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Abstract

Trace Theory denotes a mathematical theory of free partially com-
mutative monoids from the perspective of concurrent or parallel sys-
tems. Traces, or equivalently, elements in a free partially commutative
monoid, are given by a sequence of letters (or atomic actions). Two
sequences are assumed to be equal if they can be transformed into
each other by equations of type ab = ba, where the pair (a, b) be-
longs to a predefined relation between letters. This relation is usually
called partial commutation or independence. With an empty indepen-
dence relation, i.e., without independence, the setting coincides with
the classical theory of words or strings.

Introduction

The analysis of sequential programs describes a run of a program as a se-
quence of atomic actions. On an abstract level such a sequence is simply a
string in a free monoid over some (finite) alphabet of letters. This purely ab-
stract viewpoint embeds program analysis into a rich theory of combinatorics
on words and a theory of automata and formal languages. The approach has
been very fruitful from the early days where the first compilers have been
written until now where research groups in academia and industry develop
formal methods for verification.

Efficient compilers use autoparallelization which provides a natural exam-
ple of independence of actions resulting in a partial commutation relation.
For example, let a; b; c; a; d; e; f be a sequence of arithmetic operations where:

(a) x := x+ 2y, (b) x := x− z, (c) y := y · 5z
(d) w := 2w, (e) z := y · z, (f) z := x+ y · w.

A concurrent-read-exclusive-write protocol yields a list of pairs of inde-
pendent operations (a, d), (a, e), (b, c), (b, d), (c, d), and (d, e), which can
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be performed concurrently or in any order. The sequence can therefore be
performed in four parallel steps {a} ; {b, c} ; {a, d, e} ; {f}, but as d commutes
with a, b, c the result of a; b; c; a; d; e; f is equal to a; d; b; c; a; e; f , and two
processors are actually enough to guarantee minimal parallel execution time,
since another possible schedule is {a, d} ; {b, c} ; {a, e} ; {f}. Trace theory
yields a tool to do such (data-independent) transformations automatically.

Parallelism and concurrency demand for specific models, because a purely
sequential description is neither accurate nor possible in all cases, for example
if asynchronous algorithms are studied and implemented. Several formalisms
have been proposed in this context. Among these models there are Petri nets,
Hoare’s CSP and Milner’s CCS, event structures, and branching temporal
logics. The mathematical analysis of Petri nets is however quite complicated
and much of the success of Hoare’s and Milner’s calculus is due to the fact
that is stays close to the traditional concept of sequential systems relying
on a unified and classical theory of words. Trace theory follows the same
paradigm, it enriches the theory of words by a very restricted, but essential
formalism to capture main aspects of parallelism: In a static way a set I of
independent letters (a, b) is fixed, and sequences are identified if they can be
transformed into each other by using equations of type ab = ba for (a, b) ∈ I.
In computer science this approach appeared for the first time in the paper
by Keller on Parallel Program Schemata and Maximal Parallelism published
in 1973. Based on the ideas of Keller and the behavior of elementary net
systems Mazurkiewicz introduced 1977 the notion of trace theory and made
its concept popular to a wider computer science community. Mazurkiewicz’
approach relies on a graphical representation for a trace. This is a node-
labeled directed acyclic graph, where arcs are defined by the dependence
relation, which is by definition the complement of the independence relation
I.

Thereby, a concurrent run has an immediate graphical visualization which
is obviously convenient for practice. The picture of the two parallel execu-
tions {a} ; {b, c} ; {a, d, e} ; {f} and {a, d} ; {b, c} ; {a, e} ; {f} can be depicted
as follows, which represents (the Hasse diagrams of) isomorphic labeled par-
tial orders:
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Moreover, the graphical representation yields immediately a correct no-
tion of infinite trace, which is not clear when working with partial commu-
tations. In the following years it became evident that trace theory indeed
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copes with some important phenomena such as true concurrency. On the
other hand it is still close to the classical theory of word languages describ-
ing sequential programs. In particular, it is possible to transfer the notion
of finite sequential state control to the notion of asynchronous state control.
This important result is due to Zielonka; it is one of the highlights of the
theory. There is a satisfactory theory of recognizable languages relating fi-
nite monoids, rational operations, asynchronous automata, and logic. This
leads to decidability results and various effective operations. Moreover it is
possible to develop a theory of asynchronous Büchi automata, which enables
in trace theory the classical automata theory based approach to automated
verification.

1 Discussion

1.1 Mathematical definitions and normal forms

Trace theory is founded on a rigorous mathematical approach. The un-
derlying combinatorics for partial commutation were studied in mathemat-
ics already in 1969 in the seminal Lecture Notes in Mathematics Problèmes
combinatoires de commutation et réarrangements by Cartier and Foata. The
mathematical setting uses a finite alphabet Σ of letters and the specification
of a symmetric and irreflexive relation I ⊆ Σ × Σ, called the independence
relation. Conveniently, its complement D = Σ × Σ ⊆ I is called the de-
pendence relation. The dependence relation has a direct interpretation as
graph as well. For the dependency used in the first example above it looks
as follows:

a f

b

d

c

eD =

The intended semantics is that independent letters commute, but depen-
dent letters must be ordered. Taking ab = ba with (a, b) ∈ I as defining
relations one obtains a quotient monoid M(Σ, I), which has been called free
partial commutative monoid or simply trace monoid in the literature. The
elements are finite (Mazurkiewicz-)traces. For I = ∅, traces are just words
in Σ∗; for a full independence relation, i.e., D = idΣ, traces are vectors in
some Nk, hence Parikh-images of words. The general philosophy is that the
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extrema Σ∗ and Nk are well-understood (which is far from being true), but
the the interesting and difficult problems arise when M(Σ, I) is neither free
nor commutative.

For effective computations and the design of algorithms appropriate nor-
mal forms can be used. For the lexicographic normal form it is assumed that
the alphabet Σ is totally ordered, say a < b < c · · · < z. This defines a lexi-
cographic ordering on Σ∗ exactly the same way words are ordered in a stan-
dard dictionary. The lexicographic normal form of a trace is the minimal word
in Σ∗ representing it. For example, if I is given by {(a, d), (d, a), (b, c), (c, a)},
then the trace defined by the sequence badacb is the congruence class of six
words:

{baadbc, badabc, bdaabc, baadcb, badacb, bdaacb} .
Its lexicographic normal form is the first word baadbc. An important property
of lexicographic normal forms has been stated by Anisimov and Knuth. A
word is in lexicographic normal form if and only if it does not contain a
forbidden pattern, which is a factor bua where a < b ∈ Σ and the letter a
commutes with all letters appearing in bu ∈ Σ∗. As a consequence, the set
of lexicographic normal forms is a regular language.

The other main normal is due to Foata. It is a normal form which encodes
a maximal parallel execution. Its definition uses steps, where a step means
here a subset F ⊆ Σ of pairwise independent letters. Thus, a step requires
only one parallel execution step. A step F yields a trace by taking the
product Πa∈Fa over all its letters in any order. The Foata normal form is a
sequence of steps F1 · · ·Fk such that F1, . . . , Fk are chosen from left-to-right
with maximal cardinality. The sequence {a, d} ; {b, c} ; {a, e} ; {f} above has
been the Foata normal form of abcadef .

The graphical representation of a trace due to Mazurkiewicz can be
viewed as a third normal form. It it called the dependence graph representa-
tion; and it is closely related to the Foata normal form. Say a trace t is spec-
ified by some sequence of letters t = a1 · · · an. Each index i ∈ V = {1, . . . , n}
is labeled by the letter ai. Finally, arcs (i, j) ∈ E are introduced if and only
if both (ai, aj) ∈ D and i < j. In this way an acyclic directed graph G(t) is
defined which is another unique representation of t. The information about
t is also contained in the induced partial order (i.e., the transitive closure of
G(t)) or in its Hasse-diagram (i.e., removing all transitive arcs from G(t)).

1.1.1 Computation of normal forms

There are efficient algorithms which compute either normal form in polyno-
mial time. A very simple method uses a stack for each letter of the alphabet
Σ. An input word is scanned from right to left, so the last letter is read first.
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When processing a letter a it is pushed on its stack and a marker is pushed
on the stack of all the letters b (b 6= a) which do not commute with a. Once
the word has been processed its lexicographic normal form, the Foata normal
form, and the Hasse-diagram of the dependence graph representation can be
obtained straightforwardly. For example, the sequence a; b; c; a; d; e; f (with
a dependence relation as depicted above) yields stacks as follows:
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1.2 Regular sets

A fundamental concept in formal languages is the notion of a regular set.
Kleene’s Theorem say that a regular set can be specified either by a fi-
nite deterministic (resp. non-deterministic) automaton DFA (resp. NFA) or,
equivalently, by a regular expression. Regular expressions are also called ra-
tional expressions. They are defined inductively by saying that every finite
set denotes a rational expression and if R, S rational, then R∪ S, R · S, and
R∗ are rational expressions, too. The semantics of a rational expression is
defined in any monoid M since the semantics of R∪S, R ·S is obvious, andR∗

can be viewed as the union
⋃

k∈NR
k. For star-free expressions one does not

allow the star-operation, but one adds complementation, denoted e.g. by R
with the semantics M \R.

In trace theory a direct translation of Kleene’s Theorem fails, but it can
be replaced by a generalization due to Ochmański. If (a, b) is a pair of
independent letters, then (ab)∗ is a rational expression, but due to ab = ba it
represents all strings with an equal number of a’s and b’s which is clearly not
regular. With three pairwise independent letters (abc)∗ is not even context-
free. A general formal language theory distinguishes between recognizable
and rational sets. A subset L of a trace monoid is called recognizable, if
its closure is a regular word language. Here the closure refers to all words
in Σ∗ which represent some trace in L. A subset L is called rational, if L
can be specified by some regular (and hence rational) expression. Using the
algebraic notion of homomorphism this can be rephrased as follows. Let ϕ be
the canonical homomorphism of Σ∗ onto M(Σ, I), which simply means the
interpretation of a string as its trace. Now, L is recognizable if and only if
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ϕ−1(L) is a regular word language; and L is rational if and only if L = ϕ(K)
for some regular word language K. As a consequence of Kleene’s Theorem
all recognizable trace languages are rational, but the converse fails as soon
as there is a pair of independent letters, i.e., the trace monoid is not free.

Given a recognizable trace language L, the corresponding word language
ϕ−1(L) is accepted by some NFA (actually some DFA) which satisfies the
so-called I-diamond property. This means whenever it holds (a, b) ∈ I and
a state p leads to a state q by reading the word ab, then it is in state p
also possible to read ba and this leads to state q, too. NFAs satisfying the
I-diamond property accept closed languages only. Therefore they capture
exactly the notion of recognizability for traces.

It has been shown that the concatenation of two recognizable trace lan-
guages is recognizable, in particular star-free languages (i.e., given by star-
free expressions) are recognizable. However, the example (ab)∗ above shows
that the star-operation leads to non-recognizable sets as soon the trace
monoid is not free. Métivier and Ochmański have introduced a restricted
version where the star-operation is allowed only when applied to languages
L where all traces t ∈ L are connected. This means the dependence graph
G(t) is connected or, equivalently, there is no non-trivial factorization t = uv
where all letters in u are independent of all letters in v. A theorem shows
that L∗ is still recognizable, if L is connected (i.e., all t ∈ L are connected)
and recognizable. Ochmański’s Theorem yields also the converse: A trace
language L is recognizable if and only if it can be specified by a rational ex-
pression where the star-operation is restricted to connected subsets. As word
languages are always connected this is a proper generalization of the clas-
sical Kleene’s Theorem. Yet another characterization of recognizable trace
languages is as follows: They are in one-to-one correspondence with regular
subsets inside the regular set LexNF ⊆ Σ∗ of lexicographic normal forms. The
correspondence associates with L ⊆ M(Σ, I) the set K = ϕ−1(L) ∩ LexNF.
A rational expression for K is a rational expression for L, where the star-
operation is restricted to connected languages.

1.3 Decidability questions

1.3.1 The Star Mystery

The Star Problem is to decide for a given recognizable trace language L ⊆
M(Σ, I) whether L∗ is recognizable. It is not known whether the star problem
is decidable, even if it is restricted to finite languages L. The surprising
difficulty of this problem has been coined as the star mystery by Ochmański.
It has been shown by Richomme that the Star Problem is decidable, if (Σ, I)
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does not contain any C4 (cycle of four letters) as an induced subgraph.

1.3.2 Undecidability results for rational sets

For rational languages (unlike as for recognizable languages) some very basic
problems are known to be undecidable. The following list contains unde-
cidable decision problems, where the input for each instance consists of an
independence alphabet (Σ, I) and rational trace languages R, T ⊆ M(Σ, I)
specified by rational expressions.

• Inclusion Question: Does R ⊆ T hold?

• Equality Question: Does R = T hold?

• Universality Question: Does R = M(Σ, I) hold?

• Complementation Question: Is M(Σ, I) \R a rational?

• Recognizability Question: Is R recognizable?

• Intersection Question: Does R ∩ T = ∅ hold?

On the positive side, if I is transitive, then all six problems above are
decidable. This is also a necessary condition for the first five problems in the
list. Transitivity of the independence alphabet alphabet means in algebraic
terms that the trace monoid is a free product of free and free commutative
monoids, like e.g. {a, b}∗ ∗ N3.

The intersection problem is simpler. It is known that the problem In-
tersection is decidable if and only if (Σ, I) is a transitive forest. It is also
well-known that transitive forests are characterized by forbidden induced
subgraphs C4 and P4 (cycle and path, resp., of four letters).

1.4 Asynchronous automata

Whereas recognizable trace languages can be defined as word languages ac-
cepted by DFAs or NFAs with I-diamond property, there is an equivalent
distributed automaton model called asynchronous automata. Such an au-
tomaton is a parallel composition of finite-state processes synchronizing over
shared variables, whereas a DFA satisfying the I-diamond property is still
a device with a centralized control. An asynchronous automaton A has, by
definition, a distributed finite state control such that independent actions
may be performed in parallel. The set of global states is modeled as a direct
product Q =

∏
p∈P Qp, where the Qp are states of the local component p ∈ P
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and P is some finite index set (a set of processors). For each letter a ∈ Σ
there is a read domain R(a) ⊆ P and a write domain W (a) ⊆ P where for
simplicity W (a) ⊆ R(a). Processors p and q share a variable a if and only if
p, q ∈ R(a). The transitions are given by a family of partially defined func-
tions δp, where each processor p reads the status in the local components of
its read domain and changes states in local components of its write domain.
Accordingly to the read-and-write-conflicts being allowed, four basic types
are distinguished:

• Concurrent-Read-Exclusive-Write (CREW),
if R(a) ∩W (b) = ∅ for all (a, b) ∈ I.

• Concurrent-Read-Owner-Write (CROW),
if R(a)∩W (b) = ∅ for all (a, b) ∈ I and W (a)∩W (b) = ∅ for all a 6= b.

• Exclusive-Read-Exclusive-Write (EREW),
if R(a) ∩R(b) = ∅ for all (a, b) ∈ I.

• Exclusive-Read-Owner-Write (EROW),
if R(a)∩R(b) = ∅ for all (a, b) ∈ I and W (a)∩W (b) = ∅ for all a 6= b.

The local transition functions (δp)p∈P give rise to a partially defined transition
function on global states δ : (

∏
p∈P Qp)× Σ −→

∏
p∈P Qp.

If A is of any of the four types above, then the action of a trace t ∈
M(Σ, I) on global states is well-defined. This allows to see an asynchronous
automaton as an I-diamond DFA. There are effective translations from one
model to the other. The most compact versions can be obtained by a CREW
model, therefore it is of prior practical interest.

Zielonka has shown in his thesis (published in 1987) the following deep
theorem in trace theory: Every recognizable trace language can be accepted
by some finite asynchronous automaton. The proof of this theorem is very
technical and complicated. Moreover, the original construction was dou-
bly exponential in the size of an I-diamond automaton for the language L.
Therefore it is part of ongoing research to simplify its construction, in partic-
ular since efficient constructions are necessary to make the result applicable
in practice. The best result to date is due to Genest et al.. They provide
a construction where the size of the obtained asynchronous automaton is
polynomial in the size of a given DFA and simply exponential in the number
of processes. They also show that the construction is optimal within the
class of automata produced by Zielonka-type constructions, which yields a
non-trivial lower bound on the size of asynchronous automata.
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A rather direct construction of asynchronous automata is known for tri-
angulated dependence alphabets, this means that all chordless cycles are of
length three. For example, complete graphs and forests are triangulated.

1.5 Infinite traces

The theory of infinite traces has its origins in the mid eighties when Flé and
Roucairol considered the problem of serializability of iterated transactions
in data bases. A suitable definition of an infinite trace uses the dependence
graph representation due to Mazurkiewicz. Just as in the finite case an
infinite sequence t = a1a2 · · · of letters yields an infinite node-labeled acyclic
directed graph G(t), where now each i ∈ V = N is labeled by the letter ai,
and again arcs (i, j) ∈ E are introduced if and only if both (ai, aj) ∈ D and
i < j. It is useful to consider finite and infinite objects simultaneously as
an infinite trace may split into connected components where some of them
might be finite. The notion of real trace has been introduced to denote either
a finite or an infinite trace. If t1, t2, . . . is (finite or infinite) sequence of finite
traces, then the product t1t2 · · · is a well-defined real trace. It is a finite trace
if almost all ti are empty and an infinite trace otherwise. In particular, one
can define the ω-product Lω for every set L of finite traces and one enriches
the set of rational expressions by this operation.

The set R(Σ, I) of real traces can be embedded into a monoid of com-
plex traces where the imaginary component is a subset of Σ. This alphabetic
information is necessary in order to define an associative operation of con-
catenation. (Over complex traces Lω is defined for all subsets L.)

Many results from the theory of finite traces transfer to infinite traces
according to the same scheme as for finite and infinite words.

1.6 Logics

1.6.1 MSO and first-oder logic

Formulae in monadic second-order logic (MSO) are built up upon first-order
variables x, y, . . . ranging over vertices and second-order variables X, Y, . . .
ranging over subsets of vertices. There are Boolean constants true and false,
the logical connectives ∨, ∧, ¬, and quantification ∃, ∀ for the first- and
second-order variables. In addition there are four types of atomic formulae:

x ∈ X, x = y, (x, y) ∈ E, and λ(x) = a .

A first-order formula is a formula without any second-order variable. A sen-
tence is a closed formula, i.e., a formula without free variables. The semantics

9



of an MSO-sentence is defined for every node-labeled graph [V,E, λ] (here:
V = set of vertices, E = set of edges, λ : V → Σ = vertex labeling). Iden-
tifying a trace t with its dependence graph G(t), the truth value of t |= ψ is
therefore well-defined for every sentence ψ. The trace language defined by a
sentence ψ is L(ψ) = {t ∈ R(Σ, I) | t |= ψ}. It follows a notion of first-order
and second-order definability of trace languages.

1.6.2 Temporal logic

Linear temporal logic LTL can be inductively defined inside first order as
formulae with one free variable, as soon as the transitive closure (x, y) ∈ E∗
is expressible in first-order (as it is the case for trace monoids). There are
no quantifiers, but all Boolean connectives. The atomic formulae are λ(x) =
a. If ϕ(x), ψ(x) are LTL-formulae, then EXϕ(x) and (ϕ U ψ)(x) are LTL-
formulae. In temporal logic (x, y) ∈ E∗ means that y is in the future of the
node x. The semantics of EXϕ(x) is exists next, thus ϕ(y) holds for a direct
successor of x. The semantics of (ϕUψ)(x) reflects an until operator, it says
that in the future of x there is some z which satisfies ψ(z) and all y in the
future of x but in the strict past of z satisfy ϕ(y). Hence, condition ϕ holds
until ψ becomes true. There are dual past-tense operators, but they do not
add expressivity.

For LTL on can also give a syntax without any free variable and a global
semantics where the evaluation is based on the prefix relation of traces. The
local semantics as defined above is for traces a priori expressively weaker, but
it was shown that both, the global and local LTL have the same expressive
power as first-order logic. This was done by Thiagarajan and Walukiewicz
in 1998 for global LTL and by Diekert and Gastin in 2006 for local LTL,
respectively. Both results extend a famous result of Kamp from words to
traces. The complexity of the satisfiability problem (or model checking) is
however quite different. In global semantics it is non-elementary, whereas in
local semantics it is in PSPACE (= class of problems solvable on a Turing
machine in polynomial space.)

1.7 Fragments

For various applications fragments of first-order logics suffice. This has the
advantage that simpler constructions are possible and that the complexity of
for model checking is possibly reduced. A prominent fragment is first-order
logic with at most two names for variables. Two-variable logics logics capture
the core features of XML navigational languages like XPath. Over words and
over traces two variable logic FO2[E] can be characterized algebraically via
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the variety of monoids DA, (referring to the fact that regular D- classes are
aperiodic semigroups), in logic by Next-Future and Yesterday-Past operators,
and in terms of rational expressions via unambiguous polynomials. It turns
out that the satisfiability problem for two-variable logic is NP-complete (if
the independence alphabet is not part of the input). The extension of these
results from words to traces is due to Kufleitner.

1.8 Logics, algebra, and automata

The connection between logic and recognizability uses algebraic tools from
the theory of finite monoids. If h : M(Σ, I) → M is a homomorphism to
a finite monoid M and L ⊆ R(Σ, I) is a set of real traces, then one says
that h recognizes L, if for all t ∈ L and factorizations t = t1t2 · · · into finite
traces ti the following inclusion holds: h−1(t1)h−1(t2) · · · ⊆ L. This allows
to speak of aperiodic languages if some recognizing monoid is aperiodic. A
monoid M is aperiodic, if for all x ∈ M there is some n ∈ N such that
xn+1 = xn. A deep result states that a language is first-order definable if
and only if it is recognized by a homomorphism to a finite aperiodic monoid.
Algebraic characterizations lead to decidability of fragments. For example it
is decidable whether a recognizable language is aperiodic or whether it can
be expressed in two-variable first-order logic.

Another way to define recognizability is via Büchi automata. A Büchi
automaton for real traces is an I-diamond NFA with a set of final states F
and a set of repeated states R. It accepts a trace if the run stops in F or
if repeated states are visited infinitely often. If its transformation monoid is
aperiodic it is called aperiodic, too. There is also a notion of asynchronous
(cellular) Büchi automaton, and it is known that every I-diamond Büchi au-
tomaton can be transformed into an equivalent asynchronous cellular Büchi
automaton.

The main result connecting logic, recognizability, rational expressions,
and algebra can be summarized by saying that the following statements in
the first block (second block resp.) are equivalent for all trace languages
L ⊆ R(Σ, I):

MSO definability:

1 L is definable in monadic second-order logic.

2 L is recognizable by some finite monoid.

3 L is given as a rational expression where the star is restricted to connected
languages.
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4 L is accepted by some asynchronous Büchi automaton.

First-order definability:

1 L is definable in first-order logic.

2 L is definable in LTL (with global or local semantics).

3 L is recognizable by some finite and aperiodic monoid.

4 L is star-free.

1.8.1 Automata based verification

The automata theoretical approach to verification uses the fact that systems
and specifications are both modeled with finite automata. More precisely, a
system is given as a finite transition systemA which is typically realized as an
NFA without final states. So, the system allows finite and infinite runs. The
specification is written in some logical formalism, say in the linear temporal
logic LTL. So the specification is given by some formula ϕ, and its semantics
L(ϕ) defines the runs which obey the specification. Model checking means to
verify the inclusion L(A) ⊆ L(ϕ). This is equivalent to L(A) ∩ L(¬ϕ) = ∅.
Once an automaton B with L(B) = L(¬ϕ) has been constructed, standard
methods yield a product automaton for L(A)∩L(B). The check for emptiness
becomes a reachability problem in directed graphs.

A main obstacle is the combinatorial explosion when constructing the au-
tomaton B. But this works in practice nevertheless reasonable well, because
typical specifications are simple enough to be understood (hopefully) by the
designer, so they are short. From a theoretical viewpoint the complexity of
model checking for MSO and first-order in non-elementary, but for (local)
LTL is still in PSPACE. This approach is mostly applied and very successful
where runs can be modeled as sequences. Trace theory provides the neces-
sary tools to extend these methods to asynchronous systems. A first step in
this direction has been implemented in the framework of partial order reduc-
tion. Another application of trace theory is the analysis of communication
protocols.

1.9 Traces and asynchronous communication

Trace automata like asynchronous ones model concurrency in the same spirit
as Petri nets, using shared variables. A more complex model arises when
concurrent processes cooperate over unbounded, fifo communication chan-
nels.
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A communicating automaton is defined over a set P of processes, together
with point-to-point communication channels Ch ⊆ {(p, q) ∈ P 2 | p 6= q}. It
consists of a tuple of NFAs Ap, one for each process p ∈ P . Each NFA
Ap has a set of local states Qp and transition relation δp ⊆ Qp × Σp × Qp.
The set Σp of local actions of process p consists of send-actions p!q(m) (of
message m to process q, (p, q) ∈ Ch) and receive-actions p?r(m) (of mes-
sage m from process r, (r, p) ∈ Ch), respectively. The semantics of such an
automaton is defined through configurations consisting of a tuple of local
states (one for each process) and a tuple of word contents (one for each chan-
nel). In terms of partial orders the semantics of runs corresponds to message
sequence charts (MSC), a graphical notation for fifo message exchange. In
contrast with asynchronous automata, communicating automata have an in-
finite state space and are actually Turing powerful, thus most algorithmic
questions about them are undecidable.

The theory of recognizable trace languages enjoys various nice results
known from word languages, e.g. in terms of logics and automata. Since
communicating automata are Turing powerful, one needs restrictions in or-
der to obtain e.g. logical characterizations. A natural restriction consists
in imposing bounds on the size of the channels. Such bounds come in two
versions, namely as universal and existential bounds, respectively. The ex-
istential version of channel bounds is optimistic and considers all those runs
that can be rescheduled on bounded channels. The universal version is pes-
simistic and considers only those runs that, independent of the scheduling,
can be executed with bounded channels. Thus, communicating automata
with an universal channel bound are finite state, whereas with an existential
channel bound they are infinite state systems.

Kuske proposed an encoding of runs of communicating automata with
bounded channels into trace languages. Using this encoding, the set of runs
(MSCs) of a communicating automaton is the projection of a recognizable
trace language (for a universal bound), respectively the set of MSCs gener-
ated by the projection of a recognizable trace language (for an existential
bound). This correspondence has the same flavor as the distinction between
recognizable and rational trace languages, respectively.

The logic MSO over MSCs is defined with an additional binary message-
predicate relating matching send and receive events. Henriksen et al. and
Genest et al., respectively, have shown that the equivalence between MSO
and automata extends to communicating automata with universal and exis-
tential channel bound, respectively. Another equivalent characterization ex-
ists in terms of MSC-graphs, similar to star-connected expressions for trace
languages. These expressiveness results are complemented by decidable in-
stances of the model-checking problem.
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2 Bibliographic notes and further reading

Trace theory has its origins in enumerative combinatorics when Cartier and
Foata found a new proof of the MacMahon Master Theorem in the framework
of partial commutation by combining algebraic and bijective ideas [2]. The
Foata normal form was defined in this Lecture Note. In computer science the
key idea to use partial commutation as tool to investigate parallel systems was
laid by Keller [10], but it was only by the influence of the technical report of
Mazurkiewicz [11] when these ideas were spread to a wider computer science
community, in particular to the Petri-net community. It was also Mazur-
kiewicz who coined the notion Trace theory and who introduced the notion
of dependence graphs as a visualization of traces. The characterization of
lexicographic normal forms by forbidden pattern is due to Anisimov and
Knuth [1].

The investigation of recognizable (regular, rational resp.) languages is
central in the theory of traces. The characterization of recognizable lan-
guages in terms of star-connected regular expressions is due to Ochmański
[13]. The notion of asynchronous automaton is due to Zielonka. The major
theorem showing that all recognizable languages can be accepted by asyn-
chronous automata is his work (built on his thesis) [15]. The research on
asynchronous automata is still an important and active area. The best con-
structions so far are due to Genest et al., where also non-trivial lower bounds
were established [8].

The theory of infinite traces has its origins in the mid eighties. A defini-
tion of a real trace as a prefix-closed and directed subset of real traces and its
characterization by dependence graphs is given in a survey by Mazurkiewicz [12].
The theory of recognizable real trace languages has been initiated by Gastin
in 1990. The generalization of the Kleene-Büchi-Ochmański-Theorem to real
traces is due to Gastin, Petit and Zielonka [7]. Diekert and Muscholl gave
a construction for deterministic asynchronous Muller automata accepting a
given recognizable real trace language.

Ebinger initiated the study of LTL for traces in his thesis in 1994. But it
took quite an effort until Diekert and Gastin were able to show that LTL (in
local semantics) has the same expressive power as first-oder logic [3]. The
advantage of a local LTL is that model checking in PSPACE, whereas in
its global semantics it becomes non-elementary by a result of Walukiewicz
[14]. The PSPACE-containment has been shown for a much wider class of
logics by Gastin and Kuske [6]. In [4] Diekert, Horsch, and Kufleitner give
a survey on fragments of first order logic in trace theory. The Büchi-like
equivalence between automata and MSO for existentially bounded commu-
nicating automata has been shown by Genest, Kuske and Muscholl in [9].
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The translation from MSO into automata uses the equivalence for trace lan-
guages, but needs some additional, quite technical construction specific to
communicating automata.

Very much of the material used in the present discussion can be found
in The Book of Traces which was edited by Diekert and Rozenberg [5]. The
book surveys also a notion of semi-commutation (introduced by Clerbout and
Latteux), and it provides many hints for further reading. Current research
efforts concentrate on the topic of distributed games and controller synthesis
for asynchronous automata.
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mutation et réarrangements. Number 85 in Lecture Notes in Mathemat-
ics. Springer-Verlag, Heidelberg, 1969.

[3] Volker Diekert and Paul Gastin. Pure future local temporal logics are
expressively complete for Mazurkiewicz traces. Information and Compu-
tation, 204:1597–1619, 2006. Conference version in LATIN 2004, LNCS
2976, 170–182, 2004.

[4] Volker Diekert, Martin Horsch, and Manfred Kufleitner. On first-order
fragments for Mazurkiewicz traces. Fundamenta Informaticae, 80:1–29,
2007.

[5] Volker Diekert and Grzegorz Rozenberg, editors. The Book of Traces.
World Scientific, Singapore, 1995.

[6] Paul Gastin and Dietrich Kuske. Uniform satisfiability in PSPACE for
local temporal logics over Mazurkiewicz traces. Fundam. Inform., 80(1-
3):169–197, 2007.

15



[7] Paul Gastin, Antoine Petit, and Wies law Zielonka. An extension of
Kleene’s and Ochmański’s theorems to infinite traces. Theoretical Com-
puter Science, 125:167–204, 1994.

[8] Blaise Genest, Hugo Gimbert, Anca Muscholl, and Igor Walukiewicz.
Optimal Zielonka-type construction of deterministic asynchronous au-
tomata. In Samson Abramsky, Cyril Gavoille, Claude Kirchner, Fried-
helm Meyer auf der Heide, and Paul G. Spirakis, editors, ICALP (2), vol-
ume 6199 of Lecture Notes in Computer Science, pages 52–63. Springer,
2010.

[9] Blaise Genest, Dietrich Kuske, and Anca Muscholl. A Kleene theorem
and model checking algorithms for existentially bounded communicating
automata. Inf. Comput., 204(6):920–956, 2006.

[10] Robert M. Keller. Parallel program schemata and maximal parallelism I.
Fundamental results. Journal of the Association for Computing Machin-
ery, 20(3):514–537, 1973.

[11] Antoni Mazurkiewicz. Concurrent program schemes and their interpre-
tations. DAIMI Rep. PB 78, Aarhus University, Aarhus, 1977.

[12] Antoni Mazurkiewicz. Trace theory. In W. Brauer et al., editors, Petri
Nets, Applications and Relationship to other Models of Concurrency,
number 255 in Lecture Notes in Computer Science, pages 279–324, Hei-
delberg, 1987. Springer-Verlag.
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