
On First-Order Fragments for Mazurkiewicz

Traces

Volker Diekert Martin Horsch
Manfred Kufleitner

{diekert, kufleitner}@fmi.uni− stuttgart.de

July 24, 2007

Abstract

Mazurkiewicz traces form a model for concurrency. Temporal logic
and first-order logic are important tools in order to deal with the abstract
behavior of such systems. Since typical properties can be described by
rather simple logical formulas one is interested in logical fragments.

One focus of this paper is unary temporal logic and first-order logic
in two variables. Over words, this corresponds to the variety of finite
monoids called DA. However, over Mazurkiewicz traces it is crucial
whether traces are given as dependence graphs or as partial orders (over
words these notions coincide). The main technical contribution is a gener-
alization of important characterizations of DA from words to dependence
graphs, whereas the use of partial orders leads to strictly larger classes.
As a consequence we can decide whether a first-order formula over depen-
dence graphs is equivalent to a first-order formula in two variables. The
corresponding result for partial orders is not known.

This difference between dependence graphs and partial orders also
affects the complexity of the satisfiability problems for the fragments un-
der consideration: for first-order formulas in two variables we prove an
nexptime upper bound, whereas the corresponding problem for partial
orders leads to expspace.

Furthermore, we give several separation results for the alternation hi-
erarchy for first-order logic. It turns out that even for those levels at
which one can express the partial order relation in terms of dependence
graphs, the fragments over partial orders have more expressive power.

1 Introduction

According to one of the first sentences in the trend-setting 1977 Aarhus paper
[16] of Mazurkiewicz a trace is a partially ordered set of symbol occurrences.
He proposed trace theory as an algebraic framework for studying concurrent
processes and observed that the behavior of a concurrent process is not described
by a string, but more accurately by some labeled partial order. The partial order
relation of a trace is defined via a dependence alphabet so that the set of traces
forms a free partially commutative monoid in the sense of Cartier and Foata [1].
There is a natural extension to infinite objects which lead to the notion of real

1

trace. However in this paper we focus on finite traces, only. For an overview on
trace theory we refer to The Book of Traces [4].

One advantage of trace theory is that formal specifications of concurrent
systems by temporal logic formulas have a direct interpretation for Mazurkie-
wicz traces. Moreover, if the underlying alphabet is fixed, satisfiability of all
local temporal logics over traces where the modalities are definable in monadic
second order logic are decidable in pspace [10]. For some local temporal logics
this result has been generalized to the case where the alphabet is also part of
the input [11]. This is optimal since the pspace-hardness occurs already for
words (over a two letter alphabet).

On the algebraic side temporal logics corresponds to aperiodic monoids,
this is known as Kamp’s Theorem, see e.g. [9]. Kamp’s Theorem has been
generalized to traces in [2, 3, 21]. However typical formulas do not require the
full expressive power of temporal logic. So one is interested in fragments. The
probably most interesting fragment is given on the algebraic side by the variety
DA. Over words, DA admits many different characterizations, which led to
the title Diamonds are Forever in [19]. In this paper we show that some of
these characterizations can be generalized to trace monoids, but it turns out
that we have to distinguish whether traces are given as dependence graphs or
as partial orders. This is rather unexpected since for words and also for the full
first-order theory over traces there is no such difference. But for the expressive
power of fragments as well as for the complexity of the satisfiability problem
this distinction is rather crucial.

The paper is organized as follows: In Section 2 we introduce basic notions
and facts that are needed in the remainder of the paper. In Section 3 we give
a language theoretic characterization of the first order fragment Σ2 over depen-
dence graphs. Section 4 introduces (local) unary temporal logic and exposes
its connection to first-order logic with two variables FO2. The interest in the
fragment FO2 arises from the fact that first-order logic with only three variables
has already the same expressive power as the full first-order theory over traces
[12]. Section 5 carries together several results connected to the variety DA.
Theorem 5.1 gives characterizations of DA over traces such as unary temporal
logic, FO2 over dependence graphs, and first-order logic with one quantifier al-
ternation over dependence graphs. Theorem 5.2 shows that as soon as a logical
fragment is capable to express concurrency, this fragment exceeds the expressive
power of DA. Section 6 contains several complexity results for the satisfiability
problem of the fragments under consideration. In Theorems 6.1 and 6.2 we show
that satisfiability for unary temporal logic without an operator for concurrency
is np-complete whereas additionally allowing a modality for concurrency yields
pspace-completeness. In Theorems 6.3, 6.4, and 6.5 we give some complexity
results for FO2 over traces. In Section 7 we give several separation results.
We start by introducing Ehrenfeucht-Fräıssé games for the respective logical
fragments. Those games are the main tool in this section. Theorem 7.1 says
that in general, in FO2 over partial orders one cannot express whether there
are three pairwise concurrent actions. The remainder of this section discusses
the alternation hierarchy for first-order logic. Theorem 7.2 shows that for every
n ∈ N there exists a trace monoid M and a language L ⊆ M such that L is
expressible in FO2 over partial orders whereas L is not expressible at level n of
the alternation hierarchy. Therefore, restricting the number of variables on one
hand and restricting the number of quantifier alternations on the other hand

2

yields incomparable fragments. Theorem 7.3 depicts the relation of the alterna-
tion hierarchy over partial orders and the alternation hierarchy over dependence
graphs.

2 Preliminaries

A dependence alphabet is a pair (Γ, D) where the alphabet Γ is a finite set (of
actions) and the dependence relation D ⊆ Γ×Γ is reflexive and symmetric. The
independence relation I is the complement of D. It is irreflexive and symmetric.
A Mazurkiewicz trace is an isomorphism class of a node-labeled directed acyclic
graph t = [V,E, λ], where V is a finite set of vertices labeled by λ : V → Γ and
E ⊆ (V × V) \ idV is the edge relation such that

E ∪ E−1 ∪ idV = { (x, y) ∈ V × V | (λ(x), λ(y)) ∈ D }

We call [V,E, λ] a dependence graph. By E+ we mean the transitive closure of
E, frequently we write < instead of E+, and ≤ means the induced partial order,
i.e., ≤ is the union of the relations < and idV . We write x ‖ y if the vertices
x and y are incomparable with respect to ≤. Note that node labeled graphs
(V,E, λ) and (V ′, E′, λ′) are isomorphic if and only if the corresponding labeled
partial orders (V,≤, λ) and (V ′,≤′, λ′) are isomorphic. Hence as mentioned
above, a trace is indeed a partially ordered set of symbol occurrences.

Let t1 = [V1, E1, λ1] and t2 = [V2, E2, λ2] be traces. Then we define the
concatenation of t1 and t2 to be t1 · t2 = [V,≤, λ] where V = V1∪V2 is a disjoint
union, λ = λ1 ∪ λ2, and E = E1 ∪ E2 ∪ { (x, y) ∈ V1 × V2 | (λ(x), λ(y)) ∈ D }.
The set M of traces becomes a monoid with the empty trace 1 = (∅, ∅, ∅) as
unit. It is generated by Γ, where a letter a is viewed as a graph with a single
vertex labeled by a. Thus, we obtain a canonical surjective homomorphism

π : Γ∗ →M

The effect of the mapping π can be made explicit as follows. We start with a
word w = a1 · · · an where all ax are letters in Γ. Each x is viewed as an element
in { 1, . . . , n }, with label λ(x) = ax. We draw an arc from ax to ay if and only if
both, x < y and (ax, ay) ∈ D. This dependence graph is π(w). Note that M is
also canonically isomorphic to the quotient monoid Γ∗/ { ab = ba | (a, b) ∈ I }.

A subtrace s of a trace t = [V,E, λ] is defined by a subset V ′ of V . Formally,
we let s = [V ′, E′, λ′] be the induced labeled subgraph. This means that E′ =
E ∩ V ′ × V ′ and λ′ : V ′ → Γ is the restriction of λ. It is clear that s is a
dependence graph, however in general it is no factor. A factor of t is a subtrace
s = [V ′, E′, λ′] such that (x, y), (y, z) ∈ E+ with x, z ∈ V ′ implies y ∈ V ′, too.
Every factor s of t yields a factorization t = psq (possibly more than one). For
the other direction, every factorization t = psq of t = [V,E, λ] yields a unique
factor s = [V ′, E′, λ′] with V ′ ⊆ V .

If t = [V,E, λ] then throughout we write x ∈ t instead of x ∈ V . By d(Γ, D)
we denote the length of a longest simple path in the undirected graph (Γ, D).

3

There is a basic observation which holds for all x, y ∈ t ∈M with d = d(Γ, D):

(x, y) ∈ E ⇔ (x, y) ∈ E+ ∧ (λ(x), λ(y)) ∈ D (1)

(x, y) ∈ E+ ⇔ ∃x1 · · · ∃xd :


xd = y ∧ (x, x1) ∈ E ∧∧

1≤i<d

(xi, xi+1) ∈ E ∪ idV

 (2)

There are some standard notations we adopt here. The length of a trace t is
denoted by |t| and its alphabet is alph(t). By min(t) (max(t) resp.) we denote
the set of minimal (maximal resp.) vertices of t. Note that min(t) and max(t)
are factors of t. A trace language L is a subset of M. It is called recognizable if
L = h−1h(L) for some homomorphism h : M→M , where M is a finite monoid.

We are interested in first-order definable languages, hence we restrict our
attention to aperiodic monoids. A finite monoid M is called aperiodic if there
is some n ≥ 0 such that vn = vn+1 for all v ∈ M . By A we denote the variety
of all finite aperiodic monoids. The variety DA is defined as all finite monoids
M satisfying the equation (uvw)nv(uvw)n = (uvw)n(uvw)n for all u, v, w ∈M
and some n ≥ 0. Setting u = 1 and w = 1 we see that DA contains aperiodic
monoids, only. By DA(M) we mean the class of trace languages which are
recognized by some finite monoid in DA. We have

L ∈ DA(M) ⇔ π−1(L) ∈ DA(Γ∗) (3)

This is a special case of a well-known result due to the fact that π induces an
isomorphism between the syntactic monoids of L and π−1(L), see e.g. [5]. In
fact, if π−1(L) is recognized by some finite monoid M , then L is recognized by
some quotient of a submonoid of M .

The syntax of first-order logic formulas FO[E] is built upon atomic formulas
of type

>, λ(x) = a, and (x, y) ∈ E
where>means true, x, y are variables and a ∈ Γ is a letter. If ϕ, ψ are first-order
formulas, then ¬ϕ, ϕ ∨ ψ, ∃xϕ are first-order formulas, too. We use the usual
shorthands as ⊥ = ¬> meaning false, ϕ∧ψ = ¬(¬ϕ∨¬ψ), and ∀xϕ = ¬∃x¬ϕ.
Given ϕ ∈ FO[E] the semantics is defined as usual for node labeled graphs. In
particular, if all free variables in ϕ belong to a set {x1, . . . , xm }, then for all
t ∈ M and all x1, . . . , xm ∈ t we can write t, x1, . . . , xm |= ϕ and this has a
well-defined truth value. We identify formulas by semantic equivalence. Hence,
if ϕ and ψ are formulas with m free variables, then we write ϕ = ψ as soon
as t, x1, . . . , xm |= (ϕ ↔ ψ) for all trace monoids M, all traces t ∈ M, and all
positions x1, . . . , xm ∈ t. There are completely analogous definitions for the
first-order logic FO[<]. The only difference is that instead of (x, y) ∈ E we have
an atomic predicate x < y. We let FOm[E] be the set of all formulas with at
most m different names for variables. Moreover, we allow (λ(x), λ(y)) ∈ D as
an additional atomic formula (which has an interpretation for all x, y ∈ t where
t is a trace). With this convention FOm[E] becomes a fragment of FOm[<] due
to (1).

A first-order sentence is a formula in FO[E] or FO[<] without free vari-
ables. For a first-order sentence ϕ we define L(ϕ) = { t ∈M | t |= ϕ }. A
trace language L ⊆ M is called first-order definable if L = L(ϕ) for some first-
order sentence ϕ and we let FO(M) = {L(ϕ) | ϕ ∈ FO[E] }. We do not write

4

FO[E](M), because FO(M) = {L(ϕ) | ϕ ∈ FO[<] } as well, due to (2). So, in
first-order it is not necessary to distinguish between E and <. However, for
subclasses of FO we need this distinction. We define the following classes for
E′ = E and E′ = < respectively. We let Σ0[E′] = Π0[E′] be the set of all
Boolean combinations of atomic formulas. For n > 0 the classes Σn[E′] and
Πn[E′] are inductively defined by the following conditions:

i. ϕ ∈ Σn−1[E′] ∪Πn−1[E′] implies ϕ ∈ Σn[E′] and ϕ ∈ Πn[E′].

ii. ϕ ∈ Σn[E′] implies ∃xϕ ∈ Σn[E′] and ∀xϕ ∈ Πn+1[E′].

iii. ϕ ∈ Πn[E′] implies ∃xϕ ∈ Σn+1[E′] and ∀xϕ ∈ Πn[E′].

The fragments Σn[E′] and Πn[E′] are closed under conjunctions and disjunc-
tions. According to our convention to identify equivalent formulas, it makes
sense to write e.g.:

ϕ ∈ Σn[E′] ⇔ ¬ϕ ∈ Πn[E′]

We have
⋃

0≤n Σn[E] = FO[<] due to the following observation:

Lemma 2.1 We have:

Σn[E] ⊆ Σn[<] ⊆ Σn+1[E]

Proof: The first inclusion follows from (1) and the second inclusion is a conse-
quence of (2). 2

For E′ = E and E′ = < we define the following language classes:

i. FOm[E′](M) = {L(ϕ) | ϕ ∈ FOm[E′] }.

ii. Σn[E′](M) = {L(ϕ) | ϕ ∈ Σn[E′] }.

iii. Πn[E′](M) = {L(ϕ) | ϕ ∈ Πn[E′] }.

iv. ∆n[E′](M) = Σn[E′](M) ∩Πn[E′](M).

Remark 2.1 i. The inclusion Σn[<] ⊆ Σn+1[E] in Lemma 2.1 is not purely
syntactic, since strictly speaking it depends on the alphabet size.

ii. The classes FOm[E′](M) and ∆n[E′](M) are Boolean algebras.

iii. The classes Σn[E′](M) and Πn[E′](M) are closed under union and inter-
section.

There is a direct way to transform a first-order formula of ϕ ∈ FO[E] over M
into a corresponding first-order formula ϕ∗ ∈ FO[<] over Γ∗: We simply replace
all atomic subformulas of ϕ of the form (x, y) ∈ E by the conjunction x <
y ∧(λ(x), λ(y)) ∈ D. Notice that for a fixed dependence alphabet (λ(x), λ(y)) ∈
D can be read as a macro for

∨
(a,b)∈D(λ(x) = a∧λ(y) = b).

Lemma 2.2 Let L ∈ Σn[E](M) ∩ FOm[E](M). Then we have π−1(L) ∈ Σn[<
](Γ∗) ∩ FOm[<](Γ∗).

Proof: Straightforward by using the transformation of ϕ ∈ FO[E] to ϕ∗ ∈
FO[<] as above. 2

5

3 Polynomials

The language class of polynomials Pol(M) is the smallest family of languages
over M which contains the singletons {a} for a ∈ Γ, languages A∗ for A ⊆ Γ,
and which is closed under finite union and concatenation. The class co-Pol(M)
contains all languages L ⊆M such that M \ L ∈ Pol(M).

Lemma 3.1 i. Let a ∈ Γ and A ⊆ Γ. Then we have {a} and A∗ ∈ Σ2[E](M).

ii. The classes Σ2[E](M) and Σ2[<](M) are closed under concatenation.

iii. We have Pol(M) ⊆ Σ2[E](M).

Proof: Assertion (iii.) follows from (i.) and (ii.) since Σ2[E](M) is closed
under union.
(i.): The language {a} for a ∈ Γ is given by the Σ2[E] formula

∃x∀y : λ(x) = a ∧ x = y

and the language A∗ for A ⊆ Γ corresponds to

∀y :
∨
a∈A

λ(y) = a

(ii.): Let L0, L1 ∈ Σ2[E](M). We show L0 · L1 ∈ Σ2[E](M). The case of
Σ2[<](M) is even simpler. We construct a formula ϕ ∈ Σ2[E] expressing L =
L0 ·L1. The construction is rather standard. The aim is to check whether there
exists a factorization t = t0t1 with t0 ∈ L0 and t1 ∈ L1. This will be done by
determining a cut through t and relativization of the formulas defining L0 and
L1. We first introduce some macro formulas:

path(x1, . . . , xn) ≡
∧

1≤i<n

(xi = xi+1 ∨(xi, xi+1) ∈ E)

x ‖ y ≡ ∀x2 · · · ∀x|Γ|−1 :
¬path(x, x2, . . . , x|Γ|−1, y) ∧ ¬path(y, x2, . . . , x|Γ|−1, x)

x < y ≡ x 6= y ∧ ∃x2 · · · ∃x|Γ|−1 : path(x, x2, . . . , x|Γ|−1, y)

Note that these Σ2[E] macros can be viewed as Σ2[<] formulas. For alpha-
bets A0 = { a1, . . . , an } and A1 = { b1, . . . , bm } we define a Σ2[E] formula
αA0,A1(x1, . . . , xn, y1, . . . , ym) with n + m free variables. Consider a factoriza-
tion t = t0t1. The idea is that αA0,A1 is true if each variable xi is interpreted
at the last occurrence of the letter ai in t0 and the alphabet of t0 is A0. The
variables yi represent the first positions of letters bi of t1 and the alphabet of t1
is A1. We set:

αA0,A1(x1, . . . , xn, y1, . . . , ym) =∧
1≤i≤n

λ(xi) = ai ∧
∧

1≤i≤m

λ(yi) = bi ∧
∧

1 ≤ i ≤ n
1 ≤ j ≤ m

(xi ‖ yj ∨ xi < yj) ∧

∀z :


∨

1≤i≤n

(
λ(z) = λ(xi) ∧ (z = xi ∨ (z, xi) ∈ E)

)
∨

∨
1≤j≤m

(
λ(z) = λ(yj) ∧ (yj = z ∨ (yj , z) ∈ E)

)


6

Let x = (x1, . . . , xn) be a tuple of variables. Suppose that we have L0 = L(ϕ0),
where ϕ0 = ∃y ∀z ψ0(y, z) ∈ Σ2[E] with y = (y1, . . . , ym) and z = (z1, . . . , z`).
The restriction of ϕ0 to the past of x1, . . . , xn is

←−ϕ0(x) = ∃y1 · · · ∃ym∀z1 · · · ∀z` :∧
1≤j≤m

 ∨
1≤i≤n

(
yj = xi ∨ (yj , xi) ∈ E

) ∧
 ∨

1≤k≤`

 ∧
1≤i≤n

¬
(
zk = xi ∨ (zj , xi) ∈ E

) ∨ ψ0(y, z)


Similarly, suppose L1 is expressed by ϕ1 ∈ Σ2[E], We can define the restriction
−→ϕ1 of ϕ1 to the future of y = (y1, . . . , ym). Using these restrictions, we define

ϕ =
∨

A0,A1⊆Γ

∃x1 · · · ∃x|A0| ∃y1 · · · ∃y|A1| :
(
αA0,A1(x, y) ∧ ←−ϕ0(x) ∧ −→ϕ1(y)

)
Note that ϕ is a Σ2[E] formula. It expresses the language L. 2

As a final remark in this section we notice that polynomials are closed under
homomorphic images. Therefore we can state:

Remark 3.1 Let L ∈ Pol(Γ∗). Then we have π(L) ∈ Pol(M).

Corollary 3.1 We have:

Pol(M) = Σ2[E](M)

Proof: The inclusion from left to right is Lemma 3.1. For the other inclusion
let L ∈ Σ2[E](M). Then by Lemma 2.2 we have π−1(L) ∈ Σ2[<](Γ∗). Now,
in the word case it follows π−1(L) ∈ Pol(Γ∗), see [17]. With Remark 3.1 we
conclude L = ππ−1(L) ∈ Pol(M). 2

4 Unary temporal logic

In [12] it is shown that FO3[<](M) = FO(M). The binary atomic predicate
x < y can be expressed by an FO3[E] formula. Let x, y, z be the sole variables.
For n = 1 we set E1 = E and for n > 1 we inductively define the formula
(x, y) ∈ En by

(x, y) ∈ En ⇔ ∃z :
(
x = z ∨ (x, z) ∈ E

)
∧ (z, y) ∈ En−1

When using the hypothesis we interchange the roles of x and z in order to express
(z, y) ∈ En−1. By equation (2) it follows that x < y is equivalent to (x, y) ∈ E|Γ|
and hence FO3[E](M) = FO3[<](M) = FO(M). Since three variables (over <
as well as over E) are sufficient to express all first-order properties, it is natural
to consider the fragments FO2[<] and FO2[E]. In this section we characterize
them in terms of temporal logic.

Local temporal logic formulas are defined by first-order formulas having at
most one free variable. In this paper we focus on unary operators, only. In

7

temporal logic we write a(x) for the atomic formula λ(x) = a. Inductively, we
define SFϕ(x) (Strict Future),

←−
SFϕ(x) (strict past), Mϕ(x) (soMewhere), Ecoϕ(x)

(Exists concurrently) as follows.

SFϕ(x) = ∃y : x < y ∧ ϕ(y)
←−
SFϕ(x) = ∃y : y < x ∧ ϕ(y)
Mϕ(x) = ∃y : ϕ(y)

Ecoϕ(x) = ∃y : x ‖ y ∧ ϕ(y)

It is common to write ϕ instead of ϕ(x). We define various macros:

Fϕ = ϕ∨SFϕ Future
Gϕ = ¬F¬ϕ Globally (in the future)
SGϕ = ¬SF¬ϕ Strict Globally (in the future)
←−
SGϕ = ¬

←−
SF¬ϕ Strict Globally (in the past)

Acoϕ = ¬Eco¬ϕ All concurrently
Evϕ = ¬M¬ϕ Everywhere

The depth (or operator depth) of a formula ϕ ∈ TL[SF,
←−
SF,M,Eco] is the maximal

number of nested temporal operators occurring within ϕ (cf. [7]). Let C be a
subset of temporal operators from the set above, then TL[C] means the formulas
where all operators are from C. Clearly, if C consists of unary operators as above,
then

TL[C] ⊆
{
ϕ ∈ FO2[<]

∣∣ ϕ has at most one free variable
}

This can be made more precise and reveals a difference between FO2[E] and
FO2[<] for traces. As we will see later, the fragment FO2[<] is more powerful
than FO2[E], in general.

Lemma 4.1 We have:

i. TL[SF,
←−
SF,Eco] =

{
ϕ ∈ FO2[<]

∣∣ ϕ has at most one free variable
}

ii. TL[SF,
←−
SF,M] =

{
ϕ ∈ FO2[E]

∣∣ ϕ has at most one free variable
}

Proof: The inclusion from left to right in (i.) holds by definition of the temporal
operators. For the analogous inclusion in (ii.) we can use equation (2). For
example, SFψ corresponds to the FO2-formula ϕ(x) ≡ ∃y : x < y ∧ ψ(y) where
by induction on the number of operators ψ ∈ FO2[E]. Now, ϕ(x) is equivalent
to ϕ̂|Γ|(x) ∈ FO2[E] defined by

ϕ̂1(x) ≡ ∃y : (x, y) ∈ E ∧ ψ(y)

ϕ̂i+1(x) ≡ ∃y :
(
x = y ∨ (x, y) ∈ E

)
∧ ϕ̂i(y)

where in ϕ̂i(y) the roles of x and y are interchanged. Note that this step
would not be possible if we had replaced ψ(y) by some formula ψ(x, y) that
also depends on x. The proof of the inclusions from right to left follows the
same lines as it has been shown in word case by Etessami-Vardi-Wilke [7]. To

8

keep this paper self-contained we give a complete proof for this direction. Let
ϕ(x) ∈ FO2[<] be a formula with one free variable. We show by induction on the
quantifier depth and the size of the formula that there exists ϕ̃ ∈ TL[SF,

←−
SF,Eco]

such that
t, x |= ϕ(x) ⇔ t, x |= ϕ̃

Atomic formulas and Boolean operators are translated as follows:

ϕ(x) ≡ a(x) for a ∈ Γ ϕ̃ ≡ a

ϕ(x) ≡ ψ1(x)∨ψ2(x) ϕ̃ ≡ ψ̃1 ∨ ψ̃2

ϕ(x) ≡ ¬ψ(x) ϕ̃ ≡ ¬ψ̃

If ϕ(x) is of the form ∃x : ψ(x), in an intermediate step it is transformed into
ϕ′(x) ≡ ∃y : ψ(y) by interchanging x and y. The formula ϕ(x) ≡ ∃y : ψ(y) can
be interpreted as ϕ(x) ≡ ∃y : ψ(x, y) where x is a dummy variable. We now
consider the general case ϕ(x) ≡ ∃y : ψ(x, y). First, we transform ϕ(x) into an
equivalent formula ϕ′′(x) of the same quantifier depth. Let

ψ(x, y) ≡ β
(
x = y, x < y, y < x, ξ1(x), . . . , ξn(x), ζ1(y), . . . , ζm(y)

)
where β is a propositional formula and ξi(x), ζj(y) are atomic formulas or
existential formulas with smaller quantifier depth. The first step in the trans-
formation of ϕ(x) is to guess the values of ξi(x) before the quantification of y.
We set ϕ′(x) ≡∨

γ∈{>,⊥}n

(∧
1≤i≤n

(
ξi(x)↔ γi

)
∧ ∃y :

β
(
x = y, x < y, y < x, γ, ζ1(y), . . . , ζm(y)

))
The next step is to guess the order-type τ that holds between x and y in advance.
The possible relations are x = y, x < y, x > y or (other than in the word case)
none of them and then x and y correspond to parallel positions, x ‖ y. We
choose τ from the set {=, <,>, ‖ } and define ϕ′′(x) ≡∨

γ∈{>,⊥}n

(∧
1≤i≤n

(ξi(x)↔ γi) ∧
∨

τ∈{=,<,>,‖}

∃y : (x τ y ∧ β(y)
)

with β(y) = β((x = y)τ , (x < y)τ , (y < x)τ , γ, ζ1(y), . . . , ζm(y)). Note that
the first 3 + n arguments are constant Boolean values at this point. After this
transformation of ϕ(x) it remains to show how to translate formulas of the form
∃y : (x τ y ∧ β(y)) with τ ∈ {=, <,>, ‖ }:

∃y : (x = y ∧ β(y)) β̃

∃y : (x < y ∧ β(y)) SFβ̃

∃y : (x > y ∧ β(y))
←−
SFβ̃

∃y : (x ‖ y ∧ β(y)) Eco β̃

Note that ϕ′′ is at most exponentially bigger than ϕ. Therefore, the size of
ϕ̃ is (poly-)exponentially bounded by the size of ϕ. The transformation of

9

ϕ(x) ∈ FO2[E] into an equivalent formula ϕ̃ ∈ TL[SF,
←−
SF,M] is similar. The

difference arises only in the set of order types and in the last step. Note that

x 6= y ∧ (x, y) 6∈ E ∧ (y, x) 6∈ E ⇔
(
λ(x), λ(y)

)
∈ I

Therefore, the order-type x ‖ y in FO2[<] corresponds to independence of the
labels of x and y in the FO2[E] setting and we get the following transformations

∃y :
(

(x, y) ∈ E ∧ β(y)
)

∨

(a,b)∈D

a ∧ SF(b ∧ β̃)

∃y :
(

(y, x) ∈ E ∧ β(y)
)

∨

(a,b)∈D

a ∧
←−
SF(b ∧ β̃)

∃y :
(

(λ(x), λ(y)) ∈ I ∧ β(y)
)

∨
(a,b)∈I

a ∧M(b ∧ β̃)

This completes the proof of the inclusions from right to left. 2

In order to pass form formulas in temporal logic to languages we would like to
define L(ϕ) ⊆ M, even if ϕ has a free variable. There is however no canonical
choice. We use an existential variant; and we define here:

L∃(ϕ) = { t ∈M | ∃x ∈ t : t, x |= ϕ } = L(Mϕ)

Clearly, L∃(Mϕ) = L∃(ϕ) = L(Mϕ). Define TL[C](M) as the Boolean closure of
languages defined by L∃(ϕ) with ϕ ∈ TL[C]. As a consequence of the existential
choice we never have 1 ∈ L∃(ϕ). But this will be no obstacle in the following,
because L∃(>) = M \ {1} implies that L ∈ TL[C](M) if and only if L \ {1} ∈
TL[C](M). In the following lemma, we show that the operator M does not add
any expressiveness beyond Boolean operations.

Lemma 4.2 We have:

TL[SF,
←−
SF](M) = TL[SF,

←−
SF,M](M)

Proof: The inclusion from left to right is trivial. For the other direction, let
ϕ ∈ TL[SF,

←−
SF,M] and Mψ be a subformula of ϕ. For τ ∈ {>,⊥} let ϕ[Mψ←τ]

be the formula where Mψ is replaced by τ . Now,

ϕ = Mψ ∧ϕ[Mψ←>] ∨ ¬Mψ ∧ϕ[Mψ←⊥]

because Mψ has no free variables. The result follows by induction since L(Mψ) =
L∃(ψ) and ϕ[Mψ←τ] has one M less, and TL[SF,

←−
SF](M) is by definition a

Boolean algebra. 2

Essentially the converse holds as well, up to the empty trace, Boolean operations
can be replaced by the use of the operator M. This fact is stated in the following
lemma in order to complete the picture, but not used henceforth.

Lemma 4.3 {L∃(ϕ) | ϕ ∈ TL[C ∪ {M}] } is a Boolean algebra with respect to
M \ {1}.

Proof: We have M \
(
L∃(ϕ) ∪ {1}

)
= L∃(¬Mϕ). 2

10

Remark 4.1 If M is a free monoid, then TL[SF,
←−
SF] = TL[SF,

←−
SF,M], because

Mϕ = ϕ∨SFϕ∨
←−
SFϕ in this case. Hence

{
L∃(ϕ)

∣∣∣ ϕ ∈ TL[SF,
←−
SF]

}
forms a

Boolean algebra with respect to Γ+.

5 Characterizing DA over traces

Various characterizations of DA(Γ∗) are known [19]. In the following we extend
some of them to traces. In particular, we are interested in the corresponding
first-order fragments and its temporal logic counterpart. The following is one
of the main results of the paper. The crucial step is DA(M) ⊆ TL[SF,

←−
SF](M).

This has been established first in the Ph.D. thesis [14]. In Lemma 5.3 we give
a new and self-contained proof of this fact. This will require some arithmetic in
finite monoids and is postponed to the end of this section.

Theorem 5.1 We have:

TL[SF,
←−
SF](M) = FO2[E](M) = Pol(M) ∩ co-Pol(M) = ∆2[E](M) = DA(M)

Proof: For words, i.e., for M = Γ∗, the result follows by [7, 17, 20]. For
arbitrary trace monoids we have

L ∈ TL[SF,
←−
SF](M)

⇒ L ∈ FO2[E](M) (Lemma 4.1 and 4.2)

⇒ π−1(L) ∈ FO2[<](Γ∗) (Lemma 2.2)

⇒ π−1(L) ∈ Pol(Γ∗) ∩ co-Pol(Γ∗) (by word case)
⇒ L ∈ Pol(M) ∩ co-Pol(M) (Remark 3.1)
⇒ L ∈ ∆2[E](M) (Lemma 3.1)

⇒ π−1(L) ∈ ∆2[<](Γ∗) (Lemma 2.2)

⇒ π−1(L) ∈ DA(Γ∗) (by word case)
⇒ L ∈ DA(M) (by equation (3))

⇒ L ∈ TL[SF,
←−
SF](M) (by [14, 15] or Lemma 5.3)

2

Note that membership in the variety DA is decidable and hence the membership
problem for all of the above characterizations is decidable. The theorem above
characterizes FO2[E](M). However for words there is no difference between E
and the relation <. In particular, FO2[E](Γ∗) = FO2[<](Γ∗). Can we hope that
this is always true? The answer is no:

Theorem 5.2 The following assertions are equivalent:

i. D is transitive, i.e., M is a direct product of free monoids.

ii. FO2[E](M) = FO2[<](M).

iii. ∆2[E](M) = ∆2[<](M).

11

Proof: If D is transitive, then E and < are identical. Now, suppose D is not
transitive. Then there exist three letters a, b, c ∈ Γ with (a, b), (b, c) ∈ D and
(a, c) 6∈ D. Consider the trace language L = L(ϕ) with ϕ = ∃x∃y : x ‖ y ∈
FO2[<]∩Σ1[<]. The language L contains all traces with two parallel positions.
We have L ∈ FO2[<](M) ∩∆2[<](M).

Assume by contradiction, L ∈ DA(M). Then there exists a homomorphism
h : M→ M onto a finite monoid M ∈ DA such that h−1h(L) = L. Since M ∈
DA there exists n ∈ N with ∀u, v, w ∈ M : (uvw)nv(uvw)n = (uvw)n(uvw)n.
With u = h(b), v = h(abc) and w = 1 we conclude (babc)nabc(babc)n ∈ L if and
only if (babc)n(babc)n ∈ L. This is a contradiction, since (babc)n(babc)n 6∈ L
is a sequence without any parallel positions, whereas (babc)nabc(babc)n ∈ L
contains two parallel positions labeled by c and a. Therefore L 6∈ DA(M). By
Theorem 5.1 we have FO2[E](M) = ∆2[E](M) = DA(M). It follows L ∈ FO2[<
](M) \ FO2[E](M) and L ∈ ∆2[<](M) \∆2[E](M). 2

Remark 5.1 In general, it is open whether membership is decidable for classes
like FO2[<](M) or ∆2[<](M). Theorems 5.1 and 5.2 imply that membership for
FO2[<](M) and for ∆2[<](M) is decidable if D is transitive.

In Lemma 5.1 and Lemma 5.2 we give some properties of the variety DA.
Green’s relations are one possibility to formulate those properties. We introduce
only those Green’s relations that will be used in the remainder of this section.
Let M be a monoid and u, v ∈M . We define

u L v ⇔ Mu = Mv u ≤L v ⇔ Mu ⊆Mv u <L v ⇔ Mu (Mv

u R v ⇔ uM = vM u ≤R v ⇔ uM ⊆ vM u <R v ⇔ uM (vM

Note that R and L are equivalence relations, whereas ≤R and ≤L are pre-
orders. For every product u`u`−1 · · ·u1u0 we have 1M ≥L u0 ≥L u1u0 ≥L
u2u1u0 ≥L · · · ≥L u` · · ·u0. For every monoid M ∈ DA there exists n ∈ N
such (uvw)nv(uvw)n = (uvw)2n for all u, v, w ∈M . In particular, v2n+1 = v2n

for all v ∈M which shows that every monoid in DA is aperiodic.

Lemma 5.1 Let M be an aperiodic monoid and let u, v ∈ M . If u ≤L v and
v ≤R u then u = v.

Proof: Choose m ∈ N such that ym = ym+1 for all y ∈M . Since u ∈Mu ⊆Mv
there exists x ∈ M such that u = xv. Similarly, there exists y ∈ M such that
v = uy. We have u = xv = xuy = xmuym = xmuym+1 = uy = v. 2

The crucial properties for monoids in DA are aperiodicity (as used in the lemma
just above) and the property as given in the next lemma. Of course, there is
also a symmetric statement using Green’s relation R.

Lemma 5.2 Let u, v, a ∈M ∈ DA. If u L vu and v ∈MaM then u L avu.

Proof: Choose n ∈ N such (uvw)nv(uvw)n = (uvw)2n for all u, v, w ∈M . We
have wu ≤L u for all u,w ∈ M . Therefore, it suffices to show u ≤L avu. Let

12

x, y, z ∈M such that v = xay and u = zvu. Then

yu = yzvu = yzxa · yu
= (yzxa)n · yu
= (yzxa)2n · yu
= (yzxa)nxa(yzxa)n · yu since M ∈ DA

= (yzxa)n · xa · yu ∈Mavu

Therefore u = zxa · vu ∈ zxa ·Mavu and hence Mu ⊆Mavu. 2

Lemma 5.3 If L ∈ DA(M) then L ∈ TL[SF,
←−
SF](M).

Proof: Let M ∈ DA and let h : M→M be a homomorphism with h−1h(L) =
L. We define an equivalence on traces, called operator-depth-equivalence, by
ODn(u) = ODn(v) if u and v agree on all formulas of operator depth at most
n. Let n > 2 |M | · |Γ| and u, v ∈ M with ODn(u) = ODn(v). We show that
this implies h(u) = h(v). From n ≥ 1 we conclude that alph(u) = alph(v). If
alph(u) = ∅ then u = 1 = v and hence h(u) = h(v). Thus we may assume
alph(u) 6= ∅ and we perform an induction on the size of this alphabet. For some
` < |M | we can write u = u`C` · · ·u1C1u0 where Ci = max(uiCi) and for all
choices of letters ai ∈ Ci we have:

1M L h(u0) >L h(a1u0)
≥L h(C1u0) L h(u1C1u0) >L · · ·
>L h(a`u`−1 · · ·u1C1u0)
≥L h(C`u`−1 · · ·u1C1u0) L h(u`C`u`−1 · · ·u1C1u0)

A suitable factorization u = u`C` · · ·u1C1u0 can be found as follows. We choose
u0 of maximal length such that 1M L h(u0), then C1 is the product over the
maximal letters in the remaining prefix before u0; and this leads to the general
procedure: Once Ci is defined, choose ui of maximal length and let Ci+1 be
the maximal letters in the remaining prefix before ui. The effect is that every
ai ∈ Ci reduces the level of the L-class. In general, the above factorization is
not unique.

By Lemma 5.2 we see ui−1 /∈ MaiM for all ai ∈ Ci which implies Ci ∩
alph(ui−1) = ∅. We claim that for each a ∈ Ci there is a formula ϕa,i ∈
TL[SF,

←−
SF] of operator depth 2i− 1 such that u, x |= ϕa,i if and only if x corre-

sponds to the position of the letter a in the factor Ci. For i = 1 this is

ϕa,1 = a∧¬SFa

and for i > 1 we can use induction

ϕa,i =

a ∧ ∨
b∈Ci−1

SFϕb,i−1

 ∧ ¬SF

a∧ ∨
b∈Ci−1

SFϕb,i−1


The formula ϕa,i expresses that the position x has label a and is before some
position in Ci−1 and it is the last position with this property. Note that the

13

operator depth of ϕa,i is indeed 2i − 1. Using the (syntactical) conventions∨
a∈C0

SFϕa,0 = ¬
∨
a∈C`+1

SFϕa,t+1 = > we can specify the positions in ui by

ψi =

(∨
a∈Ci

SFϕa,i

)
∧ ¬

 ∨
a∈Ci+1

SFϕa,i+1


Note that a formula of operator depth of at most 2` can specify that for each
position exactly one of the formulas ϕa,i or ψi holds. Since n ≥ 2` and ODn(u) =
ODn(v) we can factorize v = v`C` · · · v1C1v0 where the position of each Ci
consists of the maximal letters in viCi. By using ψi for relativizations we see that
ODn−2`(ui) = ODn−2`(vi) for 0 ≤ i ≤ `. Furthermore alph(ui) ⊆ alph(u)\Ci+1

for 0 ≤ i < `. By induction on the alphabet size we obtain h(ui) = h(vi) for
0 ≤ i < ` (we cannot use the induction hypothesis for i = ` since we may have
alph(u`) = Γ). Thus

h(v) ≤L h(C`v`−1 · · ·C1v0)
= h(C`u`−1 · · ·C1u0) L h(u`C`u`−1 · · ·C1u0)
= h(u)

This means h(v) ≤L h(u). Symmetrically, by starting with a factorization of v
with respect to Green’s R-relation we see that h(u) ≤R h(v). From Lemma 5.1
we conclude h(u) = h(v). Up to equivalence there are only finitely many formu-
las of operator depth n. By specifying which of them hold and which of them
do not hold we see that for all m ∈ M the language h−1(m) can be expressed
by a TL[SF,

←−
SF] formula. The lemma now follows since L =

⋃
m∈h(L) h

−1(m). 2

6 Complexity

In this section we show that the possibility to express concurrency also affects
the complexity of the satisfiability problem.

Theorem 6.1 The following problem is np-complete:
Input: A dependence alphabet (Γ, D) and a formula ϕ ∈ TL[SF,

←−
SF,M].

Question: Is ϕ satisfiable over M = M(Γ, D)?

Proof: The hardness follows from the special case that satisfiability for TL[F] is
already np-hard for words [18]. Therefore we show inclusion in np, only. First,
we transform ϕ ∈ TL[SF,

←−
SF,M] by allowing additional temporal operators into

some
Φ ∈ TL+[SF,SG,

←−
SF,
←−
SG,M,Ev]

where TL+ means positive Boolean combinations and the only negations are
of the form ¬a for a ∈ Γ. Let |Φ| be the size of Φ. We observe |Φ| ≤ 2 |ϕ|.
We show that TL+[SF,SG,

←−
SF,
←−
SG,M,Ev] has a so-called small model property : if

there exists a trace t ∈ M and a position x ∈ t such that t, x |= Φ then there
also exists a small trace s ∈ M (of polynomial size) and a position y ∈ s such
that s, y |= Φ and |s| ≤ 2 |Φ| · |Γ|.

14

Suppose t, x |= Φ. By ψ we mean a subformula of Φ. For each ψ and each
letter a ∈ Γ such that there exists y ∈ t with t, y |= ψ ∧ a, we mark a left-most
position `(ψ, a) ∈ t and a right-most position r(ψ, a) ∈ t such that we have
both, t, `(ψ, a) |= ψ ∧ a and t, r(ψ, a) |= ψ ∧ a. Let s be the subtrace of t that
consists of all marked positions. We claim that for all x ∈ s and all ψ we have

t, x |= ψ ⇒ s, x |= ψ

This holds for ψ = a and ψ = ¬a and positive Boolean connectives. By left-
right symmetry, it is enough to consider subformulas of the form SFρ, SGρ, Mρ
and Evρ. The “for all” situations SGρ and Evρ are trivial (because we have no
Acoρ). It remain SFρ and Mρ. Now, if t, x |= Mρ holds then t, y |= ρ for some
y ∈ t. Hence t, `(ρ, λ(y)) |= ρ. But `(ρ, λ(y)) is marked, hence `(ρ, λ(y)) ∈ s
and by induction, s, `(ρ, λ(y)) |= ρ. This implies s, x |= Mρ.

Finally, suppose t, x |= SFρ. Let λ(x) = a1 and x1 = r(SFρ, a1). For
some d > 1 there are marked positions x1, . . . , xd ∈ t with (xi, xi+1) ∈ E and
xi = r(SFρ, ai) for 1 ≤ i < d and with xd = r(ρ, ad). By structural induction,
we have s, x2 |= ρ for d = 2 and, by induction on d, we have s, x2 |= SFρ for
d > 2. In any case, since λ(x) = a1 and (a1, λ(x2)) ∈ D we obtain s, x |= SFρ.

Thus, if ϕ is satisfiable we can guess s ∈ M with |s| ≤ 2 |Φ| · |Γ|. After that
we check in deterministic polynomial time whether s, x |= ϕ for some x ∈ s. 2

A class of languages C of M is called stutter-invariant if for every language
L ∈ C we have t1aat2 ∈ L if and only if t1at2 ∈ L for all traces t1, t2 ∈ M and
every letter a ∈ Γ. For marked traces (t, x) we extend this notion by requiring
(t1aat2, x) ∈ L if and only if (t1at2, f(x)) ∈ L. The function f maps canonically
positions of t1aat2 onto positions of t1at2. Positions of the prefix t1 and the suffix
t2 are mapped to their counter-parts in t1at2 and the two positions factor aa in
the above factorization are both mapped to the position of a in the factorization
t1at2. A trace t is called stutter-free if there is no factor aa for any a ∈ Γ.

Lemma 6.1 TL[F,
←−
F ,Eco](M) is stutter-invariant.

Proof: Straightforward by induction. 2

Let Γ = { a, a, b, c, d, e } and let the independence relation I be given by the
graph

a

a

b

cd

eI =

Theorem 6.2 Let Γ = { a, a, b, c, d, e } and D = Γ× Γ \ I where I is the above
independence relation. The following problem is pspace-hard:

Input: A formula ϕ ∈ TL[F,Eco] over Γ.
Question: Is ϕ satisfiable over M = M(Γ, D)?

15

Proof: We use a reduction from the following problem which is well-known to
be pspace-complete, see e.g. [6].

Input: A formula ϕ ∈ TL[X,F] over {a, a}.
Question: Does there exist a word w ∈ {a, a}+ with w, 1 |= ϕ? Here 1
denotes the first position of w.

For w = a1 · · · an ∈ {a, a}+ we define w̃ = a1(bcde)a2(bcde) · · · an(bcde) ∈ M
and for a position i ∈ { 1, . . . , n } of w we define xi as the position of ai in w̃.

w̃ =

a1 c e

b d a2 c e

b d a3 c e

b d

· · ·

· · ·

In a first step, we inductively transform ϕ into a formula ϕ̃ ∈ TL[F,Eco] such
that

w, i |= ϕ ⇔ w̃, xi |= ϕ̃ (4)

Boolean combinations and atomic formulas are straightforward: ã = a ,¬̃ϕ =
¬ϕ̃, and ϕ̃ ∨ ψ = ϕ̃ ∨ ψ̃.

F̃ψ = F((a∨ a)∧ ψ̃)

X̃ψ = EcoX((a∨ a)∧ ψ̃)

where EcoX is defined by EcoXψ = Eco(b∧Eco(c∧Eco(d∧Eco(e∧Ecoψ)))). By
induction, the equivalence (4) holds for all w = a1 · · · an ∈ {a, a}+ and all
positions i ∈ { 1, . . . , n }. In the remainder of the proof we construct a formula
ψ such that ϕ is satisfiable over {a, a}+ if and only if ϕ̃∧ψ is satisfiable over
M. The formula will ensure some normal form on its models. This normal form
is given by the following set of marked traces.

K =

 (t, x)

∣∣∣∣∣∣∣∣
t = pq with max(p) ⊆ {d} and
q ∈ ((a+ ∪ a+)b+c+d+e+)+ and
x is a minimal position of q
labeled with either a or a


We define ψ ∈ TL[F,Eco] with

t, x |= ψ ⇔ (t, x) ∈ K

We note that if (t, x) ∈ K then the factorization t = pq with max(p) ⊆ {d}
and q ∈ ((a+ ∪ a+)b+c+d+e+)+ is unique since in q every vertex labeled with
d is parallel to some c, but c 6∈ max(p) ∪ min(q). Since a and a have the
same behavior we use â as a shorthand for either a or for a. We define ψ =

16

ψEco ∧ψa ∧ψb ∧ψc ∧ψd ∧ψe ∧ψstart with

â = a∨ a
ψEco = G(¬Ecoa∨¬Ecoa)
ψa = G(â→Ecob)
ψb = G(b→Ecoc)
ψc = G(c→Ecod)
ψd = G(d→Ecoe)
ψe = G(e→(Eco â∨G e))

ψstart = â∧Aco
(
b∧Aco(c→G(â→Ecoe))∧Ecoc∧(¬Ecoa∨¬Ecoa)

)
One can show that every (t, x) ∈ K satisfies t, x |= ψ, where x is the minimal
vertex of q in the factorization t = pq above: Since no vertex of q is parallel to
any vertex in p it is enough to verify that q, x |= ψ.

For the other direction, suppose t, x |= ψ. By stutter-invariance of the
fragment TL[F,Eco](M) and {K} we can (w.l.o.g.) assume that t is stutter-free,
i.e., t does not contain two consecutive positions with the same label. With
ψEco we ensure that no position in the future of x has both parallel, a and a.
(Remember that ‘G’ means “globally in the future”.) This implies that every
position in the future of x is parallel to at most two different letters. Formulas
ψa, ψb, ψc, ψd and ψe assure that starting from x with label â we can always
follow a path â, b, c, d, e of parallel occurrences by using the Eco operator.
Furthermore, if we have not reached a maximal vertex e, we must move from e
to some parallel â; and we have to start all over again. With ψstart we ensure
a well-defined starting configuration. We start from a position x labeled by â
and all parallel vertices of x are labeled by b and from none of those b’s we can
reach a position in the past of x which is labeled by c. All c’s that we can reach
using two Eco operators are therefore in the future of x. Additionally, we have
to repeat the constraints of ψb and ψEco for concurrent b’s.

Using ψEco and ψa we can treat â as if it were a single letter. From ψstart we
conclude t = pâbq′ such that every maximal element of p is dependent of both, â
and b. Therefore max(p) ⊆ {d}. Furthermore there exists some c in q′ such that
the letter b in pâbq′ is concurrent to that c. By stutter-freeness of t it follows
that {â, b} ∩min(q′) = ∅ and hence min(q′) ⊆ {c, d, e}, but min(q′) ⊆ {d, e} is
not possible because this would contradict the existence of some parallel c for b
since d and e are both dependent of b. Hence q′ = cq and we can write t = pâbcq.
Now by ψc there exists a d that is parallel to c. Since (d, â), (â, c) ∈ D, this d
has to be in q. We have min(q) ⊆ {â, d, e}. As before we conclude q = dq̃ since
min(q) ⊆ {â, e} is not possible. We can continue with t = p̃bcdq̃ where p̃ = pâ.
The situation is analogous to t = pâbcq, we only moved one step on the cycle of
the independence relation I.

â

b

cd

e
I =

17

This process can only stop if t = p(abcde)+r and the last e in (abcde)+ satisfies
G e. It follows that r is empty, since r can only contain the letters {a, d, e} but
none of them can be minimal.

This shows that if ϕ ∈ TL[X,F] is satisfiable over {a, a}+ then ϕ̃∧ψ is also
satisfiable over M. For the other direction, suppose there exists a trace t ∈ M
and a position x ∈ t such that t, x |= ϕ̃∧ψ. By construction of ψ we have
t = pq with max p ⊆ {d} and q ∈ ((a+ ∪ a+)b+c+d+e+)+. Moreover x is a
position in q. With the temporal operators F and Eco we cannot reach positions
in p. It follows q, x |= ϕ̃∧ψ. By stutter-invariance of TL[F,Eco] there exists
q′ ∈ ((a ∪ a)bcde)+ such that q′, x′ |= ϕ̃∧ψ where x′ is a minimal position
labeled by either a or a. By (4) we conclude that ϕ is satisfiable over {a, a}∗.

2

Remark 6.1 It has been shown in [11] that the uniform variant of the above
satisfiability problem is in pspace:

Input: A dependence alphabet (Γ, D) and a formula ϕ ∈ TL[SF,
←−
SF,Eco].

Question: Is ϕ satisfiable over M = M(Γ, D)?

Theorem 6.3 The following problem is in nexptime:
Input: A dependence alphabet (Γ, D) and a formula ϕ ∈ FO2[E].
Question: Is ϕ satisfiable over M = M(Γ, D)?

Proof: Replace in ϕ ∈ FO2[E] each atomic predicate (x, y) ∈ E by x <
y ∧ (λ(x), λ(y)) ∈ D. We obtain a formula ϕ∗ of size at most |ϕ| · |Γ| such that
∅ 6= L(ϕ) ⊆M if and only if ∅ 6= L(ϕ∗) ⊆ Γ∗, see also Lemma 2.2. Having done
this, we can apply the known nexptime-algorithm on words, [7]. 2

Remark 6.2 It was shown in [23] that if Γ is not part of the input then
the satisfiability problem for FO2[<](Γ∗) is np-complete. Therefore, for fixed
dependence graphs (Γ, D) the reduction technique of Theorem 6.3 yields np-
completeness of the following problem:

Input: A formula ϕ ∈ FO2[E].
Question: Is ϕ satisfiable over M = M(Γ, D)?

Theorem 6.4 The following problem is in expspace:
Input: A dependence alphabet (Γ, D) and a formula ϕ ∈ FO2[<].
Question: Is ϕ satisfiable over M = M(Γ, D)?

Proof: For membership in expspace, replace ϕ ∈ FO2[<] according to the
proof of Lemma 4.1 in order to obtain an equivalent formula ψ ∈ TL[SF,

←−
SF,Eco]

of exponential size such that ∅ 6= L(ϕ) ⊆ M if and only if ∅ 6= L(ψ) ⊆ M.
Having done this, we can apply the pspace algorithm for local temporal logic
on traces, [11]. 2

Theorem 6.5 The following problem is nexptime-hard:
Input: A dependence alphabet (Γ, D) and a formula ϕ ∈ FO2[<].
Question: Is ϕ satisfiable over M = M(Γ, D)?

18

Proof: It is shown in [7] that the following problem is nexptime-hard:
Input: A finite set of unary predicates Σ and a formula ϕ ∈ FO2[] using
only the predicates in Σ and equality as atomic propositions.
Question: Does there exist a word w ∈

(
2Σ
)∗ such that w |= ϕ.

We reduce this satisfiability problem over words to the problem over traces
above. We simulate the underlying word-alphabet of exponential size by con-
currency. We let $, ¢ and # be fresh letters and we define a dependence alphabet
by Γ = Σ ∪ { $, ¢,# } such that all letters in Σ ∪ {$, ¢} are independent of each
other and dependent of #. Let ϕ ∈ FO2[] and let x and y be the only two vari-
ables in ϕ. Note that the only binary atomic predicate in ϕ is x = y. By FO2[‖]
we denote the fragment of FO2[<] where x ‖ y is the only binary atomic propo-
sition. The formula ϕ is now transformed into a formula ϕ̃ ∈ FO2[‖] ⊆ FO2[<]
using the following rules:

ã(x) = ∃y (x ‖ y ∧ a(y))

ã(y) = ∃x (x ‖ y ∧ a(x))

x̃ = y = x ‖ y

∃̃xψ = ∃x ($(x)∧ ψ̃)

∃̃y ψ = ∃y (¢(y)∧ ψ̃)

¬̃ψ = ¬ψ̃

ψ̃1 ∨ψ2 = ψ̃1 ∨ ψ̃2

We see that the purpose of the letter $ is to suit as position for the variable
x and the letter ¢ is for the variable y. We define ψ ∈ FO2[‖] to ensure that
models always have suitable positions for x and y:

ψ = ∀x
(
#(x)∨(
$(x)∧∃y (x ‖ y ∧ ¢(y))

)
∨(

¢(x)∧∃y (x ‖ y ∧ $(y))
)
∨(

∃y (x ‖ y ∧ ¢(y))∧∃y (x ‖ y ∧ $(y))
))

A word w =
{
a1

1, . . . , a
1
k

}
· · · {an1 , . . . , an` } over the alphabet 2Σ is transformed

into the trace w̃ = $¢a1
1 · · · a1

k# · · ·#$¢an1 · · · an` ∈M. We have

w |= ϕ ⇔ w̃ |= ϕ̃∧ψ ⇔ #w̃ |= ϕ̃∧ψ ⇔ w̃# |= ϕ̃∧ψ ⇔ #w̃# |= ϕ̃∧ψ

The hardness result now follows since L(ϕ̃∧ψ) is stutter-invariant. 2

Remark 6.3 The proof above shows actually more since nexptime-hardness
is shown for the fragment FO2[‖] without equality. However, it remains open
whether the problem in Theorem 6.3 is nexptime-complete because FO2[‖] is not
a fragment of FO2[E], see (the proof of) Theorem 5.2. It is also open whether
the problem in Theorem 6.4 and 6.5 is expspace-complete.

19

7 Ehrenfeucht-Fräıssé games

The central questions in this section are: What is the relation between the
fragments FO2[<](M) and ∆2[<](M)? When is Σn[E](M) a proper subclass of
Σn[<](M)? And: Is Πn[<](M) contained in Σn+1[E](M)? A main tool in an-
swering these questions are Ehrenfeucht-Fräıssé games. In [8] an Ehrenfeucht-
Fräıssé game is defined for the linear temporal logic on words with three oper-
ators: until, eventually and next. We adapt this game in order to characterize
simple fragments of temporal logic on traces.

Definition 7.1 (EF game for TL[SF,
←−
SF,Eco]) Ehrenfeucht-Fräıssé (EF) games

are played by two persons, called here Spoiler and Duplicator. For the fragment
TL[SF,

←−
SF,Eco] with n rounds it is played on two traces t0 = [V0, E0, λ0] and

t1 = [V1, E1, λ1] using one pebble for each trace. A configuration of the game is
a pair of positions (x0, x1) ∈ V0 × V1 currently occupied by the pebbles. In each
round, Spoiler selects a side σ ∈ {0, 1} and one of the moves SF,

←−
SF and Eco .

The rules are simple:

SF: From a position x the pebble is moved to a position y such that x < y.
←−
SF: From a position x the pebble is moved to a position y such that y < x.
Eco : From a position x the pebble is moved to a position y such that x ‖ y.

First, Spoiler moves the pebble on tσ and next, Duplicator carries out the same
type of move on t1−σ. This defines one round. Spoiler wins if either Duplicator
cannot move his pebble according to the rules or if, after some round the pebbles
lie on differently labeled nodes. Duplicator wins if this never occurs within n
rounds.

Lemma 7.1 Let n ∈ N and s, t ∈M with xs ∈ s and xt ∈ t. Then the following
propositions are equivalent:

i. Duplicator has a winning strategy for the game in Definition 7.1 with n
rounds played on the traces s, t starting at configuration (xs, xt).

ii. (s, xs) and (t, xt) are models of exactly the same TL[SF,
←−
SF,Eco] formulas

with depth n.

Proof: For n = 0 this is true, because at two positions the same formulas of
depth 0 hold if and only if they have the same labels. Let n > 0. Let SFϕ
be a formula of depth n such that (without loss of generality) s, xs |= SFϕ,
whereas t, xt 6|= SFϕ. In the game with n rounds starting with the configuration
(xs, xt), Spoiler can select the SF move and a position ys > xs with s, ys |= ϕ, as
opposed to Duplicator, who will find no analogous position yt > xt. Therefore,
Spoiler wins this game by induction. The other temporal operators are handled
analogously.

For the other direction let Spoiler win the game starting with the config-
uration (xs, xt) within n rounds. If the positions have different labels, then
s, xs |= λ(xs) whereas t, xt 6|= λ(xs). Otherwise Spoiler makes his first move.
Without loss of generality let this first move be SF on s. Spoiler moves his pebble
to ys. By induction, for every position y ∈ t with y > xt there exists a formula
ϕy of depth (n − 1) such that s, ys |= ϕy and t, y 6|= ϕy. Let ϕ =

∧
y>xt

ϕy.
Then by construction s, xs |= SFϕ and t, xt 6|= SFϕ. 2 In the proof above

20

we used the fact that s and t are finite traces, but this is not essential because
there are only finitely many formulas of a given depth. Therefore a conjunction∧
y>xt

ϕy over formulas of depth n− 1 is always finite.

Theorem 7.1 There exists a trace monoid M such that the Σ1[<] definable
language

L = { t ∈M | ∃x, y, z ∈ t : (x ‖ y ∧ y ‖ z ∧ z ‖ x) }

of traces with three pairwise independent vertices is not in FO2[<](M).

Proof: The formula ∃x, y, z : (x ‖ y ∧ y ‖ z ∧ z ‖ x) ∈ Σ1[<] expresses L. Let
M be a trace monoid over the alphabet Γ = { a, b, c, d, e, f,# }. The graph of
the dependence relation D is

#

a

b

c

d

e

f

D =

The maximal sets of pairwise independent letters are { a, c, e } and { b, d, f }.
Now, we show that L is not in TL[SF,

←−
SF,Eco]. Let r = acbdcedfeafb. For an

arbitrarily chosen n ∈ N consider the traces p = r2n+1 and q = acebdf . The
trace p looks as follows

· · · e f a b c d e f a b · · ·

· · · a b c d e f a b c d · · ·

r

and the Hasse diagram of #q# is

#

a b

c d

e f

#

We combine p and q in order to build the larger traces s = (#p)2n+1 6∈ L and
t = (#p)n#q(#p)n ∈ L. We say that p and q are segments of s and t. We
numerate the segments of s and t with numbers running from −n to n from
left to right. All segments of s and t consist of p, except for segment 0 of trace
t, which is q. Every segment that corresponds to p is further subdivided into
2n + 1 blocks with numbers running from −n to n such that all blocks consist
of r.

21

Consider the n-round Ehrenfeucht-Fräıssé game for TL[SF,
←−
SF,Eco] played on

the traces s and t. We start on both traces with pebbles on the unique minimal
positions. In all blocks, except the outermost ones −n and n, every position has
parallel occurrences of all letters that are independent. Although there do not
exist three parallel positions in s, we will use this fact to mimic three parallel
positions in order to construct a winning strategy for Duplicator.

The main strategy of Duplicator is to copy all moves of Spoiler. The behavior
on the segments 0 of s and t is not evident, therefore we will describe the
strategy of Duplicator for this case. Whenever Spoiler accesses segment 0 of
trace s, Duplicator avoids placing the pebble on segment 0 of trace t by putting
his pebble to the corresponding position of either segment −1 or 1 of trace t.
In the up to n − 1 remaining rounds it is possible for Duplicator to keep a
maximal difference of 1 between the numbers of the segments. If Spoiler moves
his pebble on segment 0 of trace t, Duplicator responds by placing the other
pebble on an identically labeled position of block 0 of either segment −1, 0 or 1
of trace s. From this position he can mimic all possible Eco -moves of Spoiler on
t. Each Eco -move of Spoiler could force Duplicator to increase or decrease the
block number by 1. Since there occur at most n − 1 of these moves and there
are n blocks to the left as well as to the right, Duplicator wins the game. By
Lemma 7.1 it follows that L 6∈ TL[SF,

←−
SF,Eco](M) = FO2[<](M). 2

Since Σ1[<](M) ⊆ ∆2[<](M), it follows from Theorem 7.1 that there exists a
trace monoid M such that FO2[<](M) is not a subset of ∆2[<](M).

Next we will introduce Ehrenfeucht-Fräıssé games for Σn[<]. In order to
characterize this first-order fragment with games, we first have to refine it.
We inductively define Σmn [<]. Intuitively, n describes the number of quantifier
blocks and m the number of nested bound variables. More formally: the formu-
las without quantifiers constitute Σ0

0[<]. A formula ϕ is in Σmn [<] if and only if
it is a disjunction of formulas of the form

∃x1 · · · ∃xk¬ψ

with 0 ≤ k ≤ m and ψ ∈ Σm−kn−1 [<]. We assume that all variables in a Σmn [<]
formula are distinct. We have Σn[<] =

⋃
m∈N Σmn [<]. For the Boolean closure of

Σn[<], Thomas presented an Ehrenfeucht-Fräıssé game [22]. It can be modified
in order to describe Σn[<]. The main difference consists of the fact that Σn[<]
is not closed under complementation. If we want to capture this fragment, it
is therefore insufficient to determine whether two traces s and t are equivalent
or not. Instead, we ask if s models at least the same Σn[<] formulas as t does.
Following [13] it is possible to characterize the Σmn [<] fragments by limiting the
number of pebbles to m ∈ N.

Definition 7.2 (Ehrenfeucht-Fräıssé game for Σmn [<]) The set of configura-
tions for the game played on the traces t0 and t1 with nodes V0 and V1, re-
spectively, is V ∗0 × V ∗1 × {0, 1} with the restriction that the size of the first two
components is equal and does not exceed m. The first two components of the
configuration are interpreted as a distribution of pebbles on the two traces: a
pebble labeled with i lies at position xi ∈ Vj whenever xi is the i-th character of
the word corresponding to j ∈ {0, 1}. The third component contains the number
of the trace where Spoiler will carry out his next move. Let (w0, w1, σ) with
|w0| = |w1| ≤ m and σ ∈ {0, 1} be the current configuration, then the next turn
is carried out as follows:

22

• Spoiler takes i ≤ m − |w0| pebbles and distributes them on trace tσ by
assigning them positions x1 · · ·xi ∈ V iσ.

• Duplicator places identically labeled pebbles on nodes y1 · · · yi ∈ V i1−σ of
the other trace.

• The new configuration is (w0x1 · · ·xi, w1y1 · · · yi, 1− σ).

The game for Σmn [<] consists of n rounds. Duplicator wins if and only if initially
and after each of these rounds, the partial mapping V0 → V1 : w0(j) 7→ w1(j)
with 1 ≤ j ≤ |w0| = |w1| induces an isomorphism with respect to the labels and
the relation <.

Lemma 7.2 Let n,m, k ∈ N and s, t ∈M with sequences ws ∈ V ks and wt ∈ V kt .
Then the following propositions are equivalent:

i. Duplicator has a winning strategy for the game on s and t from Defini-
tion 7.2 with n rounds, maximally m pebbles, and starting with the config-
uration (ws, wt, 0).

ii. For all ϕ ∈ Σmn [<] with k free variables we have that s, ws |= ϕ implies
t, wt |= ϕ.

Proof: The lemma holds for n = 0, as without any rounds Duplicator wins
the game if and only if in the initial configuration, the k pebbles are isomorphi-
cally distributed on both traces, which amounts to saying that the same Σ0

0[<]
formulas hold for (s, ws) and (t, wt). Suppose n > 0. Let ws ∈ V ks , wt ∈ V kt
be interpretations such that the partial mapping Vs → Vt : ws(j) 7→ wt(j),
1 ≤ j ≤ k induces an isomorphism with respect to the order relation < and the
label function λ.

(i. ⇒ ii.) Suppose Duplicator has a winning strategy for the Ehrenfeucht-
Fräıssé game with n rounds starting from the configuration (ws, wt, 0). The
number 0 in the configuration means that Spoiler starts to play on trace s. Let
ϕ ∈ Σmn [<] be a formula with the free variables x1, . . . , xk such that (s, ws) is
a model of ϕ. Without loss of generality, we assume that ∃ (and not ∨) is the
outermost junctor, i.e., ϕ = ∃xk+1 · · · ∃xk+` ¬ψ with ` ≤ m and ψ ∈ Σm−`n−1 [<].
Now let Spoiler distribute ` pebbles on positions x1, . . . , x` ∈ Vs such that ¬ψ
holds on s with the interpretation vs = wsx1x2 · · ·x`. If Duplicator proceeds
according to his winning strategy, he obtains positions y1, . . . , y` ∈ Vt. We set
vt = wty1y2 · · · y`. Now, Duplicator wins the game with n− 1 rounds and up to
m − ` pebbles starting from the configuration (vs, vt, 1) which is symmetric to
(vt, vs, 0). By induction hypothesis the implication t, vt |= ψ ⇒ s, vs |= ψ holds.
Hence, from s, vs |= ¬ψ we can conclude t, vt |= ¬ψ and therefore t, wt |= ϕ.

(ii. ⇒ i.) Assume that Spoiler has a winning strategy starting from the
configuration (ws, wt, 0). Let his first move according to this strategy consist in
placing ` ≤ m pebbles on s. Let vs be the new configuration on s. Now, after
every possible response of Duplicator, Spoiler has a winning strategy with at
most n − 1 rounds starting on trace t. By induction, for each v ∈ wtV `t there
exists a formula ψv ∈ Σm−`n−1 [<] such that t, v |= ψv and s, vs 6|= ψv. Since the
range of possible values for v is finite, we can construct ψ∗ =

∨
v ψv, which in

turn is a Σm−`n−1 [<] formula. By construction we have

s, ws |= ∃x1 · · · ∃x` ¬ψ∗ whereas t, wt 6|= ∃x1 · · · ∃x` ¬ψ∗

The lemma now follows by contraposition. 2

23

Theorem 7.2 For every n ≥ 1 there exists a trace monoid M and a trace
language L ⊆M with

L ∈ FO2[<](M) ∩Πn[<](M) but L 6∈ Σn[<](M)

Furthermore, L is the complement of a language L∃(ϕ) where ϕ is a TL[Eco]
formula with n occurrences of the operator Eco .

Proof: Let m ∈ N be arbitrary, and let a series of dependence alphabets
(Γn, Dn), n ≥ 1, be given inductively by Γ1 = {a1} and Γn = Γn−1 ∪ {an, bn}
with the dependence graph Dn = Dn−1 — bn — an or, more formally, D1 =
{(a1, a1)} and Dn = Dn−1 ∪ Γn × {bn} ∪ {bn} × Γn ∪ {(an, an)}. This means
that each alphabet Γn with n ≥ 2 introduces a letter an, which is independent
of all preceding letters, and a letter bn that depends on all letters. For n ∈ N,
let `n = (m+ 1)n. We also define the traces s1 = 1, t1 = a1, and

sn = (bnantn−1)`n

tn = (bnantn−1)`n · bnansn−1 · (bnantn−1)`n

such that sn and tn are traces over the dependence alphabet (Γn, Dn). The bn’s
partition these traces into blocks. We number these blocks from 1 to `n on sn
and from −`n to `n on tn. Within each block, the position labeled with an is
parallel to all other positions. Below, we depict the blocks −1, 0, and 1 of the
trace tn.

· · · bn

tn−1

an

bn

sn−1

an

bn

tn−1

an

· · ·

We define the TL[Eco] formulas ϕ1 = a1 and ϕn = an ∧¬Ecoϕn−1 for n > 1.
Let x be the position of an in the 0-th block of tn. For all n ≥ 1, by induction
we have tn, x |= ϕn whereas there does not exist y ∈ sn with sn, y |= ϕn. It
follows tn ∈ L∃(ϕn) and sn 6∈ L∃(ϕn). The formula ϕn has operator depth
n − 1 and hence Mϕn has operator depth n. This implies that the language
L∃(ϕn) = L(Mϕn) can be expressed by a Σn[<] sentence.

In order to show that the complement of L∃(ϕn) is not in Σn[<](M) we
consider the Ehrenfeucht-Fräıssé game for Σmn [<] played on the traces sn and
tn, i.e., there are n rounds, m pebbles, and Spoiler places his first pebbles on
sn. Using induction, we describe a winning strategy of Duplicator for this game.
The case for n = 1 is trivial: Spoiler cannot place any pebbles since s1 is empty;
therefore Duplicator wins by not placing any pebbles. Assume n > 1, then in
the first round, Spoiler places m′ ≤ m pebbles on sn. Because this trace consists
of `n blocks, there must remain a big continuous gap of `′ = (m+ 1)n−1 blocks
without any pebbles. Let such a gap start after the k-th block and consider the
following factorizations of sn and tn:

sn = pk · p`
′

· p`n−k−`
′

tn = pk · p`n−k q pk+`′ · p`n−k−`
′

where p = bnantn−1 and q = bnansn−1. Duplicator can imitate the move of
Spoiler on the outer factors of tn. For the remaining rounds, we can ignore

24

the outermost factors of both traces because they are identical. By induction
we know that Duplicator wins the game on sn−1 and tn−1, i.e., for the rest of
the game, the blocks p and q cannot be distinguished. Note that the change
of ends enforces Spoiler to make his next move on the sn−1-side. Both middle
factors consist of at least (m + 1)n−1 blocks, and there are n − 1 rounds to
play. Therefore, the different number of blocks in sn and tn is no advantage for
Spoiler and hence, Duplicator wins the game. By Lemma 7.2 we conclude that
sn ∈ L(ψ) implies tn ∈ L(ψ) for all formulas ψ ∈ Σmn [<]. This shows, that for
all n ∈ N, no Σmn [<] formula can express the complement of L∃(ϕn) and since
Σn[<] =

⋃
m Σmn [<] we have L = M \ L∃(ϕn) is not in Σn[<](M). 2

Theorem 7.3 The following assertions are equivalent:

i. D is transitive, i.e., M is a direct product of free monoids.

ii. ∃n ≥ 1: Σn[E](M) = Σn[<](M).

iii. ∃n ≥ 1: Πn[<](M) ⊆ Σn+1[E](M).

Proof: The implications from (i.) to (ii.) and from (i.) to (iii.) are obvious
since if (i.) holds then E and < are identical. The implication from (ii.) to
(iii.) follows from the basic fact that Πn[<](M) ⊆ Σn+1[<](M). Note that if
Σ1[E](M) = Σ1[<](M) then the example in Theorem 5.2 shows that D has to
be transitive. For the remaining direction (iii.) to (i.) assume that D is not
transitive. Then there exist letters a, b, c with the dependencies a— b— c. We
show that for each n ≥ 1 there exists a language Ln+1 in Πn[<](M) that is not
in Σn+1[E](M). Define the traces s1 = acb, t1 = abcb, and for n ≥ 1:

sn+1 = (tnb)`

tn+1 = (tnb)` · snb · (tnb)`

where ` > 1 is an arbitrary number. We refer to the factors tnb and snb as
blocks. We number the blocks from 1 to ` in sn and from −` to ` in tn. For
n ≥ 2 every block in sn and tn ends with n occurrences of the letter b and
this is the only occurrence of n consecutive b’s in each block. Additionally, the
minimal elements of blocks are not labeled by b. Hence, the factors bn partition
the blocks. Note that t2 |= ∃x∃y : x ‖ y whereas s2 6|= ∃x∃y : x ‖ y. Hence for
the Π0[<] formula

ψ2(x, y) = x ‖ y

we have s2 ∈ L2 = L(∀x∀y ¬ψ2(x, y)), but t2 6∈ L2. By induction, suppose that
we have a formula ψn(x1, . . . , x2n) in Πn−2[<] with 2n free variables such that

sn |= ∀x1 · · · ∀x2n : ¬ψn(x1, . . . , x2n)
tn |= ∃x1 · · · ∃x2n : ψn(x1, . . . , x2n)

and (for n > 2) all bound variables of ψn are relativized to lie between xn
and x2n. This property is related to the definition of blocks. Using ψn we
construct a formula ψn+1 ∈ Πn−1[<]. Let y1, . . . , yn+1 and z1, . . . , zn+1 be
new variables. For n > 2 the idea is that the formula ψn+1 expresses that
y1, . . . , yn+1 and z1, . . . , zn+1 are the borders of an sn-block, i.e., a block that

25

satisfies ∀x : ¬ψn(x). For n = 2 we only express that y1, . . . , yn+1 is the left
border of some block i and that z1, . . . , zn+1 is the right border of some block j
with i ≤ j and within these borders there are no parallel positions. We give an
informal description of ψn+1:

ψn+1(y1, . . . , yn+1, z1, . . . , zn+1) =
y1 < y2 < · · · < yn+1 < z1 < z2 < · · · < zn+1 ∧
“all yi and all zi are labeled by b” ∧
∀x : “x does not lie between any two consecutive yi’s” ∧
∀x : “x does not lie between any two consecutive zi’s” ∧
σn+1(yn+1, z1) ∧
∀x1 · · · ∀x2n : “all xi lie between yn+1 and zn+1” → ¬ψn(x1, . . . , x2n)

where for n > 2 we define

σn+1(y, z) = ∀x1 · · · ∀xn+1 :
(
y < x1 < · · · < xn+1 < z ∧

∧
1≤i≤n+1

λ(xi) = b

)

→
(
∃x :

∨
1≤i<n+1

xi < x < xi+1

)
The formula σn+1(y, z) is true if there are no n + 1 consecutive occurrences of
the letter b between y and z. Note that σn+1 ∈ Π2[<] which for n > 2 yields
ψn+1 ∈ Πn−1[<]. For n = 2 we define σ3(y, z) = > which yields ψ3 ∈ Π1[<].
For n = 2, block 0 in trace t3 contains no parallel positions whereas all blocks in
trace s3 contain some parallel positions. The formula ψ3 uses this property to
distinguish between s3 and t3. For all n ≥ 2 the formula ψn+1 has the desired
relativization property and for all n ≥ 1 we have

sn+1 |= ∀x1 · · · ∀x2(n+1) : ¬ψn+1(x1, . . . , x2(n+1))
tn+1 |= ∃x1 · · · ∃x2(n+1) : ψn+1(x1, . . . , x2(n+1))

where for n = 1 and n = 2 this holds by construction and therefore for n > 2
it follows by induction since tn+1 contains an sn-block whereas sn+1 contains
only tn blocks. Altogether, this shows that for all n ≥ 1 there is a language
Ln+1 ∈ Πn[<](M) such that sn+1 ∈ Ln+1 and tn+1 6∈ Ln+1 just by taking
Ln+1 = L(∀x1 · · · ∀x2(n+1) : ¬ψn).

We now show for all n ≥ 2 that Ln 6∈ Σn[E](M) holds. For this purpose
we verify that L ∈ Σn[E](M) and sn ∈ L implies tn ∈ L where the exponent
` in the construction of sn and tn is chosen to be large enough. It is easy to
see that one can define an Ehrenfeucht-Fräıssé game for Σmn [E] with m pebbles
and n rounds similar to the game in Definition 7.2 such that an analogue of
Lemma 7.2 holds. We now fix the number m of pebbles. Let the exponent ` in
the definition of sn and tn satisfy ` ≥ (m + 1)n. Analogously to the proof of
Theorem 7.2 we inductively describe a winning strategy of Duplicator for the
game played on sn and tn. Again, the idea is to put the big irregular part of tn
into the middle of a big pebble-free gap. For n = 1 the strategy of Duplicator
is simple. He copies the move of Spoiler and hence does not place any pebbles
on the positions labeled by b in t1 = abcb. Let now n > 1. In the first round,
Spoiler places m′ ≤ m pebbles on sn. Due to the large number of blocks,

26

there exists a big continuous sequence of `′ ≥ (m+ 1)n−1 blocks in sn without
any pebbles. Let such a sequence start after the k-th block and consider the
following factorizations of sn and tn:

sn = pk · p`
′

· p`−k−`
′

tn = pk · p`−k q pk+`′ · p`−k−`
′

where p = tn−1b and q = sn−1b. Duplicator imitates the move of Spoiler on
the outer factors of tn. By induction, Duplicator wins the game on sn−1 and
tn−1 and therefore, for the rest of the game, the blocks p and q cannot be
distinguished. By aperiodicity, the different number of blocks does not help
Spoiler. Therefore, for n ≥ 2 we have Ln 6∈ Σn[E](M) and hence Πn−1[<](M) 6⊆
Σn[E](M). 2

Conclusion

Over words there exist a lot of logical and language-theoretic characterizations
of the variety DA. In Theorem 5.1 we have shown which of them carry over to
traces. In Theorem 5.2 we have shown that the distinction between dependence
graphs and partial orders is crucial. Over words, the relations E and < coincide
but over traces, as soon as E and < are different, the fragments FO2[<] and
∆2[<] have strictly more expressive power than their counter-parts FO2[E] and
∆2[E], respectively. That in general FO2[<](M) and ∆2[<](M) are incompa-
rable is a consequence of Theorem 7.1 and Theorem 7.2. We summarize the
general situation in the following diagram (in which we omitted the suffix (M)
in all fragments):

DA = TL[SF,
←−
SF]

= TL[SF,
←−
SF,M]

= FO2[E]
= ∆2[E]
= Pol ∩ co-Pol

Σ1[<]

Σ1[E]

∆2[<]

∆3[<]

∆4[<]

...

...

A = FO3[<]
= FO[<]
= FO[E]

TL[SF,
←−
SF,Eco]

= FO2[<]

27

For both, FO2[E] and FO2[<] we have given equivalent characterizations in
terms of temporal logic. For TL[SF,

←−
SF,M] – the counter-part of FO2[E] – we

have shown that the satisfiability problem is in np whereas the satisfiability
problem for TL[SF,

←−
SF,Eco] – the counter-part of FO2[<] – is pspace-hard.

Even for fragments in which one can express < by only using quantification
over FO[E]-formulas, the distinction between E and < makes a difference. As
soon as E and < are different, we have that Σn[E](M) is a proper subset Σn[<
](M) and that Πn[<](M) is not contained in Σn+1[E](M) for all n ≥ 1. This is in
contrast to the fact that Πn[<](M) ⊆ Σn+1[<](M). For the fragment Σ2[E](M)
we have given a language-theoretic characterization in terms of polynomials in
Corollary 3.1.

∆n[<]

∆n+1[E]

Σn[<] Πn[<]

Σn+1[E]

Σn+1[<]

Several problems remain open. Despite the complexity results in Theorem 6.3
and in Theorem 6.4, completeness results for the satisfiability problems for the
fragments FO2[E] and FO2[<] are still missing. Furthermore, no algebraic char-
acterizations of FO2[<](M) and ∆2[<](M) are known. Such characterizations
could be useful in order to get elementary algorithms for checking membership
in those fragments. One of the problems in this task is that FO2[<](M) and
∆2[<](M) do not form language varieties.

Acknowledgements

We thank Dietrich Kuske and the anonymous referees for various helpful com-
ments.

References

[1] Cartier, P., Foata, D.: Problèmes combinatoires de com-
mutation et réarrangements, Lecture Notes in Mathemat-
ics, 85, Springer, 1969. Electronic reedition available at:
http://www-irma.u-strasbg.fr/~foata/paper/ProbComb.pdf

[2] Diekert, V., Gastin, P.: LTL is expressively complete for Mazurkiewicz
traces, Journal of Computer and System Sciences, 64, 2002, 396–418.

28

[3] Diekert, V., Gastin, P.: Pure future local temporal logics are expressively
complete for Mazurkiewicz traces, Information and Computation, 204,
2006, 1597–1619, Conference version in LATIN 2004, LNCS 2976, 170–
182, 2004.

[4] Diekert, V., Rozenberg, G., Eds.: The Book of Traces, World Scientific,
Singapore, 1995.

[5] Eilenberg, S.: Automata, Languages, and Machines, vol. B, Academic
Press, New York and London, 1976.

[6] Emerson, E. A.: Temporal and Modal Logic, in: Handbook of Theoreti-
cal Computer Science (J. van Leeuwen, Ed.), vol. B, chapter 16, Elsevier
Science Publisher B. V., 1990, 995–1072.

[7] Etessami, K., Vardi, M. Y., Wilke, Th.: First-order logic with two variables
and unary temporal logic, Information and Computation, 2002, 279–295,
Conference version: LICS’97.

[8] Etessami, K., Wilke, Th.: An until hierarchy for temporal logic, Logic in
Computer Science, 1996.

[9] Gabbay, D., Hodkinson, I., Reynolds, M.: Temporal Logic: Mathematical
Foundations and Computational Aspects, Clarendon Press, Oxford, 1994.

[10] Gastin, P., Kuske, D.: Satisfiability and model checking for MSO-definable
temporal logics are in PSPACE, Proc. of the 14th Int. Conf. on Concur-
rency Theory (CONCUR’03) (R. M. Amadio, D. Lugiez, Eds.), LNCS 2761,
Springer, Marseille, France, August 2003.

[11] Gastin, P., Kuske, D.: Uniform satisfiability in PSPACE for local temporal
logics over Mazurkiewicz traces, this volume of Fundamenta Informaticae,
2007.

[12] Gastin, P., Mukund, M.: An elementary expressively complete temporal
logic for Mazurkiewicz traces, Proc. 29th Int. Colloquium on Automata,
Languages and Programming (ICALP’2002) (P. Widmayer et al., eds.),
LNCS 2380, Springer, 2002.

[13] Immerman, N., Kozen, D.: Definability with bounded number of bound
variables, Logic in Computer Science, 1987.

[14] Kufleitner, M.: Logical Fragments for Mazurkiewicz Traces: Expressive
Power and Algebraic Characterizations, Dissertation, Institut für Formale
Methoden der Informatik, Universität Stuttgart, 2006.

[15] Kufleitner, M.: Polynomials, fragments of temporal logic and the variety
DA over traces, Theoretical Computer Science, 376, 2007, 89–100. Confer-
ence version in DLT 2006, LNCS 4036, 37–48, 2006.

[16] Mazurkiewicz, A.: Concurrent program schemes and their interpretations,
DAIMI Rep. PB 78, Aarhus University, Aarhus, 1977.

[17] Pin, J.-É., Weil, P.: Polynominal closure and unambiguous product, Theory
Comput. Syst., 30(4), 1997, 383–422.

29

[18] Sistla, A. P., Clarke, E.: The complexity of propositional linear time logic,
Journal of the Association for Computing Machinery, 32, 1985, 733–749.

[19] Tesson, P., Thérien, D.: Diamonds are forever: The variety DA, Semi-
groups, Algorithms, Automata and Languages, Coimbra (Portugal) 2001
(G. M. dos Gomes Moreira da Cunha, P. V. A. da Silva, J.-E. Pin, Eds.),
World Scientific, 2002.

[20] Thérien, D., Wilke, Th.: Over words, two variables are as powerful as one
quantifier alternation, STOC, 1998.

[21] Thiagarajan, P. S., Walukiewicz, I.: An expressively complete linear time
temporal logic for Mazurkiewicz traces, Proc. 12th Annual IEEE Sympo-
sium on Logic in Computer Science (LICS’97), Warsaw (Poland), 1997.

[22] Thomas, W.: An application of the Ehrenfeucht-Fräıssé game in formal
language theory, Mém. Soc. Math. de France, série 2, 16, 1984, 11–21.

[23] Weis, P., Immerman, N.: Structure theorem and strict alternation hierar-
chy for FO2 on words, Proc. 16th EACSL Annual Conference on Com-
puter Science and Logic (CSL’07), Lausanne (Switzerland) (J. Duparc and
Th. Henzinger, Eds.), LNCS 4646, 2007.

30

