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Abstract

We continue our study of stabilizers of infinite words over finite alphabets, be-
gan in [10]. Let w be an aperiodic infinite word over a finite alphabet, and let
Stab(w) be its stabilizer. We show that Stab(w) can be partitioned into the
monoid of morphisms that stabilize w by finite fixed points and the ideal of mor-
phisms that stabilize w by iteration. We also settle a conjecture of [10] by show-
ing that in some cases Stab(w) is infinitely generated. If the aforementioned
ideal is nonempty, then it contains either polynomially growing morphisms or
exponentially growing morphisms, but not both. Moreover, in the polynomial
case, the degree of polynomial is fixed. We also show how to compute the poly-
nomial degree from the dependency graph of a polynomially growing morphism.
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1. Introduction

In this paper we continue the study of stabilizers of aperiodic infinite words,
which we began in [10]. Let w be an infinite word over a finite alphabet Σ. The
stabilizer of w is the monoid of morphisms h : Σ∗ → Σ∗ that satisfy h(w) = w.

The previous paper was concerned mainly with questions related to the
minimal number of generators a given stabilizer has. The current paper is
concerned with questions related to the algebraic structure of stabilizers, and
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the growth order of morphisms in a given stabilizer. After stating some notation
in Section 2, we show in Section 3 that Stab(w) is a disjoint union of the monoid
of morphisms that stabilize w by finite fixed points, and the ideal of morphisms
that generate w by iteration. The aforementioned monoid is always finite and
nonempty, while the ideal is either empty or infinite. Contrary to what was
conjectured in [10], this ideal can be infinitely generated, as we also demonstrate
in Section 3.

In Section 4, we consider the growth order of w under a morphism h that
generates it by iteration. We show that a given stabilizer can contain either
morphisms under which w grows polynomially or morphisms under which w
grows exponentially, but not both. Moreover, if the growth is polynomial, then
the degree of polynomial is fixed for all stabilizer elements. This result enables
us to extend Durand’s generalization of Cobham’s theorem [2, 3] to a wider
family of morphisms.

2. Notation

For a finite alphabet Σ, the sets of finite words, nonempty finite words, and
right-infinite words over Σ are denoted by Σ∗, Σ+, and Σω, respectively. The
empty word is denoted by ε. The set of letters occurring in a word w is denoted
by alph(w). A factor of a word w ∈ Σ∗∪Σω is a word u ∈ Σ∗ such that w = xuy
for some x ∈ Σ∗ and y ∈ Σ∗ ∪ Σω. The set of factors occurring in a word w
is denoted by Fact(w). An infinite word w is ultimately periodic if w = xyω

for some x ∈ Σ∗ and y ∈ Σ+, where yω = yyy · · · ; otherwise, w is aperiodic.
The length of a finite word u is denoted by |u|. The number of times a letter a
occurs in a finite word u is denoted by |u|a. The identity morphism is denoted
by Id. The width of a morphism h : Σ∗ → Σ∗, denoted by ‖h‖, is defined by

‖h‖ = max {|h(a)| : a ∈ Σ} .

The stabilizer of an infinite word w, denoted by Stab(w), is the monoid of
morphisms defined over Σ = alph(w) that fix w:

Stab(w) = {h : Σ∗ → Σ∗ : h(w) = w} .

3. Algebraic aspects of stabilizers

Let Σ be a finite alphabet and let h : Σ∗ → Σ∗ be a morphism. A letter a ∈ Σ
is said to be mortal under h if there exists some t ≥ 1 such that ht(a) = ε. The
set of all mortal letters associated with h is denoted by Mh. A word is mortal
if it belongs to M∗

h ; otherwise it is immortal. A letter a ∈ Σ is said to be
monorecursive under h if h(a) ∈ M∗

haM∗
h . Note that a monorecursive letter is

immortal. Let Fh = {h|Σ|(a) : a is monorecursive}. It is well known and easy
to see that the set of finite fixed points of h is equal to F ∗

h ([6]; see also [1,
Theorem 7.2.3]).
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As an introduction to the methods in the field we recall some basic observa-
tions. Let w ∈ Σω, and let h ∈ Stab(w). Then w can be factorized uniquely as
w = u0a0u1a1 · · · , where ui are mortal words and ai are immortal letters for all
i ≥ 0. since w = h(w) and w is infinite, there are infinitely many ai’s. If ai is
monorecursive for all i ≥ 0, then w is an infinite product of finite fixed points
of h. Otherwise, let a = aj be the first non-monorecursive letter in w, and let
u = u0a0 · · ·uj . Since h(w) = w and h(u) contains only mortal and monorecur-
sive letters, necessarily h(a) = yax for some y, x ∈ Σ∗. Since h(ai) contains ai

for all 0 ≤ i < j, the word y has to be mortal. Therefore, the word x has to be
immortal, else we would get that a is monorecursive. This implies that w can
be generated by iterating h on ua: w = hω(ua) = uaxh(x)h2(x) · · · = vhω(a),
where u = vh|Σ|−1(y) · · ·h(y)y. We recover the following classical theorem:

Theorem 1 (Head and Lando [7]). Let h : Σ∗ → Σ∗, and let w ∈ Σω.
Then w is a fixed point of h if and only if exactly one of the following two
conditions holds:

1. w ∈ Fω
h ;

2. w = vhω(a), where v ∈ F ∗
h and h(a) = yax, with y mortal and x immortal.

See also Allouche and Shallit, [1, Section 7.2–7.3].

Definition1. Let w ∈ Σω. The finite stabilizer of w, denoted by FStab(w),
is the set of morphisms that stabilize w by finite fixed points; the morphic
stabilizer of w, denoted by MStab(w), is the set of morphisms that stabilize w
by iteration. By the above discussion, Stab(w) is a disjoint union of FStab(w)
and MStab(w).

Proposition 2. Let w ∈ Σω, let σ = |Σ|, and let h ∈ Stab(w). Then

max {|u| : u ∈ Fact(w) ∩ M∗
h} < 2‖hσ‖.

Proof. Let w = u0a0u1a1 · · · , where ui ∈ M∗
h and ai ∈ Σ are immortal for all

i ≥ 0. Then hσ(ui) = ε for all i ≥ 0. Since w = hσ(w) = hσ(a0a1a2 · · · ), and
since hσ(ai) contains at least one immortal letter for all i ≥ 0, the inequality
follows. �

Proposition 3. Let w ∈ Σω.

1. Let h ∈ MStab(w). Then hn 6= hm for all n 6= m. In particular,
MStab(w) is either empty or infinite.

2. FStab(w) is nonempty and finite.

Proof. Suppose MStab(w) is not empty, and let h ∈ MStab(w). By assump-
tion, w = vhω(a), where v ∈ F ∗

h , and a ∈ Σ satisfies h(a) = yax, with y mortal
and x immortal. Therefore, hn(a) 6= hm(a) for all n 6= m, and so MStab(w)
contains the infinite set {hn : n > 0}.

Now consider FStab(w). Since Id ∈ FStab(w), FStab(w) is nonempty.
Also, if h ∈ FStab(w), then all letters are either mortal or monorecursive under
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h. Fix a set A ⊆ Σ, and let FStabA(w) be the set of FStab(w) elements h that
satisfy Mh = A. It is enough to show that FStabA(w) is finite.

Suppose FStabA(w) is nonempty. Then w = u0a0u1a1 · · · , where ui ∈ M∗
h

and ai ∈ Σ is monorecursive under h for all h ∈ FStabA(w) and for all i ≥ 0.
Also, by Proposition 2, max {|ui| : i ≥ 0} is bounded by a constant, say K. Let
h ∈ FStabA(w). Then |h(ai)| ≤ |ui| + 1 + |ui+1| ≤ 2K + 1 for all i ≥ 0, or we
would get that ai is not monorecursive. Similarly, |h(b)| ≤ |ui| ≤ K for all i ≥ 0
and for all letters b occurring in ui, or we would get that b is immortal. This
implies there can be only finitely many morphisms h ∈ FStab(w) satisfying
Mh = A, that is, FStabA(w) is finite. �

Proposition 4. Let w ∈ Σω, let σ = |Σ|, and let h ∈ FStab(w). Then for
infinitely many prefixes p of w we have h(p) = p, and for all prefixes p,

∣

∣ |h(p)| − |p|
∣

∣ ≤ ‖hσ‖.

Proof. Let h ∈ FStab. Then w = x0x1x2 · · · , where xi ∈ Fh for all i ≥ 0,
and so every prefix p of w has the form p = x0 · · ·xk−1y, where y is a prefix of
xk. If y = ε then h(p) = p. Otherwise,

|x0 · · ·xk−1| = |h(x0 · · ·xk−1)| ≤ |h(p)| ≤ |h(x0 · · ·xk−1xk)| = |x0 · · ·xk−1xk|,

and so
∣

∣ |h(p)| − |p|
∣

∣ ≤ max {|x| : x ∈ Fh} ≤ max {|hσ(a)| : a ∈ Σ} = ‖hσ‖.

�

Proposition 5. Let w ∈ Σω, and let h ∈ MStab(w). Then |h(p)| > |p| for
almost all prefixes p of w.

Proof. Let h ∈ MStab(w). Then there exists some u ∈ F ∗
h and a letter

a, such that h(a) = yax with y mortal and x immortal, and w = hω(ua) =
uaxh(x)h2(x) · · · . For i ≥ 0, let pi = hi(ua) = uaxh(x) · · ·hi−1(x). Let p be a
prefix of w with |p| ≥ |p0|. Then p = pip

′ for some i ≥ 0, where p′ is a prefix of
hi(x). Therefore,

|h(p)| = |h(pi)h(p′)| = |pih
i(x)h(p′)| > |pip

′| = |p|.

�

Corollary 6. Let w ∈ Σω and let h ∈ Stab(w). Then h ∈ MStab(w) if and
only if |h(p)| > |p| for almost all prefixes p of w.

Proposition 7. Let w ∈ Σω. Then MStab(w) is a subsemigroup of Stab(w).

Proof. Let h, g ∈ MStab(w). Then there exists some n > 0 such that |h(p)| >
|p| and |g(p)| > |p| for any prefix p of w with |p| > n. For such a prefix p,
assume w.l.o.g. that h(p) = px and g(p) = pxy, with x ∈ Σ+ and y ∈ Σ∗.
Then |hg(p)| = |pxh(xy)| > |p| and |gh(p)| = |pxyg(x)| > |p|. We get that
|hg(p)|, |gh(p)| > |p| for all prefixes p with |p| > n, and so, by Corollary 6,
hg, gh ∈ MStab(w). �
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Proposition 8. Let w ∈ Σω be aperiodic, and let h ∈ MStab(w). Then
lim|p|→∞ {|h(p)| − |p| : p is a prefix of w} = ∞.

Proof. As in Proposition 5, let w = hω(ua) = uaxh(x)h2(x) · · · , and let
pi = hi(ua) = uaxh(x) · · ·hi−1(x). Assume that there exists some constant
C > 0 such that |hi(x)| = |h(pi)| − |pi| ≤ C for infinitely many i’s. Then there
exist some integers j 6= k such that hj(x) = hk(x), and so we get that w is
ultimately periodic, a contradiction. Hence, for all C > 0 we have |hi(x)| =
|h(pi)| − |pi| > C for almost all i.

Now assume that there exists some constant C > 0 such that |h(p)|−|p| ≤ C
for infinitely many prefixes p. Let p be such a prefix, let i be such that |pi−1| <
|p| < |pi|, and assume that |hi(x)| > C′, where C′ = C(‖h‖ + 1) (by the above
observation we can pick such p). Then |h2(pi−1)| = |pi+1| ≤ |h2(p)|, and so
|h2(p)| − |p| ≥ |hi(x)| > C′. But by Proposition 5, h(p) = pv for some v ∈ Σ+,
and by assumption, |v| = |h(p)| − |p| ≤ C. We get that |h2(p)| − |p| = |vh(v)| ≤
C′, a contradiction. Therefore, for all C we have |h(p)| − |p| > C for almost all
prefixes p. �

Definition2. Let w ∈ Σω, and let h ∈ Stab(w). We say that h satisfies the
bounded prefix property if there exists a constant C > 0 such that

∣

∣ |h(p)| − |p|
∣

∣ ≤
C for all prefixes p of w.

Corollary 9. Let w ∈ Σω be aperiodic, and let h ∈ Stab(w). Then h ∈
FStab(w) if and only if h satisfies the bounded prefix property.

Proposition 10. Let w ∈ Σω be aperiodic. Then FStab(w) is a submonoid of
Stab(w).

Proof. Let h, g ∈ FStab(w). Then h, g satisfy the bounded prefix property,
with constants Ch, Cg, respectively. Let C = max{Ch, Cg}. Then

∣

∣ |hg(p)| − |p|
∣

∣ =
∣

∣ |h(g(p))| − |g(p)| + |g(p)| − |p|
∣

∣ ≤
∣

∣ |h(g(p))| − |g(p)|
∣

∣ +
∣

∣ |g(p)| − |p|
∣

∣ ≤ 2C.

We get that hg satisfies the bounded prefix property with constant 2C, and so
hg ∈ FStab(w) by Corollary 9. Since Id ∈ FStab(w), we get that FStab(w) is
a monoid. �

Example1. Proposition 10 does not hold if w is ultimately periodic. Let Σ =
{0, 1, 2} and let w = 0(12)ω. Define h, g : Σ∗ → Σ∗ by

h = {0 → 01, 1 → ε, 2 → 21}, g = {0 → 0, 1 → 12, 2 → ε}.

Then h, g ∈ FStab(w), but gh = {0 → 012, 1 → ε, 2 → 12} ∈ MStab(w).

A subsemigroup A ⊆ MStab(w) is a right ideal of MStab(w) if hg ∈ A for
all h ∈ A and g ∈ MStab(w). Similarly, A is a left ideal if gh ∈ A for all h ∈ A
and g ∈ MStab(w). If A is both a left and a right ideal then it is an ideal of
MStab(w).
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Proposition 11. Let w ∈ Σω be aperiodic. Then MStab(w) is an ideal of
Stab(w).

Proof. By Proposition 7, MStab(w) is closed under composition. We show
that if h ∈ MStab(w) and g ∈ FStab(w), then both hg and gh do not satisfy
the bounded prefix property.

As in Proposition 8, let w = hω(ua) = uaxh(x)h2(x) · · · , and let pi =
hi(ua) = uaxh(x) · · · hi−1(x). Since w is aperiodic, limi→∞ |hi(x)| = ∞. Sup-
pose gh satisfies the bounded prefix property with constant C. Then for all
i ≥ 0,

C ≥
∣

∣ |gh(pi)| − |pi|
∣

∣ =
∣

∣ |g(pi+1)| − |pi|
∣

∣ =
∣

∣ |g(pih
i(x))| − |pi|

∣

∣ =
∣

∣ |g(pi)| − |pi| + |g(hi(x))|
∣

∣.

Since g ∈ FStab(w), we get by Proposition 4 that |g(pi)| > |pi|−C′, where C′ =
‖g|Σ|‖. Since the factors of w that are mortal under g are of bounded length, and
limi→∞ |hi(x)| = ∞, we can choose some i such that hi(x) contains more than
C+C′ immortal letters under g. This implies that |g(pi)|−|pi|+ |g(hi(x))| > C,
a contradiction.

Now suppose that hg satisfies the bounded prefix property. Then for all
i ≥ 0,

∣

∣ |hg(pi)| − |pi|
∣

∣ ≤ C . Since |g(pi)| > |pi| − C′, we get that |h(g(pi))| >
|h(pi)| − C′′, where C′′ = C′‖h‖. Since limi→∞(|h(pi)| − |pi|) = ∞, we can
choose i such that |h(pi)| > |pi| + C′′ + C, and so |h(g(pi))| − |pi| > C, a
contradiction. �

Example2. Proposition 11 does not hold if w is ultimately periodic. Let Σ =
{0, 1, 2, 3} and let w = 01(23)ω. Define h, g : Σ∗ → Σ∗ by

h = {0 → 01, 1 → 2, 2 → 3, 3 → 2}, g = {0 → 01, 1 → ε, 2 → ε, 3 → 23}.

Then h ∈ MStab(w) and g ∈ FStab(w), but

gh = {0 → 01, 1 → ε, 2 → 23, 3 → ε} ∈ FStab(w).

Corollary 12. Let w ∈ Σω be aperiodic. Then

1. Stab(w) is finite if and only if MStab(w) is empty;

2. Stab(w) is a finitely generated monoid if and only if MStab(w) is a finitely
generated semigroup.

Proof. By Propositions 3, 10, 11, FStab(w) is a finite monoid and MStab(w)
is an ideal, either empty or infinite. The result follows. �

In [10], it was conjectured that stabilizers of aperiodic infinite words are
always finitely generated. This conjecture turns out to be false, as the following
theorem illustrates.

Theorem 13. There exists an aperiodic infinite word w over a ternary alphabet
such that Stab(w) is infinitely generated.
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Proof. Let Σ = {a, b, c}. Define an infinite word w = w0w1w2 · · · ∈ Σω by

wi =







a, if i = 0,
b, if i = 2j for some j ≥ 0,
c, otherwise.

Then w is aperiodic. Let u−1 = ab, and for k ≥ 0, let

uk = uk−1c
2k−1b = abbcb · · · bc2k−1b.

Then every prefix p of w with |p| ≥ 2 has the form p = ukcm for some k ≥ −1
and 0 ≤ m < 2k+1. For such a pair (k, m), define the morphism hk,m : Σ∗ → Σ∗

by

hk,m(α) =







ukcm, if α = a,

c2k+1−m−1bc2k+1+m, if α = b,

c2k+2

, if α = c.

To prove that Stab(w) is infinitely generated, we first prove the following lemma:

Lemma 14. Stab(w) = {Id} ∪ {hk,m : k ≥ −1, 0 ≤ m < 2k+1}.

Proof. First, we show that all nontrivial stabilizer elements have the form
hk,m for some k ≥ −1 and 0 ≤ m < 2k+1. Let f ∈ Stab(w), f 6= Id. The
construction of w implies the following properties:

1. a occurs exactly once in w;

2. both b and cc occur infinitely often in w;

3. bcib occurs in w if and only if i = 2k − 1 for some k ≥ 0, in which case it
occurs exactly once.

These properties imply that f is nonerasing: if either f(b) = ε or f(c) = ε then
w is ultimately periodic, a contradiction; if f(a) = ε then necessarily f(b) = ax
for some x ∈ Σ∗, and so a occurs infinitely often in w, a contradiction. For the
same reason, both f(b) and f(c) do not contain the letter a.

Suppose f(c) contains the letter b. Then f(cc) contains a factor of the form
bcnb, and so bcnb occurs infinitely often in w, a contradiction to property 3.
Therefore, f(c) = cℓ for some ℓ > 0. Since b occurs infinitely often in w, this
implies that f(b) contains at least one b. Suppose that f(b) contains more than
one b. Then f(b) contains a factor of the form bcnb, and again we get that
bcnb occurs infinitely often in w. Therefore, f(b) contains exactly one b. This
implies that |f(a)| ≥ 2: otherwise, since w begins with abb, necessarily f = Id,
a contradiction.

We conclude that f satisfies the following:

• f(a) = ukcm for some k ≥ −1 and 0 ≤ m < 2k+1;

• f(b) = cibcj for some i, j ≥ 0;

• f(c) = cℓ for some ℓ > 0.
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We now express i, j, ℓ in terms of k and m. For f(b),

f(abb) = ukcm · cibcj · cibcj = uk · c2k+1−1 · b · c2k+2−1 · b · cj .

Therefore,
m + i = 2k+1 − 1,
i + j = 2k+2 − 1,

and so i = 2k+1 − m − 1 and j = 2k+1 + m. For f(c),

f(abbcb) = f(abb) · f(c) · f(b) = uk+2c
2k+1+m · cℓ · c2k+1−m−1bc2k+1+m =

uk+2c
2k+3−1 · bc2k+1+m.

Therefore, 2k+1 + m + ℓ + 2k+1 −m− 1 = 2k+3 − 1, and ℓ = 2k+2. We get that
f = hk,m. This completes the proof of the first direction of Lemma 14.

For the other direction, we need to show that hk,m ∈ Stab(w) for all appro-
priate pairs (k, m). Since w = limj→∞ uj, it is enough to show that hk,m(uj) is
a prefix of w for all pairs (k, m) and for all j ≥ −1. We prove by induction on
j that

hk,m(uj) = uk+j+2c
2k+1+m. (1)

Let f = hk,m. By definition,

f(u−1) = f(ab) = ukcm · c2k+1−m−1bc2k+1+m =

ukc2k+1−1bc2k+1+m = uk+1c
2k+1+m.

Now assume that f(uj−1) = uk+j+1c
2k+1+m. Then

f(uj) = f(uj−1 ·c
2j−1 ·b) = uk+j+1c

2k+1+m ·c2k+2(2j−1) ·c2k+1−m−1bc2k+1+m =

uk+j+1c
2k+j+2−1bc2k+1+m = uk+j+2c

2k+1+m.

This completes the proof of Lemma 14. �

We now continue to prove Theorem 13. Suppose that Stab(w) is finitely
generated, and consider the set {hk,0 : k ≥ −1}. Then there exists some N ∈ N

such that for all k > N , hk,0 = fg for some nontrivial f, g ∈ Stab(w). But by
Lemma 14, there exists some integers i, j, m, n, with i, j ≥ −1, 0 ≤ m < 2i+1,
and 0 ≤ n < 2j+1, such that f = hi,m and g = hj,n. Therefore (recall (1)),

fg(a) = hi,m(ujc
n) = ui+j+2c

2i+1+m · cn2i+2

= ui+j+2c
(2n+1)2i+1+m.

By Lemma 14, this implies that fg = hk′,m′ , where k′ = i + j + 2 and m′ =
(2n + 1)2i+1 + m. Since 2n + 1 ≥ 1 and i + 1 ≥ 0, we get that m′ > 0, a
contradiction: we assumed that fg = hk,0. Therefore, Stab(w) is infinitely
generated. �
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A monoid M is called aperiodic if for all m ∈ M there exists some k ≥ 0
such that mk = mk+1; M is group-free if no subsemigroup of M is a nontrivial
group. A finite monoid is group-free if and only if it is aperiodic. However,
infinite monoids can be group-free and not aperiodic. The monoid (N, +, 0) is
one such example. As we show below, infinite stabilizers of infinite words supply
another natural example of this phenomenon.

Proposition 15. Let w ∈ Σω be an aperiodic infinite word. Then FStab(w)
is an aperiodic monoid.

Proof. Since w is aperiodic, FStab(w) is a monoid. Let σ = |Σ|. Then
hσ = hσ+1 for all h ∈ FStab(w). �

Proposition 16. Let w ∈ Σω. Then Stab(w) is group-free, and Stab(w) is
aperiodic if and only if MStab = ∅.

Proof. Denote σ = |Σ|. Let G be a subsemigroup of Stab(w), and suppose that
G is a group. Let e ∈ G be the unit element. Then e2 = e, and so e ∈ FStab(w),
and e(a) = ε for all a ∈ Me. Let h ∈ G, and let g = h−1 ∈ G. Then for all
a ∈ Me we have h(a) = he(a) = h(ε) = ε, and so Me ⊆ Mh; and for all a ∈ Mh

we have e(a) = (gσhσ)(a) = gσ(ε) = ε, and so Mh ⊆ Me. We get that for all
h ∈ G, Mh = Me = M , and h(a) = ε for all a ∈ M .

Let MRe, MRh be the sets of the monorecursive letters of e and h, respec-
tively. Since e ∈ FStab(w), MRe = Σ \ M , and so MRh ⊆ MRe. Suppose
there exists b ∈ MRe \ MRh. Then e(b) = xby for some x, y ∈ M∗, while
h(b) = ucvdw, where u, v, w ∈ Σ∗ and c, d ∈ Σ \ M . But then xby = e(b) =
gh(b) = g(ucvdw), a contradiction: since c, d are immortal with respect to g as
well, g(ucvdw) contains at least two letters of Σ \ M . Therefore, for all h ∈ G,
MRh = MRe = MR and h ∈ FStab(w).

Let a ∈ Σ. If a ∈ M , then h(a) = e(a) = ε. Otherwise, h(a) = xay, where
x, y ∈ M∗, and h(x) = h(y) = ε. Since M = Mg and g(b) = ε for all b ∈ M , we
get that e(a) = gh(a) = g(xay) = g(a), and so e(a) = hg(a) = he(a) = h(a).
We conclude that h(a) = e(a) for all a ∈ Σ, and so h = e for all h ∈ G. Thus
Stab(w) is group-free.

For the second assertion, observe that if MStab(w) = ∅ then Stab(w) =
FStab(w). In particular, FStab(w) is a monoid (we note that if MStab(w) = ∅
then necessarily w is an aperiodic infinite word, and so FStab(w) is a monoid
by Proposition 10 as well). By Proposition 15, this monoid ia aperiodic. On the
other hand, if MStab(w) contains a morphism h, then hn 6= hm for all n 6= m
by Proposition 3, and so Stab(w) is not aperiodic. �

Below is a summary of the properties derived in this section.

1. Let w ∈ Σω be any infinite word, possibly ultimately periodic.

(a) Stab(w) is a disjoint union of FStab and MStab.
(b) FStab(w) is a finite nonempty set; MStab is either empty or infinite.
(c) h ∈ MStab(w) if and only if h ∈ Stab(w), and there exists a letter

a ∈ Σ such that h(a) contains at least two immortal letters.
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(d) h ∈ MStab(w) if and only if h ∈ Stab(w), and |h(p)| > |p| for all
sufficiently long prefixes p of w.

(e) MStab(w) is a subsemigroup of Stab(w).
(f) Stab(w) is a group-free monoid.

2. Let w ∈ Σω be an aperiodic infinite word.
(a) h ∈ MStab(w) if and only if h ∈ Stab(w), and the prefixes p of w

satisfy lim|p|→∞(|h(p)| − |p|) = ∞.
(b) FStab(w) is an aperiodic submonoid of Stab(w).
(c) MStab(w) is an ideal of Stab(w).
(d) Stab(w) is an aperiodic monoid if and only if MStab(w) = ∅, if and

only if Stab(w) is finite.
(e) Stab(w) is finitely generated if and only if MStab(w) is finitely gen-

erated.
(f) Stab(w) can be infinitely generated.

4. Order of growth

Let Σ be a finite alphabet. The order of growth of a letter a ∈ Σ under a
morphism h : Σ∗ → Σ∗ is the function ρa,h : N → N defined by ρa,h(n) = |hn(a)|,
n ∈ N. In [16, Theorem 4.14], Vitányi proved that there are only 4 possible
growth types:

1. a is exponentially growing if lim supn→∞ |hn(a)|/rn > 0 for some r > 1;

2. a is polynomially growing if there exist polynomials p and q of positive
degree such that p(n) ≤ |hn(a)| ≤ q(n) for all n ∈ N;

3. a is limited if there exists a constant C such that 0 < |hn(a)| < C for all
n ∈ N;

4. a is mortal if |hn(a)| = 0 for some n ≥ 0.

If a belongs to one of the first two types we say that a is growing under h;
otherwise, a is bounded under h. The set of growing letters is denoted by Gh;
the set of bounded letters is denoted by Bh. Note that by definition, h(a) ∈ B∗

h

for all a ∈ Bh, and h(b) contains a growing letter for all b ∈ Gh.
Let w ∈ Σω, and let h ∈ MStab(w). Then w = vhω(a), where v ∈ Σ∗ is

a finite fixed point of h and a ∈ Σ satisfies h(a) = yax, with y mortal and x
immortal. The order of growth of w under h is defined by ρw,h(n) = |vhn(a)| =
|v| + ρa,h(n), where a is the first growing letter of w (note that there must be
a growing letter, since w is infinite). We say that h is an exponentially (resp.
polynomially) growing morphism if w grows exponentially (resp. polynomially)
under h.

Another way to see that the only possible growth types for w are polynomial
or exponential is through the incidence matrix. Let Σ = Σk = {0, 1, . . . , k − 1},
let h : Σ∗

k → Σ∗
k, and let u ∈ Σ∗

k. The Parikh vector of u, denoted by [u],
is a vector of size k that counts how many times different letters occur in u:
[u] = (|u|0, |u|1, . . . , |u|k−1)

T . The incidence matrix associated with h, denoted
by A(h), is a k × k matrix, whose jth column is the Parikh vector of h(j):

A(h) = (ai,j)0≤i,j<k ; ai,j = |h(j)|i .
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Let A = A(h). It is a straightforward induction to show that [h(u)] = A[u] for
all u ∈ Σ∗, and that A(hn) = An for all n > 0. This implies that if w = vhω(a),
then |vhn(a)| = |v| + 1An[a], where 1 = (1, 1, . . . , 1) (the all ones vector of size
n). Thus, the growth order of w under h is the same as the growth order of
‖An‖, where for a matrix B = (bij), ‖B‖ = maxi,j |bij |. It is well known that
‖An‖ ∈ Θ(rnnd−1), where r is the Perron-Frobenius eigenvalue of A, and d is
the size of the largest Jordan block associated with r (see, e.g., [1, Chapter
8]; [9, 13]). Thus, w grows polynomially under h if and only if r = 1, and
exponentially if and only if r > 1 (note that r ≥ 1, otherwise w would be
finite). In particular, if the growth is polynomial then the degree of polynomial
is a natural number.

Our main goal in this section is to prove that for every aperiodic infinite word
w ∈ Σω, the elements of MStab(w) can grow either exponentially or polyno-
mially, but the two growth types cannot exist simultaneously. Moreover, in the
polynomial case the degree of the polynomial is fixed for all h ∈ MStab(w).
We also show that we can compute the polynomial degree from the dependency
graph of h. The proof is self-contained, and does not use the references men-
tioned above. Our results also enable us to extend Durand’s generalization of
Cobham’s theorem [2, 3] to a wider family of morphisms.

For some of the proofs, it will be convenient to consider a power of h in-
stead of h itself. Clearly, if a letter a is exponentially growing (resp. poly-
nomially growing, limited, mortal) under a morphism h then it does so un-
der the morphism ht for all t ≥ 1. The polynomial degree in the case of
polynomial growth does not change either, since if

∣

∣ hn(a)
∣

∣ ∈ θ(nd), then
∣

∣htn(a)
∣

∣ ∈ θ(tdnd) = θ(nd) for any constant t. Therefore, we can replace h
by any convenient power of h. This leads to the following definition:

Definition3. A morphism h : Σ∗ → Σ∗ is normalized if it satisfies following
conditions:

1. alph(h(a)) = alph(h2(a)) for all a ∈ Σ;

2. the first (resp. last) growing letter in h(a) is identical to the first (resp.
last) growing letter in h2(a) for all a ∈ Gh;

3. h(a) = h2(a) for all a ∈ Bh.

The application is as follows.

Lemma 17. Let h : Σ∗ → Σ∗ be a morphism. Then there exists a power g = ht

with t ≥ 1 such that g is normalized.

Proof. Let 2Σ be the power set of Σ. Then h induces a mapping h̄ : 2Σ → 2Σ,
defined by

h̄(A) =
⋃

a∈A

alph(h(a)), A ∈ 2Σ.

As the set of mappings 2Σ → 2Σ is a finite monoid, there exists an integer t ≥ 1
such that h̄t = (h̄t)2. This implies that the morphism h1 = ht satisfies (1); and
we may henceforth assume h1 = h.
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Now, for a morphism h and a growing letter a let â be the first growing letter
in h(a), and define a mapping h̄ : Gh → Gh by h̄(a) = â. Clearly, ht = (h̄)t. By
the same argument (some power of h̄ becomes idempotent) we get that there
exists some power h2 of h1 = h such that the first growing letter in h2(a) is
identical to the first growing letter in h2

2(a) for all a ∈ Gh. Similarly, there
exists some power h3 of h2 such that the last growing letter in h3(a) is identical
to the last growing letter in h2

3(a) for all a ∈ Gh.
Finally, let Q =

{

hk
3(a) : a ∈ Bh, k ≥ 0

}

, and define h̄3 : Q → Q by h̄3(x) =
h3(x) for all x ∈ Q. Since Q is a finite set, we get by the same reasoning that
there exists some power g of h3 that satisfies (1), (2) and (3). �

By Lemma 17, we may assume whenever it is convenient that h is normalized.
In particular, we may assume h(a) = ε for all a ∈ Mh, and h(x) = h2(x) for all
x ∈ B∗

h.

4.1. The edge condition

The following definition is due to Ehrenfeucht and Rozenberg [5]:

Definition4. Let h : Σ∗ → Σ∗. A letter a ∈ Σ satisfies the edge condition
under h if there exists an integer t such that ht(a) = xay (or ht(a) = yax),
where x ∈ Σ∗ and y ∈ B∗

h \ M∗
h . Note that if h is normalized, then a satisfies

the edge condition under h if and only if it satisfies it with t = 1.

The edge condition is a key concept for analyzing the order of growth. Let
w = vhω(a) ∈ Σω be an aperiodic infinite word. In what follows, we use
two classical results: one, due to Pansiot [12], states that there exists a letter
satisfying the edge condition under h if and only if the factor complexity of
w is quadratic; the other, due to Ehrenfeucht and Rozenberg [5], states that
there exists a letter satisfying the edge condition under h if and only if w
contains unbounded powers of bounded letters. By showing that polynomial
growth implies the existence of a letter satisfying the edge condition, we are
able to combine those two results.

4.2. Factor complexity

Pansiot’s result [12] relates the factor complexity of w to the existence of
a letter satisfying the edge condition. In fact, we only use Corollary 20 and
for this we do not need the full statement of Pansiot’s results; Propositions 18
and 19 are enough. For the sake of completeness we give full proofs. Readers
familiar with Pansiot’s results are invited to proceed directly with Corollary 20.

Definition5. Let w ∈ Σω be an infinite word. The factor complexity (also
called subword complexity elsewhere) of w is the function pw : N → N defined
by pw(n) = |Fact(w)∩Σn|. That is, pw(n) counts the number of distinct factors
of length n of w.

Proposition 18 (Pansiot [12]). Let w = vhω(a) ∈ Σω be an aperiodic infi-
nite word. If some letter b ∈ Σ satisfies the edge condition, then pw(n) ∈ Ω(n2).
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Proof. We assume that h is normalized. By assumption, h(a) = yax, where y
is mortal and x immortal, and w = v′axh(x)h2(x) · · · , where v′ = vh|Σ|(y) · · · y.
Suppose that b ∈ Σ satisfies the edge condition. Then b 6= a, else we would get
that x ∈ B∗

h, and w = v′ax(h(x))ω , a contradiction. Since b ∈ alph(h(a))
and b ∈ alph(h(b)), we get that b occurs infinitely often in w. By symmetry
arguments, we may assume that h(b) = rbs, where r ∈ Σ∗ and s ∈ B∗

h \ M∗
h .

Let u′bz′c′ be the prefix of w such that b does not occur in u′, z′ ∈ B∗
h, and

c′ is growing. Then h(u′bz′c′) = h(u′)rbsh(z′)h(c′). Let h(c′) = y′cy, where
y′ ∈ B∗

h (that is, c is the first growing letter of h(c′)). Let u = h(u′)r, and let
z = sh(z′)y′. Since h is normalized, c is the first growing letter of h(c). We get
that w has a prefix of the form ubzc, where |u| > |vh(a)|, z ∈ B∗

h, c is growing,
and h(c) ∈ ycΣ∗ for some y ∈ B∗

h. In particular, b, c /∈ alph(z).
For all k ∈ N, consider the prefix

hk(ubzc) = hk(u)·hk−1(r) · · · h(r)r·b·s·(h(s))k−1 ·h(z)·(h(y))k−1 ·y ·c := ukbzkc,

where uk = hk(u)hk−1(r) · · · h(r)r and zk = s(h(s))k−1h(z)(h(y))k−1y ∈ B∗
h.

Then |zk| ∈ Θ(k), and so the number of zk with n/2 < |zk| < 3n/4 is of order
n. Also, since |u| > 1 and u contains at least 2 growing letters (namely, a and
b), we get by induction that |uk| > k. This implies that for each k, w contains
a factor of the form bzkc, with at least k letters strictly to the left of this factor.
Hence, for n/2 < |zk|, we can assume that k > n/C for some constant C ≥ 4.

The fraction 1/C is used to guarantee for each 0 ≤ ℓ ≤ n/C and each k with
n/2 < |zk| < 3n/4 the existence of a factor sk,ℓbzkcpk,ℓ in w, where |sk,ℓ| = ℓ
and |sk,ℓbzkcpk,ℓ| = n.

Note that if n/2 < |zk| < |zm|, then bzkc and bzmc cannot occur in the same
factor of w of length n; The reason is that b and c are growing letters which
do not occur inside zk. Now for 0 ≤ ℓ < ℓ′ ≤ n/C the words sk,ℓbzkcpk,ℓ and
sk,ℓ′bzkcpk,ℓ′ are different as well.

We have thus found Ω(n2) different factors of length n in w. �

Proposition 19 (Pansiot [12]). Let w = vhω(a) ∈ Σω be an aperiodic infi-
nite word. If no letter satisfies the edge condition, then pw(n) ∈ O(n log n).

Proof. We assume that h is normalized. Moreover, since no letter a satisfies
the edge condition, each letter is either bounded or exponentially growing. Re-
placing h by some power, we may assume that for all b ∈ Σ and for all ℓ ∈ N,
either h(b) = h2(b) or

∣

∣ hℓ(b)
∣

∣ ≥ 2ℓ. Let w be a factor of length n in w, where

n >
∣

∣ vh4(a)
∣

∣. We count the number of factors of this length.

Let ℓ be the minimal integer such that u := h−(ℓ+2)(w) is a factor of vh2(a).
Then |u| ≥ 2: otherwise, if |u| = 1, we get that h(u) ∈ Fact(vh2(a)) (recall
that h is normalized), and so h−(ℓ+1)(w) ∈ Fact(vh2(a)), a contradiction to the
minimality of ℓ. Therefore, u = a1 · · · am, with ai ∈ Σ and 2 ≤ m ≤ |vh2(a)|.
There is only a constant number of such u’s, and so we may fix u. Note that w
factorizes as shℓ+2(a2) · · ·hℓ+2(am−1)p, where s is a suffix of hℓ+2(a1) and p is
a prefix of hℓ+2(am). For a fixed n, w is completely described by u, |s|, and ℓ,
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where 1 ≤ |s| ≤ n. Therefore it is enough to show that ℓ ≤ log(n), where (in
this proof) log(n) is simply a short hand for the positive integer ⌈log2 n⌉.

If ai is growing for some 2 ≤ i ≤ m−1, then |hℓ+2(ai)| ≥ 2ℓ, and so ℓ ≤ log n.
Assume therefore that ai ∈ Bh for 2 ≤ i ≤ m − 1. Let u = a1zam, where
z ∈ B∗

h. Then h(z) = h2(z). Since |w| >
∣

∣ vh4(a)
∣

∣ and hℓ+2(u) contains w, at
least one of a1, am is growing. By symmetry we assume that a1 is growing. Let
h(a1) = x′bx′′, where b is the last growing letter of h(a1). Since h is normalized,
h(b) = xbz′, where x ∈ Σ∗ and z′ ∈ B∗

h. But as b does not satisfy the edge
condition, necessarily z′ is mortal. Hence hℓ(xbz′) = hℓ(x) · · · h(x)xbz′.

For am we write h(am) = y′′cy′, where cy′ = ε if h(am) ∈ B∗
h, and c is the

first growing letter of h(am) otherwise. Since h is normalized, we can assume
that h(c) = z′′cy, where z′′ is mortal (if am is bounded, then h(c) = ε and the
equality still holds).

Recall that

h2(u) = h(x′bx′′h(z)y′′cy′) = h(x′)xbz′h(x′′zy′′)z′′cyh(y′).

Assume that ℓ > log n. We show that this is impossible: Since x′′h(z)y′′ ∈ B∗
h

we have
h(bz′x′′h(z)y′′z′′c) = xbz′h(x′′zy′′)z′′cy,

and by induction,

hℓ+1(bz′x′′h(z)y′′z′′c) = hℓ(x) · · ·h(x)xbz′h(x′′zy′′)z′′cyh(y) · · ·hℓ(y).

We get that s is a suffix of hlog(n)(x) · · ·h(x)xbz′h(x′′), because the length of
hlog(n)(xbz′) = hlog(n)(x) · · · h(x)xbz′ exceeds n and hlog(n)(x) · · ·h(x)xbz′h(x′′)
is a suffix of hℓ(x) · · · h(x)xbz′h(x′′).

Consider now h(y′′)z′′cyh(y) · · ·hℓ(y). If am is bounded, then p is a prefix
of h(y′′) because the other parts are empty. In particular, p is also a prefix of
h(y′′)z′′cyh(y) · · ·hlog(n)(y) in this case.

If on the other hand am is growing, then a dual argument as above shows that
p is a prefix of h(y′′)z′′cyh(y) · · ·hlog(n)(y), because c grows in this case. Thus,
whether or not am is growing, p is a prefix of h(y′′)z′′cyh(y) · · ·hlog(n)(y). But
this contradicts the minimality of ℓ, because w appears as a factor in hlog(n)(u) =
hlog(n(a1 · · · am). Therefore ℓ ≤ log n ≤ 1 + log2 n. �

Corollary 20. Let w ∈ Σω be an aperiodic infinite word, and suppose that
there exists a morphism h ∈ MStab(w) and a letter a ∈ Σ such that a satisfies
the edge condition under h. Then for all g ∈ MStab(w) there exists a letter
b ∈ Σ such that b satisfies the edge condition under g.

Proof. By the above propositions, for any morphism h ∈ MStab(w) there
exists a letter satisfying the edge condition under h if and only if pw(n) ∈ Ω(n2).
As the factor complexity is independent of the generating morphism, the result
follows. �
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4.3. Unbounded powers over B∗
h

Let w ∈ Σω. To differentiate between exponentially growing morphisms
and polynomially growing morphisms in MStab(w), we analyze the structure
of unbounded powers ui occurring in w, where u ∈ B∗

h. First, we consider
aperiodic infinite words in general.

The following lemma is due to Ehrenfeucht and Rozenberg [5]. We bring the
proof (slightly adjusted) as it will be used next. In what follows, the inverse
image h−1(u) of a word u occurring in w = vhω(a) is the shortest occurrence
u′ in w such that h(u′) contains u.

Lemma 21 ([5]). Let w = vhω(a) ∈ Σω. The following are equivalent:

1. there exists a letter b ∈ Σ that satisfies the edge condition;

2. there exists a nonempty word z ∈ B+
h such that zn ∈ Fact(w) for all n ∈ N.

Proof. We assume that h is normalized. Suppose there exists a letter b ∈
Σ that satisfies the edge condition. Assume that h(b) = xby, where y is
a bounded immortal word. Since h is normalized, h(y) = h2(y). Denote
xn = hn−1(x) · · · hn(x)x and z = h(y). Then for all n ∈ N, the word hn(b) =
xnbyzn−1 is a factor of w.

Now suppose that there exists a word z ∈ B+
h such that zn ∈ Fact(w) for

all n ∈ N. Then w contains arbitrarily long factors of bounded letters. First,
we assume that w contains infinitely many growing letters. Choose b0y0c0 ∈
Fact(w), where b0, c0 ∈ Gh, y0 ∈ B∗

h, and |y0| > 3‖h‖2 +2‖h‖ (note: though for
taking an inverse image of y0 it is enough to require |y0| > ‖h‖, the condition
|y0| > 3‖h‖2 + 2‖h‖ is needed to derive a contradiction at the end).

Consider h−1(b0y0c0). Since |y0| > ‖h‖, and since both h−1(b), h−1(c) are
growing letters, we get that h−1(b0y0c0) = b1y1c1, where b1, c1 ∈ Gh and y1 ∈
B∗

h. Also, b0 is the last growing letter in h(b1) and c0 is the first growing
letter in h(c1). This implies that |y0| < ‖h‖|y1| + 2‖h‖. Together with |y0| >
3‖h‖2 + 2‖h‖, we get that |y1| > 3‖h‖, and we can apply inverse image again.
We get that h−1(b1y1c1) = b2y2c2, where b2, c2 ∈ Gh, y2 ∈ B∗

h, and |y2| > 0.
The successive application of h−1 can be continued as long as |yi| ≥ ‖h‖.

By induction, we get a sequence {biyici}0≤i≤k, where k ≥ 2, bi, ci ∈ Gh and
yi ∈ B∗

h for 0 ≤ i ≤ k, and for 0 ≤ i ≤ k − 1,

• bi+1yi+1ci+1 = h−1(biyici);

• bi is the last growing letter of h(bi+1);

• ci is the first growing letter of h(ci+1);

• ‖h‖ ≤ |yi| < ‖h‖|yi+1| + 2‖h‖;

• |yk| < ‖h‖.

15



Since h is normalized, we get that bk−1 = bi = b and ck−1 = ci = c for all
0 ≤ i < k. Let h(bk) = u′bx′ and h(ck) = z′cv′, where x′, z′ ∈ B∗

h and
u′, v′ ∈ Σ∗. Then

h(bkykck) = u′bx′h(yk)z′cv′, and yk−1 = x′h(yk)z′.

Suppose neither b nor c satisfy the edge condition. This implies that h(b) =
ubx and h(c) = zcv, where u, v ∈ Σ∗ and x, z ∈ M∗

h . Since h is normalized,
h(x) = h(z) = ε and h(w) = h2(w) for all w ∈ B∗

h (in particular, for w =
x′, z′, yk). We get:

h(bk−1yk−1ck−1) = h(bx′h(yk)z′c) = ubxh(x′ykz′)zcv;
yk−2 = xh(x′ykz′)z;

h(bk−2yk−2ck−2) = h(bxh(x′ykz′)zc) = ubxh(x′ykz′)zcv;
yk−3 = xh(x′ykz′)z;

and similarly, yi = xh(x′ykz′)z for all 0 ≤ i ≤ k−2. Since |x|, |x′|, |z|, |z′|, |yk| <
‖h‖, we get that |y0| < 3‖h‖2 + 2‖h‖, a contradiction to how we chose y0.
Therefore, at least one of b, c satisfies the edge condition.

If w contains only finitely many growing letters a1, . . . , ak then necessarily
h−1(ai) = ai for all 1 ≤ i ≤ k. This implies that for all b ∈ Gh, the only growing
letter in h(b) is b itself. Since b is growing, it has to satisfy the edge condition.
�

Definition6. A word x ∈ Σ+ is primitive if there exist no word y ∈ Σ+ and no
integer k ≥ 2 such that x = yn. Let w ∈ Σω. The repetitive set of w is the set

Rep(w) = {x ∈ Σ+ : x is primitive and xk ∈ Fact(w) ∀k ∈ N}.

Definition7. Let w = vhω(a) ∈ Σω. The index of order n of a word x ∈ Σ+

under the morphism h is defined by

indw,h(x, n) = max{k ∈ N : xk ∈ Fact(vhn(a))}.

Lemma 22. Let w = vhω(a) ∈ Σω be an aperiodic infinite word. Then we have
indw,h(u, n) ∈ Θ(n) for all u ∈ Rep(w) ∩ B∗

h. Moreover, Rep(w) ∩ B∗
h is given

by the cyclic shifts of at most 2|Gh| words.

Proof. Since w is aperiodic, it must contain infinitely many growing letters.
Suppose there exists some u ∈ Rep(w) ∩ B∗

h, and consider a maximal power ui

(here ui is maximal if it occurs at position ℓ in w, but does not occur at position
ℓ−|u| or ℓ+ |u|). Let K = 3‖h‖2+2‖h‖. By the proof of Lemma 21, if |ui| > K,
then ui is contained in a word of the form hk(bwc), where w = x′h(y′)z′, and

• b, c ∈ Gh;

• x′, y′, z′ ∈ B∗
h;

• |x′|, |y′|, |z′| < ‖h‖;
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• h(b) ∈ Σ∗bx and h(c) ∈ zcΣ∗, where x, z ∈ B∗
h and at least one of x, z is

immortal.

Let y = h(x′h(y′)z′) = h(x′y′z′). Then ui is a factor of bx(h(x))ky(h(z))kzc,
where x, z, y ∈ B∗

h, |x|, |z| < ‖h‖, and |y| < 3‖h‖2. By choosing i > 2K,
we get that there is a power uK that is contained as a factor in (h(x))k or
(h(z))k (or both). By symmetry, we assume that uK occurs in h(x) (and x is
immortal). Since u is primitive, this implies that some cyclic shift of u is a
primitive root of h(x); this is a consequence of well-known theorems of Lyndon
and Schützenberger [11]. Since the number of words h(x) we have to consider
is bounded by 2|Gh|, this yields the finiteness of Rep(w) ∩ B∗

h. Also, since i
was maximal, this implies that i ≥ k − 1. Let n0 be the minimal integer such
that hn0(a) contains all factors of the form bwc, with b, c ∈ Gh, w ∈ B∗

h, and
|w| < ‖h‖2 +2‖h‖. Then for sufficiently large n, indw,h(u, n) ≥ n−n0−2. This
shows the lower bound.

For the upper bound, observe that if ui is a factor of bx(h(x))ky(h(z))kzc,
then |ui| ≤ |x|+ |y|+ |z|+k(|h(x)|+ |h(z)|) < K +2‖h‖2k. Therefore, the same
upper bound applies to i. Suppose that ui occurs in hn(a). Then k ≤ n, and
the upper bound follows. �

Next, we consider aperiodic infinite words generated by polynomially grow-
ing morphisms.

Lemma 23. Let w ∈ Σω be an aperiodic infinite word, and let h ∈ MStab(w)
be a normalized, polynomially growing morphism. Then for all a ∈ Gh, h(a)
contains a letter satisfying the edge condition.

Proof. Since h is normalized, alph(h(a)) = alph(h2(a)) for all a ∈ Σ. Let
a 6= b, and suppose b ∈ alph(h(a)). Then a /∈ alph(h(b)): otherwise, we would
get that h2(a) = xayaz for some x, y, z ∈ Σ∗, which implies that a grows
exponentially, a contradiction (see also Salomaa [14]). Therefore, the relation
“b � a ⇔ b ∈ alph(h(a))” is a partial order on Σ. A least growing letter b under
this order satisfies h(b) = xby, where x, y ∈ B∗

h (or there would be a growing
letter smaller than b), and xy is immortal (or b would not be growing). That is,
b satisfies the edge condition. Therefore, for each growing letter a there exists
some descending chain that begins from a and contains a letter b that satisfies
the edge condition. Since h is normalized, b ∈ alph(h(a)). �

Proposition 24. Let w = vhω(a) ∈ Σω be an aperiodic infinite word such that
h grows polynomially. Then we have ∅ 6= Rep(w) ⊆ B+

h .

Proof. We may assume that h is normalized. Since a is growing, we get
by Lemma 23 that h(a) contains a letter satisfying the edge condition. By
Lemma 21, we get therefore that there exists a word u ∈ B+

h such that uk is a
factor of w for all k ≥ 1. Thus, Rep(w) 6= ∅.

Next, we show that no u ∈ Rep(w) contains a growing letter. Suppose that
there exists a factor w ∈ Fact(w) that contains 2‖h‖−1 or more growing letters,
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but no letter that satisfies the edge condition. Then h−1(w) must contain at least
one growing letter b such that h(b) is contained in w. But by Lemma 23, h(b)
contains a letter satisfying the edge condition, a contradiction. We conclude
that any factor of w contains at most 2‖h‖ − 2 consecutive growing letters
that do not satisfy the edge condition (here two growing letters wi and wj are
consecutive in w = w0w1w2 · · · if wi+1 · · ·wj−1 ∈ B∗

h).
Suppose there exists a word u ∈ Rep(w) that contains a growing letter c.

Then h−1(u) must contain a growing letter as well. Also, there exists some t ≥ 1
such that if a is a letter satisfying the edge condition, with h(a) = xay (resp.
h(a) = yax) and y ∈ B∗

h, then ht(a) = x′ay′, where y′ ∈ B∗
h and |y′| > |u|.

By the assumption, un ∈ Fact(w) for all n ∈ N. Choose some integer n large
enough such that vn := h−t(un) contains 4‖h‖ or more growing letters. Then
vn must contain a letter b, such that b satisfies the edge condition and ht(b) is
contained in un. But that implies that un contains a factor longer than |u| that
contains no growing letters, a contradiction. Therefore, Rep(w) ⊆ B∗

h. �

Remark. Let w be as in Proposition 24. Then Lemma 22 implies that Rep(w)
is a finite set, given by the cyclic shifts of at most 2|Gh| ≤ 2|Σ| − 2 primitive
words. The work of Kobayashi and Otto [8, Section 5] implies that if w can be
generated by an injective morphism, then Rep(w) is also finite. We believe that
Rep(w) is finite whenever MStab(w) is nonempty.

4.4. Polynomial and exponential growth cannot co-exist

Theorem 25. Let w ∈ Σω be an aperiodic infinite word, where MStab(w) is
not empty. Then MStab(w) contains either polynomially growing morphisms
or exponentially growing morphisms, but not both. Moreover, in the polynomial
case, the degree of the polynomial is fixed.

Proof. Let w = vhω(a) for some polynomially growing morphism h. Fix some
d1 such that |vhn(a)| ∈ O(nd1). Suppose that MStab(w) contains another
morphism g, with w = ugω(b), such that |ugn(b)| ∈ Ω(nd2) and d1 < d2. Note
that this assumption is verified if either g is exponentially growing or if the
degree of the polynomially growing morphisms were not fixed.

By Lemma 23, there exists a letter satisfying the edge condition under h. By
Corollary 20, there exists therefore a letter satisfying the edge condition under
g. By Lemma 21, there exists some nonempty word x ∈ Rep(w)∩B∗

g . Since by

Proposition 24 we have Rep(w) ⊆ B+
h , it follows x ∈ B+

h ∩ B+
g . Therefore, by

Lemma 22, indw,h(x, n) ∈ Θ(n) and indw,g(x, n) ∈ Θ(n).
For n ∈ N we find m ∈ O(nd1/d2) such that |ugm(b)| ≥ |vhn(a)|. The

maximal exponent of x in ugm(b) is of order m. But |ugm(b)| ≥ |vhn(a)|, and
the maximal exponent of x in vhn(a) is of order n, a contradiction. Thus, a
polynomially growing morphism and an exponentially growing morphism can-
not co-exist in the same stabilizer and moreover, MStab(w) cannot contain
polynomially growing morphisms of different degrees. �
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4.5. The dependency graph and polynomial degree

The dependency graph of a morphism h : Σ∗ → Σ∗ is a directed graph D(h),
whose vertices are the letters of Σ, and that contains a directed edge a → b if
and only if b ∈ alph(h(a)). If a is recursive (that is, h(a) ∈ Σ∗aΣ∗), then D(h)
contains a self-loop a → a. We assume that h is normalized, and so D(h) is
transitive. In this section we show that we can deduce from D(h) what is the
order of growth of a letter a under h, and if the letter grows polynomially, we
can use D(h) to compute the polynomial degree.

First, we note that a sufficient condition for a letter a to grow exponentially
is that it is contained in a non-trivial strongly connected component. Indeed,
if there exists letters a 6= b such that a ∈ alph(h(b)) and b ∈ alph(h(a)), then
h2(a) contains at least two occurrences of a. This condition is not necessary
however, as is apparent from the case h(a) = aa.

To overcome the difficulty, we label by E all letters a ∈ Σ such that a ap-
pears at least twice in h(a). Now, a letter a is exponentially growing if and
only if there is an edge from a either to a letter labeled with E or to a letter b
which is contained in a non-trivial strongly connected component. If we remove
these letters we obtain a partial order (since all connected components are now
trivial) and there is no letter labeled by E. We claim that all remaining letters
have either a polynomial or a bounded growth, and that the graph encodes the
polynomial degree as well as some other interesting facts.

Notation: For each letter a ∈ Σ, we find a path a = a0 → a1 → · · · → aℓ

for which the number of recursive letters is maximal. We denote by d(a) the
number of recursive letters on such a path. Note that if a is immortal then
d(a) > 0.

Proposition 26. Let h : Σ∗ → Σ∗, and suppose that a occurs at most once in
h(a) for all a ∈ Σ, and that D(h) induces a partial order on Σ. Then

1. a has a polynomial growth of degree d(a)− 1, where −1 is the degree of the
zero polynomial;

2. Suppose h(a) ∈ M∗
haΣ∗ (that is, iterating h on a gives a converging se-

quence). Then d(a) ≥ 1, and

• if d(a) = 1 then hω(a) is a finite word;

• if d(a) = 2 then hω(a) is an ultimately periodic infinite word;

• if d(a) ≥ 3 then hω(a) an aperiodic infinite word.

Proof. Proof of 1. First, consider the mortal and bounded letters. A letter
a has growth order zero if and only if a is mortal, if and only if there are no
outgoing edges from a, if and only if d(a) = 0. Thus, a has degree -1 if and only
if d(a) = 0.

An letter a has polynomial growth with degree 0 if and only if a has a non-
zero bounded growth, if and only if h(a) = h2(a) 6= ε, if and only if d(a) = 1.

Now let d(a) ≥ 2 and let b = a1, where a = a0 → a1 → · · · → aℓ is a path
containing d(a) recursive letters. Then the degree of a ≥ the degree of b. If a is
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not recursive then d(a) = d(b). By induction, b has degree d(b) − 1, and so the
degree of a is at least d(a) − 1.

If a is recursive, then
∣

∣hk(a)
∣

∣ ≥
∣

∣ hk−1(a)
∣

∣ +
∣

∣ hk−1(b)
∣

∣, that is,
∣

∣ hk(a)
∣

∣ −
∣

∣hk−1(a)
∣

∣ ≥
∣

∣hk−1(b)
∣

∣. Thus,

∣

∣hk(a)
∣

∣−1 =
∣

∣hk(a)
∣

∣−
∣

∣hk−1(a)
∣

∣+
∣

∣hk−1(a)
∣

∣−· · ·−
∣

∣h(a)
∣

∣+
∣

∣h(a)
∣

∣−|a| ≥

k−1
∑

i=1

∣

∣ hi(b)
∣

∣.

By induction, the degree of b is at least d(b)− 1, thus the degree of a is at least
d(b) = d(a) − 1.

This yields the lower bound. For the upper bound we can argue in a very
similar way. We let h(a) = b1 · · · bm and we assume that the growth of some
b = bj is the fastest. Then d(b) ≤ d(a). If a is not recursive then

∣

∣ hk(a)
∣

∣ ≤

m
∣

∣hk−1(b)
∣

∣. By induction, the degree of b is at most d(b)−1, and so the degree
of a is at most d(a) − 1. If a is recursive, then

∣

∣hk(a)
∣

∣ −
∣

∣ hk−1(a)
∣

∣ ≤ m
∣

∣ hk−1(b)
∣

∣.

We obtain the result by induction on d.

Proof of 2. Let h(a) = yax, where y ∈ M∗
h and x ∈ Σ∗. If d(a) = 1

then x ∈ M∗
h as well, and hω(a) is finite. If d(a) = 2 then x ∈ B∗

h \ M∗
h , and

hω(a) = yax(h(x))ω .
Suppose d(a) ≥ 3. Then x contains a recursive letter b with d(b) = 2 (take

b to be the appropriate letter along the longest path beginning with a). Thus
h(b) = zbz′, where zz′ ∈ B∗

h \ M∗
h . We get that b satisfies the edge condition,

and so hω(a) contains unbounded powers of the form ui, where u ∈ B∗
h \ M∗

h .
On the other hand, hω(a) contains infinitely many b’s, and b is growing. Hence
b does not occur in ui, and hω(a) is aperiodic. �

4.6. Multiplicative dependency of dominant eigenvalue

In [2], Durand made the following conjecture: let w ∈ Σω be an aperiodic
infinite word, such that w = hω(a) = gω(a), where h, g ∈ MStab(w) and a
is the first letter of w. Let r(h) and r(g) be the dominating eigenvalues of h
and g, respectively. Then r(h) and r(g) are multiplicatively dependent. That is,
there exist some integers n, m such that r(h)n = r(g)m.

Durand stated this conjecture as a generalization of Cobham’s theorem in
[2, 3]. In those papers he considered only substitutions, that is, morphisms
h : Σ∗ → Σ∗ that satisfy limn→∞ |hn(a)| = ∞ for all a ∈ Σ. In particular,
such morphisms grow exponentially. Durand proved his conjecture for primi-
tive substitutions in [2], and for a wide family of non-primitive substitutions in
[3]. Theorem 25 extends the conjecture to polynomially growing morphisms.
Moreover, it shows a stronger property: if the stabilizer elements grow polyno-
mially, then the largest Jordan block associated with the dominating eigenvalue
r = 1 is of a fixed size. More formally:
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Theorem 27. Let w ∈ Σω be an aperiodic infinite word, where MStab(w) is
not empty. For a morphism h ∈ MStab(w), let r(h) be the Perron-Frobenius
eigenvalue of the incidence matrix of h, and let d(h) be the size of the largest Jor-
dan block associated with r(h). Suppose there exists a morphism h ∈ MStab(w)
such that r(h) = 1. Then for all g ∈ MStab(w), r(g) = r(h) = 1 and
d(g) = d(h) ≥ 3.

Proof. This is an immediate result of Theorem 25, since r(h) = 1 if and only
if h grows polynomially, and the degree of the polynomial is d(h) − 1. The
inequality d(h) ≥ 3 follows from Proposition 26. �

Remark. In the course of writing this paper, it was brought to our attention
that in a recently published paper, Durand and Rigo [4] give an alternative
proof of the fact that polynomial and exponential growth cannot exists simulta-
neously. However, our approach is quite different, and it also gives the additional
information of the polynomial degree.
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