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A long standing open problem in the theory of (Mazurkiewicz) traces has
been the question whether LTL (Linear Temporal Logic) is expressively
complete with respect to the first order theory. We solve this problem
positively for finite and infinite traces and for the simplest temporal logic,
which is based only on next and until modalities. Similar results were
established previously, but they were all weaker, since they used additional
past or future modalities. Another feature of our work is that our proof is
direct and does not use any reduction to the word case.
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1. INTRODUCTION

Nowadays, it is widely accepted that we need to develop methods to verify crit-
ical systems. For this, we need formal specifications for the expected behaviors
of systems. Conveniently, these formal specifications are given by temporal logic
formulae. When dealing with concurrent systems, a possible approach is to re-
duce them to sequential ones by considering all linearizations. Then one can use
techniques and tools developed for sequential systems, but usually, one faces a com-
binatorial explosion. In order to avoid this problem, one could try to work directly
on concurrent systems and this explains why a lot of research has been devoted
recently to the study of temporal logics for concurrency. A major aim is to find a
temporal logic which is expressive enough to ensure that all desired specifications
can be formalized.

Trace theory, initiated by Mazurkiewicz, is one of the most popular settings
for studying concurrency. See [6] for the general background of trace theory, in
particular, [18] for traces and logic and [12] for infinite traces. It is no surprise
that various temporal logics for traces have been extensively studied [1, 15, 16, 17,
19, 20, 21]. A long standing problem is to find natural temporal logics that are
expressively complete with respect to the first order theory of finite and infinite
traces.

There are two main classes of temporal logics for traces, the global ones and
the local ones. With local logics, formulae are evaluated at local events, i.e., local
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states of the processes. With the techniques presented here, we have obtained a
positive result in the special case of traces associated with cograph dependence
alphabets [4]: various natural local temporal logics are expressively complete with
respect to first order logic. But the general problem is still open for arbitrary trace
alphabets.

Global logics formulae are evaluated at global configurations of the system. For
sequential systems there is no difference between a global or local viewpoint since
a cut of a sequence is defined by a single event. The expressive completeness of
the linear temporal logic is however highly non trivial. It is a celebrated result of
Kamp [13] which states that linear temporal logic has the same expressive power as
the first order theory of words. Originally Kamp used future and past modalities,
but it was established later that past modalities can be avoided, see [10] and [9] for
more details.

In this paper, we only deal with global temporal logics and we will omit the word
global from now on. The first completeness result for traces is by Ebinger [7]. He
proved that a linear temporal logic with both past and future modalities is expres-
sively complete for finite traces but his approach did not cope with infinite traces.
Then, Thiagarajan and Walukiewicz [22] proved the completeness both for finite
and infinite traces of LTrL, a linear temporal logic with future modalities and past
modalities in the restricted form of past constants. These two results were obtained
using a reduction to the word case. In [14] it was claimed that LTL (the basic linear
temporal logic based on the usual next and until modalities) is expressively com-
plete for finite traces, but the proof contained a flaw. The expressive completeness
for a pure future temporal logic LTL; was established in [2]. The result holds for
finite and infinite traces, but LTL; contains new filter modalities in addition to the
usual next and until modalities. Without independency these filter modalities are
simple macros, but in general there seems to be no direct way to remove them; and
the problem of the expressive completeness of the basic linear temporal logic over
traces remained open.

In this paper, we solve this problem positively. Previous expressive completeness
results for words and for traces are now formal corollaries of our main theorem.
It should be noted that, contrary to most previous works, our proof does not use
any reduction to the word case. Instead, we extend the new proof introduced by
Wilke for finite words [24] which is based on the well-known fact that first order
languages are aperiodic. Basically, we follow here the same approach as in [2]. In
the former paper, filter modalities were used to express some special products of
trace languages. Our new proof is a substantial revision of the previous one. We
are now able to express the products mentioned above directly with basic formulae
without using the filter modalities. *

2. PRELIMINARIES

By (%, I) we mean a finite independence alphabet where ¥ denotes a finite alpha-
bet and I C ¥ x X is an irreflexive and symmetric relation called the independence
relation. The complementary relation D = (¥ x X) \ I is called the dependence

IThe present paper is the journal version of an extended abstract presented in [3].
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relation. The monoid of finite traces M(X, I) is defined as a quotient monoid with
respect to the congruence relation induced by I, i.e., M(X,I) = X*/{ab = ba |
(a,b) € I'}. We also write M instead of M(X, I).

A trace x € M is given by a congruence class of a word a; ---a, € ¥* where
a; € ¥, 1 < n. By abuse of language, but for simplicity we denote a trace z by one
of its representing words a; - - - a,,. The number n is called the length of x, denoted
by |z|. For n = 0 we obtain the empty trace, denoted by 1. The alphabet alph(x)
of a trace z is the set of letters occurring in z. A trace language is a subset L C M.
The product of trace languages is defined as usual:

KL={zyeM|zecK,yec L}

Every trace a1 ---a, € M can be identified with its dependence graph. This is
(an isomorphism class of) a node-labeled, acyclic, directed graph [V, E, \], where
V =1{1,...,n} is a set of vertices, each i € V is labeled by A(i) = a;, and there is
an edge (i,j) € E if and only if both ¢ < j and (A(i), A(j)) € D. In pictures it is
common to draw the Hasse diagram only. Thus, all redundant edges are omitted.
For instance, let (X,D) = a—b—e¢, ie., I = {(a,¢), (¢,a)}. Then the trace

x = abcabca is given by
NSNS
"N\

c c
An infinite trace is an infinite dependence graph [V, E, A] such that for all j € V
the set | j = {i € V | i < j} is finite. A real trace is a finite or infinite trace. The
set of real traces is denoted by R(X, I') or simply by R. For a real trace z = [V, E, ]
the alphabet is alph(z) = A~1(V') and the alphabet at infinity is the set of letters
occurring infinitely many times in z, i.e., alphinf(z) = {a € T | |A7'(a)| = }.
Usually we consider real trace languages, i.e., we consider subsets of R. If we speak

about finitary languages, then we refer to subsets of M. For A C ¥ we denote by
My the submonoid of M(X, I) generated by A:

My = M(A, 71N Ax A) = {z € M(3, 1) | alph(z) C A}.

Accordingly, we let R4 = {z € R | alph(z) C A}.

By min(z) and max(z) we refer to the minimal and mazimal letters in the de-
pendence graph. (We shall use the notation max(x) only for finite traces x € M.)
In the example above min(z) = {a} and max(z) = {a, c}. Formally:

min(z) {a € ¥ |z €alR},
max(z) = {a € X |z € Ma}.

For B C X and #€ {C,=,D,#} we define:

) {a€X|Vbe B:(a,b) €I},
D(B) = {aeX|3be B:(a,b) € D},
)

)

= {z € R | min(z) # B},
= {z € M | max(z) # B}.
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Note that (Max # B) denotes a finitary language, whereas (Min # B) is a real
trace language. The alphabet X is the disjoint union of the sets I(B) and D(B).
If B happens to be a singleton, then we usually omit braces, e.g. we write I(b) or
(Max = b).

3. TEMPORAL LOGIC FOR TRACES

The syntax of the temporal logic LTL(X) is defined as follows. There are: a
constant symbol L representing false, the logical connectives = (not) and V (or),
for each a € ¥ a unary operator (a), called nezt-a, and a binary operator U, called
until. Formally, the syntax is given by:

pu=L]-p|leVellae|eUgp,

where a € X.

The semantics is usually defined by saying when some formula ¢ is satisfied
by some real trace z at some configuration (i.e., finite prefix) x; hence by defining
(z,z) = . Since our temporal logic uses future modalities only, we have (z,z) = ¢
if and only if (y,1) = ¢, where y is the unique trace satisfying z = zy. Therefore,
we do not need to deal with configurations and it is enough to say when a trace
satisfies a formula at the empty configuration, denoted simply by z |= ¢. This is
done inductively on the formula as follows:

z L,

2 iz,

zE@eVY ifzE@orz =1,

zE{a)p ifz=ayandyf g,

z2EeUY ifz=zy,z € M, y |E ¢, and z = 2’2", 2" # 1 implies 2"y |= ¢.

As usual, we define Lr(¢) = {x € R | z |= ¢}. We say that a trace language L C R
is expressible in LTL(X), if there exists a formula ¢ € LTL(X) such that L = Lg(y).
Equivalently, we can define inductively the language Lr(¢) as follows:

Lr(L) = 0
Lr(—p) = R\ Lg(p)
LR(wV¢) = Lr(p) ULr(¢)
Lr((a)p) = algr(y)
Lr(p Uv) = Lr(p) ULg(y)

where the until operator U is defined on real trace languages by

LUK ={zy|z €M, y € K, and 2 = a'z", 2" # 1 implies 2"y € L}.

Remark. For comparison let us mention that the syntax and semantics of the
logics LTrL defined in [22] and LTL defined in [2] are very similar. For LTrL, the
difference is only that there is in addition for each letter a € ¥ a constant {(a=!)T.
Since the constant (a=!)T refers to the past, we need to use configurations to define
its semantics: We have (z,z) | (a™*)T if and only if a € max(z). For LTLy, the
difference is that for each subalphabet B C ¥ there is in addition a modality {B*)¢
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whose semantics is given by z = (B*)p if 2 = zy, ¢ € Mp, and y E ¢. A
consequence or our main result (Theorem 7.1), these three logics have the same
expressive power. However, it is not clear whether there is a direct (e.g. inductive)
translation of LTrL or LTL; to LTL; or between LTrL and LTL;.

The following operators are standard abbreviations.

T = =1 true,
a = {a)T for a € &,
A= V,oeala)T for ACY,
Xp = Vyesla)y neXt ¢,
stop := - XT termination,
Fo :=TUyp future or eventually ¢,
Gy = 2F-p globally or always .

ExaMPLE 3.1. Lgr(stop) = {1}, Lr(F stop) = M and for A C ¥ we have:

Rqa = Lg(=F(2\ 4)),

My = Lgr(Fstop A-F(Z\ A)),
(Min = 4) = Le(=(Z\ A) A A,cq9),
(Max 2 A) = Lr(A,cq F(a)stop),

(alphinf = A) = Lr(FG—~(Z2\ A)AA,c4 GFa).

o

Later we shall perform an induction on the size of ¥ leading to formulae ¢ €
LTL(A) for A C . Such a formula may be interpreted over R4 or over R. Note
that the main difference between the two interpretations is with negation since
the complement is taken with respect to R4 or R. The following lemma gives the
relationship between the two interpretations.

LEMMA 3.1.

1.Let ¢ € LTL(A). Then, Lg,(¢) = Lr(p A—=F(Z\ A4)).
2.Let ¢ € LTL. We can find a formula ¢4 € LTL(A) such that Lg,(pa) =
Ler(p) NR4.

Proof. 1. We have: Ry = Lg(—=F (X \ 4)) and Lg,(¢) = Lr(p) NRy4.
2. The formula ¢4 is constructed by induction:

o l4=1,
o (mp)a =(®a),
'(<PV¢)A—<PAV¢A, .
o ((a)p)a {()(SOA) ifa € 4,
(

€ otherwise,
* (pUY)a=paUa.
|
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We will also use an induction on |X| when the graph (X, D) is not connected.
Then we find a partition of the alphabet ¥ = X; U X3 with X; x X3 C I and each
trace £ € R can be split into two independent traces x; and x5 over ¥; and X
with £ = 2122 = 2221

LEMMA 3.2. Assume that ¥ = X1 U Yo with ¥ X X2 C I. Let R; = Ry, and
¢i € LTL(X;) for i =1,2. Then Lr(p1 A ¢2) = Lr,(p1) - Lr,(¢2)-

Lg,(¢1) - ]RQ. The result follows

Proof. We show by induction that Lg(y1) =
= (Lri (1) - R2) N (Ry - Lry(p2)) =

since then Lr(p; A p2) = Lr(p1) N Lr(v2)

LRl((pl) . LRQ(SOQ)'

e | and 1 Vq: trivial.

* ~p1: We have, Lr(—¢p1) = R\Lg(p1) = (Ry -Ry )\ (Lg, (p1)-R) = (Ry \Lg, (1))

Rz) = Lr,(—¢1) - Ro.

e {a)p1 with a € ¥q: Easy since Lr({a)p1) = alr(p1) = a(lr,(p1) - Re) =

(aLg,(¢1)) - Ry = Lg,({a)p1) - Ra.

o 1 Uy: Let z = zy with y € Lr(¢)1) and for all z = /2" with 2" # 1 we have

2"y € Lr(py1). Write £ = z122 and y = y1y2 with z;,y; € R; for i = 1,2. By

induction hypothesis, y1 € Lg, (1) and for all factorizations 1 = z'z" with 2" # 1

we have 2"y € Lg,(¢1) - Re, that is, 2"y, € Lg,(¢1). Hence z1y1 € Lg,(p1 U 1)

and we obtain the first inclusion since z = (z122) (y1y2) = (T1y1)(x2y>2).
Conversely, let z = 2125 with z; € Lg,(p1 U ¢1) and zo € Ry. Write 21 = 2111

!0

with y; € Lg,(¥1) and for all z; = z'z" with 2" # 1 we have z"y; € Lg,(p1)-

Then y; 22 € Lr(e)1) and z"y1 22 € Lr(p1) which proves the converse inclusion. B

4. FIRST-ORDER LOGIC
The first order theory of traces is given by the syntax of FO(X, <):

pu=Py(z) |z <y|¢|eVe|Izp,

where a € ¥ and z,y € Var are first order variables. Given a trace t = [V, E, }]
and a valuation of the free variables into the vertices o : Var — V, the semantics
is obtained by interpreting the relation < as the transitive closure of E and the
predicate P,(z) by A(o(z)) = a. Then we can say when (t,0) |= ¢. If ¢ is a closed
formula (a sentence), then the valuation o has an empty domain and we define
the language Lr(p) = {t € R | t = ¢}. We say that a trace language L C R
is expressible in FO(X, <) if there exists some sentence ¢ € FO(X, <) such that
L = Lr(p).

Passing from a temporal logic formula to a first order one is well-known and
belongs to folklore. The transformation relies on the fact that a prefix (configura-
tion) p of a trace ¢ can be defined by its maximal vertices. Such a set of maximal
vertices is bounded by the maximal number of pairwise independent letters in X.
Therefore, a prefix inside a trace can be defined using a bounded number of first
order variables.

PROPOSITION 4.1. If a trace language is expressible in LTL(X), then it is ex-
pressible in FO(X, <).
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Proof. Though this result is not new, we give a sketch of the proof for the sake
of completeness. We first define the relativization ¢¥x of a formula ¢ € FO with
respect to some set X = {z1,...,z} of first order variables not occurring in .
The idea is that a trace t = (V, E, ) satisfies ¢x if and only if ¢' = ¢ where t' is
the suffix trace defined by the vertices which are not in the past of the meanings
of the first order variables in X. Formally, ¢¥x is defined inductively as follows.
(Pa(2))x = Fa(2), (z <y)x = (¢ <y), (W)x = ~(¥x), @' VY")x =k Vi,
and (Iz¢))x = Iz((= Vi< < i) A ix).

Now, we associate by induction with each formula ¢ € LTL a closed formula
» € FO defining the same language.

1 = Fz(z < z),

e = -,
oV = gV,
(@¢ = 3a((Yy~y <) APal(@) AGpay ),
eUG = GV (@A Ea- ok, @x AVyr---yr, Y CLX — Fv))),

where k is the size of the maximal clique of (£,I), X = {z1,...,2x}, ¥ =
{yla R 7yk} and

welx=( A Vw<e|al V A @<y

1<i<k 1<j<k 1<i<k 1<j<k
|

As in the case of LTrL, this translation yields a non-elementary decision procedure
for the uniform satisfiability problem of LTL. (See also [11] for a modular decision
procedure based on automata constructions.) For the lower bound, we can use [23],
since the lower bound is given there for the fragment of LTrL without the previous
constants (a~1)T. Putting this together the result of Walukiewicz becomes:

ProposITION 4.2 ([23]).  The satisfiability problem for both logics LTrL and
LTL is non-elementary over Mazurkiewicz traces.

5. APERIODIC LANGUAGES

Recall that a finite monoid S is aperiodic, if there is some n > 0 such that
s™ = s"* for all s € S. A finitary trace language L C M is aperiodic, if there exists
a morphism to some finite aperiodic monoid h : M — S such that L = h=1(h(L)).
Since our considerations include infinite traces, we have to extend the notion of
an aperiodic language to real trace languages such that it becomes equivalent for
finitary languages.

Let h : M — S be a morphism to some finite monoid S. For z,y € R, we say
that  and y are h-similar, denoted by z ~y, y if either z,y € M and h(z) = h(y)
or z and y have infinite factorizations in non-empty finite traces x = x122 - -,
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Yy = Y1y - -+ with z;,y; € M\ {1} and h(z;) = h(y;) for all i. According to the
definition of h-similarity, we never have x ~j y when z is finite and y is infinite.
We denote by =) the transitive closure of ~;, which is therefore an equivalence
relation. An equivalence class is denoted by [z]~, = {y € R | y & z}. For a finite
trace z € M we have [z]y, = h~'(h(z)) and the monoid M is covered by at most
|S| classes. Using a Ramsey-type argument we can show that R \ M is covered by
at most |S|? classes. Indeed, let x € R\ M and consider a factorization z = z1z2 - - -
in finite traces. For all 0 < 4 < j we define s;; = h(x;q1---x;) € S. Since S is
finite, Ramsey’s theorem implies the existence of e € S and an increasing sequence
of integers 0 = i < 41 < 42 < --- such that s;,;, = eforall 0 < p < q. If we
let s = s;,4, then we obtain z € h™*(s)h=!(e)¥ C [z]x,, which proves that the
number of ~-classes in R\ M is at most |S|%. Therefore, {[z]~, | € R} defines a
finite partition of R of cardinality at most |S|? +|S|. A real trace language L C R is
recognized by h if it is saturated by ~, i.e., € L implies [z]n, C L for all z € R.
A real trace language L C R is aperiodic if it is recognized by some morphism to
some finite and aperiodic monoid.

The following results will be useful later. The first proposition will allow us to
use an induction on the size of the alphabet X.

PROPOSITION 5.1. Let L C R be a language recognized by the morphism h : Ml —
S into a finite monoid S and let A CX. Then, LNR4 and LN My are recognized
by the restriction hly, of h to My .

Proof. Let x € LNR4 and let y € R. Assume that z,y are hly, -similar. Then
they are also h-similar and we deduce that y € LNR4. The proof is the same for LN

My. =

Then, we consider the case where the dependence alphabet (X, D) is non-connected.
The following analogue of Mezei’s Theorem holds for real trace languages:

PROPOSITION 5.2. Let L C R be a language recognized by the morphism h : Ml —
S into a finite monoid S. Assume that ¥ = X1 U Xy with ¥y X X9 C I and let
M; = My, R = Ry, and h; = hip, for i = 1,2. Then, L is a finite union of
products Ly - Ly where L; C R; is recognized by h; for i =1,2.

Proof. Let (z,y) € Ry x Ry be such that z-y € L. We claim that [z]n; - [y]a, C
L. Indeed, let (z',9") € Ry x Ry be such that x ~1 2’ and y ~2 y'. We have
zy ~p, ¢'y’. We prove this when x,y are both infinite. The other cases are easier.
We have z = zyzy- -+, 2’ = zizh--- with hy(z;) = hy(z}) for all 4 > 0. Similarly,
y=wy1y2---, Yy =yiys--- with ha(y;) = ha(y}) for all 4 > 0. Since X1 x Xy C I, we
obtain zy = (z1y1)(z2y2) - -, 'Y’ = (z1y1)(392) - - and h(zy;) = ha(z:)h2(y:) =
ha(z})ho (y;) = h(z}y;). Therefore, z'y’ ~;, zy and we obtain z'y’ € L which proves
the claim. We deduce immediately that

L= U [x]N1 : [y]%z
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where the union ranges over all (z,y) € R; x Ry be such that z -y € L Note that
this union is finite since there are only finitely many equivalence classes for =

and ~;. Also, the languages [z]~, and [y]~, are clearly recognized by hy and h,. H

Let h : M — S be a morphism to some finite monoid S and let L C R. For s € S
we define L(s) = {z € R | h™!(s)z N L # 0}.

PROPOSITION 5.3. If L is recognized by h then L = J,cgh™"'(s) - L(s) and for
each s € S, the language L(s) is recognized by h.

Proof. Clearly, L C h~!(1) - L(1). Conversely, let s € S, * € h~!(s) and
y € L(s). By definition of L(s) there exists some z' € h=1(s) such that z'y € L.
Now clearly zy ~p z'y and since L is recognized by h we deduce that zy € L.
Therefore, h=1(s) - L(s) C L.

Now, let y € L(s) and choose z € h~!(s) such that zy € L. Let z € R such that
z ~p y. We have zz ~p, zy and we deduce that xz € L. Therefore, z € L(s) which

proves that L(s) is recognized by h. H

In order to prove the main theorem we shall use the equivalence between FO(X, <)—
definability and aperiodic languages.

THEOREM 5.1 ([7, 8]). A real trace language is expressible in FO(Z, <) if and
only if it is aperiodic.

Remark. Due to the theorem above the work of the present paper consists of
showing that an aperiodic language is expressible in LTL(X). This implies the de-
sired equivalence between LTL-definability, first-order definability, and aperiodic
languages. Recently, a direct translation from LTL-definability to aperiodic lan-
guages using an inductive construction has been given [5]. Together with Theo-
rem 7.1 we obtain the equivalence between LTL-definability and aperiodic languages
without using the above theorem and passing through first order logic.

6. COMPOSITION OF LTL LANGUAGES

We show that some restricted products of expressible languages are also express-
ible in LTL(X). This will be used in Section 7 where we prove by induction that
aperiodic languages are expressible in LTL(X). For this, we will write an aperiodic
language as a finite union of products of simpler languages. Since union corresponds
with disjunction, the only problem is indeed with taking products. It turns out that
the induction can be based on a restricted use of products, which is considered in
this section. Note that an arbitrary product of languages expressible in LTL(Y) is
also expressible in LTL(X), but we do not have a direct proof for this general state-
ment. Actually, this becomes a consequence of our main theorem since aperiodic
trace languages are closed under product.

We give now the two crucial composition lemmas. Their proofs use some technical
lemmas whose statements and proofs are postponed to Section 6.1.
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The first composition is visualized by the following picture.

II Ml(b) Min = b

b

LEMMA 6.1. Letb € ¥, B = X\ {b} and I = Mg N (Max C D(b)). Let
Li,Ly CR and Ly C (Min = b) be trace languages expressible in LTL(X). Then
the language (Ly N II)(La N My ) L3 is expressible in LTL(X).

Proof. The product II(bR) is unambiguous hence we have
(L1 NII)(La "My ) L3 = ((L1 NID)bR) N (IT(Ly N M3y ) L3).

Using Lemma, 6.8, the language (L; NII)bR is expressible in LTL(Y).
Now, the product My (Min = b) is also unambiguous hence we have

(L2 n Ml(b) )L3 = ((Lz n MI(b))(Min = b)) n (Ml(b) L3).

By Lemma 6.5 the language M) L3 is expressible in LTL(X) and using Lemma 6.9
the language (L2 N Myp))(Min = b) is also expressible in LTL(X). Therefore,
(L2 N My4)) L3 is expressible in LTL(X) and since (Ls N My )Lz C bR we can

apply Lemma 6.4 in order to show that TI(LaNMj(s) ) L3 is expressible in LTL(X). =

The second composition is visualized by the following picture.

Max C {b} Rp

b

LEMMA 6.2. Letb € X and B =X\ {b}. Let Ly C R and Ly C Rp be expressible
in LTL(X). Then the language (L1 N (Max C {b}))Ls is expressible in LTL(X).

Proof. The product (Max C {b})Rp is unambiguous and we have

(L1 N (Max C {b}))Ls = (L1 N (Max C {b}))Rg N (Max C {b})Ls.

The languages (L;N(Max C {b}))Rp and (Max C {b}) L are expressible in LTL(X)
by Lemmas 6.10 and 6.3. H

6.1. Technical lemmas
This subsection is devoted to the technical lemmas that are used in the two proofs
above. Since these technical lemmas are not used afterwards, this subsection may
be skipped in a first reading.
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LEMMA 6.3. Letbe€ X, B= X\ {b} and let ¢ € LTL(X) be a formula such that
Lr(¢) CRp. Then,

(Max C {b}) - Lr(p) = Lr((F b) U ¢).

Proof. Let z € (Max C {b})-Lr(p) and write z = xy with £ € (Max C {b}) and
y € Lr(p). Then, for all factorizations z = z'z"” with 2" # 1 we have max(z") = b,
hence z''y = Fb. Therefore, z € Lr((F b) U ).

Conversely, assume that z = (F b) U ¢ and consider a factorization z = zy such
that z € M, y = ¢ and for all z = 2’2" with 2" # 1 we have z"y = Fb. Since
alph(y) C B and b ¢ B, this implies b € alph(z”) . We deduce that max(z) C

{v}. =

LEMMA 6.4. Let b € £, B = X\ {b} and I = Mp N (Max C D(b)). Let
p € LTL(X) be a formula such that Lg(p) C bR. Then,

II- Le(p) = Lr((-b) U ¢).

Proof. Let z € I1-Lg(p) and write z = zy with z € IT and y € Lg(p). Then, for
all factorizations z = z'z"” with " # 1 we have min(z"y) = min(z") U (min(y) \
D(z")). Since z € Mp and b € D(z") we deduce that z"y = —b. Therefore,
z € Lr((=b) U o).

Conversely, assume that z = (-b) U ¢ and consider a factorization z = zy such
that z € M, y = ¢ and for all x = z'z" with " # 1, we have 2"y | —b Let
a € alph(z) and write z = 2’2" with min(z") = {a}. We have a € min(z"y) and
therefore a # b, which implies that x € M. Now, let a € max(x) and write x = z’a.

Since ay |= —b and b € min(y) we must have a € D(b) and we deduce that z € II. ®

LEMMA 6.5. Let C C X and let ¢ € LTL(X) be a formula such that Lg(p) C
(Min C £\ C). Then,

Me - Le(¢) = Lz(C U ).

Proof. Let z € Mc - Lr(p) and write z = zy with z € Mc and y € Lr(yp).
Then, for all factorizations z = z'z"” with 2"’ # 1 we have min(z"y) N C # 0, hence
z"y | C. Therefore, z € Lr(C U o).

Conversely, assume that z = C' Uy and consider a factorization z = zy such that
z €M, y |= p and for all z = 2’2" with 2" # 1, we have z' y|=C Let ¢ € alph(z)
and write z = z'z" with min(z") = {c}. We have 0 # min(z"y) N C = min(z")NC
where the last equality holds since min(y) N C' = (). Therefore, ¢ € C which proves

that zeMgo. M

For the next two lemmas, we need a new notation. Let L. C R and x € M. Then,
the left quotient of L by z is the language z7'L = {y € R | zy € L}.
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LEMMA 6.6. Leta,b€ X, B=X\ {b} and Il = M N (Max C D(b)). Then, the
language (a 'II)bR is expressible in LTL(X).

Proof. First, if a = b then a7'II = ) and therefore (a~!II)bR = Lg(L). Now,
assume that a # b. We claim that (a7'II)bR = Lg(z)) with

b= N DUEbAG)C U (bA B)(DUB)--)

a—by—-—by—b

where the disjunction ranges over all simple paths from a to b in the graph of the
dependence alphabet (X, D). Note that if a — b then we may have £k = 0 and in
this case, ~b U b is part of the disjunction.

Let z = xby with az € II. Since max(az) C D(b) there is a path in az from a
to some maximal letter of ax which depends on b. More precisely, we find a simple
path a—b; — - - - — by, — b in the graph of the dependence alphabet (X, D) and a
factorization £ = xobyx; - - - byxk. Note that we may choose k = 0 and = x if a
is independent of . Now, z € II and thus, for all z = 2’2" with 2" # 1, we have
alph(z') C B and b € D(z"). Therefore, z"by |= —b and we deduce that z |= 1.

Conversely, assume that z |= 1. Consider a simple path a—b;—- - -—bp—7b in the
graph of the dependence alphabet (X, D) and a factorization z = xob1 21 - - - bpziby
such that for all 0 < ¢ < k and z; = z'z"” we have x"b;11---brzpby = —b.
Then, z = zobiz1---brwy € Mp and if we write z = z'z” with 2’ € II and
z" € My then necessarily {b1,...,b} C alph(z'). Now, using that a € D(b;) (or

a € D(b) if k = 0) we deduce that az’ € II. Therefore, z = z'bz"'y € (a 'TI)bR. MW

LEMMA 6.7. Let a,b € ¥ and B = ¥\ {b}. Then, the language (a~!(Max =
b)) - Rp is expressible in LTL(X).

Proof. We claim that (a~!(Max = b)) - Rg = Lg(¢)) with

Y= V F(b1)---F(by)(—~Fb)

a:bo—b1—---—bk:b

where the disjunction ranges over all simple paths from a to b in the graph of the
dependence alphabet (X, D).

Let z = zy with z € M, max(az) = {b} and y € Rg. As in the proof above,
we find a simple path @ = by — b; — - - - — by, = b in the graph of the dependence
alphabet (X,D) and a factorization x = x1b; - - - xxbg. Note that if z = 1 is the
empty trace then we have a = b and we choose k¥ = 0. Since Lr(—=Fb) = Rg we
deduce that z |= 9.

Conversely, assume that z |= 9. Consider a path a = bgp—by —- - -—by, = b in the
graph of the dependence alphabet (X, D) and a factorization z = x1by - - - 1 bry with
y € Rg. Let x = z1by - - - xby,. We have b = by, € max(ax) hence we can write axz =
ax'z" with max(az') = {b} and z" € M. Therefore, z = z'(2"y) € (a™'(Max =

b))-RB. |

LEMMA 6.8. Letb € £, B = X\ {b} and I = Mp N (Max C D(b)). Let
@ € LTL(X). Then the language (Lr(p) NII)bR is expressible in LTL(X).
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Proof. We proceed by structural induction on ¢. The cases L and ¢ V ¢ are
trivial.
e = : Since the product IIbR is unambiguous, we have (Lr(—¢) NII)bR = IIbR \
(Lr(v) NII)bR. We can conclude by induction since IIbBR = MbR = Lgr(F b).
e (a)p : We first claim that

(Lr({a)yp) NTI)BR = a - ((LR(SD) NIDbR N (cfll'I)bR) .

Indeed, let z € (Lr({a)p)NII)bR, we can write z = aybz with y € Lr(y), ay € Il and
z € R. Then, y € a1 C IT and we deduce that ybz € (Lg(p) NII)bR N (e~ 1T)bR.
Conversely, let z € a - ((Lr(p) NI)DR N (a1 M)bR). We can write z = aybz with
y € a I, z € R and ybz € (Lr(p) NI)bR. Then, y € II and since the product
TIbR is unambiguous, we deduce that y € Lg(p). Therefore, ay € (Lr({a)p) N II)
which proves the claim.
By Lemma 6.6, the language (a~'II)bR is expressible in LTL(X), hence we can
conclude by induction.
e o U : Here, we claim that

(Lr(p U ¢) NINIR = ((Lr(p) NINHHR \ bR) U (Lr(4) N IHHR.

First, let z € (Lr(p U ) NII)bR. We write z = zby with £ € Lrg(¢ U ¢) N1I and
y € R Then, x = z122 with 22 = ¢ and for all factorizations z; = z'z" with
z" # 1, we have z''z3 = ¢. Since " # 1 and z"z2 € II we have z"'z2by ¢ bR and
we obtain 2" z2by € (Lr(p) NII)IR \ bDR. Also, z2by € (Lr(1p) NII)bR which proves
the first inclusion.

Conversely, let z be in the right hand side and write z = 2125 with 25 € (Lg() N
IR and for all z; = 22" with 2" # 1 we have 2”25 € (Lr(p) NII)bR \ bR. Then
clearly, b ¢ alph(z1). We write 23 = z2bys with 25 € Lr(1)) N II. We can also write
z1 = x1y; with y; independent of z2b and x = x1x5 € II. Therefore, we obtain z =
T1y1T2by2 = (x122)b(y1y2). Now, for all factorizations z; = z'z" with " # 1, we
have z; = z'(z"y1) and we obtain (2" z2)b(y1y2) = z"y122 € (Lr(p) NI)bR. Since
the product IIbR is unambiguous and z"z, € II, we deduce that z"zs € Lr(yp).
Therefore, 2122 € Lr(p U 1) NI which proves the claim.

We can conclude by induction since we have bR = Lg(b). ®

LEMMA 6.9. Let b € ¥ and C C ¥ such that C x {b} C I. Let ¢ € LTL(Z).
Then the language (Lr(p) NM¢) - (Min = b) is expressible in LTL(X).

Proof. Again, we proceed by structural induction on ¢. The cases L and ¢V ¢
are trivial.
e —p: Since the product Mg - (Min = b) is unambiguous, we have

(Le(-¢) N1Mc) - (Min =b) = (Mc \ Le(p)) - (Min = b)
= (Mc - (Min = ) \ (La(¢) N Mo) - (Min = b)),

and we can conclude by induction using Lemma 6.5 since the language (Min = b)
is expressible in LTL(Y).
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e {(a)p: Easy, since if a ¢ C we have (Lg({a)p) "Mg) - Min=5b) = and if a € C
we have (Lr({a)¢) NMc) - (Min = b) = a - (Lr(p) NMc¢) - (Min =b).
e o U ¢: This case follows directly by induction from the equality

(Lr(p U9) NMc) - (Min = b) =
((LR(cp) NMc) - (Min = b)) U ((LR(¢) N M) - (Min = b)).

First, let z = zy with € Lr(¢ U ¢) "M¢ and min(y) = {b}. Write = z122 with
z2 = 9 and for all factorizations zy = «'z" with 2" # 1, we have 2"z |= ¢. Then,
z2y € (Lr(¥) NMg) - (Min = b) and z"z2y € (Lr(p) N Mc) (Min = b).

Conversely, let z be in the right hand side and write 2 = 2129 with 20 €
(Lr(¥)NM¢) - (Min = b) and for all z; = 2’2" with 2" # 1 we have 2"z € (Lr(p)N
Mc) - (Min = b). Write 2o = zoy> with 22 € Lr(¢)) N Mc and y» € (Min = b).
Let a € alph(z1). Then we can write z; = 2’2" with min(2") = {a}. From 2"z €
M - (Min = b) we deduce that a € min(z"23) C CU{b}. Hence, alph(z;) C CU{b}
and we can write z = z1y; with ; € My and alph(y1) C {b}. Now, y = y1y2 €
(Min = b) and for all factorizations z; = z'z" with 2" # 1, we have (2" z2)(y1y2) =
z"y122 € (Lr(p) N Me) - (Min = b). Since the product M - (Min = b) is unam-
biguous, we deduce that z"z2 |= ¢. Therefore, + = z122 = ¢ U ¢ and we are
done. W

LEMMA 6.10. Letb € X, B =X\ {b} and let p € LTL(X). Then the language
(Lr(v) N (Max C {b}))Rp is expressible in LTL(X).

Proof. We use a structural induction on ¢. The cases L and ¢ V 1) are trivial.
e —p : Since the product (Max C {b})Rp is unambiguous, we have

(L(~¢) N (Max C {b}))Rp = (Max C {b})Rs \ (La(9) N (Max C {b}))Rz

Moreover (Max C {b})Rp is the set (Alphinf C B), which is expressible in LTL(X)
by the formula F G —b.
e {(a)p: We first claim that

(Lr({(a)p) N (Max C {b}))Rp =
a((Lr(p) N (Max C {b}))Rp N (a” =b))Rp)

M
Indeed, let z = azy with ax € Lr({a)p) N Max C {b}) and y € Rp. Then,
r € a~!(Max = b) C (Max C {b}) and also z € Lgr(¢). Hence, z belongs to the
right hand side.

Conversely, let 2 be in the right hand side and write z = azy with z € a1 (Max =
b), y € Rg and zy € (Lr(y) N (Max C {b}))Rg. Since the product (Max C {b})Rp
is unambiguous, we deduce that =z € Lr(p). Hence, ax € Lr({a)p) N (Max C {b})
and we are done.

By Lemma 6.7, the language (a~!(Max = b))Rp is expressible in LTL(X), hence
we can conclude by induction.

e o U 1 : This case follows by induction from the formula

(Lr(p U¢) N (Max C {b}))Rp =
(Lr(p) N (Max C {b}))Rp U (Lz(s) N (Max C {b}))Rp
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First, let z = zy with z € Lg(¢p U ¢) N (Max C {b}) and y € Rg. Then, x = 2,15
with zo |= 1 and for all factorizations z1 = z'z"” with 2" # 1, we have 2”25 = .
Since each suffix of z is in (Max C {b}), we deduce z2y € (Lr(p) N (Max C {b}))Rp
and z"z2y € (Lr(p) N (Max C {b}))Rp which proves the first inclusion.
Conversely, let z be in the right hand side and consider a factorization z = 2122
such that zo € (Lr(¥) N (Max C {b}))Rp and for all z; = 2’2" with 2" # 1 we have
2"2z2 € (Lr(p) N (Max C {b}))Rp. We write z2 = z2y> with y2 € Rp and z2 €
Lr(¢y) N (Max C {b}). We can also write z; = z1y; with y; independent of 22b and
max(z1z2) C {b}. Note that y; € Rg. We obtain z = z1y122y2 = (z122)(y192)-
Now, for all factorizations z1 = z'z"” with " # 1, we have z; = z'(2"y1) and we ob-
tain (z"z2)(y1y2) = 2"y122 € (Lr(p)N(Max C {b}))Rp. Since the product (Max C
{b})Rp is unambiguous, we deduce that z"z2 € Lgr(p). Therefore, 122 € Lr(¢ U

¢)N (Max C {b}). =

7. KAMP’S THEOREM FOR REAL TRACES

THEOREM 7.1. A real trace language is expressible in FO(X, <) if and only if it
is expressible in LTL(X).

By Proposition 4.1 and Theorem 5.1 it is enough to show that all aperiodic
languages in R(X, I) are expressible in LTL(X).

Let @ be a finite set of states. We denote by Trans(()) the monoid of mappings
from @ to Q. The multiplication is the composition (in reverse order) of mappings:
(f9)(z) = g(f(z)); and the unit element is the identity idg. We will use the fact
that every finite monoid S can be realized as a submonoid of some Trans(Q) where
|Q| < |S]- Indeed, it suffices to consider the right action of S over itself. More
precisely, if we define x(s) € Trans(S) by x(s)(t) = ts then it is easy to see that
X : S — Trans(S) is an injective morphism.

We deduce that every aperiodic trace language can be recognized by some mor-
phism h : M(2,I) — S C Trans(Q)) where S is aperiodic. We show by induc-
tion on (|@],|X|) that all languages recognized by h are expressible in LTL(Y).
For this induction, we use the following well-founded lexicographic order on N?:
(m,n) < (m'/,n') if and only if m < m' or m =m' and n < n'.

First, assume that h(a) = idg for all a € ¥, which is in particular the case when
|Q| = 1. If L C R is recognized by h then L is one of the sets ), R, M or R\M which
are respectively defined by the formulas L, T, Fstop, and G X T. This shows the
basis case of the induction.

Second, assume that h(b) # idg for some b € . The crucial observation here
is that h(b) is not a permutation of ). Indeed, since S is aperiodic, there exists
some n such that h(b)™ = h(b)"*!. If h(b) were a permutation then it would be
invertible and the last equality would imply h(b) = idg, a contradiction. Hence,
h(b)(Q) = Q' for some Q' C @ with |Q'| < |Q|-

We let B =%\ {b} and we define two subsets of M:

{z € Mp | max(z) € D(b)},
{z € Mp | min(z) C D(b)}.

In
r
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The notation II is chosen since IIb are exactly the pyramids of M where the
unique maximal element is b. It should be noted that (IIb)* and (T'b)* are free
submonoids of M, both being infinitely generated if D(b) # {b}.

By A we denote the subset of real traces z which are either in Mb or which can
be factorized into an infinite product of finite traces such that all factors except
the first belong to I'b, that is, A = Mb(I'd)*. The set A, which plays a key-role,
admits the following unambiguous decomposition:

This decomposition is best visualized by the following picture; it is in some sense
the guide for the modular construction of a formula defining the language L N A.

0 \ Myy/ T r r r .
b b b b b

The core of the proof is now the following proposition.

ProposSITION 7.1. Let L C R be recognized by h. Then, L N A is expressible in
LTL(X).

The proof of this proposition will be given later in Section 7.1. Here we show
how it is used in the proof of Theorem 7.1. We start with two corollaries.

COROLLARY 7.1. Assume that (X, D) is connected and let L C R be recognized
by h. Then the language L N (Alphinf = X) is expressible in LTL(X).

Proof. Since (X, D) is connected, we have (Alphinf = ¥) C A. Therefore,
LN (Alphinf = ¥) = (LN A) N (Alphinf = 3).

By Proposition 7.1 we know that LNA is expressible in LTL(X) and we conclude eas-
ily since (Alphinf = ¥) = Lr(Agex GFa). R

COROLLARY 7.2. Letc € X, C =X\ {c} and let L C R be recognized by h. Then
the language L N (Alphinf C C) is expressible in LTL(X).

Proof. We claim that L N (Alphinf C C) is the finite union
U (0 @0 0tax e o) 0 0) 0 M) 0 (Max € {eh) ) - (w1 Re)
u,vES

First, let t = zyz with € h™'(u), y € h=!(v) and z € L(uv) for some u,v € S.
Then h(zy) = uwv and we deduce from Proposition 5.3 that t = zyz € L.
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Conversely, we have the unambiguous decompositions
(Alphinf C C) = (Max C {c}) - Ro and M = (Max C {b}) - Mp.
Therefore,
(Alphinf C C) = (((Max C {b})-Mg) N (Max C {c})) Re.

Hence, if t € L N (Alphinf C C), we can write t = zyz with £ € (Max C {b}),
y € Mp, zy € (Max C {c}) and z € R¢. If we let u = h(z) and v = h(y) then we
get z € L(uv) which concludes the proof of the claim.

We will now apply Lemma 6.2 twice in order to conclude the proof of Corol-
lary 7.2. We fix some u,v € S. First, by Propositions 5.1 and 5.3 we know that
Ky = L(uv) N Re is recognized by the morphism hly,. and Ly = h='(v) N Mp is
recognized by the morphism h[m,. By induction on the size of the alphabet, we
deduce that Ly and K, are expressible in LTL(B) and LTL(C) respectively. By
Lemma 3.1 they are also expressible in LTL(X).

Second, note that (Max C {b}) C AU {1}. Hence,

B () N (Max € {}) = (b (u) N (A U{1})) N (Max C {B}).

By Proposition 7.1, the language L; = h=!(u) N (AU{1}) is expressible in LTL(X).
Applying once Lemma 6.2 we deduce first that

Ky = (Li N (Max C {b})) - L = (h™"(u) N (Max C {b})) - (A" (v) N M)

is expressible in LTL(X). Next, applying a second time Lemma 6.2 we deduce that
(K1 N (Max C {c})) - K>, that is,

(0 Otax € 1) - (0 1)) 1 (e € feb)) - (o) 1 )

is expressible in LTL(X). Therefore, LN(Alphinf C C) is expressible in LTL(X). H

In order to conclude the proof of Theorem 7.1, we use the following proposition.

PROPOSITION 7.2.  Assume that (X, D) is non-connected and let L C R be recog-
nized by h. Then L is expressible in LTL(X).

Proof. Assume that ¥ = 31 UXy with ¥; x¥s C I andlet M; = My,, R; = Ry,
and h; = hlp, for @ = 1,2. By Proposition 5.2, L is a finite union of products
Ly - Ly where L; C R; is recognized by h; for ¢ = 1,2. By induction on the size of
the alphabet, we deduce that L; and Ly are expressible in LTL(¥;) and LTL(Z,)

respectively. Using Lemma 3.2, we deduce that L; - L, is expressible in LTL(X). ®

7.1. Proof of Proposition 7.1
Let us first show that the set (I'b)* is expressible in LTL(X).
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LEMMA 7.1. The real trace language (Tb)* is expressed by the formula
(Min C D(b)) A (stop V F(b)stop V G F(Min = b))

where we write simply (Min C D(b)) and (Min = b) instead of the corresponding
LTL(Y) formula.

Proof. We have (I'b)™ = (Min C D(b)) N Mb, therefore (I'b)* is expressed by
the formula (Min C D(b)) A (stop V F{b)stop).

Now, if z € (I'b) then clearly min(z) C D(b) and z = GF(Min = b). Con-
versely, assume that min(z) C D(b) and z = GF(Min = b). Consider any infinite
factorization & = zp2; - - - of z into finite traces. Since z = G F(Min = b) and z is
a finite prefix of x we can write = yobz, with 2o < yo € M and min(z;) C D(b).
From min(z) C D(b), we deduce that yob € (Min C D(b)) N Mb = (T'b)*.

Now, 2921 and yob are finite prefixes of z, hence we can write x = yoby; bz2 with
2021 < yobyr € M and min(z2) C D(b). From min(z;) C D(b), we deduce that
y1b € (Min C D(b)) N Mb = (T'b)*.

In this way, we construct an infinite sequence of finite traces y; such that for all 4
we have y;b € (Tb)T and zp - -- 2; < yob- - - by; < x. We deduce that x = yoby1b--- €

Th)*. m

Now, recall that h(b)(Q) = Q'. Each s € h((T'b)*) maps the subset Q' to Q'.
Hence we may define two subsets T,T' C Trans(Q') by T = {s[¢/| s € h([d)}
and T' = {s[q’| s € h((T'b)*)}. Since h((I'd)*) is a submonoid of S, the set T" is
a monoid. Moreover, the monoid 7" is generated by T and is aperiodic since S is
aperiodic.

By T* we denote the free monoid generated by the finite set T' (here T is viewed
as an alphabet). Accordingly, T°° means the set of finite or infinite words over the
alphabet T. The inclusion T' C T" induces a canonical morphism e : T* — T" which
is called the evaluation.

The mapping ¢ : T'b — T, defined by the restriction o(z) = h(z)[q’, induces a
morphism o : (Tb)* — T™* between free monoids. The mapping o is also extended
to infinite sequences o : (I'b)¥ — T*, so finally we have o : (T'b)> — T'°.

Since T" is a submonoid of Trans(Q') and |Q'| < |@|, we may use induction
(Although we might have |T'| > |X|). More precisely, we may assume that every
language K C T which is recognized by the morphism e is expressible in LTL(T).
The following lemma allows us to make use of this induction step.

LEMMA 7.2. Let K C T be a word language expressible in LTL(T). Then the
real trace language o~ (K) C (T'b)> is expressible in LTL(X).

Proof. We prove this by induction on the formula ¢ € LTL(T) which defines
the language K. Let us denote in this proof by ! (p) the language o= (Lr= (¢)).
The cases L and ¢ V ¥ are trivial.

e —p: We have 07 1(—g) = (Tb)® \ 071(p). We conclude by induction using
Lemma 7.1.
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e (t)p: We first claim that

o' ({t)p) = (Min C D(b)) N ( U G lwnmten Mz(b))bffl(SO)) :

t=(uvh(b)) g/
This is based on the unambiguous decomposition
(T'b)(T'5)>° = (Min C D(b)) N IIM 5 b(I'b)>.

Let z € o1 ({t)p). Write z = yz with y € 0~ 1(¢) C (T'b) and 2z € 0~ (p) C (Th)>.
Using the unambiguous decomposition above we deduce that y = y'y"b with ¢’ € II
and y" € My@). Let w = h(y') and v = h(y"). We obtain t = o(y) = (uvh(b))[q
and 2 = yz € (Min C D(b)) N ((h=" (u) NIL)(A~"(v) N Myp) )b~ ().

Conversely, let = y'y"'bz € (Min C D(b)) with ' € A=Y (u) NI, y" € A~ (v) N
M) and z € o~ (¢p) for some u,v € S such that ¢ = (uvh(b))[q. We deduce that
y=19"y"b € Tb and o(y) = t. Therefore, z = yz € o1 ({t)yp).

By induction, the language 0~ (i) is expressible in LTL(X). Hence, so is L3 =
bo~1(¢) C (Min = b). By Proposition 5.1, the languages L1 = h™1(u) N Mp
and Ly = h™1(v) N Mp are recognized by the restriction of h to Mp. Hence, by
induction on the size of the alphabet, they are expressible in LTL(B), and also in
LTL(X) by Lemma 3.1. Since ITUM;;y C Mg, we have h=!(u) NII = Ly N1II and
h=l(w) N M) = L2 N M. Using Lemma 6.1, we deduce that

(Li NI)(Lz N M) Ls = (b~ (w) NI (™" (v) N My(p) )b~ (¢)

is expressible in LTL(X).
e U1 : An until-formula ¢ U ¢ over words is equivalent with ¢V (0 AX (e U v)).
Thus it is enough to consider X(p U ). We claim that

o7 (X(p U ) = (00)* 1 (b~ (1) U (Min #b)) U (b0 (1) ).

Let z € o 1(t) for some t = totity--- € T with t = X(p U ). We write
x = xobx1bxab - - - with z; € T and o(z;b) = t;. Let ¢ > 0 be such that t;t;yq1 -+ E 9
and for all 0 < j < i, tjtjy1--- = ¢. We deduce that z = bz;bziy1--- € bo ' (1))
and if y = zobzy---bz; 1 = wv with v # 1 then either min(v) # {b} and also
min(vz) # {b}, or min(v) = {b} and we have v = bx; - --bx; 1 for some 0 < j < i.
In this case, we have vz = bz;brj11--- € bo 1(p). Therefore, z belongs to the
right hand side.

Conversely, assume that = belongs to the right hand side, then we can write z =
.’L’0b.’L'1b.’L'2b' -+ with x; € I'. Let t = O’(.’L’) = totltz --- with ti = U(.’L‘Zb) Let z = Yz
be a factorization such that z € bo~1(3)) and for all y = uv with v # 1 we have
either min(vz) # {b} or vz € bo~!(p). We deduce that z = bx;bx;;1 --- for some
i > 0 and t;t;y1--- = ¢. Now, for all 0 < j < ¢ we have min(bx;bx;tq1---) = {b}
hence bz;bzji1--- € b~ (p) and t;tjy1 --- = 1. Therefore, t = X(p U ¢), which
concludes the proof of the claim.

By induction, we know that ~!(¢) and 0 =1 (%) are expressible in LTL(X), hence
also bo~1(p) and bo~—1(¢)). Since both (['b)* (Lemma 7.1) and (Min # {b}) are
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expressible in LTL(X), we deduce from the claim that o~ (X (oU?1))) is also express-
ible in LTL(Z).

LEMMA 7.3. Let L C R be recognized by h. Then LN b(Tb)>® is expressible in
LTL(D).

Proof. We define the language K C T with respect to the language L by
K ={o(z) € T*® | bx € LN b(T'b)*}.

We first show that L N 5(T'b)*° = bo !(K). The inclusion C is clear. Conversely,
let y = yibysb--- € 0~ 1(K) with y; € T and let bx € L N b(I'b)>™ be such that
o(z) = o(y). We write x = x1bxab--- with z; € T. We have the same number
of factors and for all ¢ we have h(z;b) [gr= o(x;b) = o(y;b) = h(y:b)[g. If the
number of factors is finite, then directly h(bx) = h(by), hence by € L N b(T'b)*. If
the number of factors is infinite, then we deduce first that h(bz;b) = h(by;b). It
follows that bx ~jp bz ~p by with z = x1by2bx3bysb---. Since bx € L, we deduce
that by € LN b(I'b)~.

Next, we show that K is recognized by the morphism e : T* — T’. To see this
let w € K and v € T be such that u ~, v. We have to show that v € K. Let
x € (I'b)* be such that bx € L and o(x) = u. Note that w is finite if and only if
x € (I'b)* if and only if z is finite.

Assume first that v and v are both finite. We choose some y € (I'b)* with
o(y) = v. We have e(o(x)) = e(u) = e(v) = e(o(y)). Thus, h(zx)[g'= h(y)[g, but
then h(bx) = h(by) and we conclude by € L and therefore v = o(y) € K.

Now, assume that v and v are both infinite. Since u ~, v, we find infinite
factorizations u = ujus -+ - and v = vy - - with u;,v; € TT and e(u;) = e(v;) for
all 5. Since o(x) = u, we find a factorization z = z;bz2b- - - such that z;b € (I'b)*
and o(z;b) = u; for all i. Now, for all 4, let y;b € (Tb)™ be such that o(y;b) = v;
and let y = y1by2b - - -. For all i, we have

h(z:b)lg= e oo(z:b) = e(ui) = e(v;) = e o o(yib) = h(yib) [/

and therefore h(bx;b) = h(by;b). It follows that bx ~j bz ~jp by with z =
Z1by2bxsbysb- - -. Since bz € L, we deduce that by € L and therefore v = o(y) € K.

Now, it is easy to conclude the proof. Since |Q'| < |Q| and K is recognized by
e:T* - T' C Trans(Q'), we know by induction that K is expressible in LTL(T).
Using Lemma 7.2, we deduce that o~!(K) is expressible in LTL(X). Therefore, LN

b(Th)> = bo~1(K) is expressible in LTL(X). =

We are now ready to complete the proof of Proposition 7.1. Let L C R be a real
trace language recognized by the morphism h. We claim that

Lna= |J (@ (B (©) 0 Myg)) (L) 0HTH)).
u,vES

Indeed, let t = zyz with z € h=(u), y € h~!(v) and 2 € L(uv) for some u,v € S.
Then h(zy) = wv and we deduce from Proposition 5.3 that t = zyz € L. Conversely,
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let t € (LN A). Using the unambiguous factorization A = ITMj ;) b(T'b)>°, we can
write ¢ = zyz with z € II, y € M) and z € b(I'b)>. If we let u = h(x) and
v = h(y) then we get z € L(uv) which concludes the proof of the claim.

By Proposition 5.3, we know that L(uwv) is recognized by h, hence by Lemma, 7.3
the language Lz = L(uv) N b(T'b)>*° C (Min = b) is expressible in LTL(X). By
Proposition 5.1, the languages L1 = h™'(u) " Mp and Ly = h~!(v) N Mp are
recognized by the restriction of h to Mp. Hence, by induction on the size of the
alphabet, they are expressible in LTL(B), and also in LTL(X) by Lemma 3.1. Since
ITU M) C Mp, we have h='(u) NII = Ly N 1T and h™'(v) N M5y = Lo N M.
Using Lemma 6.1, we deduce that

(Li NIT)(Ls N M) Ls = (b (u) N ID(E " () 1 Mygy) (L(uv) 1 (D))

is expressible in LTL(X).
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