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Abstract

It is well-known that the existential theory of equations in free

groups is decidable. This is a celebrated result of Makanin which was

published 1982. Makanin did not discuss complexity issues, but later it

was shown that the scheme of his algorithm is not primitive recursive.

In this paper we present an algorithm that works in polynomial space.

This improvement is based upon an extension of Plandowski’s tech-

niques for solving word equations. We present a Pspace–algorithm in

a more general setting where each variable has a rational constraint,

that is, the solution has to respect a specification given by a regular

word language. We obtain our main result about the existential the-

ory in free groups as a corollary of the corresponding statement in free

monoids with involution.

1 Introduction

Around 1980 great progress was achieved on the algorithmic decidability
of elementary theories of free monoids and groups. In 1977 Makanin [24]
proved that the existential theory of equations in free monoids is decidable
by presenting an algorithm which solves the satisfiability problem for a single
word equation with constants. In 1982 he extended his result to the more
complicated situation in free groups [25]. Using a result by Merzlyakov [31]
Makanin also showed that the positive theory of equations in free groups is
decidable [26]. In [37] Razborov obtained a description of the general solution
of given bounded periodicity exponent of an arbitrary system of equations in
a free group.
The algorithms of Makanin are very complex: For word equations the run-
ning time was first estimated by several towers of exponentials and it took
more than 20 years to lower this bound for Makanin’s original algorithm to
ExpSpace, [14]. For solving equations in free groups Kościelski and Pachol-
ski showed that the scheme proposed by Makanin is not primitive recursive,
[21].
In 1999 Plandowski used another method for solving word equations and
he showed that the satisfiability problem for word equations is in Pspace,
[34, 35]. One ingredient of his work is to use data compression to reduce the
space. The importance of data compression was first recognized by Rytter
and Plandowski when applying Lempel-Ziv encodings to the minimal solution
of a word equation [36]. Another important definition is the `-factorization
of a solution to a word equation. The roots of the notion of `-factorization
are in the notion of synchronizing factorization from [19].
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Gutiérrez extended Plandowski’s method to the case of free groups, [16].
Thus, a non-primitive recursive scheme for solving equations in free groups
has been replaced by a polynomial space bounded algorithm. Hagenah and
Diekert worked independently in the same direction and using some ideas of
Gutiérrez [15] they obtained a result which includes the presence of rational
constraints [4, 17].
The present paper is the journal version of [16] and [4]. It shows that the
existential theory of equations in free groups with rational constraints is
Pspace–complete. Rational constraints mean that a possible solution has
to respect a specification which is given by a regular word language. The
idea to consider regular constraints for word equations goes back to Schulz
[38] who also pointed out the importance of this concept, see also [7, 13]. The
Pspace–completeness for the case of word equations with regular constraints
has already been stated by Rytter according to [34, Thm. 1].
Our proof reduces the case of equations with rational constraints in free
groups to the case of equations with regular constraints in free monoids with
involution, which turn out to be central objects. (Makanin uses the notion
of “paired alphabet;” one of the differences is that he considered “non con-
tractible” solutions only, whereas we deal with general solutions.) Our work
extends the method of [34, 35] so that it copes with involutions, and it ex-
tends the method of [16] so that it copes with rational constraints. The first
step is a reduction to the satisfiability problem of a single equation with
regular constraints in a free monoid with involution. In order to avoid an ex-
ponential blow-up, we do not use a reduction as in [26], but a simpler one. In
particular, we can handle negations simply by positive rational constraints.
In the second step we show that the satisfiability problem of a single equa-
tion with regular constraints in a free monoid with involution is in Pspace.
This part is technical and first we introduce several notions like base-change,
projection, partial solution, and free interval. After these preparations we
can follow Plandowski’s method. Throughout we shall use many of the deep
ideas which were presented in [34, 35], but we apply them in a different set-
ting. Hence, as we cannot use Plandowski’s result as a black box, we have
to go through the whole construction again. On the positive side, we obtain
a self-contained presentation.
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2 Basic Notions and Statements of Theorems

2.1 Preliminaries

An involution on a set is a bijection such that x = x for all elements x. If
M is a monoid, then an involution : M → M means that we also require
1 = 1 for the unit element 1 and xy = y x for all x, y ∈M .
Let Σ be a finite alphabet. By Σ∗ we denote the free monoid over Σ. Elements
of Σ∗ are called words. The length of a word w is denoted by |w|. A factor of
a word w is a word v such that w = w1vw2; it is called proper if 1 6= v 6= w. By
F (Σ) we denote the free group over Σ. Elements of F (Σ) can be represented
by words over Γ = Σ∪Σ, where Σ = { a | a ∈ Σ } is a disjoint copy of Σ. We
let a = a, this defines an involution : Γ → Γ; and the involution is extended
to Γ∗ by a1 · · ·an = an · · ·a1. The meaning of w is the inverse w−1 in F (Σ).
A word w ∈ Γ∗ is freely reduced , if it contains no factor of the form aa with
a ∈ Γ. For w ∈ Γ∗ we denote by ŵ the freely reduced word which denotes
the same group element in F (Σ). Hence, û = v̂ if and only if ψ(u) = ψ(v),
where ψ : Γ∗ → F (Σ) denotes the canonical homomorphism.
The classes of rational and recognizable subsets are defined for every monoid
M , [10]. Rational sets (or languages) are defined inductively as follows.
All finite subsets of M are rational. If C1, C2 ⊆ M are rational, then the
union C1 ∪ C2, the concatenation C1 · C2, and the generated submonoid
C∗

1 are rational. A subset C ⊆ M is recognizable, if and only if there is a
homomorphism h to some finite monoid M ′ such that C = h−1h(C). Kleene’s
Theorem states that in finitely generated free monoids both classes coincide,
and we follow the usual convention to call a rational (or recognizable) subset
of a free monoid regular.
The empty word is the unit element of a free monoid, it is denoted by 1
as the unit element in other monoids. The singleton set {1} is rational in
F (Σ), but not recognizable if Σ 6= ∅. A subset C ⊆ F (Σ) is rational if and
only if C = ψ(C ′) for some regular language C ′ ⊆ Γ∗. In particular, we can
use a non-deterministic finite automata over Γ for specifying rational group
languages over F (Σ).
The existential theory of equations with rational constraints in a monoid M

with a generating set Γ is defined as follows. Let Ω be a set of variables
(or unknowns). Atomic formulae are either of the form L = R, where
L,R ∈ (Γ ∪ Ω)∗ or of the form X ∈ C, where X is in Ω and C ⊆ M is
a rational language. An existentially quantified formula is a block of exis-
tentially quantified variables followed by a Boolean combination of atomic
formulae. It is closed, if there are no free variables. The existential theory of
equations with rational constraints in M is the set of all closed existentially

5



quantified formulae which are true in M .

2.2 Free Groups

The following proposition is due to Benois [1], see also [2, Sect. III.2].

Proposition 1 The family of rational languages over the free group F (Σ)
forms an effective Boolean algebra.

Proof. (Sketch.) It is enough to show that the family of rational languages
is closed under complementation. Let C ′ ⊆ Γ∗ be a regular language and
C = ψ(C ′) the corresponding rational group language in F (Σ). Assume that
C ′ is given by some non-deterministic finite automaton. Using the same state
set we can construct (in polynomial time) a finite automaton which accepts
the following language

C ′′ = { v ∈ Γ∗ | ∃u ∈ C ′ : u
∗
→ v }

where u
∗
→ v means that v is a descendant of u by the rewriting system

{ aa → 1 | a ∈ Γ }. Then we complement C ′′ with respect to Γ∗; and inter-
sect Γ∗ \C ′′ with the regular set of freely reduced words. We obtain a regular

set C̃ ′. Hence, the complement of C in F (Σ) is the rational group language

ψ(C̃ ′). �

Problem 2 By EFG we denote the following decision problem:
INPUT: A finite alphabet Σ and a closed existentially quantified formula with
rational constraints in the free group F (Σ).
QUESTION: Is the formula true in F (Σ)?

Theorem 3 The problem EFG is Pspace–complete.

The difficult part is to show that EFG is in Pspace. For this we prove a
more general statement about the existential theory of equations with regular
constraints in free monoids with involution.

2.3 Free Monoids with Involution

In the following let Γ be a finite alphabet of constants and Ω be an alphabet of
variables together with involutions : Γ → Γ and : Ω → Ω. The involution
on Ω is without fixed points, but we allow fixed points for the involution on
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Γ. The involution is extended to (Γ ∪ Ω)∗ by x1 · · ·xn = xn · · ·x1 for n ≥ 0
and xi ∈ Γ ∪ Ω, 1 ≤ i ≤ n. Clearly, u = u for all u ∈ (Γ ∪ Ω)∗.
From now on, almost all monoids M under consideration are equipped with
an involution : M → M . A morphism between monoids with involution
M and M ′ is henceforth a mapping h : M → M ′ such that h(1) = 1,
h(xy) = h(x)h(y), and h(x) = h(x) for all x, y ∈ M . Thus, a morphism is
a homomorphism of monoids which respects the involution. The pair (Γ∗, )
is called a free monoid with involution. A morphism h : Γ∗ →M is specified
by a list (h(a); a ∈ Γ) such that h(a) = h(a) for all a ∈ Γ.

Problem 4 By EFMI we denote the following decision problem:
INPUT: A closed existentially quantified formula with regular constraints in
a free monoid with involution (Γ∗, ).
QUESTION: Is the formula true in (Γ∗, )?

The proof of the following statement is the main technical contribution of
the paper.

Theorem 5 The problem EFMI is Pspace–complete.

2.4 Equations with Constraints

In the following it is more suitable to work with Boolean matrices instead of
finite automata. Let n ≥ 1. Henceforth, M2n ⊆ B

2n×2n denotes the following
monoid with involution:

M2n = {

(
A 0
0 B

)
| A,B ∈ B

n×n },

where (
A 0
0 B

)
=

(
B 0
0 A

)T

=

(
BT 0
0 AT

)

The operator T denotes transposition and B
n×n is the monoid of Boolean

n× n–matrices.

Definition 6 An equation E with constraints is a list

E = (Γ, h,Ω, ρ;L = R)

containing the following items:

• The alphabet Γ = (Γ, ) with involution.
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• The morphism h : Γ∗ → M2n which is specified by a mapping h : Γ →
M2n such that h(a) = h(a) for all a ∈ Γ.

• The alphabet Ω = (Ω, ) with involution without fixed points.

• A mapping ρ : Ω →M2n such that ρ(X) = ρ(X) for all X ∈ Ω.

• The word equation L = R where L,R ∈ (Γ ∪ Ω)+.

A solution of E is a mapping σ : Ω → Γ∗, which is extended to a morphism
σ : (Γ ∪ Ω)∗ → Γ∗ by leaving the letters from Γ invariant such that the
following three conditions are satisfied:

σ(L) = σ(R) ,

σ(X) = σ(X) for all X ∈ Ω,
hσ(X) = ρ(X) for all X ∈ Ω.

Let d = |LR| be the denotational length of the word equation L = R. The
input size of E is given by

‖E‖ = d+ n+ log2(|Γ| + |Ω|).

The definition of input size takes into account that there might be constants
or variables with constraints which are not present in the equation. Due to
this definition we assume that the input to Problem 7 is kept on a separate
read-only storage.

Problem 7 By EWC we denote the following decision problem:
INPUT: An equation with constraints, E = (Γ, h,Ω, ρ;L = R).
QUESTION: Is there a solution σ : Ω → Γ∗?

Theorem 8 The problem EWC is Pspace–complete.

We now turn to the proofs of Theorems 3, 5, and 8. The Pspace–hardness
of the problems EFMI, EFG, and EWC follows directly from a result of Kozen
[22], since the empty intersection problem of regular sets can easily be en-
coded in the problems above. Therefore the Pspace–hardness is not dis-
cussed further in the sequel.
The difficult part is to show that the problems EFG, EFMI, and EWC can
be solved in polynomial space. We proceed as follows. Section 3.1 yields a
(polynomial time) reduction from the problem EFG to the problem EFMI.
Section 3.2 yields a reduction from EFMI to EWC, but this reduction involves
non-deterministic steps. It can be performed however in non-deterministic
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polynomial time. Section 4 is the core of the paper. It shows that the prob-
lem EWC can be solved by some non-deterministic Pspace algorithm. By
Savitch’s theorem such a procedure can be transformed into a polynomially
space bounded deterministic decision procedure, see e.g. [18]. This concludes
the proof of Theorems 3, 5, and 8.

Remark 9 Problem EWC is Np–hard for n = 1 already, since then we are
in the framework of word equations (without constraints); and linear inte-
ger programming can easily be reduced to word equations, see e.g. [3]. We
conjecture that the problem is in fact Np-complete, if n is bounded by some
constant which is not part of the input, see also [36].

3 Reductions

3.1 Reduction of Problem EFG to EFMI

The next technical lemma follows directly from the well known fact that the
Cayley graph of a free group is a tree. The proof of Lemma 10 is therefore
omitted. As above, let ψ : Γ∗ → F (Σ) be the canonical morphism.

Lemma 10 Let u, v, w ∈ Γ∗ be freely reduced words. Then we have uvw = 1
in F (Σ) (i.e. ψ(uvw) = 1) if and only if there are words P,Q,R ∈ Γ∗ such
that u = PQ, v = QR, and w = RP in Γ∗.

Proposition 11 There is a polynomial time reduction of problem EFG to
EFMI.

Proof. The reduction follows standard lines. The input to the problem EFG

is a closed existentially quantified formula with rational constraints in the
free group F (Σ). Using De Morgan’s law we may assume that there are no
negations at all. Since we are in a group, the atomic formulae are now of
the either form: W = 1, W 6= 1, X ∈ C or X 6∈ C where W ∈ (Γ ∪ Ω)∗,
X ∈ Ω, and C ⊆ F (Σ) is rational. The reason that we keep X 6∈ C instead

of X ∈ C̃ where C̃ = F (Σ) \ C is that the complementation may involve an
exponential blow-up.
The next step is to replace every formula W 6= 1 by

∃X : WX = 1 ∧X 6∈ {1},

where X is a fresh variable, hence we can put ∃X to the front.
We may assume that |W | ≥ 3, since if 1 ≤ |W | < 3, then we may replace
W = 1 by Waa = 1 for some a ∈ Γ. For the present reduction it is convenient
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to assume that |W | = 3 for all subformulae W = 1. This is easy to achieve.
As long as there is a subformula x1 · · ·xk = 1, xi ∈ Γ ∪ Ω for 1 ≤ i ≤ k and
k ≥ 4, we replace it by the conjunction

∃Y : x1x2Y = 1 ∧ Y x3 · · ·xk = 1,

where Y is a fresh variable and ∃Y is put to the front, and then proceed
recursively.
Now, there are no negations and all atomic formulae are of type W = 1,
X ∈ C or X 6∈ C, where W ∈ (Γ ∪ Ω)+, |W | = 3, X ∈ Ω, and C ⊆ F (Σ) is
rational.
At this point we switch to free monoids with involution. Recall that ψ : Γ∗ →
F (Σ) denotes the canonical morphism and that X ∈ C (resp. X 6∈ C) means
in fact X ∈ ψ(C ′) (resp. X 6∈ ψ(C ′)), where C ′ ⊆ Γ∗ is a regular language
specified by some finite non-deterministic automaton over the alphabet Γ∗.
Using ψ-symbols we obtain an interpretation over (Γ∗, ) without changing
the truth value of the input formula: We replace each subformula X ∈ C

(resp. X 6∈ C) syntactically by ψ(X) ∈ ψ(C ′) (resp. ψ(X) 6∈ ψ(C ′)) and we
replace each subformula W = 1 by ψ(W ) = 1.
We keep the interpretation over words, but we now eliminate all occurrences
of ψ again. We begin with the occurrences of ψ in the constraints. Let
C ′ ⊆ Γ∗ be regular. According to the proof of Proposition 1 we construct a
finite automaton, which accepts the following language

C ′′ = { v ∈ Γ∗ | ∃u ∈ C ′ : u
∗
→ v }.

In particular, ψ(C ′) = ψ(C ′′) and Ĉ ⊆ C ′′ where Ĉ = { û ∈ Γ̂∗ | u ∈ C ′ }.
We replace all positive atomic subformulae of the form ψ(X) ∈ ψ(C ′) by
X ∈ C ′′. A simple reflection shows that the truth value has not changed
since we can think of X as being a freely reduced word. For a negative
formula ψ(X) 6∈ ψ(C ′) we have to be a little more careful. Let N ⊆ Γ∗ be the
regular set of all freely reduced words. The language N is accepted by some
deterministic finite automaton with |Γ|+2 states. We replace ψ(X) 6∈ ψ(C ′)
by

X 6∈ C ′′ ∧X ∈ N,

where C ′′ is as above. Again the truth value did not change.
We now have to deal with the formulae ψ(xyz) = 1 where x, y, z ∈ Γ ∪ Ω.
Observe that the underlying quantifier free formula is satisfiable over Γ∗ if
and only if it is satisfiable in freely reduced words.
Based on Lemma 10 we replace each atomic subformulae ψ(xyz) = 1 with
x, y, z ∈ Γ ∪ Ω by a conjunction

∃P∃Q∃R : x = PQ ∧ y = QR ∧ z = RP,
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where P , Q, R are fresh variables and the existential block is put to the front.
The new existential formula has no occurrence of ψ anymore. The atomic
subformulae are of the form x = yz, X ∈ C or X 6∈ C, where x, y, z ∈ Γ ∪ Ω
and C ⊆ Γ∗ is regular. The size of the new formula is polynomial in the size
of the original formula. This finishes the reduction from the problem EFG

to EFMI. �

3.2 Reduction of Problem EFMI to EWC

Proposition 12 There is a non-deterministic polynomial time reduction of
problem EFMI to EWC.

Proof. The input to problem EFMI is a closed existentially quantified for-
mula Φ with regular constraints over a free monoid with involution. We
define a procedure which transforms the input Φ into an equation with con-
straints EΦ. If Φ is true, then at least one possible output EΦ has a solution.
If the output EΦ has a solution, then Φ is true. The procedure will work in
non-deterministic polynomial time.
We may assume that the formula Φ contains no negations and all atomic
subformulae are of type U = V , U 6= V , X ∈ C or X 6∈ C, where U, V ∈
(Γ ∪ Ω)∗, X ∈ Ω, and C ⊆ Γ∗ is regular.
Since we work over a free monoid Γ∗ it is easy to handle inequalities U 6= V

where U, V ∈ (Γ ∪ Ω)∗. If two words u, v in Γ∗ are different, then there are
three cases: u is a proper prefix of v or v is a proper prefix of u or there is
some word x such that xa is a prefix of u, xb is a prefix of v, and a 6= b.
Therefore, a subformula U 6= V can be replaced by

∃X∃Y ∃Z :
∨

a∈Γ

(
U = V aX ∨ V = UaX ∨

∨

a6=b∈Γ

(U = XaY ∧ V = XbZ)
)
.

Making guesses we can eliminate all disjunctions to obtain an existentially
quantified formula which consists of a block of existentially quantified vari-
ables followed by a single conjunction over atomic subformulae of type U =
V , X ∈ C or X 6∈ C, where U, V ∈ (Γ ∪ Ω)∗, X ∈ Ω, and C ⊆ Γ∗ is regular.
By a standard procedure we can replace a conjunction of word equations over
(Γ ∪ Ω)∗ by a single word equation L = R where neither L nor R is empty.
For example, we may choose a new letter a (a 6∈ Γ) and then we can replace a
system L1 = R1, L2 = R2, . . . , Lk = Rk by L1aL2a · · ·aLk = R1aR2a · · ·aRk

and we add for all variables X the constraint X ∈ Γ∗.
Therefore, we may assume that our input is now given by three items: a single
word equation L = R with L,R ∈ (Γ∪Ω)+ and two lists: (Xj ∈ Cj, 1 ≤ j ≤
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m) and (Xj 6∈ Cj, m < j ≤ k). Each regular language Cj ⊆ Γ∗ is specified by
some non-deterministic automaton Aj = (Qj,Γ, δj, Ij, Fj) where Qj is the set
of states, δj ⊆ Qj ×Γ×Qj is the transition relation, Ij ⊆ Qj is the subset of
initial states, and Fj ⊆ Qj is the subset of final states, 1 ≤ j ≤ k. Of course,
a variable X may occur several times in the list with different constraints,
therefore we might have k greater than |Ω|.
For the reduction to the problem EWC we have to consider Boolean matrices
instead of finite automata. This allows us to store all constraints concerning
a variable in a single Boolean matrix. Let Q be the disjoint union of the
state spaces Qj, 1 ≤ j ≤ k. We may assume that Q = {1, . . . , n}. Let
δ =

⋃
1≤j≤k δj, then δ ⊆ Q × Γ ×Q and with each a ∈ Γ we can associate a

Boolean n × n matrix g(a) ∈ B
n×n such that g(a)i,j = 1, if (i, a, j) ∈ δ and

g(a)i,j = 0 otherwise. We define a morphism h : Γ∗ →M2n by

h(a) =

(
g(a) 0

0 g(a)T

)
for a ∈ Γ.

The list of matrices (h(a); a ∈ Γ) can be computed in polynomial time and
we have h(ā) = h(a). Now, for each regular language Cj, 1 ≤ j ≤ k we
compute vectors Ij, Fj ∈ B

2n (corresponding to initial and final states) such
that for all w ∈ Γ∗ and 1 ≤ j ≤ k we have the equivalence:

w ∈ Cj ⇔ IT
j h(w)Fj = 1.

Having done these computations we make a non-deterministic guess ρ(X) ∈
M2n for each variable X ∈ Ω. We verify ρ(X) = ρ(X) for all X ∈ Ω and
whenever there is a constraint of type X ∈ Cj for some 1 ≤ j ≤ m (or
X 6∈ Cj for some m < j ≤ k), then we verify IT

j ρ(X)Fj = 1, if 1 ≤ j ≤ m

(or IT
j ρ(X)Fj = 0, if m < j ≤ k).

This finishes the reduction of problem EFMI to EWC. �

4 Problem EWC is in Pspace

4.1 Road-Map

The proof of Theorem 8 is based on three transformation rules for equations
with constraints. Each transformation preserves unsolvability; and it can be
applied as long as the computation respects a given polynomial space bound.
(The notion of admissibility given in Definition 31 formalizes the notion that
the size of some object is bounded polynomially in the input size.)

12



No transformation rule introduces any new variable, but it may happen that
the number of variables decreases. So, the global strategy is to apply the
rules until all variables have been eliminated; the final step is then a direct
evaluation of an equation without variables.
If the final output is yes, then the input equation is solvable, too. The main
difficulty in the proof is the converse. We have to show that we can perform
all these transformations within polynomial space such that for a solvable
equation with constraints at least one computation path leads to the output
yes.
In order to overcome this difficulty various notions and concepts are devel-
oped. We follow the approach of Plandowski [34, 35], but we have two sources
for additional complications. We have to cope with the involution and we
have constraints. It is fairly standard to handle regular constraints. It may
look rather technical if a reader sees it for the first time, but there is no
surprise and the real additional difficulty is condensed in one subsection.
There are in fact three subsections 4.2, 4.6, and 4.9, where regular constraints
play a crucial role. In 4.2 we show why an explicit specification of the con-
stants is necessary. On an algebraic level we have to solve a membership
problem in a submonoid of Boolean matrices. The submonoid is given by
a list of matrices and we ask whether some other matrix A is a product of
matrices from the list. Clearly, the answer may be no, but if we add A to
the list, then it becomes trivially yes. In our language this means that it
may happen that an equation with constraints becomes solvable by enlarg-
ing the alphabet of constants. This effect is not possible without constraints:
If a word equation L = R without constraints has a solution, then it has a
solution over the alphabet of constants which appear in the string LR.
The presence of constraints makes it necessary to formalize the notion of
projection in 4.6. A projection is a controlled way of introducing new con-
stants such that unsolvable equations remain unsolvable. The use of new
constants is inherent in Plandowski’s method. If during the transformation
the underlying word equations becomes too long, long subsequences of con-
stants (factors) are coded as a single new letter. So, the alphabet of constants
changes all the time: We remove constants in order to keep the alphabet size
polynomially bounded, and introduce them in order to keep the length of the
underlying word equation polynomially bounded. The technical preparation
for this is done in Section 4.9. It introduces the notion of free interval and it
is there where our presentation becomes more involved due to constraints.
Dealing with involutions is the main source for new difficulties. For example
we cannot directly apply the usual method for bounding the exponent of
periodicity. We need a new concept of p-stable normal form in Subsection 4.3.
The result of this section is however as expected: If a w0 represents a solution
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of minimal length, then the number of repetitions inside w0 is bounded singly
exponential in the size of the equation. Thus if w0 = uvkw, then in binary
notation k uses polynomially many bits only.
This leads directly to Section 4.4. Word equations are not stored in plain
form, but Plandowski’s method uses data compression to keep them within
polynomial size. More specifically, we allow regular expressions with expo-
nents in binary notation.
The following three subsections explain the transformation rules in detail:
In 4.5 we formalize the way to remove constants and 4.6 deals with the
controlled way of introducing them. In 4.7 we formalize guessing a partial
solution.
The transformation rules lead to the formal description of a search graph
in 4.8. The difficulty of proving Theorem 8 is reduced to showing that the
search graph contains a path from a solvable input equation to some trivial
equation. This part is very complex, but the basic ideas can be traced to
[36] where Lempel-Ziv encodings of minimal solutions of a word equation are
investigated. Key notions are critical word and `-factorization. The technical
part is developed in sections 4.10 to 4.15.

4.2 A PSPACE–Complete Subproblem

The following proposition states that two basic operations, which are used
several times as subroutines, can be performed in Pspace.

Proposition 13 The following problems are Pspace–complete with respect
to the input size n+ log |Γ|.

INPUT: A matrix B ∈ B
n×n and a homomorphism g : Γ∗ → B

n×n given as
a list of matrices (B1, . . . , B|Γ|).
QUESTION: Is there some u ∈ Σ∗ such that g(u) = B?

INPUT: A matrix A ∈ M2n and a morphism h : Γ → M2n given as a list of
matrices (A1, . . . , A|Γ|) with Aai

= Aai
for all ai ∈ Γ.

QUESTION: Is there some w ∈ Γ∗ such that h(w) = A and w = w?

Proof. The first problem is closely related to the intersection problem of
regular languages and its Pspace–hardness is again due to Kozen [22], see
also [11, MS5]. The Pspace–algorithm starts with the unit matrix. Then it
guesses a word u letter by letter and, simultaneously, calculates g(u): If we
guess the letter ai, then we move to the i-th matrix in the list (B1, . . . , B|Γ|)
describing g, and we multiply Bi on the right to the current value held in the
work space. We terminate if and only if g(u) = B.

14



The second problem can be solved since w = w implies w = ubu for some
u ∈ Γ∗ and b ∈ Γ ∪ {1} with b = b. Hence we can guess some B and b and
we verify A = Bh(b)B and b = b. Then using the first part, we check that
B = h(u) for some u ∈ Γ∗.
Since there is no reference which shows the Pspace–hardness of the second
problem, we sketch a reduction from the first to the second one: Consider
a mapping g : Σ → B

n×n and B ∈ B
n×n, the pair (B, g) is an instance

of the first problem. Let Γ be the disjoint union Σ ∪ Σ and let g(ā) = 1,
where 1 ∈ B

n×n is the identity matrix. In the notations of above we have

h(a) =

(
g(a) 0

0 1

)
for a ∈ Γ. Let A =

(
B 0
0 BT

)
, then the pair (A, h)

becomes an instance of the second problem. Clearly, if g(u) = B for some

u ∈ Σ∗, then h(uu) =

(
B 0
0 BT

)
. For the converse note that the matrices

h(a) and h(b̄) commute for all a, b ∈ Σ. If there is some w = w ∈ Γ∗ with

h(w) =

(
B 0
0 BT

)
, then we can write w = w1w1 and we may assume that

w1 = u1u2 with u1, u2 ∈ Σ∗. It follows that g(u1u2) = B. �

Assume that an equation E = (Γ, h,Ω, ρ;L = R) contains a variable X in the
specification which does not occur in LRLR. In this case the equation might
be unsolvable, simply because ρ(X) 6∈ h(Γ∗). However, by Proposition 13
we can test this in Pspace. Therefore, if X does not appear in LRLR and
ρ(X) ∈ h(Γ∗), then we can remove X and X from the specification. This
yields the following remark.

Remark 14 Henceforth, if E = (Γ, h,Ω, ρ;L = R) is an equation with con-
straints, then we assume that all variables occur somewhere in LRLR. As a
consequence, we may assume |Ω| ≤ 2|LR|.

4.3 The Exponent of Periodicity

A key step in proving Theorem 8 is to find an effective bound on the exponent
of periodicity in a solution of minimal length. This idea is used in all known
algorithms for solving word equations, c.f. [24, 34, 35]. It turns out that the
well-known result on word equations [20] transfers to the situation here: The
exponent of periodicity can be bounded by a singly exponential function.
Let w ∈ Γ∗ be a word. The exponent of periodicity exp(w) is defined by

exp(w) = sup{α ∈ N | ∃u, v, p ∈ Γ∗, p 6= 1 : w = upαv }.
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Proposition 15 Let E = (Γ, h,Ω, ρ;L = R) be a solvable equation with
constraints. Then there is a solution σ : Ω → Γ∗ such that exp(σ(L)) ∈
2O(d+n log n).

The proof of Proposition 15 is independent of the rest of the paper. Therefore
we postpone it to the appendix, Section 6.

4.4 Exponential Expressions

In order to keep the computation in polynomial space Plandowski’s method
uses exponential expressions. We give inductive definitions for an exponential
expression, its evaluation, and its size.

Definition 16 • Every word w ∈ Γ∗ is an exponential expression. The
evaluation eval(w) is equal to w, its size ‖w‖ is equal to the length |w|.

• Let e, e′ be exponential expressions. Then ee′ is an exponential expres-
sion. Its evaluation is the concatenation eval(ee′) = eval(e)eval(e′), its
size is ‖ee′‖ = ‖e‖ + ‖e′‖.

• Let e be an exponential expression and k ∈ N. Then (e)k is an expo-
nential expression. Its evaluation is eval((e)k) = (eval(e))k, its size is
‖(e)k‖ = ‖e‖ + max{1, dlog2(k)e}.

Lemma 17 Let u ∈ Γ∗ be a factor of a word w ∈ Γ∗. Assume that w can be
represented by some exponential expression of size p. Then we can find an
exponential expression of size at most p2 that represents u.

Proof. The proof is an easy argument by structural induction. �

Lemma 17 will be applied to exponential expressions where the size ‖e‖ is
bounded by some value which is polynomial in the input size of the equation
E0. Since the size of the exponential expressions for factors can be the
square of the original polynomial, we can apply this subroutine in nested
way a constant number of times, only. In our application the nested depth
does not go beyond two.
The next lemma is straightforward since we allow a polynomial space bound
without any time restriction. The proof of Lemma 18 is omitted.

Lemma 18 The following two problems can be solved in Pspace.

INPUT: Exponential expressions e and e′.
QUESTION: Do we have eval(e) = eval(e′)?
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INPUT: A mapping h : Γ →M2n and an exponential expression e.
OUTPUT: The matrix h(eval(e)) ∈M2n.

Remark 19 The computation above can actually be performed in polynomial
time, but this is not evident for the first question, see [32] for details.

Henceforth, we allow that the part L = R of an equation with constraints
may be given by a pair of exponential expressions (eL, eR) with eval(eL) = L

and eval(eR) = R.

Definition 20 Let E = (Γ, h,Ω, ρ; eL = eR) and E ′ = (Γ, h,Ω, ρ; e′L = e′R)
be equations with constraints. We write E ≡ E ′, if eval(eL) = eval(e′L) and
eval(eR) = eval(e′R) as strings in (Γ ∪ Ω)∗.

The meaning of E ≡ E ′ is that E and E ′ represent exactly the same equation
if they were written out explicitly. By Lemma 18 we can decide E ≡ E ′ in
polynomial space; moreover, Remark 19 says that this decision is actually
possible in polynomial time.

4.5 Base Changes

In this subsection we describe the first transformation rule. Let h : Γ∗ →M2n

be a morphism. Let (Γ′, ) be another alphabet with involution and let
β : Γ′ → Γ∗ be some mapping such that β(a) = β(a) for all a ∈ Γ′. We define
h′ : Γ′ →M2n by h′ = hβ. We extend β to a morphism β : (Γ′∪Ω)∗ → (Γ∪Ω)∗

by leaving the variables invariant and we call the morphism β a base change.
Let β be a base change and E ′ = (Γ′, hβ,Ω, ρ;L′ = R′) be an equation with
constraints. The equation β∗(E

′) is defined by

β∗(E
′) = (Γ, h,Ω, ρ; β(L′) = β(R′)).

Lemma 21 Let E ′ be an equation with constraints and β : Γ′ → Γ∗ be a
base change. If σ′ is a solution of E ′, then σ = βσ′ is a solution of β∗(E

′).

Proof. Clearly σ(X) = σ(X) and hσ(X) = hβσ′(X) = h′σ′(X) = ρ(X) for
all X ∈ Ω. Next by definition σ(a) = a for a ∈ Γ and β(X) = X for X ∈ Ω.
Hence σβ(a) = βσ′(a) for a ∈ Γ′ and therefore σβ = βσ′ : (Γ′ ∪ Ω)∗ → Γ∗.
This means σβ(L) = βσ′(L) = βσ′(R) = σβ(R) since σ′(L) = σ′(R). �

Lemma 21 leads to the first rule.

17



Rule 1 If we have E ≡ β∗(E
′) and we are looking for a solution of E, then it

is enough to find a solution for E ′. Hence, during a non-deterministic search
we may replace E by E ′.

For readability of the following examples all constraints are defined by mem-
bership in a regular language rather than by a mapping ρ. We also strengthen
constraints in the examples (thereby having fewer solutions) in order to avoid
lengthy regular expressions.

Example 22 Let Γ = {a, b, c, ā, b̄, c̄}. Consider the following equation E:

XX = Y b̄c̄b̄āb̄c̄b̄Y ZabcbY

with constraints X ∈ Γ300Γ∗ and Z ∈ b̄c̄b̄āΓ∗. Define Γ′ = {a, b, ā, b̄} and a
base change β : Γ′ → Γ∗ by β(a) = abcb and β(b) = bcb. Then the equation
E is of the form β∗(E

′) where E ′ is given by

XX = Y āb̄Y ZaY .

We may strengthen the constraint to X ∈ Γ′100Γ′∗ and Z ∈ āΓ′∗. According
to Rule 1 it is enough to solve E ′. The effect of the base change β is that
both the equation E ′ and the alphabet of constants are smaller. (The letter
c is not used anymore.) Note also that the length restriction on X switched
from |X| ≥ 300 to |X| ≥ 100. However, base changes may have a prize: It
might be that E = β∗(E

′) has a solution, whereas E ′ is unsolvable. As we
will see later, in our example the guess has been correct in the sense that E ′

has a solution.

4.6 Projections

Let (Γ, ) and (Γ′, ) be alphabets with involution such that Γ ⊆ Γ′. A
projection is a morphism π : Γ′∗ → Γ∗ such that both, π(a) = a for a ∈ Γ
and π(a) = π(a) for all a ∈ Γ′.
Let E be an equation with constraints E = (Γ, h,Ω, ρ;L = R). Then we
define an equation with constraints π∗(E) by

π∗(E) = (Γ′, hπ,Ω, ρ;L = R).

The equation π∗(E) uses a larger alphabet of constants than E does, but
the word equation L = R is exactly the same. Therefore π∗(E) uses con-
stants which do not appear in L = R. These constants may help to find
(short) solutions which satisfy regular constraints. Note that every projec-
tion π : Γ′∗ → Γ∗ defines a base change π such that π∗π

∗(E) = E. Let
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E ′ = π∗(E). By Rule 1 we may replace π∗(E
′) by π∗(E). We formulate this

special case a second rule.

Rule 2 Let π be a projection. If we are looking for a solution of E, then it
is enough to find a solution for π∗(E). Hence, during a non-deterministic
search we may replace E by π∗(E).

Remark 23 The reason to introduce Rule 2 will become clear only later. In
Section 4.8 we define the formal notion of a search graph. We restrict the use
of Rule 1 to so-called admissible base changes (c.f. Definition 31), whereas
there is no such restriction for the projection π when we apply Rule 2.

Lemma 24 Let E = (Γ, h,Ω, ρ;L = R) and E ′ = (Γ′, h′,Ω, ρ;L = R) be
equations with constraints. Then the following two statements hold.

i) There is a projection π : Γ′∗ → Γ∗ such that π∗(E) = E ′, if and only if
both, h′(Γ′) ⊆ h(Γ∗) and for all a ∈ Γ′ with a = a there is some w ∈ Γ∗

with w = w such that h′(a) = h(w).

ii) Let π∗(E) = E ′ for some projection π and let σ′ : Ω → Γ′∗ be a
solution of E ′. Then there is a solution σ for E such that |σ(L)| ≤
2|M2n||σ

′(L)|.

Proof. i) Clearly, the only-if condition is satisfied by the definition of a
projection since then h′ = hπ. For the converse, assume that h′(Γ′) ⊆ h(Γ∗)
and that a = a implies h′(a) ∈ h({w ∈ Γ∗ | w = w}). Then for each a ∈ Γ′\Γ
we can choose a word wa ∈ Γ∗ such that h′(a) = h(wa). We can make the
choice such that wa = wa for all a ∈ Γ′ \ Γ. If a 6= a, then we can find wa

such that |wa| < |M2n|, since we can take the shortest word wa ∈ Γ∗ such
that h(wa) = h′(a) ∈ M2n. For a = a we know that there is some word
wa ∈ Γ∗ with h′(a) = h(wa) and wa = wa. Hence we can write wa = vbv with
b ∈ Γ∪{1} and b = b. For b 6= 1 we can demand |wa| ≤ 2|M2n|−1. For b = 1
we can demand |wa| ≤ 2|M2n| − 2. Thus, we find a projection π : Γ′∗ → Γ∗

such that π∗(E) = E ′ and moreover, |π(a)| < 2|M2n| for all a ∈ Γ′.
ii) According to the proof of i) we may assume that π : Γ′∗ → Γ∗ satis-
fies |π(a)| < 2|M2n| for all a ∈ Γ′. Since π defines a base change with
π∗(E

′) = E, we know by Lemma 21 that σ = πσ′ is a solution of E. Clearly,
|σ(L)| = |πσ′(L)| ≤ 2|M2n||σ

′(L)|. �
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Example 25 Let us continue with the equation which has been obtained by
the transformation in Example 22. In order to simplify notations, we let E
be the equation XX = Y āb̄Y ZaY , and Γ = {a, b, ā, b̄}.
Remember that the constraint on X has changed to |X| ≥ 100. Let us
reintroduce a letter c and put Γ′ = {a, b, c, ā, b̄, c̄}. We may define a pro-
jection π : Γ′ → Γ∗ by π(c) = b100. The equation E ′ = π∗(E) looks as
above, but in E ′ the constraint for X has changed. The new constraint is
|X| ≥ 100 ∨X ∈ Γ∗cΓ∗. Thus, a solution for X might be very short now.

During the procedure we occasionally have to decide whether there is a pro-
jection π : Γ′∗ → Γ∗ such that π∗(E) = E ′. This decision is possible according
to the next proposition.

Proposition 26 The following problem Pspace–complete.
INPUT: Alphabets (Γ, ) ⊆ (Γ′, ) and mappings h, h′, where h is the restric-
tion of h′.
QUESTION: Is there a projection π : Γ′∗ → Γ∗ such that h′ = hπ?

Proof. This follows from Lemma 24 i) and Proposition 13. �

4.7 Partial Solutions

Let Ω′ ⊆ Ω be a subset of the variables which is closed under involution. We
assume that there is a mapping ρ′ : Ω′ →M2n with ρ′(X) = ρ′(X), but we do
not require that ρ′ is the restriction of ρ : Ω → M2n. Consider an equation
with constraints E = (Γ, h,Ω, ρ; eL = eR). A partial solution is a mapping
δ : Ω → Γ∗Ω′Γ∗ ∪ Γ∗ such that the following conditions are satisfied:

i) δ(X) ∈ Γ∗XΓ∗ for all X ∈ Ω′,

ii) δ(X) ∈ Γ∗ for all X ∈ Ω \ Ω′,

iii) δ(X) = δ(X) for all X ∈ Ω.

The mapping δ is extended to a morphism δ : (Γ∪Ω)∗ → (Γ∪Ω′)∗ by leaving
the elements of Γ invariant. Let E ′ = (Γ, h,Ω′, ρ′; eL′ = eR′) be another
equation with constraints (using the same Γ and h). By abuse of language,
we write E ′ ≡ δ∗(E), if there exists some partial solution δ : Ω → Γ∗Ω′Γ∗∪Γ∗

such that the following conditions hold: L′ = δ(L), R′ = δ(R), ρ(X) =
h(u)ρ′(X)h(v) for δ(X) = uXv, and ρ(X) = h(w) for δ(X) = w ∈ Γ∗.
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Lemma 27 In the notation of above, let E ′ ≡ δ∗(E) for some partial solution
δ : Ω → Γ∗Ω′Γ∗ ∪ Γ∗. If σ′ is a solution of E ′, then σ = σ′δ is a solution of
E. Moreover, we have σ(L) = σ′(L′) and σ(R) = σ′(R′).

Proof. By definition, δ and σ′ are extended to morphisms δ : (Γ ∪ Ω)∗ →
(Γ ∪ Ω′)∗ and σ′ : (Γ ∪ Ω′)∗ → Γ∗ leaving the letters of Γ invariant. Since
E ′ = δ∗(E) we have δ(L) = L′ and δ(R) = R′. Since σ′ is a solution, we have
σ(L) = σ′δ(L) = σ′(L′) = σ′(R′) = σ′δ(R) = σ(R) and σ leaves the letters of
Γ invariant. The solution σ′ satisfies hσ′(X) = ρ′(X) for all X ∈ Ω′. Hence,
if δ(X) = uXv, then ρ(X) = h(u)ρ′(X)h(v) = h(uσ′(X)v) = hσ′(uXv) =
hσ′δ(X) = hσ(X). If δ(X) = w ∈ Γ∗, then σ(X) = σ′δ(X) = w and
ρ(X) = h(w), again by the definition of a partial solution. �

Lemma 28 The following problem can be solved in Pspace.

INPUT: Two equations with constraints E = (Γ, h,Ω, ρ; eL = eR) and E ′ =
(Γ, h,Ω′, ρ′; eL′ = eR′).
QUESTION: Is there some partial solution δ such that δ∗(E) ≡ E ′?

If δ∗(E) ≡ E ′ is true, then there are exponential expressions of polynomial
size eu, ev for each X ∈ Ω′ and ew for each X ∈ Ω \ Ω′ such that

δ(X) = eval(eu)Xeval(ev) for X ∈ Ω′,

δ(X) = eval(ew) for X ∈ Ω \ Ω′.

Proof. Let L = eval(eL), R = eval(eR), L′ = eval(eL′), and R′ = eval(eR′).
The non-deterministic Pspace algorithm works as follows:
For each variable X ∈ Ω′ we guess exponential expressions eu and ev with
eval(eu), eval(ev) ∈ Γ∗. We define exponential expressions eX = euXev and
we define δ(X) = eval(eX). For each X ∈ Ω \ Ω′ we guess an exponential
expression eX with eval(eX) ∈ Γ∗ and we define δ(X) = eval(eX).
Next we verify whether or not δ∗(E) ≡ E ′. During this test we have to
create an exponential expression fL (and fR, resp.) by replacing X in eL

(and eR, resp.) with the expression eX . This increases the size in the worst
case by a factor of max{||eX || | X ∈ Ω}. The other tests whether ρ(X) =
h(u)ρ′(X)h(v) for δ(X) = uXv and ρ(X) = h(w) for δ(X) = w ∈ Γ∗ involve
exponential expressions over Boolean matrices and can be done in polynomial
time.
The correctness of the algorithm follows from our general assumption (Re-
mark 14) that all X ∈ Ω appear in LRLR. Therefore, if we have δ∗(E) ≡ E ′,
then every factor of δ(X) (or of δ(X)) appears necessarily as a factor in
L′R′ = δ(LR). Hence every factor of δ(X) has an exponential expression of
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polynomial size by Lemma 17. �

Remark 29 Actually, the test for δ∗(E) ≡ E ′ can be performed in non-
deterministic polynomial time by Remark 19.

Lemma 27 leads to the third and last rule.

Rule 3 If δ is a partial solution and if we are looking for a solution of E, then
it is enough to find a solution for δ∗(E). Hence, during a non-deterministic
search we may replace E by δ∗(E).

Example 30 We continue with our running example. After renaming, the
equation E is given by

XX = Y āb̄Y ZaY ,

and the alphabet of constant is given by Γ = {a, b, c, ā, b̄, c̄}. We strengthen
constraints such that X ∈ Γ∗cΓ∗ and Z ∈ ā{a, b, ā, b̄}∗.
We may guess the partial solution as follows: δ(X) = aX, δ(Y ) = Y , and
δ(Z) = āb. The new equation δ∗(E) is

aXXā = Y āb̄Y ābaY .

The remaining constraint is that the solution for X has to use the letter c.
The process can continue, for example, we can apply Rule 1 again by defining
another base change β(b) = ba to get the equation

aXXā = Y b̄Y ābY

over Γ = {a, b, c, ā, b̄, c̄}. Since the last equation has a solution (e.g., given
by σ(X) = bcc̄b̄b̄abc and σ(Y ) = abcc̄b̄), the first equation with constraints in
Example 22 has a solution too.

4.8 The Search Graph and Plandowski’s Algorithm

The input of Problem EWC is an equation with constraints. In order to fix
notations we call it E0 = (Γ0, h0,Ω0, ρ0;L0 = R0) and we let d = |L0R0|.
According to Remark 14 we assume |Ω0| ≤ 2d.

Definition 31 Let p0 be a polynomial. The notion of admissibility is defined
with respect to p0(‖E0‖).

• An exponential expression e is admissible, if ‖e‖ ≤ p0(‖E0‖).
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• A base change β : Γ′ → Γ∗ is admissible, if |Γ′| ≤ p0(‖E0‖) and for all
a ∈ Γ′ there is an admissible exponential expression for β(a).

• An equation with constraints E = (Γ, h,Ω, ρ; eL = eR) is admissible, if
|Γ \ Γ0| ≤ p0(‖E0‖), h(a) = h0(a) for a ∈ Γ0, and eLeR is admissible.

In the following we assume that a polynomial p0 (of large enough degree)
has been fixed whenever we speak about admissibility. We do not calculate
p0 explicitly, but it will become clear from the context what large enough
actually means.

Definition 32 The search graph of E0 is a directed graph where nodes are
admissible equations with constraints. For two nodes E, E ′ there is an arc
E → E ′, if there are an admissible base change β, a projection π, and a
partial solution δ such that δ∗(π

∗(E)) ≡ β∗(E
′).

Lemma 33 Let p0 be a polynomial of degree at least 1. The following prob-
lem is Pspace–complete.
INPUT: Equations with constraints E0, E, and E ′ such that E and E ′ are
admissible with respect to p0(‖E0‖).
QUESTION: Is there an arc E → E ′ in the search graph of E0?

Proof. The arc from E to E ′ is established by applying Rules 2, 1, and 3
(in this order) to E. More precisely, we let E0 = (Γ0, h0,Ω0, ρ0;L0 = R0),
E = (Γ, ,Ω, ρ; eL = eR), and E ′ = (Γ′, h′,Ω′, ρ′; eL′ = eR′). We first guess
some alphabet (Γ′′, ) of polynomial size together with h′′ : Γ′′ → M2n and
we guess some admissible base change β : Γ′ → Γ′′∗ such that h′ = h′′β. We
compute β∗(E

′). Next, we guess some equation with constraints E ′′ which
uses Γ′′ and Ω. We check using Lemma 28 that there is some partial solution
δ : Ω → Γ′′∗Ω′Γ′′∗∪Γ′′∗ such that δ∗(E

′′) ≡ β∗(E
′). (Note that every equation

with constraints E ′′ satisfying δ∗(E
′′) ≡ β∗(E

′) for some δ can be represented
in polynomial space by Lemma 17.) Finally we check using Proposition 26
that there is some projection π : Γ′′ → Γ such that π∗(E) ≡ E ′′. We obtain
δ∗(π

∗(E)) ≡ β∗(E
′).

The Pspace–hardness follows by Proposition 13 which shows that the prob-
lem is Pspace–hard on instances of the following type: The equation for E
and E ′ is X = X, we have ρ(X) = ρ′(X) = A ∈ M2n, and Γ′ \ Γ = {a, ā}
with h′(a) = A. �

Remark 34 Following Remarks 19 and 29 the problem in Lemma 33 can be
decided in non-deterministic polynomial time, if the monoid M2n is not part
of the input and the parameter n is viewed as a constant.
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On a high-level description, Plandowski’s algorithm applies Rules 1 to 3 in
a non-deterministic way until a trivial equation is found. An actual imple-
mentation of the algorithm depends on the chosen polynomial p0 and it has
the following structure.
begin

E := E0

while Ω 6= ∅ do

Guess an equation with constraints E ′,
which is admissible with respect to p0(|E0|)
Verify that E → E ′ is an arc in the search graph of E0

E := E ′

endwhile

return “eval(eL) = eval(eR)”
end

Lemmata 21, 24 ii), and 27 say that the algorithm returns true only if E0 is
solvable. The proof of Theorem 8 is therefore reduced to the statement that
there is a polynomial p0 such that for all E0 we have, if E0 is solvable, then
the search graph contains a path to some solvable equation without variables.

Remark 35 If the arc E → E ′ is due to some π : Γ′′∗ → Γ∗, δ : Ω →
Γ′′∗Ω′Γ′′∗ ∪ Γ′′∗, and β : Γ′∗ → Γ′′∗, then a solution σ′ : Ω′ → Γ′∗ of E ′

yields the solution σ = π(βσ′)δ. Hence we may assume that the length of
a solution has increased by at most an exponential factor by Lemma 24 ii).
Since we are going to perform the search in a graph of at most exponential
size, we automatically get a doubly exponential upper bound for the length of
a minimal solution by backwards computation on such a path. This is still the
best known upper bound (although a singly exponential bound is conjectured),
see [33].

4.9 Free Intervals

For a word w ∈ Γ∗ we let {0, . . . , |w|} be the set of its positions. The idea is
that factors of w are between positions. To be more specific, let w = a1 · · ·am

be a word with ai ∈ Γ. Then [α, β] with 0 ≤ α < β ≤ m is called a positive
interval and the word w[α, β] is defined as the factor aα+1 · · ·aβ.
It is convenient to have an involution on the set of intervals. If [α, β] is a
positive interval, then [β, α] is also called a (non–positive) interval, and we
define w[β, α] = w[α, β]. Moreover, we define w[α, α] to be the empty word.
For all 0 ≤ α, β ≤ m we let [α, β] = [β, α]; therefore, w[α, β] = w[α, β].
In the following we assume that the input equation E0 has a solution σ with
w0 = σ(L0) = σ(R0) and m0 = |w0|. We have w0 ∈ Γ∗

0, but in this section
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the alphabet Γ0 is replaced by some other alphabet Γ, which turns out to
be a set of non-empty words over Γ0. We let d be the denotational length
of the equation and L0 = x1 · · ·xg and R0 = xg+1 · · ·xd, xi ∈ (Γ0 ∪ Ω0) for
1 ≤ i ≤ d. We assume 2 ≤ g < d < m0 whenever necessary. We also make
the assumption that σ(xi) 6= 1 for all 1 ≤ i ≤ d. This assumption can be
realized e.g. in the preprocessing.
We are going to define an equivalence relation ≈ on the set of intervals of w0.
For this we need some preparation. For i ∈ {1, . . . , d} we define positions
l(i) and r(i) such that σ(xi) starts in w0 at the left position l(i) and it ends
at the right position r(i). Formally, we define l(i) ∈ {0, . . . , m0 − 1} and
r(i) ∈ {1, . . . , m0} by the congruences:

l(i) ≡ |σ(x1 · · ·xi−1)| mod m0

r(i) ≡ |σ(x1 · · ·xi)| mod m0

We have l(1) = l(g + 1) = 0 and r(g) = r(d) = m0 since the range for
the congruences are different for left– and right positions. We have σ(xi) =
w0[l(i), r(i)] and σ(xi) = w0[r(i), l(i)] for 1 ≤ i ≤ d. The interval [l(i), r(i)] is
positive, because σ(xi) 6= 1.
The set of l– and r–positions is called the set of cuts. Thus, the set of cuts
is { l(i), r(i) | 1 ≤ i ≤ d }. The positions 0 and m0 are cuts and there are at
most d cuts. These positions split the word w0 into at most d− 1 factors.
Let us consider a pair (i, j) such that i, j ∈ {1, . . . , d} and xi = xj or xi = xj.
For µ, ν ∈ {0, . . . , r(i) − l(i)} we define a relation ∼ by:

[l(i) + µ, l(i) + ν] ∼ [l(j) + µ, l(j) + ν], if xi = xj,

[l(i) + µ, l(i) + ν] ∼ [r(j) − µ, r(j) − ν], if xi = xj.

Note that ∼ is a symmetric relation. Moreover, [α, β] ∼ [α′, β ′] implies both,
[β, α] ∼ [β ′, α′] and w0[α, β] = w0[α

′, β ′]. By ≈ we denote the reflexive
and transitive closure of ∼. Then ≈ is an equivalence relation and again,
[α, β] ≈ [α′, β ′] implies both, [β, α] ≈ [β ′, α′] and w0[α, β] = w0[α

′, β ′].
Next we define the notion of free interval using this equivalence and cuts.

Definition 36 An interval [α, β] is called free, if whenever [α, β] ≈ [α′, β ′],
then there is no cut γ ′ with min{α′, β ′} < γ′ < max{α′, β ′}.

Clearly, the set of free intervals is closed under involution, i.e., [α, β] is free
if and only if [β, α] is free. It is also clear that [α, β] is free if |β − α| ≤ 1.
Free intervals correspond to long factors in the solution which are not related
to any cut. If there were no constraints, then these factors would not appear
in a solution where m0 is minimal. In our setting we cannot avoid these
factors.
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Example 37 The last equation in Example 30, namely

aXXā = Y b̄Y ābY ,

has a solution which yields the word

w0 =
0

| a
1

|

X︷ ︸︸ ︷
bcc̄b̄

5

| b̄
6

| abc
9

|

X︷ ︸︸ ︷
c̄b̄

11

| ā
12

| b
13

| bcc̄b̄
17

| ā
18

| .︸ ︷︷ ︸
Y

︸ ︷︷ ︸
Y

︸ ︷︷ ︸
Y

The set of cuts is shown by the vertical bars. The intervals [1, 5], [13, 17], and
[6, 9] are not free, since [1, 5] ≈ [17, 13] ≈ [7, 11] and [6, 9] ≈ [0, 3] and [7, 11],
[0, 3] contain cuts. There is only one equivalence class of free intervals of
length longer than 1 (up to involution), which is given by [1, 3] ∼ [17, 15] ∼
[7, 9] ∼ [11, 9] ∼ [5, 3] ∼ [13, 15].

The next lemma says that subintervals of free intervals are free again.

Lemma 38 Let [α, β] be a free interval and µ, ν such that min{α, β} ≤
µ, ν ≤ max{α, β}. Then the interval [µ, ν] is also free.

Proof. We may assume that α ≤ µ < ν ≤ β. By contradiction assume that
[µ, ν] is not free. Then there is some k ≥ 0 and some cut γ ′ such that

[µ, ν] = [µ0, ν0] ∼ [µ1, ν1] ∼ · · · ∼ [µk, νk]

with min{µk, νk} < γ′ < max{µk, νk}. If k = 0, then we have a immedi-
ate contradiction. For k ≥ 1 the relation [µ, ν] ∼ [µ1, ν1] is due to some
pair xi, xj with xi = xj or xi = xj. Since [α, β] contains no cut, the
same pair xi, xj defines an interval [α1, β1] such that [α, β] ∼ [α1, β1] and
min{α1, β1} ≤ µ1, ν1 ≤ max{α1, β1}. Using induction on k we see that
[α1, β1] is not free. But then [α, β] is not free, and this is a contradiction. �

Next we introduce the notion of implicit cut for non-free intervals. For our
purpose it is enough to define it for positive intervals. So, let 0 ≤ α < β ≤ m0

such that [α, β] is not free. A position γ with α < γ < β is called an implicit
cut of [α, β], if there is a cut γ ′ and an interval [α′, β ′] such that

min{α′, β ′} < γ′ < max{α′, β ′},

[α, β] ≈ [α′, β ′],

γ − α = |γ′ − α′|.

The following observation will be used throughout. If we have α ≤ µ < γ <

ν ≤ β and γ is an implicit cut of [α, β], then γ is also an implicit cut of [µ, ν].
In particular, neither [µ, ν] nor [ν, µ] is a free interval.
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Definition 39 A free interval [α, β] is called maximal free, if there is no
free interval [α′, β ′] such that both, α′ ≤ min{α, β} ≤ max{α′, β ′} ≤ β ′ and
|β − α| < β ′ − α′.

Lemma 40 states that maximal free intervals do not overlap.

Lemma 40 Let 0 ≤ α ≤ α′ < β ≤ β ′ ≤ m0 such that [α, β] and [α′, β ′] are
free intervals. Then the interval [α, β ′] is free, too.

Proof. Assume by contradiction that [α, β ′] is not free. Then it contains an
implicit cut γ with α < γ < β ′. By the observation above: If γ < β, then
γ is an implicit cut of [α, β] and [α, β] is not free. Otherwise, α′ < γ and
[α′, β ′] is not free. �

Lemma 41 states the main observation of this section.

Lemma 41 Let [α, β] be a maximal free interval. Then there are intervals
[γ, δ] and [γ′, δ′] such that [α, β] ≈ [γ, δ] ≈ [γ ′, δ′] and γ and δ′ are cuts.

Proof. We may assume that α < β. We show the existence of [γ, δ] where
[α, β] ≈ [γ, δ] and γ is a cut. (The existence of [γ ′, δ′] where [α, β] ≈ [γ′, δ′]
and δ′ is a cut follows by a symmetric argument.)
If α = 0, then α is a cut and we can choose δ = β. Hence let 1 ≤ α and
consider the positive interval [α − 1, β]. This interval is not free and the
only possible position for an implicit cut is α. Thus, for some cut γ we have
[α − 1, β] ≈ [α′, β ′] with min{α′, β ′} < γ < max{α′, β ′} and |γ − α′| = 1. A
simple reflection shows that we have [α − 1, α] ≈ [α′, γ] and [α, β] ≈ [γ, β ′].
Hence we can choose δ = β ′. �

In the following proposition the symbol Γ refers to some set of factors of the
word w0. (Recall that w0 = σ(L0) = σ(R0) and σ is a solution of the input
equation E0.) The set Γ becomes the basic alphabet later.

Proposition 42 Let Γ be the set of words w ∈ Γ∗
0 such that there is a max-

imal free interval [α, β] with w = w0[α, β]. Then Γ is a subset of Γ+
0 of size

at most 2d− 2. The set Γ is closed under involution.

Proof. Let [α, β] be maximal free. Then |β − α| ≥ 1 and [β, α] is also
maximal free by definition. Hence Γ ⊆ Γ+

0 and Γ is closed under involution.
By Lemma 41 we may assume that α is a cut. Say α < β. Then α 6= m0

and there is no other maximal free interval [α, β ′] with α < β ′ because of
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Lemma 40. Hence there are at most d − 1 such intervals [α, β]. Symmetri-
cally, there are at most d− 1 maximal free intervals [α, β] where β < α and
α is a cut. �

For the moment let Γ′
0 = Γ0 ∪ Γ where Γ ⊆ Γ+

0 is the set defined in Propo-
sition 42. The inclusion Γ′

0 ⊆ Γ+
0 defines a natural projection π : Γ′

0 → Γ∗
0

and a mapping h′0 : Γ′
0 → M2n by h′0 = h0π. Consider the equation with

constraints π∗(E0), this is a node in the search graph, because the size of Γ
is linear in d.
The reason to switch from Γ0 to Γ′

0 is that, due to the constraints, the word
w0 may have long free intervals, even in a minimal solution. Over Γ′

0 long
free intervals can be avoided. Formally, we replace w0 by a solution w′

0 where
w′

0 ∈ Γ∗. The definition of w′
0 is based on a factorization of w0 into maximal

free intervals. There is a unique sequence 0 = α0 < α1 < · · · < αk = m0 such
that [αi−1, αi] is a maximal free interval for all 1 ≤ i ≤ k and

w0 = w0[α0, α1] · · ·w0[αk−1, αk].

Note that all cuts occur as some αp, therefore we can think of the factors
w0[αi−1, αi] as letters in Γ for 1 ≤ i ≤ k. Moreover, all constants which
appear in L0R0 are elements of Γ, too. We replace w0 by the word w′

0 ∈ Γ∗.
Then we can define σ′ : Ω0 → Γ∗ such that both, σ′(L0) = σ′(R0) = w′

0 and
ρ0 = h′0σ

′. In other words, σ′ is a solution of π∗(E0). We have w0 = π(w′
0)

and exp(w′
0) ≤ exp(w0). The crucial point is that w′

0 has no long free intervals
anymore. With respect to w′

0 and Γ′
0 all maximal free intervals have length

exactly one.

Example 43 Following Example 37, we use the same equation aXXā =
Y b̄Y ābY and we consider the solution w0.
The new solution is defined by replacing in w0 each factor bc by a new letter
d which represents a maximal free interval. The new w0 has the form

w0 =
0

| a
1

| dd̄
3

| b̄
4

| ad
6

| d̄
7

| ā
8

| b
9

| dd̄
11

| ā
12

| .

Now all maximal free intervals have length one.

In the next step we show that we can reduce the alphabet of constants to
be Γ. The inclusion of Γ into Γ′

0 defines an admissible base change β :
Γ → Γ′

0. Consider E ′
0 = (Γ, h,Ω0, ρ0;L0 = R0) where h is the restriction

of the mapping h′0. Then we have π∗(E0) = β∗(E
′
0). The search graph

contains an arc from E0 to E ′
0, since we may choose δ to be the identity.
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The equation with constraints E ′
0 has a solution σ′ with σ′(L0) = w′

0 and
exp(w′

0) ≤ exp(w0).
In order to avoid an excess of notation we identify E0 and E ′

0, hence we
also assume σ = σ′ and w0 = w′

0. However, as a reminder that we have
changed the alphabet of constants (recall that some words became letters),
we prefer to use the symbol Γ rather than Γ0. Thus, in what follows we use
the following.

Assumption 44 The input equation E0 satisfies the following conditions:

E0 = (Γ, h,Ω0, ρ0;L0 = R0),

L0 = x1 · · ·xg and g ≥ 2,

R0 = xg+1 · · ·xd and d > g,

|Γ| ≤ 2d− 2,

|Ω0| ≤ 2d.

Moreover: All variables X ∈ Ω0 occur in L0R0L0R0. There is a solution σ

and a word w0 with |w0| = m0 and exp(w0) ∈ 2O(d+n log n) such that w0 =
σ(L0) = σ(R0) with σ(Xi) 6= 1 for 1 ≤ i ≤ d and ρ0 = hσ : Ω0 → M2n ⊆
B

2n×2n. All maximal free intervals have length exactly one, i.e., every positive
interval [α, β] with β − α > 1 contains an implicit cut.

4.10 Critical Words

For each 1 ≤ ` ≤ m0 we define the set of critical words C` by

C` = {w0[γ − `, γ + `], w0[γ + `, γ − `] | ` ≤ γ ≤ m0 − ` and γ is a cut }

We have 1 ≤ |C`| ≤ 2d− 4 and C` is closed under involution. Each word u ∈
C` has length 2`, it can be written in the form u = u1u2 with |u1| = |u2| = `.
The word u1 (resp. u2) appears as a suffix, to the left of some cut and u2

(resp. u1) appears as a prefix, to the right of the same cut.
By B` we denote the set of triples (u, w, v) ∈ ({1} ∪ Γ`) × Γ+ × ({1} ∪ Γ`)
which satisfy the following four conditions:

1.) No factor of the word w belongs to C`.

2.) If a factor of the word uwv belongs to C`, then this factor is a prefix
or a suffix of uwv.

3.) If u 6= 1, then a prefix of uwv of length 2` belongs to C`,

4.) If v 6= 1, then a suffix of uwv of length 2` belongs to C`.
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The set B` is viewed as a (possibly infinite) alphabet where the involution
is defined by (u, w, v) = (v, w, u). We can define a morphism π` : B∗

` → Γ∗

by π`(u, w, v) = w ∈ Γ+. It is extended to a projection π` : (B` ∪ Γ)∗ → Γ∗

by leaving Γ invariant. We define h` : (B` ∪ Γ)∗ → M2n by h` = hπ`, i.e.,
h`(a) = h(a) for a ∈ Γ and h`(u, w, v) = h(w) for (u, w, v) ∈ B`. The symbols
π` and h` are also used for restrictions of the morphisms π` and h`.
Later we consider finite sets Γ`,Γ`,`′ such that Γ ⊆ Γ` ⊆ Γ`,`′ ⊆ B` ∪ Γ.
Then π`,`′ : Γ∗

`,`′ → Γ∗
` denotes the projection given by π`,`′(u, w, v) = w ∈ Γ∗

for (u, w, v) ∈ Γ`,`′ \ Γ` and π`,`′(u, w, v) = (u, w, v) for (u, w, v) ∈ Γ`. By
h` : Γ∗

` → M2n and h`,`′ : Γ∗
`,`′ → M2n we denote the restrictions of h` :

(B` ∪ Γ)∗ →M2n. We have h`,`′ = h`π`,`′

For every non-empty word w ∈ Γ+ we define its `-factorization as follows.
We write

F`(w) = (u1, w1, v1) · · · (uk, wk, vk) ∈ B+
`

such that w = w1 · · ·wk and for 1 ≤ i ≤ k the following conditions are
satisfied:

• ui is a suffix of w1 · · ·wi−1,

• ui = 1 if and only if i = 1,

• vi is a prefix of wi+1 · · ·wk,

• vi = 1 if and only if i = k.

w2 · · ·wk−1

w1 v1 · · · uk wk

u2 w2 v2 · · · uk−1 wk−1 vk−1

Note that the `-factorization of a word w is unique. For k ≥ 2 we have |w1| ≥
` and |wk| ≥ `, but all other wi may be short. If no critical word appears
as a factor of w, then F`(w) = (1, w, 1). In particular, this is the case for
|w| < 2`. If we have w = puvq with |u| = |v| = ` and uv ∈ C`, then there is a
unique i ∈ {1, . . . , k−1} such that u = ui+1, v = vi, and pu = w1 · · ·wi, vq =
wi+1 · · ·wk. Thus, F`(w) contains a factor (ui, wi, v)(u, wi+1, vi+1) where v is
a prefix of wi+1vi+1 and u is a suffix of uiwi. For example, the `-factorization
of uv ∈ C` with |u| = |v| = ` is

F`(uv) = (1, u, v)(u, v, 1).

We define the head, body, and tail of a word w based on its `-factorization

F`(w) = (u1, w1, v1) · · · (uk, wk, vk)
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in B∗
` and Γ∗ as follows:

Head`(w) = (u1, w1, v1) ∈ B`,

head`(w) = w1 ∈ Γ+,

Body`(w) = (u2, w2, v2) · · · (uk−1, wk−1, vk−1) ∈ B∗
` ,

body`(w) = w2 · · ·wk−1 ∈ Γ∗,

Tail`(w) = (uk, wk, vk) ∈ B`,

tail`(w) = wk ∈ Γ+.

For k ≥ 2 (in particular, if body`(w) 6= 1) we have

F`(w) = Head`(w)Body`(w)Tail`(w),

w = head`(w)body`(w)tail`(w).

Moreover, u2 is a suffix of w1 and vk−1 is a prefix of wk.
Assume body`(w) 6= 1 and let u, v ∈ Γ∗ be any words. Then we can view
w in the context uwv and Body`(w) appears as a proper factor in the `-
factorization of uwv. More precisely, let

F`(uwv) = (u1, w1, v1) · · · (uk, wk, vk).

Then there are unique 1 ≤ p < q ≤ k such that:

F`(uwv) = (u1, w1, v1) · · · (up, wp, vp)Body`(w)(uq, wq, vq) · · · (uk, wk, vk),

w1 · · ·wp = u head`(w),

wq · · ·wk = tail`(w)v

Finally, we note that the above definitions are compatible with the involution.
We have F`(w) = F`(w), Head`(w) = Tail`(w), and Body`(w) = Body`(w).

4.11 The `-Transformation

By Assumption 44 we have E0 = (Γ, h,Ω0, ρ0; x1 · · ·xg = xg+1 · · ·xd). and
the equation has a solution σ where w0 = σ(x1 · · ·xg) = σ(xg+1 · · ·xd) and
m0 = |w0|. We let 1 ≤ ` ≤ m0 and we consider the `-factorization of the
word w0:

F`(w0) = (u1, w1, v1) · · · (uk, wk, vk).

A sequence S = (up, wp, vp) · · · (uq, wq, vq) with 1 ≤ p ≤ q ≤ k is called
an `-factor . We say that S is a cover of a positive interval [α, β], if both,
|w1 · · ·wp−1| ≤ α and |wq+1 · · ·wk| ≤ m0 − β. That is, w0[α, β] is a factor
of wp · · ·wq. It is a minimal cover , if neither (up+1, wp+1, vp+1) · · · (uq, wq, vq)
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nor (up, wp, vp) · · · (uq−1, wq−1, vq−1) is a cover of [α, β]. The minimal cover
exists and it is unique.
We let Ω` = {X ∈ Ω0 | body`(σ(X)) 6= 1 }, and we are going to define a new
left-hand side L` ∈ (B` ∪ Ω`)

∗ and a new right-hand side R` ∈ (B` ∪ Ω`)
∗.

For L` we consider those 1 ≤ i ≤ g where body`(σ(xi)) 6= 1. Note that this
implies xi ∈ Ω` since ` ≥ 1 and the body of a constant is always empty.
Recall the definition of l(i) and r(i), and define α = l(i) + |head`(σ(xi))| and
β = r(i)−|tail`(σ(xi))|. We have w0[α, β] = body`(σ(xi)). Next consider the
`-factor Si = (up, wp, vp) · · · (uq, wq, vq) which is the minimal cover of [α, β].
Then we have 1 < p ≤ q < k and wp · · ·wq = w0[α, β] = body`(σ(xi)). The
value of Si depends only on xi, but not on the choice of the index i. This
means Si = Sj whenever xi = xj.
We replace the `-factor Si in F`(w0) by the variable xi. Having done this
for all 1 ≤ i ≤ g with body`(σ(xi)) 6= 1 we obtain the left-hand side L` ∈
(B` ∪ Ω`)

∗ of the `-transformation E`. For R` we proceed analogously by
replacing those `-factors Si where body`(σ(xi)) 6= 1 and g + 1 ≤ i ≤ d.
For E` we cannot use the alphabet B`, because it might be too large (even
infinite). Therefore we let Γ′

` be the smallest subset of B` which is closed
under involution and which satisfies L`R` ∈ (Γ′

` ∪ Ω`)
∗.

We let Γ` = Γ′
` ∪ Γ. (We allow Γ because the constants of Γ make it easy to

cope with the constraints.) Recall that h`(u, w, v) = h(w) for (u, w, v) ∈ Γ`\Γ
and h`(a) = h(a) for a ∈ Γ. Finally, we define the mapping ρ` : Ω` → M2n

by ρ`(X) = h(body`(σ(X))). The reason is that we know ρ(X) = h(σ(X)).
We can write σ(X) = ubody`(σ(X))v, hence h(σ(X)) = h(u)ρ`(X)h(v).
The steps above define the `-transformation and yield the following equation:

E` = (Γ`, h`,Ω`, ρ`;L` = R`).

Example 45 We continue with our example aXXā = Y b̄Y ābY and the
solution σ which has been given by

w0 = | a | dd̄ | b̄ | ad | d̄ | ā | b | dd̄ | ā |,

where the bars show the cuts.
Up to involution, the set C1 is given by {ad, bd, āb, dd̄} and C2 is given by
{dd̄b̄a, d̄b̄ad, add̄ā, dd̄āb}. The 1-factorization of w0 can be obtained letter by
letter.
The 2-factorization of w0 is given by the following sequence:

(1, add̄, b̄a)(dd̄, b̄, ad)(d̄b̄, ad, d̄ā)(ad, d̄, āb)(dd̄, ā, bd)(d̄ā, b, dd̄)(āb, dd̄ā, 1).

Recall σ(X) = dd̄b̄ad and σ(Y ) = add̄. Hence their 2-factorizations are
(1, dd̄, b̄a)(dd̄, b̄, ad)(d̄b̄, ad, 1) and (1, add̄, 1), respectively.
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Let us rename the letters:

a = (1, add̄, b̄a)

b = (d̄ā, b, dd̄)

c = (d̄b̄, ad, d̄ā)

d = (ad, d̄, āb)

e = (dd̄, ā, bd)

After this renaming the 2-factorization of w0 becomes ab̄cdebā and the equa-
tion E reduces to E2 : aXcdeXā = ab̄cdebā since the body of σ(Y ) is empty.
The reader can check that the 3-factorization of w0 after renaming is the very
same word as the 2-factorization, but the 3-factorization of σ(X) is now one
letter, (1, dd̄b̄ad, 1), so E3 becomes a trivial equation. Plandowski’s algorithm
will return true at this stage.

Remark 46 i) In the extreme case ` = m0, the `-transformation becomes
trivial. Let a = (1, w0, 1). Then a = (1, w0, 1) and Γm0

= {a, a} ∪ Γ. More-
over, we have Lm0

= Rm0
= a, and hm0

(a) = h(w0) ∈ M2n. Since Ωm0
= ∅,

the equation with constraints Em0
trivially has a solution. It is clear that Em0

is a node in the search graph, and if we reach Em0
, then the algorithm will

return true.
ii) The other extreme case is ` = 1. We develop the technical details as an
example. Consider a triple (u, w, v) ∈ Γ1 which appears in F1(w0). Then
w = w0[α, β] for some β − α ≥ 1. All maximal free intervals have length
1 (by Assumption 44). Assume β − α ≥ 2, then [α, β] would contain an
implicit cut γ and w0[γ − 1, γ + 1] ∈ C1. But no critical word is a factor of
w, β − α = 1. An immediate consequence is |Γ1| ≤ (|Γ| + 1)3 ∈ O(d3), since
|Γ| ≤ 2d − 2. (More precisely, we could bound |Γ1| by 6d, but |Γ1| ∈ O(d3)
is good enough for our purpose.) Let X ∈ Ω0. Then Body1(σ(X)) 6= 1 if
and only if |σ(X)| ≥ 3. Thus, for X ∈ Ω1 we have σ(X) = bcu = vde with
b, c, d, e ∈ Γ and u, v ∈ Γ+. It follows:

F1(σ(X)) = (1, b, c)(b, c, v2) · · · (u|v|+1, d, e)(d, e, 1).

For example, for |v| = 1 this means b = u|v|+1, c = d, and v2 = e.
We can describe L1 ∈ Γ∗

1 as follows:
For 1 ≤ i ≤ g let wi = σ(xi) and ai the last letter of σ(xi−1) if i > 1 and
a1 = 1. Let fi the first letter of σ(xi+1) if i < g and fg = 1. Let bi the first
letter of wi and ei the last letter of wi.
For |wi| = 1 we replace xi by the 1-factor (ai, bi, fi).
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For |wi| = 2 we replace xi by the 1-factor (ai, bi, ei)(bi, ei, fi).
For |wi| ≥ 3 we let ci be the second letter of wi and di its second last. In this
case we replace xi by (ai, bi, ci)xi(di, ei, fi).
The definition of R1 is analogous. Thus, we obtain |L1R1| ≤ 3|L0R0| = 3d,
and E1 is admissible.

By Remark 46 the equations E1 and Em0
are admissible and hence nodes of

the search graph of E0. The goal is to reach Em0
, but it is not clear yet,

neither that the `-transformations with 1 < ` < m0 belong to the search
graph nor that there are arcs from E0 to E1 or from E1 to E2 and so on. We
prove these statements in the next sections.

4.12 The `-Transformation E` is Admissible

Proposition 47 There is a polynomial p0 (of degree 4) such that each E` is
admissible with respect to p0 for all ` ≥ 1.

Proof. The input size is d+n+log2(|Γ|+|Ω0|). We have |Γ|+|Ω0| ≤ 4d−2 and
E0 = (Γ, h,Ω0, ρ0; x1 · · ·xg = xg+1 · · ·xd). The constraints are Boolean n×n-
matrices and d is the length of the equation. It is enough to show that L` and
R` can be represented by exponential expressions of size O(d2(d+ n logn)).
Then Γ` can have size at most O(d2(d + n log n)) and the assertion follows.
We will estimate the size of an exponential expression for L`, only.
We start again with the `-transformation

F`(w0) = (u1, w1, v1) · · · (uk, wk, vk).

If k is small there is nothing to do since |L`| ≤ |F`(w0)|. An easy reflection
shows that |L`| can become large, only if there is some 1 ≤ i ≤ g such
that head`(σ(xi)) or tail`(σ(xi)) is long. By symmetry we treat the case
head`(σ(xi)) only and we fix some notation. We let 1 ≤ i ≤ g, α = l(i), and
β = α + |head`(σ(xi))|. Let

(up−1, wp−1, vp−1) · · · (uq+1, wq+1, vq+1)

be a minimal cover of [α, β]. (The definition of a minimal cover has been
given at the beginning of Subsection 4.11.) We may assume that q − p is
large. It is enough to show that the `-factor

(up, wp, vp) · · · (uq, wq, vq)

has an exponential expression of size in O(d(d + n logn)), because we want
the whole expression to have size in O(d2(d+ n log n)).
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Note that wp · · ·wq is a proper factor of head`(σ(xi)). Hence no critical word
of C` can appear as a factor inside wp · · ·wq. This means there is some
p ≤ s ≤ q such that both, |wp · · ·ws−1| < ` and |ws+1 · · ·wq| < `. Indeed,
if |wp · · ·wq−1| < `, then we choose s = q. Otherwise we let p ≤ s ≤ q

be minimal such that |wp · · ·ws| ≥ `. Then |ws+1 · · ·wq| ≥ ` is impossible
because us+1vs ∈ C` would appear as a factor in wp · · ·wq. We can write

(up, wp, vp) · · · (uq, wq, vq) = S1(us, ws, vs)S2.

Since (us, ws, vs) ∈ Γ` is a letter, it is enough to show that there are expo-
nential expressions for Si of size O(d(d + n logn)) for i = 1, 2. This follows
from Lemma 48 with c = 1. �

The statement of Lemma 48 is more general than needed for the proof of
Proposition 47, but later it is used for other values of c. In fact, it will be
used for c ≤ 32d.

Lemma 48 Let c > 0 be a value which might depend on d (and n) and let

S = (u1, w1, v1) · · · (uk, wk, vk) ∈ B∗
`

be a sequence which appears as some `-factor in F`(w0). If we have k ≤ 3 or
|w2 · · ·wk−1| ≤ c`, then the sequence S can be represented by some exponential
expression of size O(cd(d+ n log n)).

Proof. Clearly, we may assume k > 3. We show that there is an exponential
expression of size O(d(d + n log n)) under the assumption |w1 · · ·wk| < `.
(Note that c has been removed from the O–term.) This is enough, because
we can write S as a0S1a1 · · ·Sc′ac′ , where c′ ≤ c, the ai are letters, and each
Si satisfies the assumption. Due to the factorization we may also assume
u1 6= 1 6= vk and therefore we may define uk+1 as the suffix of length ` of
u1w1 · · ·wk. For 1 ≤ i ≤ k let zi = ui+1vi. Then zi ∈ C` is a critical word
which appears as a factor in z = u1w1w2 · · ·wkvk. If the words zi, 1 ≤ i < k

are pairwise different, then k − 1 ≤ |C`| ∈ O(d) and we are done. Hence we
may assume that there are repetitions. Let j be the smallest index such that
a critical word is seen for the second time and let i < j be the first appearance
of zj. This means for 1 ≤ i < j the words z1, · · · , zj−1 are pairwise different
and zi = zj. Now, |w1 · · ·wk| < ` and |zi| = 2`, hence zi and zj overlap in
z. We can choose r maximal such that u1w1 · · ·wi(wi+1 · · ·wj)

rvj is a prefix
of the word z. (Note that the last factor vj insures that the prefix ends with
zj). For some index s > j we can write

z = u1w1 · · ·wi(wi+1 · · ·wj)
rws · · ·wkvk.
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We claim that zi 6∈ {zs, . . . , zk}. Indeed, let t be maximal such that zi = zt

and assume that j 6= t. Then both, |wi+1 · · ·wj| and |wj+1 · · ·wt| are periods
of zi, but |wi+1 · · ·wt| ≤ |zi|. Hence by Fine and Wilf’s Theorem [23] we
obtain that the greatest common divisor of |wi+1 · · ·wj| and |wj+1 · · ·wt| is
a period, too. Due to the definition of an `-factorization (zj was the first
repetition) the length |wj+1 · · ·wt| is therefore a multiple of |wi+1 · · ·wj| and
we must have t = s− 1. This shows the claim. Moreover, we have

(u1, w1, v1) · · · (uk, wk, vk)

= (u1, w1, v1) · · · (ui, wi, vi)[(ui+1, wi+1, vi+1) · · · (uj, wj, vj)]
r S ′

where S ′ = (us, ws, vs) · · · (uk, wk, vk) for s = i + 1 + r(j − i) and r ≥ 1. We
have r ≤ exp(w0), hence r ∈ 2O(d+n log n). It follows that

(u1, w1, v1) · · · (ui, wi, vi)[(ui+1, wi+1, vi+1) · · · (uj, wj, vj)]
r

is an exponential expression of size j+ dlog2(r)e ∈ O(d+n logn). More pre-
cisely, we can effectively calculate some constant c̃ such that j + dlog2(r)e ≤
c̃(d+ n log2 n).
We have |{zs, . . . , zk}| < |{z1, . . . , zk}|. Therefore by induction we may as-
sume that the sequence S ′ = (us, ws, vs) · · · (uk, wk, vk) has an exponential
expression of size at most |{zs, . . . , zk}|c̃(d+n) log2 n. Hence the exponential
expression for S has size at most

c̃(d+ n log2 n) + |{zs, . . . , zk}|c̃(d+ n log2 n) ≤ |{z1, . . . , zk}|c̃(d+ n log2 n).

Thus, the size is in O(d(d+ n logn)). �

Remark 49 At this stage we know that all `-transformations are admissible
with respect to some suitable polynomial p0 of degree 4. Next we show that
we can modify the polynomial p0 such that the search graph also contains
arcs E0 → E1 and E` → E`′ for 1 ≤ ` < `′ ≤ 2`. For this reason we use
the notion of admissibility with respect to the 4-th power p4

0 of p0. Thus,
admissibility is meant with respect to a polynomial of degree 16.

4.13 The Arc from E0 to E1

We present the formal construction of the arc from E0 to E1. We give all
technical details since this arc is the model for the more complicated way the
other arcs are constructed in the search graph.
An explicit description of E1 = (Γ1, h1,Ω1, ρ1;L1 = R1) has been given
in Remark 46. The letters of Γ1 can be written either as (a, b, c) or as
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b with a, c ∈ Γ ∪ {1} and b ∈ Γ. We define an admissible base change
β : Γ1 → Γ by β(a, b, c) = b and β(b) = b for b ∈ Γ. Trivially, h1 = hβ.
Define E0,1 = β∗(E1). Then we have L0,1 = β(L1) and R0,1 = β(R1) where
β : (Γ1 ∪ Ω1)

∗ → (Γ ∪ Ω1)
∗ is the extension with β(X) = X for all X ∈ Ω1.

We have Γ0,1 = Γ.
It is now obvious how to define the partial solution δ : Ω0 → ΓΩ1Γ∪Γ∗ such
that δ∗(E0) = E0,1. If |σ(X)| ≤ 2, then we let δ(X) = σ(X). For |σ(X)| ≥ 3
we write σ(X) = aub with a, b ∈ Γ and u ∈ Γ+. Then we have X ∈ Ω1 = Ω0,1

and we define δ(X) = aXb and ρ0,1(X) = h(u). For X ∈ Ω1 we have, by
definition, ρ1(X) = h(body1(σ(X))), hence ρ0,1 = ρ1, too. This shows that,
indeed, δ∗(E0) = β∗(E1). Formally, we can write this as δ∗(π

∗(E0)) = β∗(E1),
where π is the identity. This yields the arc from E0 to E1.

4.14 The Equation E`,`′ for 1 ≤ ` < `′ ≤ 2`

In order to establish the arcs from E` to E`′ for all 1 ≤ ` < `′ ≤ 2` we use
an intermediate equation E`,`′ such that there is an admissible base change
β, a projection π, and a partial solution δ with

δ∗(π
∗(E`)) ≡ E`,`′ = β∗(E`′).

The way we move from E` to E`′ is visualized by Figure 1.

E0

E1

∗
E` E`′

Em0

∗

δ∗(π
∗(E`)) ≡ E`,`′ = β∗(E`′)

δ∗π
∗ β∗

reachable
by admissible
base changes

search graph

Figure 1: The search graph and its neighborhood

We begin with the definition of the base change β. Recall Γ ⊆ Γ`′ ⊆ B`′ ∪Γ.
As expected, we define β(a) = a for a ∈ Γ. Consider some (u, w, v) ∈ Γ`′ \Γ.
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It is enough to define β(u, w, v) or β(v, w, u). Hence we may assume that
(u, w, v) appears in the `′-factorization F`′(w0). Therefore we find a positive
interval [α0, β0] such that w = w0[α0, β0] and such that the following two
conditions are satisfied:

1.) We have u = 1 and α0 = 0 or |u| = `′, α0 ≥ `′, and u = w0[α0 − `′, α0].

2.) We have v = 1 and β0 = m0 or |v| = `′, β0 ≤ m0 − `′, and v =
w0[β0, β0 + `′].

Let (up, wp, vp) · · · (uq, wq, vq) be the `-factor which is the minimal cover of
[α0, β0] with respect to the `-factorization F`(w0). Since ` ≤ `′ we have
wp · · ·wq = w. Moreover, the word up is a suffix of u and vq is a prefix of v.
We define

β(u, w, v) = (up, wp, vp) · · · (uq, wq, vq) ∈ B+
` .

We have the following picture:

u w v

up wp wp+1 · · · wq vq

The definition does not depend on the choice of [α0, β0] as long as 0 ≤ α0 <

β0 ≤ m0 and 1.) and 2.) are satisfied. We have β(u, w, v) = β(v, w, u)
and h`β = h`′ . Now let Γ`,`′ ⊆ B` ∪ Γ be the smallest subset such that
β(Γ`′) ⊆ Γ∗

`,`′. Then Γ`,`′ contains Γ and it is closed under involution (since
Γ`′ has this property). An easy reflection shows that Γ` ⊆ Γ`,`′. This will
become essential in Subsection 4.15.
We view β as a morphism β : Γ∗

`′ → Γ∗
`,`′ and we have h`,`′β = h`. Define

E`,`′ = β∗(E`′). Then

E`,`′ = (Γ`,`′, h`,`′,Ω`′ , ρ`′; β(L`′) = β(R`′).

Let us show that β is admissible. Since E`′ is already known to be admissi-
ble with respect to some polynomial of degree 4, it is enough to find some
admissible exponential expression (again with respect to some polynomial of
degree 4) for the `-factor above

β(u, w, v) = (up, wp, vp) · · · (uq, wq, vq).

Using the same terminology as above there is some positive interval [α0, β0]
such that wp · · ·wq = w0[α0, β0], the word u is a suffix of w0[0, α0], and v is a
prefix of w0[β0, m0]. If q − p is small, there is nothing to do. By Lemma 48

38



we may also assume that β0 − α0 > 32d`. We inductively define a sequence
of positions

α0 ≤ α1 ≤ · · · ≤ αi ≤ · · · ≤ βi ≤ · · · ≤ β1 ≤ β0.

In each step we let Wi = w0[αi, βi]. Thus, W0 = wp · · ·wq. Assume that
Wi = w0[αi, βi] is already defined such that βi − αi ≥ 2. The interval [αi, βi]
is not free. Hence, there is some implicit cut γi with αi < γi < βi. The
word Wi is a factor of w, hence no factor of Wi belongs to the set of critical
words C`′. This implies βi − γi < `′ or γi − αi < `′. If we have βi − γi < `′

then we let αi+1 = αi and βi+1 = γi. In the other case we let αi+1 = γi and
βi+1 = βi. Thus Wi+1 is defined such that Wi+1 is a proper factor of Wi with
|Wi| − |Wi+1| < `′.
We need some additional book keeping. We define ri ∈ {l, r} by ri = r if
βi = βi+1 and ri = l otherwise (i.e., αi = αi+1). Furthermore the implicit cut
γi corresponds to some real cut γ ′i and α′

i < γ′i < β ′
i such that Wi = w0[α

′
i, β

′
i]

or Wi = w0[β
′
i, α

′
i]. We define si ∈ {+,−} by si = + if Wi = w0[α

′
i, β

′
i] and

si = − otherwise (in particular, si = − implies Wi = w0[α
′
i, β

′
i]). The triple

(γ′i, ri, si) is denoted by γ(i). There are at most 4(d − 2) such triples and
γ(i) is defined whenever Wi+1 is defined. We stop the induction procedure
after the first repetition of some γ(i). Thus we find 0 ≤ i < j < 4d such that
γ(i) = γ(j). We obtain a sequence W0,W1, . . . ,Wi, . . . ,Wj where each word
is a proper factor of the preceding one. We have |W0|−|Wj| < 4d`′ ≤ 8d` and
due to |W0| > 32d` the sequence above really exists, moreover |Wj| > 24d`.
Next, we show that Wj has a non-trivial overlap with itself. We treat the
case γ(i) = γ(j) = (γ, r,+) only. The other three cases (γ, r,−), (γ, l,+),
and (γ, l,−) can be treated analogously. For some α′ < γ < β ′ we have
Wi = w0[α

′, β ′] and Wi+1 = w0[γ, β
′]. Thus, for some γ ≤ µ < ν ≤ β ′ we have

Wj = w0[µ, ν] and we can assume that µ−γ < (j− i)`′ ≤ 4d`′−`′ ≤ 8d`−`′.
On the other hand we have γ(j) = (γ, r,+), too. Hence for some µ′ < γ < ν ′

with γ − µ′ < `′ we have Wj = w0[µ
′, ν ′], too. Therefore 0 < µ − µ′ < 8d`

and Wj has some non-trivial overlap. We may choose W = w0[µ
′, µ] and it

follows that we can write Wj = W eW ′ such that 1 ≤ |W | < 8d` and W ′ is a
prefix of W .
Putting everything together, we arrive in all cases at a factorization W0 =
UW eV with e ≤ exp(w0), 1 ≤ |W | < 8d`, and |U | + |V | < 16d`.
We have not finished yet. Recall that we are looking for an admissible expo-
nential expression for

β(u, w, v) = (up, wp, vp) · · · (uq, wq, vq).

Due to |W0| > ` we can choose r minimal, p < r ≤ q + 1, and s maximal
p − 1 ≤ s < q such that |wp · · ·wr−1| > |U | + ` and |ws+1 · · ·wq| > |V | + `.
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By Lemma 48 we may assume r < s and it is enough to find an exponential
expression for

S = (ur, wr, vr) · · · (us, ws, vs).

Note that the word urwrwr+1 · · ·wsvs is a factor of W e. Hence we may
factorize W = W ′W ′′ in such a way that after replacing W by W ′′W ′, we
may assume that urwrwr+1 · · ·wsvs is in fact a prefix of W e. Furthermore, we
may assume that wrwr+1 · · ·ws > 32d` and by symmetry we may choose some
positive interval [α0, β0] such that w0[α0, β0] = urwrwr+1 · · ·wsvs. Clearly, we
have w0[i, j] = w0[i+|W |, j+|W |] for all α0 ≤ i < j ≤ β0−|W |. In particular,
the critical word w0[α0, α0 +2`] appears as w0[α0 + |W |, α0 +2`+ |W |] again.
This means that there is some r ≤ t < s such that |wr · · ·wt| = |W |. More
precisely, we can choose r ≤ t < t′ ≤ s and a maximal e′ ≤ e such that

S =
(
(ur, wr, vr) · · · (ut, wt, vt)

)e′

(ut′, wt′ , vt′) · · · (us, ws, vs).

Since e′ ≤ exp(w0), |wr · · ·wt| = |W |, and |wt′ · · ·ws| ≤ |W |, the existence
of an admissible exponential expression for β(u, w, v) follows. Hence β is an
admissible base change.

4.15 Passing from E` to E`,`′ for 1 ≤ ` < `′ ≤ 2`

In the final step we have to show that there exists some projection π :
Γ∗

`,`′ → Γ∗
` and some partial solution δ : Ω` → Γ∗

`,`′Ω`′Γ
∗
`,`′ ∪ Γ∗

`,`′ such that
δ∗(π

∗(E`)) ≡ E`,`′. We don’t have to worry about admissibility anymore.
Once δ∗(π

∗(E`)) ≡ E`,`′ is established, Theorem 8 is proved.
For the definition of the projection π consider a letter in Γ`,`′ \ Γ`. Such a
letter has the form (u, w, v) ∈ B` with w ∈ Γ+. There is no length bound
on w known (or needed). We define π(u, w, v) = w and this is possible since
Γ ⊆ Γ`.
Clearly π( (u, w, v) ) = π(u, w, v) and h`,`′(u, w, v) = h(w) = h`(π(u, w, v)).
Thus, π : Γ∗

`,`′ → Γ∗
` defines a projection such that

π∗(E`) = (Γ`,`′, h`,`′,Ω`, ρ`;L` = R`).

We have to define a partial solution δ : Ω` → Γ∗
`,`′Ω`′Γ

∗
`,`′ ∪ Γ∗

`,`′ such that
δ(L`) = β(L`′) and δ(R`) = β(R`′). For this, we have to consider a variable
X ∈ Ω with body`(σ(X)) 6= 1. By symmetry, we may assume that X = xi

for some 1 ≤ i ≤ g. Hence σ(X) = w0[l(i), r(i)].
Let αX = l(i) + |head`(σ(X))| and βX = r(i) − |tail`(σ(X))|. Then l(i) +
` ≤ αX < βX ≤ r(i) − `. Let (up, wp, vp) · · · (uq, wq, vq) be the minimal
cover of [αX , βX ] with respect to the `-factorization. We have wp · · ·wq =
body`(σ(X)).
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For body`′(σ(X)) = 1 we have X ∈ Ω` \ Ω`′ and we define

δ(X) = (up, wp, vp) · · · (uq, wq, vq).

Then δ(X) ∈ B∗
` and h`δ(X) = ρ`(X) since ρ`(X) = h(body`(σ(X))). It is

also clear that the definition does not depend on the choice of i, and we have
δ(X) = δ(X).
Recall the definition of L`′. Since body`′(σ(X)) = 1, there is a factor f1 · · · fr

of L`′ which belongs to Γ∗
`′ and f1 · · · fr covers [αX , βX ] with respect to the

`′-factorization F`′(w0). It follows that δ(X) is a factor of β(f1 · · · fr), hence
δ(X) ∈ Γ∗

`,`′ by definition of Γ`,`′.
For body`′(σ(X)) 6= 1 we have X ∈ Ω`′ and we find positions µ < ν such
that µ = l(i) + |head`′(σ(X))| and ν = r(i) − |tail`′(σ(X))|.
For some p ≤ r ≤ s ≤ q we have w0[αX , µ] = wp · · ·wr−1, w0[ν, βX ] =
ws+1 · · ·wq, and body`′(σ(X)) = wr · · ·ws. We define

δ(X) = (up, wp, vp) · · · (ur−1, wr−1, vr−1)X(us+1, ws+1, vs+1) · · · (uq, wq, vq).

As above, we can verify that δ(X) = UXV with U, V ∈ Γ∗
`,`′ such that

δ(X) = V X U and ρ`(X) = h`,`′(U)ρ`′(X)h`,`′(V ). Finally, δ(L`) = β(L`′)
and δ(R`) = β(R`′). Hence δ∗(π

∗(E`)) ≡ β∗(E`′). The final step in proving
Theorem 8 is completed.

5 Concluding Remarks

The Pspace–hardness stated in Theorems 3, 5, and 8 is due to rational con-
straints, but this is a side effect and a nice coincidence, only. The reason
to include constraints has been motivated by possible applications to free
partially commutative groups (graph groups). When Matiyasevich showed
in 1996 that the existential theory of equations in free partially commuta-
tive monoids (trace monoids) is decidable [29, 30, 7], it became clear by his
method that regular constraints are a powerful tool in order to extend de-
cidability results to other algebraic structures and, in particular, they are
necessary for extending Makanin’s result from free groups to graph groups.
At that time the result of Schulz [38] on word equations with regular con-
straints had been available but no such analogue for equations in free groups
was known. So, the idea was to look for such an analogue first. Inspired by
Gutiérrez [15] we were finally led to investigate free monoids with involution
and regular constrains. This approach turned out to be fruitful. Based on
Theorem 5 of this paper (the results date back to the year 2000) it is shown
in [8] that the existential theory of equations in graph groups is decidable.
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This result is a common generalization of Matiyasevich’s decidability result
on trace monoids and Makanin’s result on free groups. In a continuation
of this work on graph groups we obtained various other decidability results
about the existential and positive theories in graph products, see [5, 6].
Makanin has also shown that the positive theory in free groups is decidable,
[26]. It remains decidable with recognizable constraints [6]. In contrast, the
positive theory of equations with rational constraints is undecidable in free
groups, because the positive ∀∃3-theory of word equations is undecidable
[27, 9] and Σ∗ is a rational subset of the free group F (Σ). So the question
remains under which restricted type of constraints the positive theory of
equations in free groups remains decidable.
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6 Appendix: Proof of Proposition 15

We first repeat the statement of Proposition 15:
Let E = (Γ, h,Ω, ρ;L = R) be a solvable equation with constraints. Then
there is a solution σ : Ω → Γ∗ such that exp(σ(L)) ∈ 2O(d+n log n).

Proof. Let p ∈ Γ+ be a primitive word. This means that p 6= rk for all k > 1
and r ∈ Γ∗. In the following we also write p−1 instead of p. Then, p−3 for
example means the same as p3. The definition of the p-stable normal form
depends on whether or not p is a factor of p2. So we distinguish two cases.

First case: We assume that p is not a factor of p2. The idea is to replace
each maximal factor of the form pα with α ≥ 2 by a sequence p, α− 2, p and
each maximal factor of the form pα with α ≥ 2 by a sequence p,−(α− 2), p.
The p-stable normal form (first kind) of w ∈ Γ∗ is a shortest sequence (k is
minimal)

(u0, ε1α1, u1, . . . , εkαk, uk)

such that k ≥ 0, u0, ui ∈ Γ∗, εi ∈ {+1,−1}, αi ≥ 0 for 1 ≤ i ≤ k, and the
following conditions are satisfied:

• w = u0p
ε1α1u1 · · ·p

εkαkuk.

• k = 0 if and only if neither p2 nor p2 is a factor of w.

• If k ≥ 1, then:

u0 ∈ Γ∗pε1 \ Γ∗p±2Γ∗,

ui ∈ (Γ∗pεi+1 ∩ pεiΓ∗) \ Γ∗p±2Γ∗ for 1 ≤ i < k,

uk ∈ pεkΓ∗ \ Γ∗p±2Γ∗.

If (u0, ε1α1, u1, . . . , εkαk, uk) is the p-stable normal form of w, then the p-
stable normal form of w becomes (uk,−εkαk, uk−1, . . . ,−ε1α1, u0).

Example 50 Let p = aabaa with b 6= b and w = p4baap−1aabp−2. Then the
p-stable normal form of w is:

(aabaa, 2, aabaabaa,−1, aabaabaa, 0, aabaa).

Second case: We assume that p is a factor of p2. Then we can write p = rs

with p = sr and r = r, s = s. We allow r = 1, hence the second case includes
the case p = p. In fact, if r = 1, then below we obtain the usual definition
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of p-stable normal form, compare e.g. with [3]. The idea is to replace each
maximal factor of the form (rs)αr with α ≥ 2 by a sequence rs, α − 2, sr.
In this notation α− 2 is representing the factor (rs)α−2r = pα−2r = rpα−2 =
rp2−α.
The p-stable normal form (second kind) of w ∈ Γ∗ is the shortest sequence
(k is minimal)

(u0, α1, u1, . . . , αk, uk)

such that k ≥ 0, u0, ui ∈ Γ∗, αi ≥ 0 for 1 ≤ i ≤ k, and the following
conditions are satisfied:

• w = u0p
α1ru1 · · · p

αkruk.

• k = 0 if and only if p2r is not a factor of w.

• If k ≥ 1, then:

u0 ∈ Γ∗rs \ (Γ∗p2rΓ∗ ∪ Γ∗rsrs),

ui ∈ (Γ∗rs ∩ srΓ∗) \ (srsrΓ∗ ∪ Γ∗p2rΓ∗ ∪ Γ∗rsrs) for 1 ≤ i < k,

uk ∈ srΓ∗ \ (Γ∗p2rΓ∗ ∪ srsrΓ∗).

Since rs = sr, the p-stable normal form of w becomes

(uk, αk, uk−1, . . . , α1, u0).

So, for the second kind no negative integers interfere.

Example 51 Let p = aab with b = b. Then r = aa and s = b. Let
w = abp4ap3a. Then the p-stable normal form of w is:

(abaab, 1, baabaaab, 0, baaba).

In both cases we can write the p-stable normal form of w as a sequence

(u0, α1, u1, . . . , αk, uk)

where ui are words and αi are integers.
It is well-known [28] that for Boolean matrices A ∈ B

n×n we have An! =
An!An!. Hence the matrix An! is idempotent. For the following we de-
fine and fix c(M2n) = max{4, n!}. This choice guarantees h(uvc(M2n)w) =
h(uv2c(M2n)w) for all u, v, w ∈ Γ∗ and all h : Γ∗ → M2n and, of course,
c(M2n) ≥ 3. The fact c(M2n) ≥ 3 is used at some point below.
Now, let w,w′ ∈ Γ∗ be two words whose p-stable normal forms are identical
up to the position of the i-th integer. Assume that in the p-stable normal w
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at this position there is the integer αi and that for w′ at this position there is
α′

i. We know h(w) = h(w′) as soon as the following conditions are satisfied:
αi · α

′
i > 0, |αi| ≥ c(M2n), |α′

i| ≥ c(M2n), and αi ≡ α′
i (mod c(M2n)). It

is therefore convenient to change the syntax of the p-stable normal form.
Each non-zero integer α′ is written as α′ = ε(q + αc(M2n)) where ε, q, α are
uniquely defined by ε ∈ {+1,−1}, 0 ≤ q < c(M2n), and α ≥ 0. For α′ = 0
we may choose ε = q = α = 0. The values ε, q, and c(M2n) are viewed as
constants, if α = 0, then it is viewed as a constant, too. Otherwise, if α ≥ 1,
then we view α as a variable ranging over positive integers.
Let u, v, and w be words such that uv = w holds. Write these words in their
p-stable normal forms:

u : (u0, ε1(q1 + α1c(M2n)), u1, . . . , εk(qk + αkc(M2n)), uk),
v : (v0, ε

′
1(s1 + β1c(M2n)), v1, . . . , ε

′
`(s` + β`c(M2n)), v`),

w : (w0, ε
′′
1(t1 + γ1c(M2n)), w1, . . . , ε

′′
m(tm + γmc(M2n)), wm).

Since uv = w there are many identities. For example, for k, ` ≥ 2 we have
u0 = w0, vl = wm, q1 = t1, α1 = γ1, etc. What exactly happens depends
only on the p-stable normal form of the product ukv0. There are several
cases, which can be listed easily. We treat only one of them, which is in
some sense the most difficult one: We treat the case p = rs with r = r

and s = s. It may lead to a large exponent of periodicity. It might be that
uk = srsr1 and v0 = r2srs with r1r2 = r (and r1 6= 1 6= r2). Hence we have
ukv0 = sp3 and k + ` = m + 1. It follows that α1 = γ1, . . . , αk−1 = γk−1,
β2 = γk+1, . . . , β` = γm, and there is only one non-trivial identity:

qk + s1 + 4 + (αk + β1)c(M2n) = tk + γkc(M2n).

Since by assumption c(M2n) ≥ 3, the case ukv0 = sp3 leads to the identity:

γk = αk + β1 + c with c ∈ {0, 1, 2}.

Assume now that αk ≥ 1 and β1 ≥ 1. If we replace αk, β1, and γk by some
α′

k ≥ 1, β ′
1 ≥ 1, and γ′k ≥ 1 such that we still have γ ′k = α′

k + β ′
1 + c, then we

obtain new words u′, v′, and w′ with the same images under h in M2n and
the identity u′v′ = w′ remains true.
The following step is completely analogous to what has been done in detail in
[20, 16, 17, 3]. Using the p-stable normal form we can associate with an equa-
tion L = R of denotational length d together with its solution σ : Ω → Γ∗

some linear Diophantine system of d equations in at most 3d variables. The
variables range over positive natural numbers. The parameters of this system
are such that the maximal size of a minimal solution (with respect to the
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component wise partial order of N
d) is in O(21.6d) with the same approach

as in [20]. This tight bound is based in turn on the work of [12]; a more
moderate bound 2O(d) (which is enough for our purposes) is easier to obtain,
see e.g. [3]. The maximal size of a minimal solution of the linear Diophan-
tine system translates back into a bound on the exponent of periodicity. For
this translation we have to multiply the bound using the factor c(M2n) and
to add c(M2n) + 1. Putting everything together we obtain the claim of the
proposition since c(M2n) ∈ 2O(n log n). �
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