maximal aperiodic quotient.
We check whether this monoid still recognizes the same language. This is
possible in polynomial space, as we will demonstrate below. We need an
algebraic construction first.

Proposition 12.1. Let h1 : Σ∗ → M1 be a surjective morphism onto a
finite monoid M1 which recognizes L and let m ≥ |M1|. Let M ′

1 be the
quotient of the monoid M1 by the congruence generated by {xm = xm+1 |
x ∈ M1} and let h′1 : Σ∗ → M ′

1 be the canonical morphism induced by h1.
Then L is aperiodic if and only if h′1 recognizes L.

Proof. First, If h′1 recognizes L, then L is aperiodic since M ′
1 is aperiodic

by construction.
Conversely, if L is aperiodic, then there is some surjective morphism

h2 : Σ∗ →M2 which recognizes L and where M2 is aperiodic. We first show
that L is also recognized by a quotient monoid M of both M1 and M2. This
means that M is a homomorphic image of M1 as well as of M2.

Σ∗

M1 M2

M

h1 h2

h̄1 h̄2

h

We define the relation H ⊆ Σ∗ × Σ∗ by:

H = {(u, v) | h1(u) = h1(v) ∨ h2(u) = h2(v)} .

The transitive closure H+ of H is an equivalence relation, and easily seen to
be a congruence. Thus, we can define the quotient monoid M of Σ∗ by H+.
We have a canonical morphism h : Σ∗ → M and |M | ≤ min{|M1|, |M2|}.
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Since hi(u) = hi(v) implies h(u) = h(v) for all u, v ∈ Σ∗, the morphism h
factorizes through M1 and M2 as shown in the diagram above: h = h̄i ◦ hi
for i = 1, 2.

We show that h recognizes L, too. First, we note that H+ = Hℓ where
ℓ = min{|M1|, |M2|}. Indeed, if u0 H u1 · · · H uk with k ≥ |M1| then we
find 0 ≤ i < j ≤ k with h1(ui) = h1(uj) and we obtain (u0, uk) ∈ H

k−(j−i).
Now, consider some u =

∏
0≤i<n ui and v =

∏
0≤i<n vi with ui, vi ∈ Σ+

such that (ui, vi) ∈ H for all 0 ≤ i < n. Since H+ = Hℓ it is enough to see
that u ∈ L implies v ∈ L. Now, for all 0 ≤ i < n there is wi ∈ {ui, vi} with
h1(ui) = h1(wi) and h2(wi) = h2(vi). Since h1 recognizes L, we have u ∈ L
implies

∏
0≤i<n wi ∈ L, and this implies v ∈ L since h2 recognizes L.

The monoidM as constructed above is aperiodic, because it is a quotient
monoid of M2. But |M | ≤ |M1| ≤ m, hence xm = xm+1 for all x ∈ M . By
definition, M ′

1 is the quotient of the monoidM1 by the congruence generated
by {xm = xm+1 | x ∈M1}. Since M satisfies all equations xm = xm+1, the
morphism h̄1 : M1 →M factorizes through M ′

1: h̄1 = h̄′1 ◦ g where g is the
canonical morphism from M1 to M ′

1.

Σ∗

M1 M2

M

h1 h2

h̄1 h̄2

hM ′
1

g

h′1

h̄′1

By definition, h′1 = g ◦ h1 and we deduce that h = h̄′1 ◦ h
′
1. Hence, h′1(u) =

h′1(v) implies h(u) = h(v) for all u, v ∈ Σ∗. Since h recognizes L, this
implies that h′1 recognizes L, too. q.e.d.

From Proposition 12.1, we can derive easily a pure decidability result.
Indeed, if we start with a language L recognized by a Büchi automaton A
with n states, we know that L is aperiodic if and only if it is recognized
by some aperiodic monoid with at most 3n

2

elements. Hence, we can guess
a recognizing morphism h from Σ∗ to an aperiodic monoid M of size at
most 3n

2

, guess a set P of linked pairs, compute a Büchi automaton A′

recognizing L′ =
⋃

(s,e)∈P h
−1(s)h−1(e)ω using Corollary 11.10, and finally

check whether L = L′ starting from A,A′ and using complementations,
intersections and an emptiness tests.

The complexity of this algorithm is not optimal. In order to derive a
PSPACE algorithm, we first establish the following characterization.

Proposition 12.2. Let h : Σ∗ → M be a surjective morphism that recog-
nizes L ⊆ Σ∞. Let g : M →M ′ be a surjective morphism. Then, h′ = g ◦h
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recognizes L if and only if for all s, e, s′, e′ ∈ M such that g(s) = g(s′) and
g(e) = g(e′) we have

h−1(s)h−1(e)ω ⊆ L ⇐⇒ h−1(s′)h−1(e′)ω ⊆ L

Intuitively, this means that the set of linked pairs associated with L is
saturated by g.

Proof. Assume first that h′ recognizes L. Let s, e, s′, e′ ∈ M with g(s) =
g(s′) and g(e) = g(e′) and assume that h−1(s)h−1(e)ω ⊆ L. Since h is sur-
jective, we find u, v, u′, v′ ∈ Σ∗ such that h(u) = s, h(v) = e, h(u′) = s′ and
h(v′) = e′. From the hypothesis, we get h′(u) = h′(u′) and h′(v) = h′(v′).
Now, uvω ∈ h−1(s)h−1(e)ω ⊆ L. Since h′ recognizes L we deduce u′v′ω ∈
h−1(s′)h−1(e′)ω ∩ L. Since h recognizes L we obtain h−1(s′)h−1(e′)ω ⊆ L.

Conversely, let u = u0u1u2 · · · ∈ L and v = v0v1v2 · · · with ui, vi ∈ Σ+

and h′(ui) = h′(vi) for all i ≥ 0. We have to show that v ∈ L. Grouping
factors ui and vi using Lemma 5.2, we find new factorizations u = u′0u

′
1u

′
2 · · ·

and v = v′0v
′
1v

′
2 · · · which satisfy in addition h(u′i) = e and h(v′i) = e′ for

all i > 0. Let s = h(u′0) and s′ = h(v′0). We have g(s) = h′(u′0) =
h′(v′0) = g(s′) and similarly g(e) = g(e′). Now, u ∈ h−1(s)h−1(e)ω ∩ L 6= ∅

and since h recognizes L we get h−1(s)h−1(e)ω ⊆ L. We deduce that
v ∈ h−1(s′)h−1(e′)ω ⊆ L. q.e.d.

Proposition 12.3. We can decide in PSPACE whether the accepted lan-
guage L ⊆ Σ∞ of a given Büchi automaton A is aperiodic.

Proof. Let h : Σ∗ → Kn×n be Büchi’s morphism and let M = BT (A) =
h(Σ∗) so that h : Σ∗ →M is surjective and recognizes L = L(A). Let g be
the canonical morphism from M to the quotient M ′ of M by the congruence
generated by {xm = xm+1 | x ∈M} with m = 3n

2

≥ |M |.
It is enough to design a non-deterministic polynomial space algorithm

which finds out that L is not aperiodic. By Propositions 12.1 and 12.2, we
have to check whether there exist four elements s, e, s′, e′ ∈ M such that
g(s) = g(s′), g(e) = g(e′), h−1(s)h−1(e)ω ⊆ L and h−1(s′)h−1(e′)ω 6⊆ L.
By definition of M ′, this is equivalent to the existence of u, v, w, x, y, z ∈M
and ε1, ε2, ε3, ε4 ∈ {0, 1} with h−1(s)h−1(e)ω ⊆ L and h−1(s′)h−1(e′)ω 6⊆ L
where s = uvm+ε1w, e = xym+ε2z, s′ = uvm+ε3w and e′ = xym+ε4z.

We have h−1(s)h−1(e)ω ⊆ L if and only if there are p ∈ I, q ∈ Q
such that (sek)[p, q] ≥ 1 and eℓ[q, q] = ∞ for some k, ℓ ≤ n. Indeed, if
the right hand side holds then we find an accepting run in A for some
word u ∈ h−1(s)h−1(e)ω. Hence, we have h−1(s)h−1(e)ω ∩ L 6= ∅ and
since h recognizes L we deduce that h−1(s)h−1(e)ω ⊆ L. Conversely, let
u = u0u1u2 . . . ∈ L with h(u0) = s and h(ui) = e for i > 0. Consider an
accepting run for u:

p
u0−→ q0

u1−→ q1
u2−→ q2 · · ·
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Since this run is accepting, we find k such that a repeated state is visited

in the path qk
uk+1

−−−→ qk+1 and qk = qk+ℓ for some ℓ > 0. Removing loops
we may assume that k < n and ℓ ≤ n. We get the result with q = qk.

Therefore, we have the following algorithm.

1. Guess six matrices u, v, w, x, y, z ∈M and guess four values ε1, ε2, ε3,
ε4 in {0, 1} (with, if one wishes, ε1 + ε2 + ε3 + ε4 = 1).

2. Compute s = uvm+ε1w, e = xym+ε2z, s′ = uvm+ε3w and e′ =
xym+ε4z.

3. Check that h−1(s)h−1(e)ω ⊆ L and h−1(s′)h−1(e′)ω 6⊆ L.

Computing xm with x ∈ M can be done with O(logm) = O(n2) prod-
ucts of n × n matrices. Hence, steps 2 and 3 can be done in deterministic
polynomial time, once the matrices u, v, w, x, y, z ∈ M are known. It re-
mains to explain how to guess in PSPACE an element x ∈M = h(Σ∗). As
a matter of fact, it is here2 where we need the full computational power
of PSPACE. To do this, we guess a sequence a1, a2, . . . ai ∈ Σ letter after
letters and simultaneously we compute the sequence

h(a1), h(a1a2), . . . , h(a1a2 · · ·ai).

We remember only the last element h(a1a2 · · · aj) before we guess the next

letter aj+1 and compute the next matrix. We stop with some i ≤ 3n
2

and
we let x = h(a1a2 · · ·ai) be the last computed matrix. q.e.d.

In some cases it is extremely easy to see that a language is not aperiodic.
For example, (aa)∗ is recognized by the cyclic group Z/2Z of two elements.
Every aperiodic quotient of a group is trivial. But the trivial monoid cannot
recognize (aa)∗.

13 Very weak alternating automata

For a finite set Q we mean by B+(Q) the non-empty positive Boolean com-
binations of elements of Q, e.g., p ∧ (q ∨ r). We write P |= ξ, if a subset
P ⊆ Q satisfies a formula ξ ∈ B+(Q). By definition, P |= p if and only
if p ∈ P . As a consequence, we have for instance {p, r} |= p ∧ (q ∨ r) and
{p, r, s} |= p∧ (q∨ r), but {q, r} 6|= p∧ (q∨ r). Note that ∅ 6|= ξ since we use
non-empty positive Boolean combinations, only. The satisfiability relation
is monotone. This means, if P ⊆ P ′ and P |= ξ, then P ′ |= ξ, too.

An alternating automaton is a tuple A = (Q,Σ, δ, I, F,R) where

2 For the interested reader, the test x ∈ h(Σ∗) is PSPACE-hard, in general [10, Problem
MS5]. This problem is closely related to the intersection problem of regular languages,
where the PSPACE–hardness is due to Kozen [14].
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• Q is a finite set of states,

• Σ is a finite alphabet,

• I ∈ B+(Q) is the (alternating) initial condition,

• δ : Q × Σ → B+(Q) is the (alternating) transition function (for in-
stance, δ(p, a) = (p ∧ (q ∨ r)) ∨ (q ∧ s) is a possible transition),

• F ⊆ Q is the subset of final states,

• and R ⊆ Q is the subset of repeated states.

A run of A over some word w = a0a1a2 · · · ∈ Σ∞ is a Q-labeled forest
(V,E, ρ) with E ⊆ V × V and ρ : V → Q such that

• the set of roots {z | E−1(z) = ∅} satisfy the initial condition:

ρ({z | E−1(z) = ∅}) |= I,

• each node satisfies the transition relation: for all x ∈ V of depth n, i.e.,
such that x ∈ En(z) where z ∈ V is the root ancestor of x, we have
n ≤ |w| and if n < |w| then x is not a leaf and ρ(E(x)) |= δ(ρ(x), an).

If the word w is finite then the run is accepting, if each leaf x satisfies
ρ(x) ∈ F . If the word w is infinite then the run is accepting, if every
infinite branch visits R infinitely often. Since we use nonempty boolean
combinations of states for the transition function, if w is finite then each
leaf must be of depth |w| and if w is infinite then each maximal branch must
be infinite. We denote by L(A) the set of words w ∈ Σ∞ for which there is
some accepting run of A.

An alternating automatonA is called very weak, if there is a partial order
relation ≤ on Q such that the transition function is non-increasing, i.e., for
each p, q ∈ Q and a ∈ Σ, if q occurs in δ(p, a) then q ≤ p. Clearly, we can
transform the partial ordering into a linear ordering without changing the
condition of being very weak3. The next proposition shows that every first-
order definable language can be accepted by some very weak automaton.
The converse is shown in Proposition 13.3.

Proposition 13.1. For any formula ξ ∈ LTLΣ(XU), we can construct a
very weak alternating automaton A over Σ such that L(A) = L(ξ).

3 In [17] a very weak automaton is therefore called a linear alternating automaton.
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Proof. First, we push the negations down to the constants. For this we need
a dual for each operator. Clearly, ∨ and ∧ are dual to each other. The dual
of next-until is next-release which is defined by

ϕ XR ψ = ¬(¬ϕ XU ¬ψ).

Hence, the semantics of next-release is given by

(ϕ XR ψ)(x) = ∀z : x < z → ψ(z) ∨ ∃y : x < y < z ∧ ϕ(y).

Note that this is always true at the last position of a finite word: for all
v ∈ Σ+, we have v, |v| − 1 |= ϕ XR ψ for all formulae ϕ and ψ. One may
also notice that

ϕ XR ψ = X Gψ ∨ (ψ XU (ϕ ∧ ψ)).

All LTLΣ(XU) formulae can be rewritten in positive normal form fol-
lowing the syntax

ϕ ::= ⊥ | ⊤ | a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ XU ϕ | ϕ XR ϕ.

Transforming a formula into positive normal form does not increase its size,
and the number of temporal operators remains unchanged.

So, let ξ be an LTL formula in positive normal form. We define the
alternating automaton A = (Q,Σ, δ, I, F,R) as follows:

• The set Q of states consists of ⊥, ⊤, END and the sub-formulae of ξ
of the form a, ¬a, ϕXU ψ or ϕXR ψ. Here, END means that we have
reached the end of a finite word. Note that each sub-formula of ξ is
in B+(Q).

• The initial condition is I = ξ itself.

• The transition function is defined by

δ(a, b) =

{
⊤ if b = a

⊥ otherwise

δ(¬a, b) =

{
⊥ if b = a

⊤ otherwise

δ(⊥, a) = ⊥

δ(⊤, a) = ⊤

δ(ϕ XU ψ, a) = ψ ∨ (ϕ ∧ ϕ XU ψ)

δ(ϕ XR ψ, a) = END ∨ (ψ ∧ (ϕ ∨ ϕ XR ψ))

δ(END, a) = ⊥
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• The set of final states is F = {⊤,END}.

• The repeated states are the next-release sub-formulae of ξ together
with ⊤.

Using the sub-formula partial ordering, we see that the alternating automa-
ton A is very weak. We can also easily check that L(A) = L(ξ). Note that
in a run over an infinite word, each infinite branch is ultimately labeled ⊤
or ⊥ or with a XU or XR formula. A state ϕ XU ψ is rejecting since if a
branch is ultimately labeled with this state, this means that the eventual-
ity ψ was not checked. On the other hand, ϕ XR ψ is accepting since if a
branch is ultimately labeled with this state then ψ is ultimately true for
this word. q.e.d.

As we see below, it is easy to transform a very weak alternating automa-
ton into a Büchi automaton. We follow the construction of [11]. However,
for this purpose it is convenient to generalize the acceptance conditions. A
generalized Büchi automaton is a tuple A = (Q,Σ, δ, I, F, T1, . . . , Tr) where
Q is a finite set of states, Σ is a finite alphabet,

δ ⊆ Q× Σ×Q

is the non deterministic transition relation, I ⊆ Q is the subset of initial
states, F ⊆ Q is the subset of final states, and T1, . . . , Tr ⊆ δ defines the
accepting conditions. An infinite run q0, a1, q1, a2, q2, · · · is accepted by
A if for each 1 ≤ i ≤ r, some transition in Ti occurs infinitely often in
the run. Hence, the acceptance condition is generalized in two respects.
First, it uses accepting transitions instead of accepting states. Second it
allows a conjunction of Büchi’s conditions. Obviously, each generalized
Büchi automaton can be transformed into an equivalent classical Büchi
automaton.

From a very weak alternating automaton, we construct an equivalent
generalized Büchi automaton as follows. Let A = (Q,Σ, δ, I, F,R) be a very
weak alternating automaton. We define A′ = (Q′,Σ, δ′, I ′, F ′, (Tf )f /∈R) by

• Q′ = 2Q,

• I ′ = {P ⊆ Q | P |= I},

• (P, a, P ′) ∈ δ′ if and only if P ′ |=
∧
p∈P δ(p, a),

• F ′ = 2F is the set of final states,

• for each p /∈ R we have an accepting condition

Tp = {(P, a, P ′) | p /∈ P or P ′ \ {p} |= δ(p, a)}.
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Proposition 13.2. The automata A and A′ accept the same language.

The proof thatA andA′ accept the same language is a little bit technical,
but not very hard. Details are left to the reader or can be found in [22].

We now state and prove the converse of Proposition 13.1.

Proposition 13.3. Let L ⊆ Σ∞ be accepted by some very weak alternating
automaton. Then L is aperiodic.

Proof. Let A = (Q,Σ, δ, I, F,R) be a very weak alternating automaton. For
a word u and subsets P and P ′ of Q we write

P
u

=⇒ P ′,

if A has a run (V,E, ρ) over u, where P is the set of labels of the roots
and P ′ is the set of labels of the leaves on level |u|. This means that in the
corresponding generalized Büchi automaton A′ there is path from state P
to state P ′, which is labeled by the word u.

Let m = |Q|, we want to show that P
um

=⇒ P ′ if and only if P
um+1

=⇒ P ′

for all words u and subsets P and P ′. This implies that the transformation
monoid of A′ is aperiodic. Then, we conclude that languages accepted by
very weak alternating automata are always aperiodic in a similar way as in
the proof of Proposition 11.11, (because the generalized accepting condition
can be easily incorporated in that proof).

First, assume that P
um

=⇒ P ′ and let us see that P
um+1

=⇒ P ′, too. This is
true if u is the empty word. Hence we may assume that |u| ≥ 1. Let (V,E, ρ)
be the forest which corresponds to this run. We assume that P = {p} and
that (V,E, ρ) is tree. This is not essential, but it simplifies the picture a
little bit. To simplify the picture further, we assume that u = a is in fact a
letter. Formally, we replace E by E|u| and we restrict the new forest to the
tree which has the same root as (V,E, ρ). Note that the set of leaves which
were on level |um| before are now exactly the leaves on level |m|. Hence the
assumption u = a is justified.

Since m = |Q| we find on each branch from the root to leaves a first
node which has the same label as its parent node. This happens because
the automaton is very weak and therefore the ordering on the way down
never increases. We cut the tree at these nodes and these nodes are called
fresh leaves. See Figure 6, where the fresh leaves have labels q, q, p, and r
from left-to-right.

Now, at each fresh leaf we glue the original sub tree of its parent node.
We obtain a new tree of height m+ 1 which has as the set of labels at level
m+ 1 exactly the same labels as before the labels at level m in the original
tree. See Figure 7. It is clear that the new tree is a run over um+1 and thus,

P
um+1

=⇒ P ′ as desired.
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p

q p r

q q r

A B C D

p

q p r

q q r

Figure 6. A run on the left and on the right the new tree with fresh leaves.

p

q p r

q q q p r r

q q q q q q r r

A B A B A B C D D

Figure 7. The new run with leaves on level m+ 1.
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p

q r s p r p

q r s s r p

A B C D E F G H I

Figure 8. Another run with leaves on level m+ 1.

p

q r s r p

A D E G H I

Figure 9. The new run with fewer labels at the leaves on level m.
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For the other direction, assume that P
um+1

=⇒ P ′ and let (V,E, ρ) be a
forest which corresponds to this run. Just as above we may assume that
(V,E, ρ) is a tree and that u is a letter. This time we go down from the
root to leaves and we cut at the first node, where the node has the same
label as one of its children. See Figure 8. Now, we glue at these new leaves
the original sub tree of one of its children which has the same label.

We obtain a new tree of height m such that each label at the leaves on
level m appeared before as a label on some leaf of the original tree (V,E, ρ)
at level m+ 1, see Figure 9.

Thus, P
um

=⇒ P ′′ for some subset P ′′ ⊆ P ′. But the satisfiability relation

is monotone; therefore P
um

=⇒ P ′, too. Thus, indeed P
um

=⇒ P ′ if and only if

P
um+1

=⇒ P ′ for m = |Q|. q.e.d.
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