
On First-Order Fragments for Words and
Mazurkiewicz Traces

A Survey

Volker Diekert1 and Manfred Kufleitner2

1 Universität Stuttgart, FMI, Germany
diekert@fmi.uni-stuttgart.de

2 Université Bordeaux 1, LaBRI, France
manfred.kufleitner@labri.fr

Abstract. We summarize several characterizations, inclusions, and sep-
arations on fragments of first-order logic over words and Mazurkiewicz
traces. The results concerning Mazurkiewicz traces can be seen as gen-
eralizations of those for words. It turns out that over traces it is crucial,
how easy concurrency can be expressed. Since there is no concurrency in
words, this distinction does not occur there. In general, the possibility of
expressing concurrency also increases the complexity of the satisfiability
problem.
In the last section we prove an algebraic and a language theoretic char-
acterization of the fragment Σ2[E] over traces. Over words the relation
E is simply the order of the positions. The algebraic characterization
yields decidability of the membership problem for this fragment. For
words this result is well-known, but although our proof works in a more
general setting it is quite simple and direct. An essential step in the proof
consists of showing that every homomorphism from a free monoid to a
finite aperiodic monoid M admits a factorization forest of finite height.
We include a simple proof that the height is bounded by 3 |M |.

1 Introduction

The concept of partially commutative free monoids has first been considered by
Cartier and Foata [1]. Later Keller and Mazurkiewicz used them as a model for
concurrent systems and Mazurkiewicz established the notion of trace monoids
for these structures [16, 19, 20]. Since then the elements of partially commuta-
tive monoids are called Mazurkiewicz traces. Many aspects of traces and trace
languages have been researched, see The Book of Traces [7] for an overview.

Over words it has turned out that finite monoids are a powerful technique to
refine the class of recognizable languages [9]. For fragments of first-order logic, in
many cases it is a characterization in terms of algebra which leads to decidability
of the membership problem. For example, on the algebraic side first-order logics
as well as temporal logics corresponds to aperiodic monoids, see e.g. [12]. The
probably most interesting fragment of them is given by the variety DA. It admits
many different characterizations, which led to the title Diamonds are Forever in

[30]. One of the purposes of this paper is to survey the situation over words and
Mazurkiewicz traces.

Words can be seen as a special case of Mazurkiewicz traces and the cor-
responding results for words have been known before their generalizations to
traces. Since over words we do not have any concurrency the situation is more
complex for traces, and therefore not all word results remain valid for traces.
It turns out that for traces the distinction between so-called dependence graphs
and partial orders is rather crucial. Over words, both notions coincide.

The paper is organized as follows. In Section 2 we introduce Mazurkiewicz
traces using a graph theoretic approach since this directly translates into the
logic setting. After that we present further notions used in this paper which
include the definition of fragments of first-order logic and temporal logic, some
language operations, and the connections to finite monoids. In Section 3 we give
several characterizations of languages whose syntactic monoid is aperiodic or
in the variety DA. In a second part of this section we describe the alternation
hierarchy of first-order logic using language operations. Section 4 contains some
ideas and approaches revealing how concurrency increases the expressive power
of logical fragments and in Section 5 we present some results showing that in
general, concurrency also increases the complexity of the satisfiability problem.

Finally, in Section 6 we give a self-contained proof of a language theoretic and
an algebraic characterization of the fragment Σ2 over traces. The algebraic char-
acterization yields decidability of the membership problem for this fragment. For
words this result is well-known, but although our proof works in a more general
setting it is quite simple and direct. A main tool in this proof are factorization
forests. We give a simple and essentially self-contained proof for Simon’s theorem
on factorization forests in the special case of finite aperiodic monoids M . Our
proof can be generalized to arbitrary monoids and still yields that the height of
the factorization forests is bounded by 3 |M |. The previously published bound
was 7 |M |, see [2]. After having completed our paper we learned that the bound
3 |M | has been stated in the Technical Report [3], too.

2 Preliminaries

Words and Mazurkiewicz traces

A dependence alphabet is a pair (Γ,D) where the alphabet Γ is a finite set (of
actions) and the dependence relation D ⊆ Γ ×Γ is reflexive and symmetric. The
independence relation I is the complement of D. A Mazurkiewicz trace is an
isomorphism class of a node-labeled directed acyclic graph t = [V,E, λ], where
V is a finite set of vertices labeled by λ : V → Γ and E ⊆ (V × V) \ idV is the
edge relation such that for any two different vertices x, y ∈ V we have either
(x, y) ∈ E or (y, x) ∈ E.

We call [V,E, λ] a dependence graph. By < we mean the transitive closure
of E. We write x ‖ y if x 6= y and the vertices x and y are incomparable with
respect to <. In this case we say that x and y are independent or concurrent.

2

Node labeled graphs (V,E, λ) and (V ′, E′, λ′) are isomorphic if and only if the
corresponding labeled partial orders (V,<, λ) and (V ′, <′, λ′) are isomorphic.
The transitive reduction of a trace is called the Hasse diagram.

For D = Γ × Γ we obtain words. The vertices in words are linearly ordered
and the relations E and < are identical. Let t1 = [V1, E1, λ1] and t2 = [V2, E2, λ2]
be traces. Then we define the concatenation of t1 and t2 to be t1 · t2 = [V,≤, λ]
where V = V1 ∪ V2 is a disjoint union, λ = λ1 ∪ λ2, and E = E1 ∪ E2 ∪
{ (x, y) ∈ V1 × V2 | (λ(x), λ(y)) ∈ D }. The set M of traces becomes a monoid
with the empty trace 1 = (∅, ∅, ∅) as unit. It is generated by Γ , where a letter a
is viewed as a graph with a single vertex labeled by a. Thus, we obtain a canonical
surjective homomorphism π : Γ ∗ →M. The effect of the mapping π can be made
explicit as follows. We start with a word w = a1 · · · an where all ax are letters in
Γ . Each x is viewed as an element in { 1, . . . , n } with label λ(x) = ax. We draw
an arc from x to y if and only if both, x < y and (ax, ay) ∈ D. This dependence
graph is π(w). Note that M is also canonically isomorphic to the quotient monoid
Γ ∗/{ ab = ba | (a, b) ∈ I }. By abuse of notation we often identify a trace t and
its word representatives w ∈ π−1(t).

Example 1. Let (Γ,D) = a— b— c— d where self-loops are omitted. Consider
the trace t = acdbca. We have acdbca = cabadc in M. The trace t has the
following graphical presentations:

Hasse diagram: Dependence graph E: Partial order <:

a

c

b

d

a

c

a

c

b

d

a

c

a

c

b

d

a

c

In t, the node labeled with d is concurrent to all nodes labeled with a or b. ut
There is a basic observation which holds for all t ∈M and all vertices x, y of t:

(x, y) ∈ E ⇔ (x, y) ∈ E+ ∧ (λ(x), λ(y)) ∈ D (1)

(x, y) ∈ E+ ⇔ ∃x1 · · · ∃x|Γ | :

x|Γ | = y ∧ (x, x1) ∈ E ∧∧

1≤i<|Γ |

(xi, xi+1) ∈ E ∪ idV

 (2)

This shows that traces can be either represented by their dependence graphs
or as a partial order without losing any information. There are some standard
notations we adopt here. By alph(t) we denote the alphabet of a trace t, i.e., the
set of letters occurring as labels of some position. By |t| we denote the length of
a trace, i.e., the number of vertices of t. A trace language L is a subset of M.

First-order logic and temporal logic

The syntax of first-order logic formulas FO[E] is built upon atomic formulas of
type

>, λ(x) = a, and (x, y) ∈ E,

3

where >means true, x, y are variables and a ∈ Γ is a letter. If ϕ, ψ are first-order
formulas, then ¬ϕ, ϕ ∨ ψ, ∃xϕ are first-order formulas, too. We use the usual
shortcuts as ⊥ = ¬> meaning false, ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ), and ∀xϕ = ¬∃x¬ϕ.
Note that x = y can be expressed by∨

a∈Γ

(
λ(x) = a ∧ λ(y) = a

)
∧ (x, y) 6∈ E ∧ (y, x) 6∈ E

We let FOm[E] be the set of all formulas with at most m different names for
variables. There are completely analogous definitions for the first-order logic
FO[<]. The only difference is that instead of (x, y) ∈ E we have an atomic
predicate x < y.

Given ϕ ∈ FO[E]∪FO[<] the semantics is defined as usual [32]. In particular,
if all free variables in ϕ belong to a set {x1, . . . , xm }, then for all t ∈M and all
x1, . . . , xm ∈ t we write t, x1, . . . , xm |= ϕ if t satisfies ϕ(x1, . . . , xm). We identify
formulas by semantic equivalence (over finite traces). Hence, if ϕ and ψ are
formulas with m free variables, then we write ϕ = ψ as soon as t, x1, . . . , xm |=
(ϕ ↔ ψ) for all t ∈ M and all x1, . . . , xm ∈ t. Due to (1) we have that FOm[E]
is a fragment of FOm[<]. A first-order sentence is a formula in FO[E] or FO[<]
without free variables. For a first-order sentence ϕ we define L(ϕ) = { t ∈M |
t |= ϕ }. A trace language L ⊆ M is called first-order definable if L = L(ϕ) for
some first-order sentence ϕ and we let FO(M) = {L(ϕ) | ϕ ∈ FO[E] }. We do
not write FO[E](M), because FO(M) = {L(ϕ) | ϕ ∈ FO[<] } as well, due to (2).
So, in first-order it is not necessary to distinguish between E and <. However,
for subclasses of FO we need this distinction. We define the following classes for
E′ = E and E′ = <, respectively.

The fragment Σn[E′] contains all formulas in prenex normal form with n
blocks of alternating quantifiers starting with a block of existential quantifiers
whereas in Πn[E′] formulas start with a block of universal quantifiers. According
to our convention to identify equivalent formulas, it makes sense to write e.g.
ϕ ∈ Σn[E′]⇔ ¬ϕ ∈ Πn[E′]. Although in general the transitive closure of binary
relations is not expressible in first-order logic, we have

⋃
0≤nΣn[E] = FO[<] due

to the following observation obtained from (1) and (2):

Σn[E] ⊆ Σn[<] ⊆ Σn+1[E]

For E′ = E and E′ = < we define the following language classes:

– FOm[E′](M) = {L(ϕ) | ϕ ∈ FOm[E′] }.
– Σn[E′](M) = {L(ϕ) | ϕ ∈ Σn[E′] }.
– Πn[E′](M) = {L(ϕ) | ϕ ∈ Πn[E′] }.
– ∆n[E′](M) = Σn[E′](M) ∩Πn[E′](M).

Now, FOm[E′](M) and ∆n[E′](M) are Boolean algebras and Σn[E′](M) and
Πn[E′](M) are closed under union and intersection.

Local temporal logic formulas are defined by first-order formulas having
at most one free variable. In this paper we focus on unary operators and lo-
cal semantics. In temporal logic we write a(x) for the atomic formula λ(x) =

4

a. Inductively, we define SFϕ(x) (Strict Future), SPϕ(x) (Strict Past), Mϕ(x)
(soMewhere), Ecoϕ(x) (Exists concurrently) as follows.

SFϕ(x) = ∃y : x < y ∧ ϕ(y)
SPϕ(x) = ∃y : y < x ∧ ϕ(y)
Mϕ(x) = ∃y : ϕ(y)

Ecoϕ(x) = ∃y : x ‖ y ∧ ϕ(y)

It is common to write ϕ instead of ϕ(x). Let C be a subset of temporal operators
from the set above, then TL[C] means the formulas where all operators are from
C. In order to pass to languages we would like to define L(ϕ) ⊆M, even if ϕ has
a free variable. There is however no canonical choice, so we use an existential
variant; and we define here:

L∃(ϕ) = { t ∈M | ∃x ∈ t : t, x |= ϕ } = L(Mϕ).

Define TL[C](M) as the Boolean closure of languages defined by L∃(ϕ) with
ϕ ∈ TL[C].

Languages and language operations

We now define some operations on classes of languages that are used to describe
the expressive power of logical fragments. Let V be a class of trace languages.
By B(V) we denote the Boolean closure of V. A language L is a monomial over
V of degree m if there exist n ≤ m, ai ∈ Γ and Li ∈ V with

L = L0a1L1 · · · anLn

Note that the degree of a monomial is not unique. A finite union of monomials
over V is called a polynomial over V. A polynomial has degree m if it can be
written as a union of monomials of degree m. The class of all polynomials over
V is denoted by Pol(V). The class Pol(V) is often called the polynomial closure
or the closure under product and union of the class V. By co-Pol(V) we denote
the class of languages L such that M \ L ∈ Pol(V). If we speak of monomials
and polynomials without referring to some class V then we mean monomials and
polynomials over A = {A∗ | A ⊆ Γ }, respectively. In particular, Pol = Pol(A)
and co-Pol = co-Pol(A). For example, if A,B ⊆ Γ then A∗B∗ ∈ Pol since

A∗B∗ = A∗ ∪
⋃
b∈B

A∗bB∗

The class of star-free languages SF is the closure of the empty set under Boolean
operations and polynomials. If V is a class of word languages then UPol(V) con-
sists of the word languages that are disjoint finite unions of unambiguous mono-
mials. A monomial L0a1L1 · · · anLn is unambiguous if every w ∈ L0a1L1 · · · anLn

5

has a unique factorization w = w0a0w1 · · · anwn with wi ∈ Li. A similar lan-
guage operation is B-UPol. By B-UPol(V) we denote the closure of V under
Boolean operations and unambiguous products. An unambiguous product is an
unambiguous monomial of the form L0a1L1. We set UPol = UPol(A) and
B-UPol = B-UPol(A). For example, the word language {a, b}∗ ab {a, b}∗ is in
UPol since

{a, b}∗ ab {a, b}∗ = {b}∗ a {a}∗ b {a, b}∗

whereas the polynomials {a, b}∗ aa {a, b}∗ and {a, b, c}∗ ab {a, b, c}∗ are not in
UPol. See [23] for more information on the language operations UPol(V) and
B-UPol(V). The operation B-UPol(V) has been extended to classes of trace lan-
guages [18].

Algebraic descriptions

Finite monoids are an elementary tool in the description and classification of
recognizable languages. Remember that a monoid M is a set equipped with
an associative binary operation and a neutral element 1. An ordered monoid is
a monoid M equipped with a partial order relation ≤ such that a ≤ b implies
ca ≤ cb and ac ≤ bc for all a, b, c ∈M . Every monoid M forms an ordered monoid
(M,=). For homomorphisms h : (M,≤)→ (N,�) between ordered monoids we
additionally require that a ≤ b implies h(a) � h(b) for all a, b ∈ M . If a is an
element of an ordered monoid (M,≤) then we define bac = { b ∈M | b ≤ a }.
More details on ordered monoids can be found in [22]. An element e of a monoid
is called idempotent if e2 = e. For every finite monoid M there exists a number
ω ∈ N such that aω is idempotent for every a ∈M . The element aω is the unique
idempotent generated by a. Therefore we use the ω-notation also if the finite
monoid M is not fixed to denote the idempotent generated by some element.
A language L is called recognizable if L = h−1h(L) for some homomorphism
h : M→M , where M is a finite monoid. In this case we say that M recognizes
L. The minimal monoid recognizing L is its syntactic monoid. For a language
L ⊆M we define its syntactic pre-order ≤L by

s ≤L t ⇔ (∀p, q ∈M : ptq ∈ L ⇒ psq ∈ L)

and its syntactic congruence ∼L by s ∼L t if and only if s ≤L t and t ≤L
s. The natural homomorphism µL : M → M/∼L : t 7→ [t]∼L

is called the
syntactic homomorphism of L and the monoid M(L) = M/∼L is called the
syntactic monoid of L. A language L is recognizable if and only if M(L) is
finite. The syntactic pre-order ≤L of L induces a partial order on M(L) such
that (M(L),≤L) forms an ordered monoid. It is called the syntactic ordered
monoid of L. For µL : (M,=)→ (M(L),≤L) we have

L =
⋃

a∈µL(L)

µ−1
L (bac)

A class of recognizable languages V is a language variety if it is closed under
Boolean operations, left and right quotients, and inverse homomorphic images.

6

A class of finite monoids V is called a variety if it is closed under taking finite
products, submonoids and homomorphic images [21]. Eilenberg has shown that
language varieties of word languages and varieties of finite monoids are in a
one-to-one correspondence [9]. Ordered monoids are designed to serve as a sim-
ilar tool for classes of languages which are not closed under complementation.
Syntactic (ordered) monoids play a crucial role in these correspondences. This
yields to the observation that properties of classes of languages can be expressed
in terms of properties of syntactic monoids. In a lot of cases, a description of the
variety generated by the syntactic monoids M(L) for L ∈ V yields decidability
of the membership problem for this language variety V. An important tool to
describe the structure of monoids are Green’s relations. For a, b ∈M we define

a J b ⇔ MaM = MbM a ≤J b ⇔ MaM ⊆MbM

aR b ⇔ aM = bM a ≤R b ⇔ aM ⊆ bM
a L b ⇔ Ma = Mb a ≤L b ⇔ Ma ⊆Mb

aH b ⇔ aR b and a L b

Note that J ,R, L, andH are equivalence relations, whereas≤J ,≤R, and≤L are
pre-orders. Equations are another tool to describe properties of finite monoids.
Let Ω be a finite set and let v, w ∈ Ω∗. A monoid M satisfies the equation
v = w, if for all homomorphisms h : Ω∗ → M we have h(v) = h(w). For
example, commutative monoids satisfy xy = yx. We also allow the ω-operator
in equations and define h(vω) = h(v)ω. By J v = w K we denote the class of finite
monoids satisfying v = w. The class of all monoids satisfying an equation forms
a variety. We define the variety of aperiodic monoids A by A =

q
xω = xω+1

y
.

Another important variety is DA = J (xy)ωx(xy)ω = (xy)ω K. By mapping y to
1 we see that DA ⊆ A. In the following we summarize some basic properties of
these varieties.

Proposition 1 ([21]). For every finite monoid M the following are equivalent:

1. M ∈ A.
2. M is H-trivial, i.e., every H-class contains exactly one element.
3. All groups in M are trivial, i.e., if a subsemigroup of M is a group then it

contains only one element.

Proposition 2 ([17]). For every finite monoid M the following are equivalent:

1. M ∈ DA.
2. M ∈ J (xy)ωy(xy)ω = (xy)ω K.
3. M ∈ J (xyz)ωy(xyz)ω = (xyz)ω K.
4. M ∈ A and ∀a, b, e ∈M : e = e2 and a J b J e implies ab J e.
5. ∀e, f ∈M : e = e2 and e J f implies f = f2.

3 Expressivity results

In the following two theorems we summarize characterizations of trace languages
whose syntactic monoid is aperiodic or in DA. Note that this includes the special

7

case of word languages. The results are using some temporal operators which we
did not introduce yet. The operator X is an existential next-operator, i.e., Xϕ is
true at a position x if at some minimal position in the future of x the formula
ϕ holds. Over words, this position is unique. The until-operator U is a binary
operator. The formula ϕUψ is true at a position x if there exists a position
y ≥ x at which ψ holds and all positions between x and y (i.e., all positions from
the current position x “until” y) satisfy ϕ. The formula Xa ϕ for a ∈ Γ is true
at a position x if there exists a position y > x labeled by a and if at the first of
these a-labeled positions in the future of x the formula ϕ holds. The operator
Ya is left-right symmetric to Xa. With TL[Xa,Ya] we mean that we have Xa
and Ya operators for every a ∈ Γ . The definition of the languages generated by
formulas in TL[X,U] and TL[Xa,Ya] is slightly different from the one that we
propose above for unary temporal logic.

Theorem 1 ([5, 8, 14, 15]). Let L ⊆M. Then the following are equivalent:

1. M(L) ∈ A.
2. L ∈ SF.
3. L is expressible in FO3[<].
4. L is expressible in FO[<].
5. L is expressible in FO[E].
6. L is expressible in TL[X,U].

Theorem 2 ([6, 18]). Let L ⊆M. Then the following are equivalent:

1. M(L) ∈ DA.
2. L ∈ Pol ∩ co-Pol.
3. L ∈ B-UPol.
4. L is expressible in FO2[E].
5. L is expressible in ∆2[E].
6. L is expressible in TL[Xa,Ya].
7. L is expressible in TL[SF,SP].
8. L is expressible in TL[SF,SP,M].

For word languages L ⊆ Γ ∗ we additionally have M(L) ∈ DA if and only
if L ∈ UPol, see [25]. In particular, UPol is closed under complementation.
Since membership in both varieties A and DA is decidable, membership for all
characterizations in Theorem 1 and Theorem 2 is decidable.

Theorem 3 ([6, 11]). Let L ⊆M. Then the following are equivalent:

1. L is expressible in FO2[<].
2. L is expressible in TL[SF,SP,Eco].

The following theorem gives a language theoretic characterization of the al-
ternation hierarchy for first-order logic over words. It is the connection to the
Straubing-Thérien hierarchy in which one describes classes of word languages by
alternating Boolean closure and polynomial closure starting with the empty set.
By definition, the limit of this process is the class of star-free languages. In the
following we use BΣn as a shortcut for B

(
Σn[<](Γ ∗)

)
. Note that BΣn = BΠn.

8

Theorem 4 ([24]). Over words we have the following

1. Σ0[<](Γ ∗) = B(Σ0) = {∅, Γ ∗}.
2. Σn+1[<](Γ ∗) = Pol(BΣn).
3. Πn+1[<](Γ ∗) = co-Pol(BΣn).
4. ∆n+1[<](Γ ∗) = UPol(BΣn).

A basis for the last part of this theorem is the more general fact that UPol(V) =
Pol(V) ∩ co-Pol(V) if V is a variety of word languages. This follows from an
algebraic description in terms of Mal’cev products [24]. Another language theo-
retic characterization of Σ2 is Σ2[<](Γ ∗) = Pol. We give a detailed proof of this
characterization in the more general setting of traces over dependence graphs in
Section 6. It is well-known that the alternation hierarchy for first-order logic is
strict [29], i.e.:

– For n ≥ 1 the classes Σn[<](Γ ∗) and Πn[<](Γ ∗) are incomparable.
– For n ≥ 1 the class Σn[<](Γ ∗) is strictly contained in ∆n+1[<](Γ ∗).
– For n ≥ 1 the class ∆n[<](Γ ∗) is strictly contained in the class Σn[<](Γ ∗).

Recently, Weis and Immerman have shown that the alternation hierarchy for FO2

on words is strict [33]. In the next section we consider the alternation hierarchy
for first-order logic over traces. The distinction between partial orders < and
dependence graphs E turns out to be crucial. Using (2) we can express < in
terms of E, but this requires variables and it requires quantifiers, but in FO2

the number of variables is restricted whereas in Σn the number of quantifier
alternations is bounded.

4 Separation results

We start this section with a simple observation. Let (Γ,D) = a— b— c and
consider the traces x = abc and y = b. Then for all n ∈ N the trace (xy)n

is a sequence in which all positions are totally ordered whereas in the trace
(xy)nx(xy)n we have a factor xx whose Hasse diagram is

a b c

a b c

In particular, in xx there exist two concurrent actions. Consider the formula
ϕ = ∃z1∃z2 : z1‖z2 ∈ FO2[<] ∩ Σ1[<] where z1‖z2 is a macro for ¬(z1 = z2 ∨
z1 < z2 ∨ z2 < z1). Then for all n ≥ 1 we have

(xy)nx(xy)n |= ϕ and (xy)n 6|= ϕ

This shows that the syntactic monoid of the trace language L(ϕ) is not in
DA = J (xy)ωx(xy)ω = (xy)ω K. Now, whenever the dependence relation is not
transitive we find some letters a, b and c with the dependencies a— b— c. On
the other hand, if the dependence relation is transitive then the partial order <
and the edge relation E of the dependence graph are identical. Together with
Σ1[<](M) ⊆ ∆2[<](M) we obtain the following theorem.

9

Theorem 5. Let M be the trace monoid generated by the dependence alphabet
(Γ,D). The following are equivalent:

1. The dependence relation D is transitive.
2. For every trace, the relations < and E are identical.
3. FO2[E](M) = FO2[<](M).
4. ∆2[E](M) = ∆2[<](M).

The main technique in the proofs of the following theorems are Ehrenfeucht-
Fräıssé games, see e.g. [29, 32]. Let M be a trace monoid over the following
dependence alphabet:

#

a

b

c

d

e

f
(Γ,D) =

Theorem 6 ([6]). For the above trace monoid M the trace language

L = { t ∈M | ∃x, y, z ∈ t : (x ‖ y ∧ y ‖ z ∧ z ‖ x) }

consisting of all traces with three pairwise concurrent actions is expressible in
Σ1[<] but not in FO2[<].

The main idea in the proof of this theorem is to consider the traces #q# and
p = #rn# in which every action has the same set of concurrent actions, but in p
there are at most two pairwise independent actions. The Hasse diagram of #q#
is:

#

a b

c d

e f

#

and the Hasse diagram of the trace p = #rn# is sketched below:

· · · e f a b c d e f a b · · ·

· · · a b c d e f a b c d · · ·
r

For every formula ϕ ∈ FO2[<] we can find a sufficiently large number n such
that the two traces pnqpn ∈ L and p2n 6∈ L either both are models of ϕ or
none of them is a model. Therefore, L 6∈ FO2[<](M). The previous two results
can be summarized as follows: “two concurrent actions” is in FO2[<] and ∆2[<]
but not in FO2[E] = ∆2[E] and “three concurrent actions” is in ∆2[<] but
not in FO2[<]. The next theorem implies that in general FO2[<] and ∆2[<]
are incomparable. It is open whether membership is decidable for FO2[<](M)
or ∆2[<](M). Also note that the following result is rather unexpected since
FO2[<] ⊆ FO[<] =

⋃
nΣn[<].

10

Theorem 7 ([6]). For every n ≥ 0 there exists a trace monoid M and a trace
language L ⊆M such that L ∈ FO2[<](M) but L 6∈ Σn [<] (M).

DA = TL[SF,SP]
= TL[SF,SP,M]
= TL[Xa,Ya]
= FO2[E]
= ∆2[E]
= Pol ∩ co-Pol
= B-UPol

Σ1[<]

Σ1[E]

Σ2[E]
= Pol

Σ2[<]

Σ3[<]

...

...
A = TL[X,U]

= FO3[<]
= FO[<]
= FO[E]
= SF

TL[SF,SP,Eco]
= FO2[<]

Remember Σn[<] ⊆ Σn+1[E] ⊆ Σn+1[<]. We already know from the word case
that the inclusion Σn[<] ⊆ Σn+1[E] is strict. The following theorem says that in
general the second inclusion is also strict and that the fragments Πn−1[<] and
Σn[E] are incomparable.

Theorem 8 ([6]). Let M be the trace monoid generated by the dependence al-
phabet (Γ,D). The following are equivalent:

1. The dependence relation D is transitive.
2. ∃n ≥ 1 : Σn[E](M) = Σn[<](M).
3. ∃n ≥ 2 : Πn−1[<](M) ⊆ Σn[E](M).

∆n[<]

∆n+1[E]

Σn[<] Πn[<]

Σn+1[E]

Σn+1[<]

11

5 Complexity of satisfiability

The possibility of being able to speak about concurrency increases the expressiv-
ity of most first-order fragments. In this section we will see how it also increases
the complexity of the satisfiability problem. The (uniform) satisfiability problem
(SAT) for some class of logical formulas C is the following:

Input: A dependence alphabet (Γ,D) and a formula ϕ ∈ C.
Question: Does there exists t ∈M = M(Γ,D) such that t ∈ L(ϕ)?

and the non-uniform satisfiability problem for C over a dependence alphabet
(Γ,D) is the satisfiability problem where the dependence alphabet (Γ,D) is
fixed and not part of the input:

Input: A formula ϕ ∈ C.
Question: Does there exists t ∈M such that t ∈ L(ϕ)?

We summarize some complexity results in the following theorem.

Theorem 9 ([6, 10, 11, 13, 27, 28]).

1. SAT for temporal logics is PSPACE-complete.
2. SAT for FO[<] is not elementary.
3. The non-uniform satisfiability problem for TL[X, F] over {a, a}∗ is PSPACE-

hard.
4. SAT for TL[SF,SP,M] is NP-complete.
5. The non-uniform satisfiability problem for TL[SF,SP,Eco] over some depen-

dence alphabet is PSPACE-hard. In fact, non-uniform satisfiability for the
stutter-invariant fragment TL[F,Eco] is already PSPACE-hard.

6. SAT for FO2[E] is in NEXPTIME.
7. The satisfiability problem for FO2[<] is in EXPSPACE and NEXPTIME-

hard. In fact, satisfiability for FO2[‖] in which ‖ is the only binary relation
is already NEXPTIME-hard.

The parts “4.” and “5.” in Theorem 9 show that allowing the Eco operator
increases the complexity of the satisfiability problem (unless NP = PSPACE).
Part “4.” is proved by giving a small model property for TL[SF,SP,M], i.e., if
there exists a model then there also exists a model whose size is polynomially
bounded. For part “5.” a reduction of “3.” is used. In the following we sketch the
idea of how to simulate the X-operator using the Eco -operator over the following
independence alphabet:

a

a
b

cd

e(Γ, I) =

For a word w = a1 · · · an ∈ {a, a}+ we define a trace w̃ = a1(bcde) · · · an(bcde) ∈
M = M(Γ, I).

12

w̃ =

a1 c e

b d a2 c e

b d a3 c e

b d

· · ·

· · ·

For the trace w̃ we can use Eco to simulate X on the positions with label a, a.
The transformation of Xψ is given by

X̃ψ = Eco(b∧Eco(c∧Eco(d∧Eco(e∧Eco((a∨ a)∧ ψ̃)))))

It is easy to verify that X̃ψ indeed reaches the next a or a position.

6 The fragment Σ2[E]

In this section we give a self-contained proof of the following theorem. An im-
portant tool in the proof are factorization forests.

Theorem 10. Let L ⊆ M = M(Γ, I) be a recognizable trace language and let
µ : M → (M(L),≤) : t 7→ [t] be the syntactic homomorphism onto its syntactic
ordered monoid. The following are equivalent:

1. For all e, s ∈M: [e] = [e2] and alph(s) ⊆ alph(e) implies [ese] ≤ [e].
2. L is a polynomial.
3. L is expressible in Σ2[E].

The syntactic ordered monoid of a recognizable trace language (given in any rea-
sonable presentation) is effectively computable. Since property “1.” in Theorem
10 can be effectively verified we obtain the following corollary.

Corollary 1. It is decidable if L ⊆M is definable in Σ2[E].

6.1 Factorization forests

Let M be a finite monoid. A factorization forest of a homomorphism ϕ : Γ ∗ →M
is a function d which maps every word w with length |w| ≥ 2 to a factorization
d(w) = (w1, . . . , wn) of w = w1 · · ·wn such that n ≥ 2 and wi is not empty for
all i ∈ { 1, . . . , n } and such that n ≥ 3 implies that ϕ(w1) = . . . = ϕ(wn) is
idempotent in M . The height h of a word w is defined as

h(w) =

{
0 if |w| ≤ 1
1 + max{h(w1), . . . , h(wn) } if d(w) = (w1, . . . , wn)

We call the tree defined by the “branching” d for the word w the factorization
tree of w. The height h(w) is the height of this tree. The height of d is defined
as sup{h(w) | w ∈ Γ ∗ }. A famous theorem of Simon says that every homomor-
phism ϕ : Γ ∗ → M has a factorization forest of height ≤ 9 |M |, see [26]. By
generalizing techniques of [2] we can improve this bound to 3 |M |. Using another
approach, this bound has been shown independently in [3]. Below we present
a simple proof of this fact in the special case of aperiodic monoids. The proof
requires only basic facts from the theory of finite semigroups such as:

13

– The intersection of an R-class and an L-class within the same J -class yields
a unique H-class within that J -class.

– x ≤L y and x J y implies x L y; x ≤R y and x J y implies xR y.
– In aperiodic monoids every H-class consists of only one element.

Theorem 11. Let M be a finite aperiodic monoid. Every homomorphism ϕ :
Γ ∗ →M : w 7→ [w] has a factorization forest of height < 3 |M |.

Proof. We show that for every w ∈ Γ ∗ there exists a factorization tree of height
h(w) < 3 |{x ∈M | [w] ≤J x }|. The J -class of 1 in aperiodic monoids is trivial.
Let w ∈ Γ ∗ with |w| ≥ 2. If [w] = 1 then for all b ∈ alph(w) we have [b] = 1.
Hence d(w) = (b1, . . . , bn) yields a factorization tree of height 1 for w = b1 . . . bn.
Now let [w] <J 1. Then w has a unique factorization

w = w0a1w1 · · · amwm

with ai ∈ Γ and wi ∈ Γ ∗ satisfying the following two conditions:

∀ 1 ≤ i ≤ m : [aiwi] J [w] and ∀ 0 ≤ i ≤ m : [w] <J [wi]

Let w′i = aiwi for 1 ≤ i ≤ m. For each 1 ≤ i < m define a pair (Li, Ri) where Li
is the L-class of [w′i] and Ri is theR-class of [w′i+1]. Every such pair represents an
H-class within the J -class of [w]. Therefore, the number of different such pairs
does not exceed |{x | [w] J x }|. For the above factorization of w we perform an
induction on the cardinality of the set { (Li, Ri) | 1 ≤ i < m } to show that w
has a factorization tree of height

h(w) < 3 |{ (Li, Ri) | 1 ≤ i < m }| + 3 |{x | [w] <J x }|

Note that the number on the right-hand side of this inequality does not exceed
3 |{x ∈M | [w] ≤J x }|. If every pair (L,R) occurs at most twice then we have
m−1 ≤ 2 |{ (Li, Ri) | 1 ≤ i < m }|. We define a factorization tree for w by d(w) =
(w0w

′
1, w

′
2 · · ·w′m), d(w0w

′
1) = (w0, w

′
1), d(w′i · · ·w′m) = (w′i, w

′
i+1 · · ·w′m) for

2 ≤ i < m and d(w′i) = (ai, wi) for 1 ≤ i ≤ m. Since [w] <J [wi], by induction
every wi has a factorization tree of height h(wi) < 3 |{x | [wi] ≤J x }| ≤
3 |{x | [w] <J x }|. This yields:

h(w) < m + 3 |{x | [w] <J x }|
≤ 3 |{ (Li, Ri) | 1 ≤ i < m }| + 3 |{x | [w] <J x }|

Note that the height might decrease if some of the wi are empty. Now suppose
that there exists a pair (L,R) ∈ { (Li, Ri) | 1 ≤ i < m } occurring (at least) three
times. Let i0 < · · · < ik be the sequence of all positions with (L,R) = (Lij , Rij).
Let ŵj = w′ij−1+1 · · ·w′ij for 1 ≤ j ≤ k. For all 1 ≤ j ≤ ` ≤ k we have

– [ŵj · · · ŵ`] ≤L [w′i`] L [w′i0].
– [ŵj · · · ŵ`] ≤R [w′ij−1+1] R [w′i0+1].
– [w′i`] ≤J [ŵj · · · ŵ`] ≤J [w] J [w′i`] J [w′i0] J [w′i0+1] by assumption on

the factorization.

14

Thus for all 1 ≤ j ≤ ` ≤ k and 1 ≤ j′ ≤ `′ ≤ k we get

– [ŵj · · · ŵ`] L [w′i1] L [ŵj′ · · · ŵ`′] and
– [ŵj · · · ŵ`] R [w′i1+1] R [ŵj′ · · · ŵ`′] and therefore
– [ŵj · · · ŵ`] H [ŵj′ · · · ŵ`′] and since M is aperiodic we find
– [ŵj · · · ŵ`] = [ŵj′ · · · ŵ`′].

Therefore, all [ŵj · · · ŵ`] denote the same element in M and since k ≥ 2 this
element is idempotent. In particular, we have [ŵj]2 = [ŵj] = [ŵ`] for all 1 ≤
j, ` ≤ k. We construct a factorization tree of w by

d(w) = (w0w
′
1 · · ·w′i0 , w

′
i0+1 · · ·w′m)

d(w′i0+1 · · ·w′m) = (ŵ1 · · · ŵk, w′ik+1w
′
m)

d(ŵ1 · · · ŵk) = (ŵ1, . . . , ŵk)

Now, the pair (L,R) does not occur in any of the words w0w
′
1 · · ·w′i0 , w′ik+1w

′
m

and ŵj . By induction on the number of pairs (Li, Ri) there exist factorization
trees for them whose height is bounded by

3 |{ (Li, Ri) | 1 ≤ i < m } \ {(L,R)}| + 3 |{x | [w] <J x }|

Hence the height of the factorization tree of w satisfies the desired bound. ut

6.2 Proof of Theorem 10

Lemma 1. Let µ : M → (M,≤) : t 7→ [t] be a homomorphism into an ordered
monoid. If M is finite and satisfies the following property for all e, s ∈M:

[e] = [e2] and alph(s) ⊆ alph(e) implies [ese] ≤ [e] (3)

then for every p ∈M the language µ−1(bpc) is a polynomial.

Proof. By considering the case sω = e the property (3) implies [sωssω] = [sωs] ≤
[sω] and furthermore

[sω] = [sωsω] ≤ [sωsω−1] ≤ [sωsω−2] ≤ · · · ≤ [sωs]

Hence [sωs] = [sω] for all s ∈ M and therefore M is aperiodic. By Theorem 11
there exists a factorization forest d of height < 3 |M | for the homomorphism
Γ ∗ → M : w 7→ [π(w)] where π : Γ ∗ → M is the natural projection. We
define the height h(t) of a trace t with respect to this factorization forest as the
minimal height of one of its word representatives w ∈ π−1(t) and set d(t) =(
π(w1), . . . , π(wn)

)
where d(w) = (w1, . . . , wn). We show that for every t ∈ M

there exists a monomial Lt of the form

a1A
∗
1a2 · · ·A∗nan+1

whose (minimal) degree is bounded by (a sufficiently large function in) the height
h(t) of the factorization tree of t and that has the property t ∈ Lt ⊆ µ−1(b[t]c).

15

Since h(t) < 3 |M | there exist only finitely many such languages and therefore
the following union ⋃

t∈µ−1(bpc)

Lt

is finite and gives a polynomial representation for µ−1(bpc).
If |t| ≤ 1 then Lt = { t } is a monomial with constant degree. Now let |t| > 1.

The first case is d(t) = (t1, t2). Then by induction on the height there exist
monomials for t1 and t2 with ti ∈ Lti ⊆ µ−1(b[ti]c) for i = 1, 2 whose degree
is bounded by a function in h(t) − 1. We define the monomial Lt = Lt1∅∗Lt2 .
Clearly, we have t ∈ Lt. It remains to verify Lt ⊆ µ−1(b[t]c). Let t′1t

′
2 ∈ Lt with

t′1 ∈ Lt1 and t′2 ∈ Lt2 . Then

[t′1t
′
2] = [t′1][t′2] ≤ [t1][t2] = [t1t2] = [t]

The second case is d(t) = (t1, . . . , tn) with [t1]2 = [t1] = [t2] = . . . = [tn] = [t].
By induction there exist languages Li with ti ∈ Lti ⊆ µ−1(b[ti]c) for i = 1, n
whose degree is bounded by a function in h(t)−1. We define the monomial Lt =
Lt1
(
alph(t)

)∗
Ltn . Again, t ∈ Lt is clear. It remains to verify Lt ⊆ µ−1(b[t]c).

Let t′1st
′
n ∈ Lt with t′1 ∈ Lt1 , t′n ∈ Ltn and alph(s) ⊆ alph(t). Then

[t′1st
′
n] = [t′1][s][t′n] ≤ [t1][s][tn] = [t][s][t] ≤ [t]

where the last inequality follows by (3). ut

Lemma 2. Every monomial A∗0a1A
∗
1 · · · amA∗m is expressible in Σ2[E].

Proof. We show that for every trace t = t0a1t1 · · · amtm with alph(ti) ⊆ Ai there
exists a Σ2[E]-sentence ϕt whose size is bounded by a function in m and the size
of the alphabet Γ (and not by |t|) such that

t ∈ L(ϕt) ⊆ A∗0a1A
∗
1 · · · amA∗m

Since there are only finitely many such sentences the following disjunction is
finite ∨

t∈A∗0a1A∗1 ···amA∗m

ϕt

and it describes exactly the monomialA∗0a1A
∗
1 · · · amA∗m. The lemma then follows

since Σ2[E] is closed under finite disjunctions.
Using the convention that a0 is the empty trace we define Bi = alph(aiti)

for 0 ≤ i ≤ m. For each i and each letter b ∈ Bi fix a first position xf,i,b with
label b in the factor aiti and a last position x`,i,b with label b in the factor aiti.
There is a Σ2[E]-formula ψt(x) with free variables x = (xf,i,b, x`,i,b)0≤i≤m, b∈Bi

which reflects exactly the labeling and the partial ordering (i.e., not only the
edge relation in the dependence graph) of the chosen positions in t. Furthermore
the size of ψt(x) does only depend on m and Γ . The formula ϕt we are looking
for can be specified as follows:

ϕt = ∃x : ψt(x) ∧ ∀y :
∨

b∈Bi, 0≤i≤m

λ(y) = b ∧ xf,i,b ≤ y ≤ x`,i,b

16

Note that it is allowed to write xf,i,b ≤ y ≤ x`,i,b also over dependence graphs
because ψt(x) specifies the labels such that λ(xf,i,b) = λ(x`,i,b) = b. ut
Lemma 3. Let L ⊆ M be a trace language and let µ : M → (M(L),≤) be its
syntactic ordered homomorphism. If L is definable in Σ2[E] then M(L) has the
property that [e] = [e2] and alph(s) ⊆ alph(e) implies [ese] ≤ [e] for all e, s ∈M.

Proof. Let ϕ = ∃x∀y : ψ(x, y) ∈ Σ2[E] where x = (x1, . . . , xn), y = (y1, . . . , yn),
and ψ is a propositional formula. Let p, q, s, t ∈M and assume alph(s) ⊆ alph(t).
We show that for all k ≥ (n+ 1)2 we have

ptkq |= ϕ ⇒ ptkstkq |= ϕ (4)

If u = ptkq models ϕ then there exist positions X1, . . . , Xn in the trace u such
that

u,X |= ∀y : ψ(X, y) (5)

where X = (X1, . . . , Xn). We refer to the k copies of the factor t in u as blocks
numbered by 1 to k from left to right. By choice of k there exist n consecutive
blocks such that no Xi is a position within these blocks, i.e.,

u = ptk1 · tn · tk2q

and all Xi are positions either in the prefix ptk1 or in the suffix tk2q of u. Consider
the following factorization of v = ptkstkq:

v = ptk1 · tk
′
1stk

′
2 · tk2q

Since the prefix and suffix in this factorization are equal to that in the factor-
ization of u and since all Xi correspond to positions in these parts of u we can
choose the corresponding positions X ′1, . . . , X

′
n in the identical parts of v. We

claim that for X ′ = (X ′1, . . . , X
′
n) we have

v,X ′ |= ∀y : ψ(X ′, y)

By contradiction, suppose there exist positions Y ′1 , . . . , Y
′
n in v such that for

Y ′ = (Y ′1 , . . . , Y
′
n) we have

v,X ′, Y ′ |= ¬ψ(X ′, Y ′)

We show that this contradicts (5). If Y ′i is a position in the prefix ptk1 or in the
suffix tk2q of v we can choose an analogous position Yi in u. W.l.o.g. we assume
that all Yi are positions in the middle factor tk

′
1stk

′
2 and that i < j implies

(Y ′j , Y
′
i) 6∈ E, i.e., Y ′1 , . . . , Y

′
n is a linearization of the positions in Y ′. We now

let Yi be any position in the block k1 + i of u with the same label as Y ′i . This is
possible since alph(s) ⊆ alph(t). Now, all Yi are positions in the middle factor
tn of u. By construction, we have

(Xi, Xj) ∈ E ⇔ (X ′i, X
′
j) ∈ E

(Yi, Yj) ∈ E ⇔ (Y ′i , Y
′
j) ∈ E

(Xi, Yj) ∈ E ⇔ (X ′i, Y
′
j) ∈ E

(Yi, Xj) ∈ E ⇔ (Y ′i , X
′
j) ∈ E

17

Note that this would not be true for partial orders instead of dependence graphs.
From v,X ′, Y ′ |= ¬ψ(X ′, Y ′) it now follows

u,X, Y |= ¬ψ(X,Y)

in contradiction to (5). This proves (4). For L = L(ϕ) it follows that [tkstk] ≤ [tk]
holds in the syntactic ordered monoid (M(L),≤) of L. The lemma now follows
since [tk] = [t] if [t] = [e] is idempotent. ut

Proof (Theorem 10). The implication “1. ⇒ 2.” follows by Lemma 1 since L
is the union of languages of the form µ−1(bpc) with p ∈ M(L). “2. ⇒ 3.”
follows from Lemma 2 since Σ2[E] is closed under finite disjunctions. Finally,
the implication “3. ⇒ 1.” is Lemma 3. ut

References

1. P. Cartier and D. Foata. Problèmes combinatoires de commutation et réarrange-
ments. Number 85 in Lecture Notes in Mathematics. Springer, 1969.

2. J. Chalopin and H. Leung. On factorization forests of finite height. Theoretical
Computer Science, 310(1-3):489–499, 2004.

3. T. Colcombet. On Factorization Forests. Technical report, number hal-00125047,
Irisa, Rennes, 2007.

4. V. Diekert and P. Gastin. LTL is expressively complete for Mazurkiewicz traces.
Journal of Computer and System Sciences, 64:396–418, 2002.

5. V. Diekert and P. Gastin. Pure future local temporal logics are expressively com-
plete for Mazurkiewicz traces. Information and Computation, 204:1597–1619, 2006.

6. V. Diekert, M. Horsch, and M. Kufleitner. On first-order fragments for
Mazurkiewicz traces, to appear in Fundamenta Informaticae.

7. V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific,
Singapore, 1995.

8. W. Ebinger and A. Muscholl. Logical definability on infinite traces. Theoretical
Computer Science, 154:67–84, 1996.

9. S. Eilenberg. Automata, Languages, and Machines, volume B. Academic Press,
New York and London, 1976.

10. E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, chapter 16, pages 995–1072. Elsevier
Science Publisher B. V., 1990.

11. K. Etessami, M. Y. Vardi, and T. Wilke. First-order logic with two variables and
unary temporal logic. Information and Computation, 179(2):279–295, 2002.

12. D. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logic: Mathematical Foun-
dations and Computational Aspects. Clarendon Press, Oxford, 1994.

13. P. Gastin and D. Kuske. Satisfiability and model checking for MSO-definable
temporal logics are in PSPACE. In R. M. Amadio and D. Lugiez, editors, Proc. of
CONCUR’03, volume 2761 of LNCS, pages 222–236. Springer, 2003.

14. P. Gastin and M. Mukund. An elementary expressively complete temporal logic
for Mazurkiewicz traces. In Proc. of ICALP’02, number 2380 in LNCS, pages
938–949. Springer, 2002.

15. G. Guaiana, A. Restivo, and S. Salemi. Star-free trace languages. Theoretical
Computer Science, 97:301–311, 1992.

18

16. R. M. Keller. Parallel program schemata and maximal parallelism I. Fundamental
results. Journal of the Association for Computing Machinery, 20(3):514–537, 1973.

17. M. Kufleitner. Logical Fragments for Mazurkiewicz Traces: Expressive Power and
Algebraic Characterizations. Dissertation, Universität Stuttgart, 2006.

18. M. Kufleitner. Polynomials, fragments of temporal logic and the variety DA over
traces. In O. H. Ibarra and Z. Dang, editors, Proc. of DLT’06, volume 4036 of
LNCS, pages 37–48. Springer, 2006.

19. A. Mazurkiewicz. Concurrent program schemes and their interpretations. DAIMI
Rep. PB 78, Aarhus University, Aarhus, 1977.

20. A. Mazurkiewicz. Trace theory. In W. Brauer et al., editors, Petri Nets, Appli-
cations and Relationship to other Models of Concurrency, number 255 in LNCS,
pages 279–324. Springer, 1987.

21. J.-É. Pin. Varieties of Formal Languages. North Oxford Academic, London, 1986.
22. J.-É. Pin. A variety theorem without complementation. In Russian Mathematics

(Izvestija vuzov.Matematika), volume 39, pages 80–90, 1995.
23. J.-É. Pin, H. Straubing, and D. Thérien. Locally trivial categories and unambigu-

ous concatenation. Journal of Pure and Applied Algebra, 52:297–311, 1988.
24. J.-É. Pin and P. Weil. Polynominal closure and unambiguous product. Theory

Comput. Syst, 30(4):383–422, 1997.
25. M. P. Schützenberger. Sur le produit de concatenation non ambigu. Semigroup

Forum, 13:47–75, 1976.
26. I. Simon. Factorization forests of finite height. Theoretical Computer Science,

72(1):65–94, 1990.
27. A. P. Sistla and E. Clarke. The complexity of propositional linear time logic.

Journal of the Association for Computing Machinery, 32:733–749, 1985.
28. L. Stockmeyer. The complexity of decision problems in automata theory and logic.

PhD thesis, TR 133, M.I.T., Cambridge, 1974.
29. H. Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser,

Boston, Basel and Berlin, 1994.
30. P. Tesson and D. Thérien. Diamonds are Forever: The Variety DA. In G. M. dos

Gomes Moreira da Cunha, P. V. A. da Silva, and J.-É. Pin, editors, Semigroups,
Algorithms, Automata and Languages, Coimbra (Portugal) 2001, pages 475–500.
World Scientific, 2002.

31. P. S. Thiagarajan and I. Walukiewicz. An expressively complete linear time tem-
poral logic for Mazurkiewicz traces. In Proc. of LICS’97, pages 183–194, 1997.

32. W. Thomas. Languages, automata and logic. In A. Salomaa and G. Rozenberg,
editors, Handbook of Formal Languages, volume 3, Beyond Words. Springer, Berlin,
1997.

33. P. Weis and N. Immerman. Structure theorem and strict alternation hierarchy for
FO2 on words. Technical report, Department of Computer Science University of
Massachusetts, Amherst, 2006.

19

